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Digital VLSI Systems Components

 Combinational Elements:

 Implement stateless Boolean functions

 Output is always produced upon any input change
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Digital VLSI Systems Components

 Complex:

 Implement both state and Boolean operations

 Clock Gates
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Part I

 Design DFF, DFFRS standard cells

 Create stick diagram

 Create layout 

 Magic or

 Microwind or

 Cadence IC (Virtuoso) Design Suite or

 Synopsys Custom Compiler
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Part I

 Design XOR/XNOR standard cells

 Create stick diagram

 Create layout 

 Magic or

 Microwind or

 Cadence IC (Virtuoso) Design Suite or

 Synopsys Custom Compiler
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Part I

 Layout Extraction

 Create SPICE netlist

 Verify functionality of all aforementioned standard cells 

 SPICE simulation

 How?
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Bonus I

 Design, extract and verify X1, X4 and X12 cells

 What is “drive”?

 Differences?
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Timing Paths

 Timing paths determine the Performance of our design

 Clock frequency
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Timing Paths

 Four types

 From Sequential Element to Sequential Element

 From Sequential Element to Primary Output

 From Primary Output to Sequential Element

 From Primary Input to Primary Output
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Timing Arcs

 Describe timing information from component’s input to 
component’s output

 Slew

 Delay

 Unateness
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Timing Arcs

 Slew

 Delay

 Unateness
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Positive Unate Negative Unate Binate

But how do we 

measure them?
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SPICE

 SPICE simulates the design at the device level and 
measures the required timing information

 Multiple SPICE tools exist

 ng-spice

 Synopsys HSPICE

 Cadence Spectre
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SPICE vs STA

 Pros

 Accuracy

 Models all electrical 
phenomena
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 Cons

 Time consuming

 Nowadays digital designs 
consist of million gates

 Requires input vectors

Spice

 Pros

 Orders of magnitude faster 
than SPICE

 Vectorless

 Cons

 Inflicts Pessimism

 Circuits are DAG

 Incompatible with most 
analog circuits

Static Timing Analysis
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From SPICE to STA

 We use SPICE to characterize standard cells
 Build standard cells layout
 Perform SPICE Simulation for multiple vectors (cases)
 Store measurement data in file

 Liberty File (.lib)
 A library of standard cells is created

 Then STA is applicable on any design consisted of these 
standard cells
 Use .lib file to estimate all cells timing information
 Perform all timing checks

 Worst case analysis (setup, recovery)
 Best case analysis (hold, removal)
 Dual mode analysis
 Multi-Mode Multi-Corner (MMMC)

 Verify no timing violations occur
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Liberty File Example
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Liberty File Example
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34

Library{

…

Cell{

…

Pin {

…

Timing Arc{

…

}

}

}

}



Liberty File Example
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 Standard Cell

 Output Pin
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Library{

…

Cell{

…

Pin {

…

Timing Arc{

…

}

}

}

}



Liberty File Example
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 Standard Cell

 Output Pin
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Library{

…

Cell{

…

Pin {

…

Timing Arc{

…

}

}

}

}



Liberty File Example

 Standard Cell

 Sequential cell

 Constraint Arcs
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Library{

…

Cell{

…

Pin {

…

Timing Arc{

…

}

}

}

}



Timing Calculations

 Output slew and delay calculation using .lib data

 Calculation is performed based on

 Input slew

 Output load
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Timing Calculations

 Output slew and delay calculation using .lib data

 Calculation is performed based on

 Input slew

 Output load
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Timing Calculations

 Output slew and delay calculation using .lib data

 Calculation is performed based on

 Input slew

 Output load
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Output Slew

Cout

rcv fall_transitioncell_fall
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 Timing constraints are imposed to Sequential std. cells

 To ensure correct functionality

 Such constraints are Setup, Hold, Recovery and Removal 
time

 STA tools perform timing checks to ensure no violations will 
happen
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Timing Checks

42



Data Launch and Capture
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Data Launch and Capture

 For Setup Timing Check:
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Data Launch and Capture

 For Hold Timing Check:
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 Setup timing check

 Data must arrive to path 

endpoint, before a specific 

time margin from next 

clock active edge

 Hold timing check

 Data must remain stable at 

path endpoint, for a specific 

time margin after the same 

clock active edge, which 

triggered data launch

Timing Checks
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27/10/2022

 Recovery timing check

 Reset should arrive before 

a specific time margin from 

next active clock edge

 Resembles Setup timing 

check

 Removal timing check

 Reset should arrive after a 

specific time margin from 

last active clock edge

 Resembles Hold timing 

check

Timing Checks

FF/RST

FF/CLK 

FF/RST

FF/CLK 
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Part II

 Create C/C++/Python/Bash program
 Use extracted SPICE deck (magic, ext2spice) from Part I

 Run SPICE for multiple stimulus and load combinations
 1 run per input slew, output load pair

 Measure delay and slew

 Store measurement data

 Tools:
 ng-spice/Xyce/HSPICE/Spectre

 Calculate setup, hold, recovery, removal times for Flip-Flops
 Trial and error methodology

 Write measurement data to your own custom Liberty File (.lib)
 You will be provided with a template Liberty File

 You will only need to write specific fields, NOT the entire file from 
scratch
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Verilog
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Verilog
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 Verilog is one of the 2 most widespread Hardware 
Description Languages (HDLs)

 The other one being VHDL

 We will only use it in its Gate-Level Netlist form

 Wires

 Standard cell instantiations

 I/O ports and top module declaration



Part III
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 Use the std. cells you created and characterized in Parts I 
& II and create a Verilog module which contains

 2 8-bit registers

 A comparator which compares the above registers

 1 register to store the comparator result
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Part III
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 Create Verilog ‘specify’ blocks for the std. cells you 
created

 Create Testbench and make sure your design is 
functioning properly
 Tools: Modelsim

 Use an STA engine to analyze timing
 We will provide you with the script

 Tools:
 OpenROAD OpenSTA

 Synopsys PrimeTime

 Cadence Tempus

 Find the critical path of your design



Bonus II
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 Use the higher drive std. cells you created in Bonus I

 Optimize your design for highest possible performance

 Try to perform area recovery

 Comment on your thought process and efforts to achieve 
the above


