

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΕCE119 – Ψηφιακή Σχεδίαση

Διδάσκοντες Εργαστηρίου: Δ. Καραμπερόπουλος

Α. Φεύγας

Lab 6: Encoders and Decoders

Περιεχόμενα Εργαστηριακού Μαθήματος

- Εισαγωγή
- Lab 1: Multisim Circuit Simulation and Basic Gates
- Lab 2: Truth Tables and Basic Logic Gates
- Lab 3: Logic Gates Explored and Boolean Algebra
- Lab 4: Karnaugh Maps
- Lab 5: Binary Conversion and Adders
- Lab 6: Encoders and Decoders
- Lab 7: Multiplexers and Demultiplexers
- Lab 8: Latches and Sequential Logic Circuits
- Lab 9: Flip-Flops
- Lab 10: Sequential Circuits FSM (1°)
- Lab 11: Sequential Circuits FSM (2°)

Encoders and Decoders

- In Lab 5, we learned that gates arranged to perform a specific function, such as binary addition, can be represented with a chip.
- Other applications of this concept include encoders and decoders.
- Encoders are logic circuits responsible for reducing the size of an input.
- Decoders preform the inverse operation, increasing the size of an input.
- In a previous lab, we learned what a seven-segment display is and in this lab we will explore how decoders apply to this electronic device.

Learning Objectives

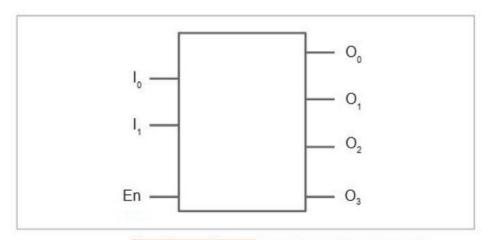
In this lab, students will:

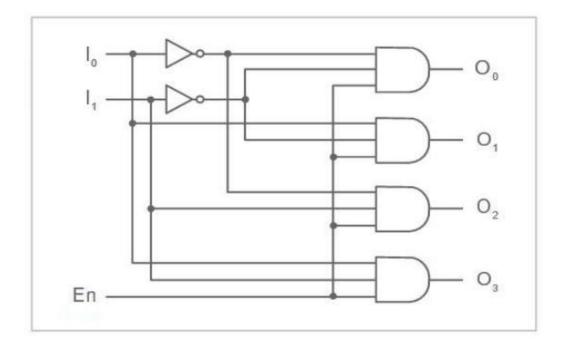
- Explain how decoders works, specifically in an SSD
- Create a circuit with a BCD to Seven Segment Display Decoder and verify its truth table

In this lab, you will collect the following deliverables:

- Diagram of a BCD to 7 Segment Display Decoder
- Truth tables
- Conclusion questions

The process of translating ambiguous information into something understood by a device receiving the data is called **decoding**.

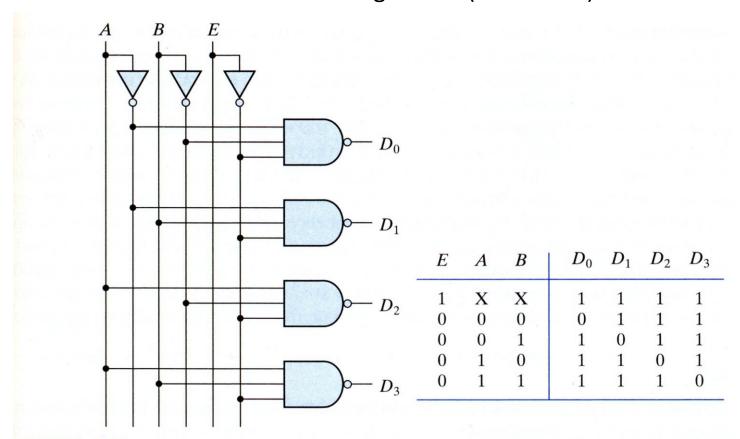

Therefore, the resulting device is known as a **decoder**.


Decoders

Let's take the example of a 2 to 4 decoder enabled when the En signal is 1 (active-high):

En	I_{i}	l _o	O ₃	0,	0,	O ₀
1	0	0	0	0	0	1
1	0	1	0	0	1	0
1	1	0	0	1	0	0
1	1	1	1	0	0	0
0	X	X	0	0	0	0

Decoders


- Decoders take binary codes of n bits and generate 2ⁿ outputs.
- The outputs of a binary decoder are said to be **one-hot encoded** because for any combination of the input signals there is only one output having the value 1.
- Decoders can include an enable signal for controlling the circuit operation.
- This enable signal can be active-low (meaning that the circuit will operate only when enable is 0) or active-high (the decoder is enabled when enable is 1).
- Decoders with enable inputs can be used for constructing larger decoders.
- One of the most important applications of decoders is <u>memory access</u>, where they are used for decoding the address of the rows in the memory blocks.

Decoders - 2x4 line decoder with enable input

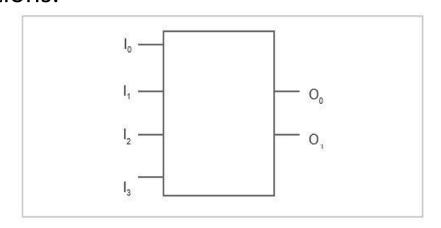
And a 2 to 4 decoder enabled when the En signal is 0 (active-low):

ΣΧΗΜΑ 4.19

Αποκωδικοποιητής 2 × 4 με είσοδο επίτρεψης

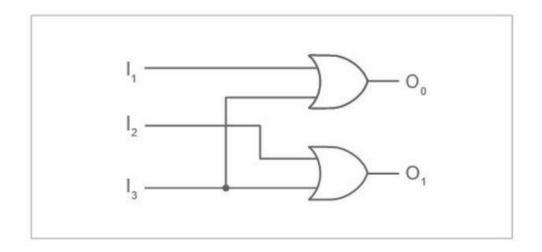
Encoders

Encoders are logic circuits that perform the opposite function of a decoder.


Binary encoders encode information from 2ⁿ input lines, producing an n-bit code.

Encoders

- At any given time, only one of the 2ⁿ inputs can be 1.
- Encoding is used for <u>reducing the number of bits</u> needed to represent information. They are often used in application such as data transmission and data storing.
- The graphical symbol of the 4 to 2 binary encoder is presented below. The cases in which more than one input is 1 are not shown in the truth table because they are treated as don't care conditions.

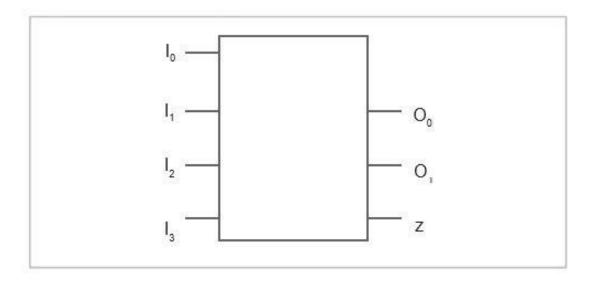

I ₃	l ₂	I,	I _o	0,	O ₀
0	0	0	1	0	0
0	0		0	0	1
0	1		0	1	0
1	0	0	0	1	1

Encoders

- It can be seen in the truth table that the output O_1 is 1 when either I_3 or I_2 is 1 and that the output O_0 is 1 when either I_3 or I_1 is 1.
- It can also be seen that the input Io can be ignored
- The encoders presented so far are considered to have one-hot encoded inputs.

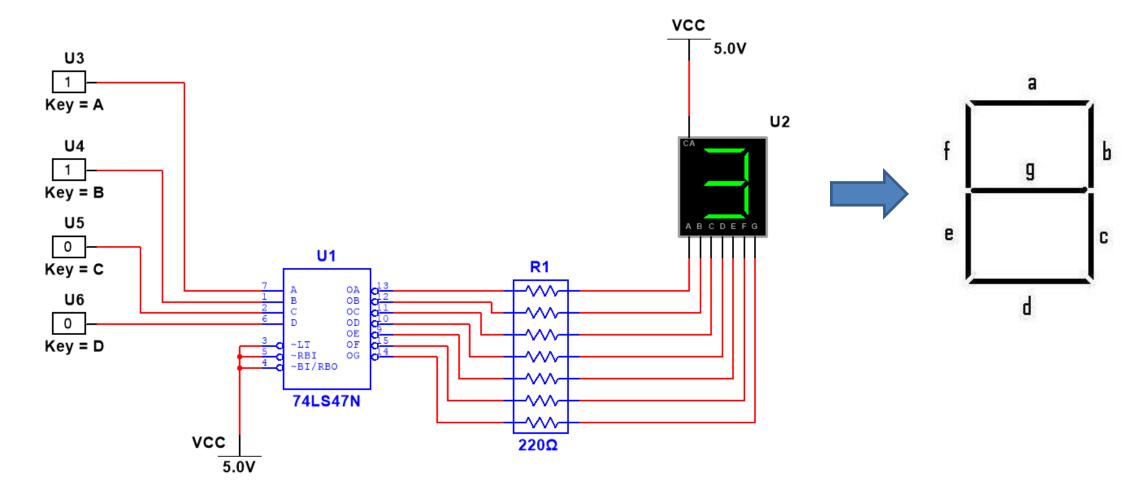
I ₃	I ₂	I,	I _o	0,	O ₀
0	0	0	1	0	0
0			0	0	1
0		1	0	1	0
1	0	0	0	1	1

Priority encoders


- Priority encoders are able to prioritize inputs
- This is important because regular encoders can generate the wrong output when there is more than one input present at logic level 1.
- This type of encoder has an additional output, z, which indicates the case in which none of the inputs is 1.

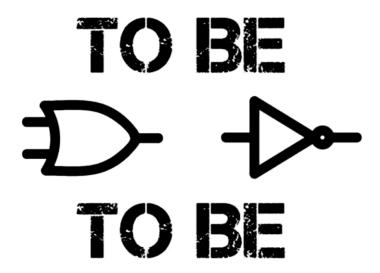
Priority encoders

- The graphical symbol of the priority encoder is presented below.
- The truth table describes the behavior of a 4-to-2 priority encoder.
- It can be seen on the last line of the truth table that if the input I₃ is 1, the outputs are all 1 and the values on the other inputs of the decode do not matter and are denoted by 'x'.



I_3	l ₂	I,	l _o	0,	O ₀	z
0	0	0	0	х	X	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	x	x	1	0	1
1	X			1	1	1

BCD to Seven Segment Display Decoder



Ευχαριστώ για την προσοχή σας!

> Ερωτήσεις / Απορίες ;

Επικοινωνία: ece119.uth@gmail.com