
CE327 - Digital VLSI Systems

Semester Project Presentation

Fall Semester - 2022

I. Lilitsis, I. Gkolfos, S. Simoglou, C. Sotiriou

ASIC Design Flow

27/10/20222 CE327 - Digital VLSI Systems

ASIC Design Flow

27/10/20223 CE327 - Digital VLSI Systems

.lib

(FEOL)

GDSII,

QRC

ASIC Design Flow

27/10/20224 CE327 - Digital VLSI Systems

.lib

(FEOL)

.lib, LEF,

DEF

…

ASIC Design Flow

27/10/20225 CE327 - Digital VLSI Systems

.lib

(FEOL)

GDSII,

QRC

.lib, LEF,

DEF

More .lib

(BEOL)

Digital VLSI Systems Components

 Combinational Elements:

 Implement stateless Boolean functions

 Output is always produced upon any input change

27/10/20226 CE327 - Digital VLSI Systems

Digital VLSI Systems Components

 Combinational Elements:

 Implement stateless Boolean functions

 Output is always produced upon any input change

27/10/20227 CE327 - Digital VLSI Systems

Digital VLSI Systems Components

 Sequential Elements:

 Implement state

 Input is stored

 Output is produced upon specific triggering events, i.e. clock edges

27/10/20228 CE327 - Digital VLSI Systems

Digital VLSI Systems Components

 Sequential Elements:

 Implement state

 Input is stored

 Output is produced upon specific triggering events, i.e. clock edges

27/10/20229 CE327 - Digital VLSI Systems

Digital VLSI Systems Components

 Sequential Elements:

 Implement state

 Input is stored

 Output is produced upon specific triggering events, i.e. clock edges

27/10/202210 CE327 - Digital VLSI Systems

Let’s count transistors:

Digital VLSI Systems Components

 Sequential Elements:

 Implement state

 Input is stored

 Output is produced upon specific triggering events, i.e. clock edges

27/10/202211 CE327 - Digital VLSI Systems

Let’s count transistors:

36

Digital VLSI Systems Components

 Sequential Elements:

 Implement state

 Input is stored

 Output is produced upon specific triggering events, i.e. clock edges

27/10/202212 CE327 - Digital VLSI Systems

Let’s count transistors:

36
^&%$^#@%$%$@($&

Digital VLSI Systems Components

 Sequential Elements:

 Implement state

 Input is stored

 Output is produced upon specific triggering events, i.e. clock edges

27/10/202213 CE327 - Digital VLSI Systems

Digital VLSI Systems Components

 Sequential Elements:

 Implement state

 Input is stored

 Output is produced upon specific triggering events, i.e. clock edges

27/10/202214 CE327 - Digital VLSI Systems

Let’s count transistors:

Digital VLSI Systems Components

 Sequential Elements:

 Implement state

 Input is stored

 Output is produced upon specific triggering events, i.e. clock edges

27/10/202215 CE327 - Digital VLSI Systems

Let’s count transistors:

12

Digital VLSI Systems Components

 Sequential Elements:

 Implement state

 Input is stored

 Output is produced upon specific triggering events, i.e. clock edges

27/10/202216 CE327 - Digital VLSI Systems

Let’s count transistors:

12

Digital VLSI Systems Components

 Complex:

 Implement both state and Boolean operations

 Clock Gates

27/10/202217 CE327 - Digital VLSI Systems

Part I

 Design DFF, DFFRS standard cells

 Create stick diagram

 Create layout

 Magic or

 Microwind or

 Cadence IC (Virtuoso) Design Suite or

 Synopsys Custom Compiler

27/10/202218 CE327 - Digital VLSI Systems

Part I

 Design XOR/XNOR standard cells

 Create stick diagram

 Create layout

 Magic or

 Microwind or

 Cadence IC (Virtuoso) Design Suite or

 Synopsys Custom Compiler

27/10/202219 CE327 - Digital VLSI Systems

Part I

 Layout Extraction

 Create SPICE netlist

 Verify functionality of all aforementioned standard cells

 SPICE simulation

 How?

27/10/202220 CE327 - Digital VLSI Systems

Bonus I

 Design, extract and verify X1, X4 and X12 cells

 What is “drive”?

 Differences?

27/10/202221 CE327 - Digital VLSI Systems

Timing Paths

 Timing paths determine the Performance of our design

 Clock frequency

27/10/2022CE327 - Digital VLSI Systems22

Timing Paths

 Four types

 From Sequential Element to Sequential Element

 From Sequential Element to Primary Output

 From Primary Output to Sequential Element

 From Primary Input to Primary Output

27/10/2022CE327 - Digital VLSI Systems23

Timing Arcs

 Describe timing information from component’s input to
component’s output

 Slew

 Delay

 Unateness

27/10/2022CE327 - Digital VLSI Systems24

Timing Arcs

 Slew

 Delay

 Unateness

27/10/2022CE327 - Digital VLSI Systems

Positive Unate Negative Unate Binate

25

Timing Arcs

 Slew

 Delay

 Unateness

27/10/2022CE327 - Digital VLSI Systems

Positive Unate Negative Unate Binate

26

Timing Arcs

 Slew

 Delay

 Unateness

27/10/2022CE327 - Digital VLSI Systems

Positive Unate Negative Unate Binate

27

Timing Arcs

 Slew

 Delay

 Unateness

27/10/2022CE327 - Digital VLSI Systems

Positive Unate Negative Unate Binate

But how do we

measure them?

28

SPICE

 SPICE simulates the design at the device level and
measures the required timing information

 Multiple SPICE tools exist

 ng-spice

 Synopsys HSPICE

 Cadence Spectre

27/10/2022CE327 - Digital VLSI Systems29

SPICE vs STA

 Pros

 Accuracy

 Models all electrical
phenomena

27/10/2022CE327 - Digital VLSI Systems

 Cons

 Time consuming

 Nowadays digital designs
consist of million gates

 Requires input vectors

Spice

 Pros

 Orders of magnitude faster
than SPICE

 Vectorless

 Cons

 Inflicts Pessimism

 Circuits are DAG

 Incompatible with most
analog circuits

Static Timing Analysis

30

From SPICE to STA

 We use SPICE to characterize standard cells
 Build standard cells layout
 Perform SPICE Simulation for multiple vectors (cases)
 Store measurement data in file

 Liberty File (.lib)
 A library of standard cells is created

 Then STA is applicable on any design consisted of these
standard cells
 Use .lib file to estimate all cells timing information
 Perform all timing checks

 Worst case analysis (setup, recovery)
 Best case analysis (hold, removal)
 Dual mode analysis
 Multi-Mode Multi-Corner (MMMC)

 Verify no timing violations occur

27/10/2022CE327 - Digital VLSI Systems31

Liberty File Example

27/10/2022CE327 - Digital VLSI Systems32

Liberty File Example

27/10/2022CE327 - Digital VLSI Systems33

Liberty File Example

27/10/2022CE327 - Digital VLSI Systems

 Standard Cell

34

Library{

…

Cell{

…

Pin {

…

Timing Arc{

…

}

}

}

}

Liberty File Example

27/10/2022CE327 - Digital VLSI Systems

 Standard Cell

 Output Pin

35

Library{

…

Cell{

…

Pin {

…

Timing Arc{

…

}

}

}

}

Liberty File Example

27/10/2022CE327 - Digital VLSI Systems

 Standard Cell

 Output Pin

36

Library{

…

Cell{

…

Pin {

…

Timing Arc{

…

}

}

}

}

Liberty File Example

 Standard Cell

 Sequential cell

 Constraint Arcs

27/10/2022CE327 - Digital VLSI Systems37

Library{

…

Cell{

…

Pin {

…

Timing Arc{

…

}

}

}

}

Timing Calculations

 Output slew and delay calculation using .lib data

 Calculation is performed based on

 Input slew

 Output load

27/10/2022CE327 - Digital VLSI Systems

Cout

rcv fall_transitioncell_fall

38

Timing Calculations

 Output slew and delay calculation using .lib data

 Calculation is performed based on

 Input slew

 Output load

27/10/2022CE327 - Digital VLSI Systems

Cout

rcv fall_transitioncell_fall

39

Timing Calculations

 Output slew and delay calculation using .lib data

 Calculation is performed based on

 Input slew

 Output load

27/10/2022CE327 - Digital VLSI Systems

Delay

Cout

rcv fall_transitioncell_fall

40

Timing Calculations

 Output slew and delay calculation using .lib data

 Calculation is performed based on

 Input slew

 Output load

27/10/2022CE327 - Digital VLSI Systems

Output Slew

Cout

rcv fall_transitioncell_fall

41

 Timing constraints are imposed to Sequential std. cells

 To ensure correct functionality

 Such constraints are Setup, Hold, Recovery and Removal
time

 STA tools perform timing checks to ensure no violations will
happen

27/10/2022CE327 - Digital VLSI Systems

Timing Checks

42

Data Launch and Capture

27/10/202243 CE327 - Digital VLSI Systems

Data Launch and Capture

 For Setup Timing Check:

27/10/202244 CE327 - Digital VLSI Systems

Capture

Edge
Launch

Edge

Data Launch and Capture

 For Hold Timing Check:

27/10/202245 CE327 - Digital VLSI Systems

Capture

Edge
Launch

Edge

 Setup timing check

 Data must arrive to path

endpoint, before a specific

time margin from next

clock active edge

 Hold timing check

 Data must remain stable at

path endpoint, for a specific

time margin after the same

clock active edge, which

triggered data launch

Timing Checks

46 CE327 - Digital VLSI Systems 27/10/2022

27/10/2022

 Recovery timing check

 Reset should arrive before

a specific time margin from

next active clock edge

 Resembles Setup timing

check

 Removal timing check

 Reset should arrive after a

specific time margin from

last active clock edge

 Resembles Hold timing

check

Timing Checks

FF/RST

FF/CLK

FF/RST

FF/CLK

47 CE327 - Digital VLSI Systems

Part II

 Create C/C++/Python/Bash program
 Use extracted SPICE deck (magic, ext2spice) from Part I

 Run SPICE for multiple stimulus and load combinations
 1 run per input slew, output load pair

 Measure delay and slew

 Store measurement data

 Tools:
 ng-spice/Xyce/HSPICE/Spectre

 Calculate setup, hold, recovery, removal times for Flip-Flops
 Trial and error methodology

 Write measurement data to your own custom Liberty File (.lib)
 You will be provided with a template Liberty File

 You will only need to write specific fields, NOT the entire file from
scratch

27/10/2022CE327 - Digital VLSI Systems48

Verilog

27/10/202249 CE327 - Digital VLSI Systems

 Verilog is one of the 2 most widespread Hardware
Description Languages (HDLs)

Verilog

27/10/202250 CE327 - Digital VLSI Systems

 Verilog is one of the 2 most widespread Hardware
Description Languages (HDLs)

 The other one being VHDL

Verilog

27/10/202251 CE327 - Digital VLSI Systems

 Verilog is one of the 2 most widespread Hardware
Description Languages (HDLs)

 The other one being VHDL

 We will only use it in its Gate-Level Netlist form

 Wires

 Standard cell instantiations

 I/O ports and top module declaration

Part III

27/10/202252 CE327 - Digital VLSI Systems

 Use the std. cells you created and characterized in Parts I
& II and create a Verilog module which contains

 2 8-bit registers

 A comparator which compares the above registers

 1 register to store the comparator result

Part III

27/10/202253 CE327 - Digital VLSI Systems

 Use the std. cells you created and characterized in Parts I
& II and create a Verilog module which contains

 2 8-bit registers

 A comparator which compares the above registers

 1 register to store the comparator result

Part III

27/10/202254 CE327 - Digital VLSI Systems

 Create Verilog ‘specify’ blocks for the std. cells you
created

 Create Testbench and make sure your design is
functioning properly
 Tools: Modelsim

 Use an STA engine to analyze timing
 We will provide you with the script

 Tools:
 OpenROAD OpenSTA

 Synopsys PrimeTime

 Cadence Tempus

 Find the critical path of your design

Bonus II

27/10/202255 CE327 - Digital VLSI Systems

 Use the higher drive std. cells you created in Bonus I

 Optimize your design for highest possible performance

 Try to perform area recovery

 Comment on your thought process and efforts to achieve
the above

