

T-tests and One-way ANOVA using the SPSS Nikos Comoutos, PhD

 The Student's t-statistic was introduced in 1908 by William Sealy Gosset, using his pen name "Student", when he worked for the Guinness brewery in Dublin, Ireland. He devised the t-test as a way to cheaply monitor the quality of stout.

The test was published in Biometrika in 1908.

Independent t-test

Perform hypothesis tests concerning the difference in means of two independent populations – samples

Dependent t-test

Perform hypothesis tests concerning the different in means of two dependent (related) Populations - samples

Independent t-test

Independent variable

One independent variable = gender – two levels – males + females

Only one dependent variable Strength

Assumptions

- The data must be parametric, that is, they should be measured on an interval or ratio scale (if not use a non-paramatetric equivalent test)
- The samples should be randomly selected from the population (the results of the *t* test can be generalised from the sample to the population)
- The two samples should come from populations which have approximately the same variance (i.e., homogeneity of variance assumption). Use Levene test to test this assumption. (not significant!!!) (variance: The average of the squared differences from the Mean) – (Standard Deviation is just the square root of Variance)
- The scores of the dependent variable should come from a population which is normally distributed (i.e., normality assumption). Use Histogram with normal curve in the Descriptive Statistics/Frequencies or with Frequencies option check skewness and kurtosis values (if they are above 1.96 -standard errors, the data are probably not normally distributed)

 t test is fairly robust to moderate violations of the homogeneity of variance and normality assumptions. Equal variances is not actually required. SPSS will handle it.

Independent-samples T test

- When two groups are expected to differ in a particular variable
- Example one: Elite weight lifting athletes are predicted to have higher scores in strength compared to non-elite ones. (one-tailed test).
- Example two: The effect of gender of a sample that suffer from depression in walking using pedometers (two-tailed test).

Hypothesis

- Null hypothesis :
- The two means are equal
- **Ho:** $\mu_1 = \mu_2$
- Alternative hypothesis
- The two means are not equal $H_1: \mu 1 \neq \mu 2$

ΑΠΟΤΕ	ΛΕΣΜΑΤΑ.sa	av [DataSet1] - :	SPSS Data Editor					
ile Edit	View Dat	a Transform	Analyze Graphs Utilities	Window H	lelp			
> 🛛 🖨	h 🖽 🔶	🕈 🔚 🖗	Reports	•				
: aa			Descriptive Statistics	•				
	22	gender	Tables	•	unv2	anvi	anv£	anve
1	1.00	female	Compare Means	•	Means			00
2	2.00	female	General Linear Model	•	One-S	ample T Test		00
3	3,00	female	Generalized Linear Model	ls ▶	Indepe	endent-Sample	es T Test	00
4	4,00	female	Mixed Models		Paired	-Samples T Te	et.	00
5	5,00	female	Correlate		One W			00
6	6,00	female	Correlate	<u> </u>	Une-v	vay ANOVA	2,00	.,00
7	7,00	female	Regression	•	,00	3,00	3,00	3,00
8	8,00	female	Loglinear	+	3,00	1,00	1,00	2,00
9	9,00	female	Classify	+	,00	,00	,00	,00
10	10,00	female	Data Reduction	+	4,00	,00	4,00	3,00
11	11,00	male	Scale		4,00	3,00	,00	,00
12	12,00	male	Nonnarametric Tests		2,00	,00	2,00	2,00
13	13,00	male	Time Series		1,00	1,00	1,00	1,00
14			Time series					
15			Survival	•				
16			Multiple Response	•				
17			Missing Value Analysis					
18			Complex Samples	+				
19			Quality Control	+				
20			ROC Curve					
21								
22								
0.0					1			

Independent, π.χ. gender – two levels, males females

Dependent, $\pi.\chi$. Number of Steps of week 1

ile Edit	View Data	Transform	Analyze	Graphs Util	ities Window	w Help			
> 🖬 🖨	h 📴 🔶	🔶 🏧 🕼	M 1	h 🖩 🕩	FF 🛐 🏈				
: aa			1						
	aa	gender	age	anx1	anx2	anx3	anx4	anx5	anx6
1	1,00	female	41,00	2,00	3,00	1,00	1,00	2,00	,0
2	200	famala	20,00	4.00	2.00	2.00	1,00	,00	2,0
3	L' Indepen	dent-Samples	Test		/		2,00	2,00	3,0
4	aa 🖉		Te	est Variable(s)/	/	ΟΚ	3,00	2,00	3,0
5	age 🖉			🔗 week1 🖉			2,00	2,00	1,0
6	anx1					Paste	3,00	2,00	4,0
7	anx2			\backslash		Reset	3,00	3,00	3,0
8	anx3					Canad	1,00	1,00	2,0
9	anx4						,00	,00	,0
10	anx5					Help	,00	4,00	3,0
11	anxb		G G	rouping Variabl	e:		3,00	,00	,0
12	som8			ender(? ?)			,00	2,00	2,0
13	som9	-		Define Group	IS		1,00	1,00	1,0
14						2-1-1-1			
15						Jpaons			
16									
17				2					
18									
19									
20									
21									
22									
00									

Click continue and then Ok

ALLO.	AΠΟΤΕΛΕΣΜΑΤΑ.sav [DataSet1] - SPSS Data Editor										
File Edi	t View Dat	ta Transform	n Analyze	Graphs Util	ities Window	w Help	/				
🕞 🖬											
1 : aa			V								
	aa	gender	age	anx1	anx2	anx3	anx4	anx5	anx6		
1	1,00	female	41,00	2,00	3,00	1,00	1,00	2,00	,00		
2		famela	n T T at	4.00	2.00	<u> </u>	1,00	,00	2,00		
3	Indepe	endent-sampi	es i l'est	\		25	2,00	2,00	3,00		
4	aa 🚺		<u> </u>	est Variable(s):		бк	3,00	2,00	3,00		
5	age 🔊			Nweek1			2,00	2,00	1,00		
6	anx1	Define Group				Paste	3,00	2,00	4,00		
7	anx2	Denne Group	/5			Reset	3,00	3,00	3,00		
8	anx3	💿 Use spec	ified values	Continue		Cancel	1,00	1,00	2,00		
9	anx4	Group 1	: 1	Connect			,00	,00	,00		
10	anxo	Group 2	. 7	Cancer		Help	,00	4,00	3,00		
11		aloup 2	. [4	Help	в:		3,00	,00	,00		
12	som8	Cut point:					,00	2,00	2,00		
13	som9	1		Denne aroup	s		1,00	1,00	1,00		
14						Intions					
15				1		spaons					
16											
17											
18											
19											
20											
21											

Run the analysis clicking OK

File Edit	EΛEΣMATA.sa View Dat	av [DataSet1] -	SPSS Data Ed	ditor Graphs Util	ities Window	/ Help	
🕞 🖬 🖗) 🗹 🔶	🔶 🔚 🖗	M •	t 🗄 🗗	r 🐼 🥥	•	
1:aa			1				
	aa	gender	age	anx1	anx2	anx3	anx4
1	1,00	female	41,00	2,00	3,00	1,00	1,00
2	200	£	00.00	4.00	2.00	200	1,00
3	Indepe	ndent-Sample	es l'lest				2,00
4	aa 🖉		T	est Variable(s):		K	3,00
5	age 🖉			🔗 week1			2,00
6	anx1					Paste	3,00
7	anx2					Reset	3,00
8	anx3					Cancel	1,00
9	anx4						,00
10	anx5					Help	,00
11	anxb			irouping Variabl	e:		3,00
12	som8			gender(1-2)			,00
13	som9		1	Define Group	os		1,00
14						ations	
15						puons	
16							
17		2	1				
18							
19							

How we report the test.

In order to examine the hypothesis we used the independent t-test. The results showed a statistically significant difference in the number of steps t(11) = 2.30, p< .05. Men (M = 76.21, SD = 22.87) were doing more steps than women (M = 40, S.D = 24.16).

Excerpts 11.9–11.10 Comparison of Two Sample Means Using a *t*-Test

The male respondents (M = 33.88, SD = 9.29) were older than the female respondents (M = 30.95, SD = 8.41), a statistically significant difference, t(500) = 3.60, p < .01.

Source: D. Hardina. (1999). Employment and the use of welfare among male and female heads of AFDC households. Affilia, 14(2), p. 217.

Paired-samples T Test

Use a dependent samples t-test if you measure

- the same participants on a dependent variable at two different times (pre – post design)
- have two separate groups of participants that have been matched based on some characteristic.

Example

Examine the difference of the number of steps between week1 and week2

Hypothesis

- Null hypothesis :
- The two means are equal
- **Ho:** $\mu_1 = \mu_2$
- Alternative hypothesis
- The two means are not equal
- H_1 : $\mu 1 \neq \mu 2$. There is a significant difference between the steps of week 1 and week 2.

t-test.s	av [DataSet1]	- SPSS Data Ed	ditor									
File Edit	View Dat	a Transform	Analyze (Graphs Utili	ities Windo	w Help						
	à 🖬 🔶	🔶 🐜 🖗	#4 • 🗐 🖻	E 🖽 🗗	n 🐼 🖉							
1 : aa			1		•••••••							
1.44	22	gender	age	anx1	anx2	anx3	anx4	anx5	anx6	som7	som8	som9
1	1.00	female	41.00	2.00	3.00	1.00	1.00	2.00	00	2.00	.00	1.00
2	2.00	female	26.00	4.00	2.00	2.00	1.00	.00	2.00	1.00	1.00	1.00
3	3.00	female	43.00	4.00	4.00	4.00	2.00	2.00	3.00	2.00	3.00	2.00
4	4.00	female	34.00	.00	1.00	.00	3.00	2,00	3.00	2.00	1.00	.00
5	5,00	female	53,00	3,00	3,00	3,00	2,00	2,00	1,00	2,00	2,00	1,00
6	6,00	female	33,00	4,00	3,00	2,00	3,00	2,00	4,00	1,00	2,00	2,00
7	7,00	female	46,00	1,00	4,00	,00	3,00	3,00	3,00	3,00	,00	2,00
8	8,00	female	40,00	3,00	3,00	3.00	1.00	1.00	2.00	1.00	00	,00
9	9,00	female	58,00	1,00		Paired-Sampl	es T Test					.00
10	10,00	female	32,00	4,00	2,	@ wook1		Р	aired Variables:			3,00
11	11,00	male	42,00	4,00	4,	week?		l l				,00
12	12,00	male	45,00	2,00	2,	🖉 week3					Pa	ste 2,00
13	13,00	male	23,00	2,00	2,	🖉 week4					Re	set 1,00
14						🤌 week5						
15						🖉 week6					Lar	icei
16						🖋 week7	-				He	elp
17					L	Week8						
18						Current Selectio	ns					
19						Variable 1: wee	ek I					
20						variable 2: wee	ekz				Option	S
21												
22												
23												

Click Ok

t-test.sav [DataSet1] - SPSS Data Editor

File Edit View Data Transform Analyze Graphs Utilities Window Help

😕 🖬 📴 🔹 🗯 🗽 🕼 🐐 📲 🏥 🖽 🐼 🏈 🛰

1 : aa			1									
	aa	gender	age	anx1	anx2	anx3	anx4	anx5	anx6	som7	som8	som9
1	1,00	female	41,00	2,00	3,00	1,00	1,00	2,00	,00	2,00	,00	1,00
2	2,00	female	26,00	4,00	2,00	2,00	1,00	,00	2,00	1,00	1,00	1,00
3	3,00	female	43,00	4,00	4,00	4,00	2,00	2,00	3,00	2,00	3,00	2,00
4	4,00	female	34,00	,00	1,00	,00	3,00	2,00	3,00	2,00	1,00	,00
5	5,00	female	53,00	3,00	3,00	3,00	2,00	2,00	1,00	2,00	2,00	1,00
6	6,00	female	33,00	4,00	3,00	2,00	3,00	2,00	4,00	1,00	2,00	2,00
7	7,00	female	46,00	1,00	4,00	,00	3,00	3,00	3,00	3,00	,00	2,00
8	8,00	female	40,00	3,00	3,00	3.00	1.00	1.00	2 00	1 00		,00
9	9,00	female	58,00	1,00		Paired-Samp	les T Test					.00
10	10,00	female	32,00	4,00	2, [A ininE7		F	Paired Variable:	r		3,00
11	11,00	male	42,00	4,00	4,	ipip58			week1 week2	2		,00
12	12,00	male	45,00	2,00	2,	ipip59					P	aste 2,00
13	13,00	male	23,00	2,00	2,	<pre>ipip60</pre>					B	eset 1,00
14						🖉 week1						
15						🔗 week2					Ca	incel
16						🛷 week3					H	lelp
17						N week4	*					
18						Current Selection	ons					
19						Variable 1:					10	
20						Variable 2:					Option	ns
21												
22												
23												
						-		2				· · · · · · · · · · · · · · · · · · ·

t(12) = -2.35, p < .05

T-Test

[DataSet1] C:\Users\Nikos\Desktop\t-test.sav

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair	week1	48355,54	13	27879,63280	7732,419
1	week2	70234,62	13	30286,85424	8400,062

Paired Samples Correlations

	10122424	N	Correlation	Sig.
Pair 1	week1 & week2	13	,339	,258

the sign of the *t* value is negative. It simply signifies that the mean of the second group is higher than the mean of the first group

How we report the test.

We used paired samples t-test in order to examine our hypothesis... The results showed statistically significant difference between week 1 and week 2, t(12) = -2.35, p< .05. Participants did more steps in week 2 (*M*= 70.23, *SD* = 30.29) than in week1 (*M* = 48.36, *SD* = 27.88)

Overall, these practice-teachers' answers were significantly higher at posttest (overall M = 5.67) than at pretest (overall M = 4.91), t(74) = 5.76, p < .001 (two-tailed), indicating an increased willingness to view the suicide threat seriously and take specific actions to prevent it. Source: M.W. Davidson and L. M. Range. (1999). Are teachers of children and young adolescents responsive to suicide prevention training modules? Yes. Death Studies, 23, p.65.

ANOVA (Analysis of Variance)

This test is an extension of the Independent Samples *T Test*.

OInvented by R.A. Fisher in the 1920's

One Way Anova - ANOVA (Analysis of Variance)

- Two variables: 1 Categorical, 1 Quantitative
- Do the (means of) the quantitative variables depend on which group (given by categorical variable) the individual is in?
- If categorical variable has only 2 levels:
 2-sample t-test
- ANOVA allows for 3 or more groups- levels

Why ANOVA instead of many t-tests?

 Before ANOVA, this was the only option available to compare means between more than two groups.

 The problem with the multiple t-tests approach is that as the number of groups increases, the number of two sample ttests also increases.

 As the number of tests increases the probability of making a Type I error also increases (Tabachnick & Fidell, 1996)

Advantages

- 1) ANOVA will identify if *any two* of the group means are significantly different with a *single* test.
- 2) If the significance level is set at 0.05, the probability of a Type I error for ANOVA = 0.05 regardless of the number of groups being compared.
- 3) If the ANOVA F-test is significant, further comparisons can be done to determine which groups have significantly different means.

Assumptions (Vincent, 1999)

 The data should be parametric, measured on an interval or ratio scale.

- Independence (no relationship between the scores of the dependent variable in the different groups) otherwise consider using the *Repeated Measures* ANOVA test.
- Normality test with Kolmogorov-Smirnov & Shapiro-Wilk tests.
- Homogeneity of variance (Levene's test). We do not want these tests to be significant.

Violation of Assumptions

- According to Vincent (1999), ANOVA is relatively robust to violations of the assumptions of Normality and Homogeneity of variance.
- If you suspect serious violations of the ANOVA assumptions, consider using a non-parametric equivalent test.

Hypothesis

 The Null hypothesis for ANOVA is that the means for all groups are equal:

$$H_o: \mu_1 = \mu_2 = \mu_3 = \dots = \mu_k$$

• Null Hypothesis: $\mu_{control} = \mu_1 = \mu_2$

- The Alternative hypothesis for ANOVA is that at least two of the means are not equal μ1 > μ2, or μ1<μ2
- The test statistic for ANOVA is the ANOVA
 - F-statistic.

- The ANOVA F-test is a comparison of the average variability between groups to the average variability within groups.
 - O The variability within each group is a measure of the spread of the data within each of the groups.
 - The variability between groups is a measure of the spread of the group means around the overall mean for all groups combined.
 - F = <u>average variability between groups</u>

average variability within groups

Example

Groups: group3=control group group2=training method 2 group1=training method 1 independent variable XAM₂OV Dependent variable

File Edi	it View D	ata Transform	m Anal
	🔒 🖭 🖣	• 🕈 🔚 🛙	2 24
17:	e File		
500	group	maxvo2	var
1	1,00	4,00	
2	1,00	3,40	
3	1,00	3,20	
4	1,00	4,50	
5	1,00	4,20	
6	1,00	4,90	
7	1,00	3,70	
8	1,00	5,00	
9	1,00	3,90	
10	1,00	4,20	
11	2,00	3,20	
12	2,00	2,60	
13	2,00	2,40	
14	2,00	3,70	
15	2,00	3,40	-
16	2,00	4,10	
17	2,00	3,30	
18	2,00	3,30	
19	2,00	3,10	
20	2,00	3,40	
21	3,00	1,80	
22	3,00	2,70	
23	3,00	3,20	
24	3,00	3,00	
25	3,00	3,20	
26	3,00	1,80	
27	3,00	2,90	
28	3,00	3,30	
29	3,00	2,60	
30	3,00	3,50	
11		1	1

File Edi	t View Dat	a Transform	Analyze Graphs Utilities Window Help	
🗁 🔲 17 :	🔒 🖬 🔶	🔶 🔚 🧗	Reports Image: Constraint of the second	
	aroup	maxvo2	Tables	-
1	1,00	4,00	Compare Means Means	1
2	1,00	3,40	General Linear Model	- t
3	1,00	3,20	Generalized Linear Models Independent-Samples T Test	- E
4	1,00	4,50	Mixed Models Paired-Samples T Test	T
5	1,00	4,20		
6	1,00	4,90	Concluse one-way AnorA	
7	1,00	3,70	Regression	
8	1,00	5,00	Loglinear	
9	1,00	3,90	Classify	
10	1,00	4,20	Data Reduction	
11	2,00	3,20	Scale	
12	2,00	2,60	Nonparametric Tests	
13	2,00	2,40	Time Serier	
14	2,00	3,70	Time Series	
15	2,00	3,40	Survival	
16	2,00	4,10	Multiple Response	
17	2,00	3,30	Missing Value Analysis	
18	2,00	3,30	Complex Samples	
19	2,00	3,10	Quality Control	
20	2,00	3,40	BOC Curve	
21	3,00	1,80		

			CDCC.	D . D
000 14/31	1 5 311	I to / ctcl	- CDCC	Data Editor
	/.>av	Datasett	- 3533	

File Edit View Data Transform Analyze Graphs Utilities Window Help

🗁 🖬 📴 🔹 🔶 🔚 👔 🛤 🣲 🏥 🖽 購 🐼 🄕 🌑

1	7	-
		1.00

	group	maxvo2	var	var	var	var	var	var	
1	- One-	Way ANOVA				23			
2									
4	On	e-Way ANOVA	Post Hoc N	Iultiple Comp	arisons		X		
5		Equal Variances	Assumed						
6		📃 LSD	📃 S-N-K	ا 🔳	Valler-Duncan	_			
7		🔽 Bonferro ni —	Tukey		Туре I/Туре II В	Error Ratio: 1	00		<u></u>
8		🗾 Sidak 🕡 Scheffe	Dunca	's-b 📃 [)unnett				 Click
9		R-E-G-W F	Hocht	erg's GT2	Test	Last			
10		🔲 R-E-G-W Q	🔲 Gabrie	1 (🖲 2-sided 🔘	< Control 💿 >	Control	/	
11		Equal Variances	Not Assumed						
12		Tambane's T	2 🔲 Dunne	w/oT3 🔲 (Sames-Howell	Dunnett's			
14	2	- rannarios ri			admos i tomoli	Durnetts			
15	2 Si	gnificance level:	,05						
16	2				Continue	Cancel	Help		
17	2			L	Contando		ПСр		
18	2,00	3,30							
19	2,00	3,10		2					
20	2,00	3,40							
21	3,00	1,80							

one_v	vay.sav [DataSe	t1] - SPSS Data	a Editor					
File Edit	t View Data	Transform	Analyze Graphs Utiliti	ies Window Help				
ا 🖬 🔁	🖣 🖬 🔶	🔶 🐜 🕼	🗛 📲 🏦 🗒 🏨 🖡	T 🐼 🖉 🖣				
17 :								
	group	maxvo2	var var	var var	var	var		
1								
2	- One-w	ay ANOVA		Ľ				
3			Dependent List:	OK			Click	
4			maxvo2	Past				
5								
6	_			Hese				
/				Cano	el			
0	_		Factor:	Help				
10			🕞 🛷 group					
11	-							
12			Contrasts Post Hoc	Options				
13								
14	2,00	3,70						
15	2,00	3,40						
16	2,00	4,10						
17	2,00	3,30						
18	2,00	3,30						
19	2,00	3,10						
20	2,00	3,40						
21	3,00	1,80						
22	3,00	2,70						
73	3 00	3 20			1	1		

Click Ok to run the analysis

one_	way.sav [Datas	Set1] - SPSS Da	ta Editor					
File Ed	it View Da	ta Transforn	n Analyze	Graphs l	Jtilities	Window	Help	
🖻 🖬	🔒 📴 🔶	🔶 🗰 🕼	M 1	¥ 🗏 🛛	b 🎟 🕻	3 Ø	•	
17 :								
	group	maxvo2	var	var		ar	var	var
1		Way ANOVA						<u> </u>
2		indy Altora						
3				Dependent L	ist:	_	OK	
4				maxvo2			Paste	
5								
6							Reset	
7							Cancel	
8				Factor			Help	
9				aroup	-	1	(nop	
10				3		1		
11			Contra	ete Poet	Hac	Options		
12			Contra	1 000	1100	options		
13	2.00	3 70		-	-			1
14	2,00	3,10	2					
15	2,00	4 10						
17	2,00	3 30						
18	2.00	3,30	5					
19	2,00	3,10	-		-			
20	2,00	3,40						

One-way ANOVA

It is parametric test. We don't use repeated T tests for these popularities cause we have a big probability of **Type Error I=***Reject the null hypothesis when it actually true.*

7

			Multiple Cor	tiple Comparisons				
ependent Va	riable: MAXVO	2	76	where 's				
	(I) GROUP	(J) GROUP	Mean Difference (I-J)	Std. Error	Sig.	et activ		
Tukey HSD	1.00	2.00	.8500*	.2501	.006	diffe		
		3.00	1.3000*	.2501	.000			
	2.00	1.00	8500*	.2501	.006			
	-	3.00	.4500	.2501	.189			
	3.00	1.00	-1.3000*	.2501	.000			
		2.00	4500	.2501	.189			
Bonferroni	1.00	2.00	.8500*	.2501	.006			
		3.00	1.3000*	.2501	.000			
	2.00	1.00	8500*	.2501	.006			
		3.00	.4500	.2501	.250			
	3.00	1.00	-1.3000*	.2501	.000			
		2.00	4500	.2501	.250			

Regarding VO₂MAX, post hoc tests revealed a significant difference between the control group and the experimental groups according to the conservative Bonferroni and Tukey's tests.

Notes

If we use Hartlys test by hand

We have to calculate the ratio between the largest variance and the smallest variance of our groups, the result is compared with the critical value related with the degrees of freedom. The Ho is that the variance are equal.

Fmax=.5925²/.4882²=1.57

F(9,9) has a critical value of 3.15 so there is no evidence to contradict the variance Null Hypothese:Ho= m_1 = m_2 = m_3

If this hypothesis is correct we expect to find that the between groups variance and the within groups variance are very small and that their ratio (F) is close to 1.

When populations are not normal or have unequal variances

I)identify and eliminate outliers

11)transform simple data

III)use other test that hasn't got rigorous assumptions.

Post Hoc Tests -follow up tests are performed to examine where exactly differences are among the groups. What caused the null hypotheses to be rejected. The above tests are written with the order of conservatism, and e.g. differences have to be larger to be recognized by the first compared with the last one:

- Bonferroni test
- Sceffe's test
- Tukey' test
- Tukey's (b) test
- Newman-Kenls test
- Duncan's New Multiple Range

We can couclude that the training method I was the most effective for enhancing the small voenax. Also the training method 2 did not differ in effectiveness even from the control group that the did not have any treatment

How to report the test

We used One-Way Anova in order to examine the differences in VO2max between different training methods. The results showed significant differences in VO2max between the training methods F (2, 27) = 13.93, p < .001. The post hoc (Bonferroni) test showed that the training methods 2 and 3 did not have significant differences, whereas training method 1 had significant differences between 2 and 3.

Excerpts 12.4-12.6 The Null Hypothesis in a One-Way ANOVA

 $\Pi_0: \mu_{\text{Seniors}} = \mu_{\text{Juniors}} = \mu_{\text{Sophmores}}$

Anures F. E. Ede, B. Panigrahi, and S. E. Calcich. (1998). African American students' attitudes toward entrepreneurship education. Journal of Education for Business, 73 (5), p. 294.

The null hypothesis for this study, $H_0: \mu_I = \mu_{II} = \mu_{III}$, stated that there were no differences in mean scores on the curricular need scale for each of the 30 curricular need statements among the three groups.

K.W. Lambrecht. (1991). Curricular preparation needs. Journal of Sports Management, 5(1), p. 51.

A one-way analysis of variance was calculated for each socialization variable. The null hypothesis in each case was that the population means for each socialtration variable were equal across the [five] levels of termination.

Former D. E. Martin and R. A. Dodder. (1991). Socialization experiences and level of terminating former in sports. Journal of Sports Management, 14(2), p. 121.

Excerpts 12.11–12.13 Presentation of a One-Way ANOVA's Results Without a Table

A series of ANOVAs was performed with group (SLI, AC, and YC) as the independent variable and the different measures of arithmetic performance as the dependent variable... Performance [in one of these ANOVAs] was assessed by determining the mean percentage of correct responses for the 20 sets of numbers. These scores were subjected to a one-way ANOVA, which yielded a significant group effect, F(2,29) = 44.32, p < .001.

Source: B. B. Fazio. (1999). Arithmetic calculation, short-term memory, and language performance in children with specific language impairment: A 5-year follow-up. Journal of Speech, Language, and Hearing Research, 42(2), p. 420.

(Continued

Excerpt 12.10 A Table of Ms, SDs, and Ns With the F-value and p

We found significant attitudinal differences for the four groups based on the measure of aversion to women who work (p < .001). In Table 2 a summary of the analysis of variance shows that Euro-American women were the least averse to women who work while Mexican-American men were the most averse.

Table 2

Analysis of Variance: Sex, Ethnicity, and Aversion to Women Who Work

	М	SD	N	F	p
Euro-American Male	2.24	0.51	80	25.34	< .001
Mexican-American Male	2.54	0.59	80		
Euro-American Female	1.82	0.53	80		
Mexican-American Female	2.07	0.51	80		

Source: S.Valentine and G. Mosley. (1998). Aversion to women who work and perceived discrimination among Euro-Americans and Mexican-Americans. Perceptual and Motor Skills, 86, p. 1031.

Time for SPSS!!!

