University of Thessaly
Greece /

1st Lab Assignment | Overview Report

ECE333 | Digital Systems Laboratory — Professor: Christos Sotiriou — Dimitris Garyfallou

Lab Instructor(s): Nikos Chatzivangelis, Dimitris Tsalapatas, Katerina Tsilingiri, Nikolaos Zazatis, Anastasis

Vagenas

Overview

» Fundamental Acquired Skills after Completing Lab Assignment 1

» Dataflow & Top-level Module (Golden Rule #1)
» Combinational vs Sequential always blocks (Golden Rule #2)
» Minimal Implementation with Sequential Elements

» Reset & Clock Logic (Golden Rule #4)

» Review Implementation Faults

Hierarchical Design, Coding Style & Comments
Combinational Logic Reset

Anode Driver Refresh Period

Debouncer

MMCM Reset

MMCM Feedback

MMCM VCO Minimum Frequency

Registers’ Memory vs FPGA ROM

XDC Constraints Usage & Justification

v Vv Vv Vv VvV VvV Vv Vv v

» Fundamental Acquired Skills after Completing Lab Assignment 2

» FSMs
» Testbench
» Satisfy Timing Requirements

> 2 Lab Assignment 1 | Overview Report

Overview

» Fundamental Acquired Skills after Completing Lab Assignment 1

» Dataflow & Top-level Module (Golden Rule #1)

» Combinational vs Sequential always blocks (Golden Rule #2)
» Minimal Implementation with Sequential Elements

» Reset & Clock Logic (Golden Rule #4)

» Review Implementation Faults

Hierarchical Design, Coding Style & Comments
Combinational Logic Reset

Anode Driver Refresh Period

Debouncer

MMCM Reset

MMCM Feedback

MMCM VCO Minimum Frequency

Registers’ Memory vs FPGA ROM

XDC Constraints Usage & Justification

v Vv Vv Vv VvV VvV Vv Vv v

» Fundamental Acquired Skills after Completing Lab Assignment 2

» FSMs
» Testbench
» Satisfy Timing Requirements

3 Lab Assignment 1 | Overview Report

Golden Rule #1: Dataflow Design

» Design Dataflow prior the implementation process

» Dataflow:

» must be strictly equivalent (1-1) to the instantiations of top-level module

» in case of multiple levels in hierarchy,

you can provide more detailed info
O either within the same schematic

O or with a separate dataflow of the internal hierarchy

I Do not implement dataflow on hand, use a drawing tool like drawio

| Lab Assignment 1 | Overview Report

Golden Rule #2: Procedural Block Assignments

b5

» Sequential vs Combinational always@ block

» Sequential:

» always @ (posedge clock or ..)

» Combinational:

>

posedge clock, impliesthe instantiation of flip-flop(s)
every other signal in sensitivity list, implies an asynchronous control signal for the flip-flop(s)

any signal not in the sensitivity list and used for multiplexing within the block, implies a
synchronous control signal for the flip-flop(s)

Minimal Implementation with

0O Rule of thumb: Non-Blocking Assignments (<=) Sequen e

O always reconsider whether you
can eliminate some of the
instantiated sequential logic

always @ (signal 1 or .. or signal Xx)
sensitivity list must contain all associated input signals

O Rule of thumb: Blocking Assignments (=)

< ALWAYS SEPARATE combinational and sequential logic blocks

< Do NOT MIX blocking and non-blocking assignments in the same always block
< Do NOT ASSIGN the same variable from more than one always block

< Do NOT ASSIGN as output and USE as input a variable in the same always block

Lab Assignment 1 | Overview Report

Which one is better?

ooe o000
1 1 module anodes _mux();
2 module anodes_mux(); 2
3 3 // multiplexer for anodes
4 // multiplexer for anodes 4 always @(counter_digit)
5 always @(posedge clk or posedge reset) 5 begin
6 begin 6 case (counter_digit)
7 case (counter_digit) 7 4'b0010: begin // digit @
g 4'b0010: Zegizlé/ digit @ 8 an = 4'b1110;
an = 4 : 9 end
1? j?gzllg_ begin // digit 1 10 4'b0110: begin // digit 1
15 an - 4'b1101: 11 an = 4'b1101;
13 end 12 e?d . .
14 4'b1010: begin // digit 2 13 4'b1010: begin // digit 2
15 an = 4'b1011: 14 an = 4'bl011,
16 end 15 end
17 4'b1110@: begin // digit 3 16 4'b111@: begin // digit 3
18 an = 4'b0111; 17 an = 4'b0111;
19 end 18 end
20 default: begin // default all digits are off 19 default: begin // default all digits are off
21 an = 4'b1111; 20 an = 4'b1111;
22 end 21 end
23 endcase 22 endcase
24 end 23 end
25 24
26 endmodule 25 endmodule

6 Lab Assignment 1 | Overview Report

Which one is better?

ooe o000
1 1 module anodes _mux();
2 module anodes_mux(); 2
3 3 // multiplexer for anodes
4 // multiplexer for anodes 4 always @(counter_digit)
5 always @(posedge clk or posedge reset) 5 begin
6 begin 6 case (counter_digit)
7 case (counter_digit) 7 4'b0010: begin // digit @
g 4'b0010: Zegizlé/ digit @ 8 an = 4'b1110;
an = 4 : 9 end
1? j?gzllg_ begin // digit 1 10 4'b0110: begin // digit 1
15 an - 4'b1101: 11 an = 4'b1101;
13 end 12 e?d 4 .
14 4'b1010: begin // digit 2 13 4'b1010@: begin // digit 2
15 an = 4'b1011: 14 an = 4'blell,
16 end 15 end
17 4'b1110@: begin // digit 3 16 4'b111@: begin // digit 3
18 an = 4'b0111; 17 an = 4'b0111;
19 end 18 end
20 default: begin // default all digits are off 19 default: begin // default all digits are off
21 an = 4'b1111; 20 an = 4'b1111;
22 end 21 end
23 endcase 22 endcase
24 end 23 end
25 24
26 endmodule 25 endmodule

» 7 Lab Assignment 1 | Overview Report

Golden Rule #4: Reset & Clock Logic

» NEVER put logic on the reset or clock

» NEVER MIX reset types

» asynchronous vs synchronous reset

» NEVER create clock from custom combinational logic
» In case you think you should a custom combinational signal
probably that signal should be a clock enable
» NEVER create clock domain crossings (studied in more advanced courses)

» Advanced designs have more than one clock

which they usually run on different frequencies

8 Lab Assignment 1 | Overview Report

Overview

» Fundamental Acquired Skills after Completing Lab Assignment 1

» Dataflow & Top-level Module (Golden Rule #1)

» Combinational vs Sequential always blocks (Golden Rule #2)
» Minimal Implementation with Sequential Elements

» Reset & Clock Logic (Golden Rule #4)

» Review Implementation Faults

Hierarchical Design, Coding Style & Comments
Combinational Logic Reset

Anode Driver Refresh Period

Debouncer

MMCM Reset

MMCM Feedback

MMCM VCO Minimum Frequency

Registers’ Memory vs FPGA ROM

XDC Constraints Usage & Justification

v Vv Vv Vv VvV Vv Vv VvV w

» Fundamental Acquired Skills after Completing Lab Assignment 2

» FSMs
» Testbench
» Satisfy Timing Requirements

» 9 Lab Assignment 1 | Overview Report

Hierarchical Design, Coding Style & Comments

» Top-module must contain only module instantiations
» NO RTL in top-level

» direct wire assighments are allowed

e.g..assign signaly = signaly;

» Every module should be in a separate file

» module header comment segment with a basic functional description

v

I/0 ports description

v

utilise parameters or definitions
) parametervs define

» for each instantiation/implementation add header comment
» describe explicit corner cases

» Follow a uniform coding style across all files
» comments

indentations

v

» begin-end usage and format

» elc.

p 10 Lab Assignment 1 | Overview Report

Overview

» Fundamental Acquired Skills after Completing Lab Assignment 1

» Dataflow & Top-level Module (Golden Rule #1)

» Combinational vs Sequential always blocks (Golden Rule #2)
» Minimal Implementation with Sequential Elements

» Reset & Clock Logic (Golden Rule #4)

» Review Implementation Faults

Hierarchical Design, Coding Style & Comments
Combinational Logic Reset

Anode Driver Refresh Period

Debouncer

MMCM Reset

MMCM Feedback

MMCM VCO Minimum Frequency

Registers’ Memory vs FPGA ROM

XDC Constraints Usage & Justification

v Vv Vv Vv Vv Vv Vv Vv V9

» Fundamental Acquired Skills after Completing Lab Assignment 2

» FSMs
» Testbench
» Satisfy Timing Requirements

) 11 Lab Assignment 1 | Overview Report

Combinational Logic & Reset

» Does combinational logic require reset logic?

» asdescribed below:

always @(signal_1 or .. or signal_ x)

begin
if (reset)
begin
signal_1 = 1'b0;
signal_x = 1’'bl;
end // if (reset) //
else

begin

end // else //
end // always @(signal 1 or .. or signal x) //

) 12 Lab Assignment 1 | Overview Report

Correct Implementation of reset in combinational blocks

00
o000
1 always @(signal_1 or signal_2)
2 begin 1 always @(posedge clk or posedge reset)
3 if(enable == 1'b0) 2 begin |
A begin i ;Z(iiset == 1'b1)
5 signal_1 = 1'b0; c g enable <= 1'bo:
6 signal_2 = 1'b0; 6 end ’
/ end 7 else
8 els? 8 begin
9 begin 9 enable <= 1'b1;
10 10 end
11 end 11 end
12 end

) 13 Lab Assignment 1 | Overview Report

Overview

» Fundamental Acquired Skills after Completing Lab Assignment 1

» Dataflow & Top-level Module (Golden Rule #1)

» Combinational vs Sequential always blocks (Golden Rule #2)
» Minimal Implementation with Sequential Elements

» Reset & Clock Logic (Golden Rule #4)

» Review Implementation Faults

Hierarchical Design, Coding Style & Comments
Combinational Logic Reset

Anaode Driver Refresh Period

Debouncer

MMCM Reset

MMCM Feedback

MMCM VCO Minimum Frequency

Registers’ Memory vs FPGA ROM

XDC Constraints Usage & Justification

v Vv Vv Vv Vv Vv Vv Vv v

» Fundamental Acquired Skills after Completing Lab Assignment 2

» FSMs
» Testbench
» Satisfy Timing Requirements

) 14 Lab Assignment 1 | Overview Report

Anode Driver Refresh Period

» 9.1 Seven-Segment Display - Nexys A7 Reference Manual

To illuminate a segment, the anode should be driven high while the cathode is driven low. However, since the Nexys A7 uses
transistors to drive enough current into the common anode point, the anode enables are inverted. Therefore, both the
ANO..7 and the CA..G/DP signals are driven low when active.

Common anode ~ 3

AN7 ANG AN5 AN4 AN3 AN2 ANT ANO

| I | | | | | I
o oo o o o) o

N Y R
C'A CL CIC Cb CE Ck CIG D'P CIA Cb CIC Cb CE CIF C|GDL

Eight-digit Seven
Segment Display

Figure 9.1.2 Common Anode Circuit Node

For each of the four digits to appear bright and continuously iIIuminated,[aII eight digits should be driven once every 1 to]
16ms, for a refresh frequency of about 1 KHz to 60Hz.] For example, in a 62.5Hz refresh scheme, the entire display would be
refreshed once every 16ms, and each digit would be illuminated for 1/8 of the refresh cycle, or 2ms. The controller must drive
low the cathodes with the correct pattern when the corresponding anode signal is driven high. To illustrate the process, if

[N Refresh period = 1ms to 16ms)]

—N Digit period = Refresh / 4
ANO _____/ N

ANT T
AN2 e . §
AN3 , SR e
Cathodes Y Digit0_X_ Digit1_X_ Digit2_¥_ Digit3 X_

Figure 9.1.3 Four Digit Scanning Display Controller Timing Diagram

p 15 Lab Assignment 1 | Overview Report

https://digilent.com/reference/programmable-logic/nexys-a7/reference-manual

Anode Driver Refresh Period

» 9.1 Seven-Segment Display - Nexys A7 Reference Manual

To illuminate a segment, the anode should be driven high while the cathode is driven low. However, since the Nexys A7 uses
transistors to drive enough current into the common anode point, the anode enables are inverted. Therefore, both the
ANO..7 and the CA..G/DP signals are driven low when 7

Everything you need to know,
s especially for provided
PRy Xilinx/Digilent IPs and
functionality, is documented in

related manuals
\.

Segment
For each of the four digits to appear bright and continur— inated |all eight digits should be driven once every 1 to]

16ms, for a refresh frequency of about 1 KHz to 60Hz.] For example, in a 62.5Hz refresh scheme, the entire display would be
refreshed once every 16ms, and each digit would be illuminated for 1/8 of the refresh cycle, or 2ms. The controller must drive

Figure 9.1.2 Common Anode Circuit Node

low the cathodes with the correct pattern when the corresponding anode signal is driven high. To illustrate the process, if
[R Refresh period = 1ms to 16ms |]

— Digit period = Refresh / 4
ANO ____/ N\

ANT T
AN2 | RN SE R
AN3 , S o
Cathodes Y Digit0_X_ Digit1_X_ Digit2_X_ Digtd X_

Figure 9.1.3 Four Digit Scanning Display Controller Timing Diagram

) 16 Lab Assignment 1 | Overview Report

https://digilent.com/reference/programmable-logic/nexys-a7/reference-manual

Overview

» Fundamental Acquired Skills after Completing Lab Assignment 1

» Dataflow & Top-level Module (Golden Rule #1)

» Combinational vs Sequential always blocks (Golden Rule #2)
» Minimal Implementation with Sequential Elements

» Reset & Clock Logic (Golden Rule #4)

» Review Implementation Faults

Hierarchical Design, Coding Style & Comments
Combinational Logic Reset

Anode Driver Refresh Period

Debouncer

MMCM Reset

MMCM Feedback

MMCM VCO Minimum Frequency

Registers’ Memory vs FPGA ROM

XDC Constraints Usage & Justification

v Vv Vv Vv VvV Vv Vv Vv v

» Fundamental Acquired Skills after Completing Lab Assignment 2

» FSMs
» Testbench
» Satisfy Timing Requirements

p 17 Lab Assignment 1 | Overview Report

Debouncer & Reset Signal

» How can you simultaneously
» count bouncing glitches, and

» reset utilised counter & synchroniser flip-flop(s)

» using the same signal?

// 2 Stage Pipeline Synchroniser with Asynchronous Reset //
always (@ (posedge clock or posedge reset)
begin
if (reset)
begin
sync_pipe_stagel <= 1'bl;
reset sync <= 1'bl;
end // if (reset) //
else
begin
sync_pipe_ stagel <= reset;
reset sync <= sync_pipe stagel;
end // else //
end // always @(posedge clock or posedge reset) //

) 18 Lab Assignment 1 | Overview Report

Debouncer & Reset Signal

» How can you simultaneously
» count bouncing glitches, and

» reset utilised counter & synchroniser flip-flop(s)

» using the same signal?

// 2 Stage Pipeline Synchroniser with-AsynchronousReset //
always @ (posedge clock e= pescdage—resct)

begin
e
S
syne_pipe—stagel—=—1'bl;
reset—syne—=—1'bl;
end // if {reset) //
—
e

sync_pipe_ stagel <= reset;
reset sync <= sync_pipe_ stagel;
end // else //
end // always @(posedge clock er—posedge—reset) //

p 19 Lab Assignment 1 | Overview Report

Debouncer & Logic Comparison in Time

» What is the duration of bouncing effect for a button on FPGA?
» about =5-10ms

» determined after a 5min search on the internet

» How do we compare logic signals (= or #)?

XOR XNOR FF1 FF2 FF3
XY X®Y XY Xov [buton >—0 @ D Q 0 af—<result]
00 0 0o 1

. —> — —P
01 1 01 0
o] 1 1 :0 0 g N-bit Counter ENA
t{1] o 11 1 D— SCLR QIN.0]
/2 Cout —9
XOR Symbol XNOR Symbol P
T> > =
* The XNOR is also denoted as equivalence [clk

» some useful sources:

» 11 Myths about Switch Bounce/Debounce | www.electronicdesign.com
» Switch Debounce Using TMR2 | microchipdeveloper.com

» 20 Lab Assignment 1 | Overview Report

https://www.electronicdesign.com/technologies/analog/article/21155418/logiswitch-11-myths-about-switch-bouncedebounce
http://www.electronicdesign.com/
https://microchipdeveloper.com/xpress:code-free-switch-debounce-using-tmr2-with-hlt

Overview

» Fundamental Acquired Skills after Completing Lab Assignment 1

» Dataflow & Top-level Module (Golden Rule #1)

» Combinational vs Sequential always blocks (Golden Rule #2)
» Minimal Implementation with Sequential Elements

» Reset & Clock Logic (Golden Rule #4)

» Review Implementation Faults

Hierarchical Design, Coding Style & Comments
Combinational Logic Reset

Anode Driver Refresh Period

Debouncer

MMCM Reset

MMCM Feedback

MMCM VCO Minimum Frequency

Registers’ Memory vs FPGA ROM

XDC Constraints Usage & Justification

v Vv Vv Vv Vv Vv Vv Vv v

» Fundamental Acquired Skills after Completing Lab Assignment 2

» FSMs
» Testbench
» Satisfy Timing Requirements

> 21 Lab Assignment 1 | Overview Report

MMCM Reset

4
LOCKED

An output from the MMCM/PLL used to indicate when the MMCM/PLL have achieved
phase and frequency alignment of the reference clock and the feedback clock at the input
pins. Phase alignment is within a predefined window and frequency matching within a
predefined PPM range. The MMCM automatically locks after power on, no extra reset is
required. LOCKED will be deasserted within one PFD clock cycle if the input clock stops,
the phase alignment is violated (for example, input clock phase shift) or the frequency has
changed. The MMCM /PLL must be reset when LOCKED is deasserted{ The clock outputs
should not be used prior to the assertion of LOCKED.

» What 1s the purpose of LOCKED signal?

p 22 Lab Assignment 1 | Overview Report

MMCM Reset

4
LOCKED

An output from the MMCM/PLL used to indicate when the MMCM/PLL have achieved
phase and frequency alignment of the reference clock and the feedback clock at the input
pins. Phase alignment is within a predefined window and frequency matching within a
predefined PPM range. The MMCM automatically locks after power on, no extra reset is
required. LOCKED will be deasserted within one PFD clock cycle if the input clock stops,
the phase alignment is violated (for example, input clock phase shift) or the frequency has
changed. The MMCM /PLL must be reset when LOCKED is deasserted{ The clock outputs
should not be used prior to the assertion of LOCKED.

» If you used the synchronised-debounced reset for MMCM
» you should consider LOCKED signal

» as areset?

o or

» as a clock enable?

for the rest of your design

» 23 Lab Assignment 1 | Overview Report

MMCM Reset

» LOCKED - Status and Data Outputs

» 7 Series FPGAs Clocking Resources - User Guide
LOCKED

An output from the MMCM/PLL used to indicate when the MMCM /PLL have achieved
phase and frequency alignment of the reference clock and the feedback clock at the input
pins. Phase alignment is within a predefined window and frequency matching within a
predefined PPM range. The MMCM automatically locks after power on, no extra reset is
required. LOCKED will be deasserted within one PFD clock cycle if the input clock stops,
the phase alignment is violated (for example, input clock phase shift) or the frequency has
changed. The MMCM /PLL must be reset when LOCKED is deasserted| The clock outputs
should not be used prior to the assertion of LOCKED.

» If you used the synchronised-debounced reset for MMCM
» you should consider LOCKED signal

For the purposes of this course, you
> as areset Golden Rule #4.

0o or

When you become advanced designers,
you may consider the implementation

» as aclock enable

for the rest of your design

as reset logic.

) 24 Lab Assignment 1 | Overview Report

Overview

» Fundamental Acquired Skills after Completing Lab Assignment 1

» Dataflow & Top-level Module (Golden Rule #1)

» Combinational vs Sequential always blocks (Golden Rule #2)
» Minimal Implementation with Sequential Elements

» Reset & Clock Logic (Golden Rule #4)

» Review Implementation Faults

Hierarchical Design, Coding Style & Comments
Combinational Logic Reset

Anode Driver Refresh Period

Debouncer

MMCM Reset

MMCM Feedback

MMCM VCO Minimum Frequency

Registers’ Memory vs FPGA ROM

XDC Constraints Usage & Justification

v v Vv Vv Vv Vv Vv Vv v

» Fundamental Acquired Skills after Completing Lab Assignment 2

» FSMs
» Testbench
» Satisfy Timing Requirements

p 25 Lab Assignment 1 | Overview Report

MMCM Feedback

>

>

CLKFBIN — Feedback Clock Input

Must be|connected either directly to the CLKFBOUT for internal feedback]or IBUFG
(through a clock-capable pin for external deskew), BUFG, BUFH, or interconnect (not
recommended). For external clock alignment, the feedback path clock buffer type should
match the forward clock buffer type with the exception of BUFR. BUFR cannot be

compensated for.

» 26 Lab Assignment 1 | Overview Report

MMCM Feedback

» CLKFBIN - Feedback Clock Input

» 7 Series FPGAs Clocking Resources - User Guide

CLKFBIN — Feedback Clock Input

Must be

connected either directly to the CLKFBOUT for internal feedback

or IBUFG

(through a clock-capable pin for external deskew), BUFG, BUFH, or interconnect (not
recommended). For external clock alignment, the feedback path clock buffer type should
match the forward clock buffer type with the exception of BUFR. BUFR cannot be

compensated for.

» 27

Everything you need to know,
especially for provided

Xilinx/Digilent IPs and
functionality, is documented in
related manuals

Lab Assignment 1 | Overview Report

Overview

» Fundamental Acquired Skills after Completing Lab Assignment 1

» Dataflow & Top-level Module (Golden Rule #1)

» Combinational vs Sequential always blocks (Golden Rule #2)
» Minimal Implementation with Sequential Elements

» Reset & Clock Logic (Golden Rule #4)

» Review Implementation Faults

Hierarchical Design, Coding Style & Comments
Combinational Logic Reset

Anode Driver Refresh Period

Debouncer

MMCM Reset

MMCM Feedback

MMCM VCO Minimum Frequency

Registers’ Memory vs FPGA ROM

XDC Constraints Usage & Justification

v v WV VvV Vv Vv Vv Vv v

» Fundamental Acquired Skills after Completing Lab Assignment 2

» FSMs
» Testbench
» Satisfy Timing Requirements

) 28 Lab Assignment 1 | Overview Report

MMCM VCO Minimum Frequency

» Voltage-Controlled Oscillator (VCO) Iy
» VCO operates @600MHz by default, meaning Fyco = FeLkin* D

» for default parameters, and

M
Four = FeLkin* 535

» system clock @100MHz as input clock

» Thus, all provided output clocks operate @ 600MHz

» with default parameters -

— Did you consider
Which is the VCO frequency?
minimum achievable OR
frequency? w,

— System Clock’s frequency?

» 29 Lab Assignment 1 | Overview Report

Overview

» Fundamental Acquired Skills after Completing Lab Assignment 1

» Dataflow & Top-level Module (Golden Rule #1)

» Combinational vs Sequential always blocks (Golden Rule #2)
» Minimal Implementation with Sequential Elements

» Reset & Clock Logic (Golden Rule #4)

» Review Implementation Faults

Hierarchical Design, Coding Style & Comments
Combinational Logic Reset

Anode Driver Refresh Period

Debouncer

MMCM Reset

MMCM Feedback

MMCM VCO Minimum Frequency

Registers’ Memory vs FPGA ROM

XDC Constraints Usage & Justification

v v Vv VvV VvV VvV Vv Vv v

» Fundamental Acquired Skills after Completing Lab Assignment 2

» FSMs
» Testbench
» Satisfy Timing Requirements

) 30 Lab Assignment 1 | Overview Report

Registers’ Memory vs FPGA ROM

reg [3:0] message [©:15];

» Delivered code for required memory

» Which are correct?

assign message/©] = CHAR_@;

assign message[1l] = CHAR_1;

assign message[2] = CHAR_2;
assign message[3] = CHAR_3;
assign message[4] = CHAR_4;
assign message[5] = CHAR_5;
assign message/6] = CHAR_G;
assign message[7] = CHAR_7;
assign message/8] = CHAR_8;
assign message[9] = CHAR_9;

assign message[18] = CHAR_A;

assign message[11] = CHAR_B;

assign message[12] = CHAR_C;

assign message[13] = CHAR_D;

assign message[14] = CHAR_E;

assign message[15] = CHAR_F;

assign char =

message/address];

» 31

always @(posedge clk)
begin
if (reset)
begin

message/@] = CHAR_®;
message/1l] = CHAR_1;
message/2] = CHAR_2;
message/3] = CHAR_3;
message/4] = CHAR_4;
message/5] = CHAR_S;
message/6] = CHAR_6;
message/7] = CHAR_7;
message/8] = CHAR_S;
message/9] = CHAR_9;

always @(posedge clk or posedge reset) always @(posedge clk

begin begin
if (reset) if (reset)
begin begin
message/@] = CHAR_®@; message[8]
message/1] = CHAR_1; o
message/2] = CHAR_2; :::::E:i;{

message/3] = CHAR_3;
message/4] = CHAR_4;
message/5] = CHAR_S;
message/6] = CHAR_G;
message/7] = CHAR_7;
message/8] = CHAR_S8;
message/29] = CHAR_9;

if (reset == 1'b8)
char <= 4°d@;
else

char <= message[address];

end

if (reset == 1'b8)
char <= 4'do;
else

char <= message[address]; end

message/3]
message/4]
message/5]
message[6]
message/7]
message/&]

message/18] = CHAR_A; message/18] = CHAR_A; message/9]
message/11] = CHAR_B; message/11] = CHAR_B; message/ 18]
message/12] = CHAR_C; message/12] = CHAR_C; message/11]
message/13] = CHAR_D; message/13] = CHAR_D; message/12]
message/14] = CHAR_E; message/14] = CHAR_E; message[13]
L 4
message/15] = CHAR_F; message/15] = CHAR_F; message[14]
end end B .i
message[15]
‘end end d
! en
always @(posedge clk) always @(posedge clk) |
. . else
begin begin
begin

or posedge reset)

CHAR_®;
CHAR_1;
CHAR_2;
CHAR_3;
CHAR_4;
CHAR_5;
CHAR_E;
CHAR_7;
CHAR_S;
CHAR_9;
CHAR_A;
CHAR_B;
CHAR_C;
CHAR_D;
CHAR_E;
CHAR_F;

char <= message[address];

end

initial

begin
message[0]
message[1]
message[2]
message[3]
message[4]
message[5]
message[6]
message/[7]
message/8]
message/9]

message[10]
message[11]
message[12]
message[13]
message/14]
message[15]

end

= CHAR_O;
= CHAR_1;
= CHAR_2;
= CHAR_3;
= CHAR_4;
= CHAR_5;
= CHAR_S;
= CHAR_7;
= CHAR_S;
= CHAR_9;
= CHAR_A;
= CHAR_B;
= CHAR_C;
= CHAR_D;
= CHAR_E;
= CHAR_F;

always @(posedge clk)

begin
if (reset
char <=
else
char <=
end

== 1'b0)
4'de;

message/address];

end

assign char = messagefaddressj;lassign char = message[address];

assign char

message/address];

Lab Assignment 1 | Overview Report

RegiSterS, Memory VS FPGA ROM reg [3:0] message [0:15];

» Delivered code for required memory

» Which are correct?

always @(posedge clk) always @(posedge clk or posedge reset) |always @(posedge clk or posedge reset)| |initial
- begin begin begin begin
assign message[@] = CHAR_@; if (reset) if (reset) if (reset) message/@] = CHAR_@;
assign message[1l] = CHAR_1; begin begin begin message/1] = CHAR_1;
assign message[2] = CHAR_2; message/@] = CHAR_@; message/@] = CHAR_®; message/0] <= CHAR_@; message/2] = CHAR_2;
assigh message/3] = CHAR.3; message/1] = CHAR_1; message/1] = CHAR_1; o Y message/3] = CHAR_3;
assign message[4] =/CHAR_4; message[2] = CHAR_2; message[2] = CHAR_2; message;‘l_; (_: CHAR_1 méssage/4] = CHAR_4;
assign message/5] &= CHAR_S; message/3] = CHAR_3; message/3] = CHAR_3; | 2 - CHAR_Z; message/5] = CHAR_S5;
assign message/c](= CHAR_6; message[4] = CHAR_4; message/4] = CHAR_4; message[B_i <= CHAR_3; message/6] = CHAR_6;
assign message[#] = CHAR7; message[5] = CHAR_S; message[5] = CHARS; message[4, - CHAR_4; message[7] = CHAR_7;
assign message[8] = CHAR_8; message/6] = CHAR_6; message/6] = CHAR_6; message[S] | <= CHAR_S: message[8] = CHAR_S;
assign message[9] = CHAR_9; message/7] = CHAR_7; message[7] = CHAR_7; message[6] «= CHAR_6; message/9] = CHAR_9;
assign message[18] = CHAR_A; message[8] = CHAR_S; message[8] ‘= CHAR_8; message(7] <= CHAR_7; message/18] = CHAR_A;
assign message/11] = CHAR_B; message[9] = CHAR_9; message/9] = CHAR_9; message/3] <= CHAR_8; message[11] = CHAR_B;
assign /message[12] ‘= CHAR_C; message/12] = CHAR_A; message/16] = CHAR_A; message/9] <= CHAR_9; message[12] = CHAR_C;
assigh message[13] = CHAR_D; message/11] = CHAR_B; message/11] = CHAR_B; message/18] <= CHAR_A; message/13] = CHAR_D;
assign message[14] = CHAR_E; message/12] = CHAR_C; message/12] = CHAR_C; message[11] <= CHAR_B; méssage/14] = CHAR_E;
assign message[15] = CHAR_F; message/13] = CHAR_D; message/13] = CHAR_D; message[12] <= CHAR_C; message/15] = CHAR_F;
message/14] = CHAR_E; message/14] = CHAR_E; message[17] <= CHAR_D: end

assign char = message[address]; message/15] = CHAR_F; message[15] = CHAR_F; meéssage[14] <= CHAR_E:

- end ond end message/15] <= CHAR_F; always @(posedge clk)

|always @(posedge clk) |always @(posedge clk) | eL::d bei;n{ reset == 1'b0)

begin begin Y char <= 4'do;

if (reset == 1'b8) if (reset == 1'b0) begin)) olse ’
char <= 4'd6; char <= 4'do; en:har‘ ¢= message[address]; char <= message[address];
else else
char <= message[address]; char <= message[address]; end e
end end

assign char = message[address];

assign char = message;’addr‘ess_?;lass'l'.gn char = message[address];

» 32 Lab Assignment 1 | Overview Report

Registers’ Memory vs FPGA ROM

reg [3:0

message [6:15];

» Delivered code for required memory

» Which are correct?

always @(posedge clk

always @(posedge clk or posedge reset always @(posedge clk or posedge reset

: begin begin begin
ass%gn message/@ = CHAR_®©; if (reset if (reset if (reset
assign message[1l] = CHAR_1; begin begin 'K P
assign message/2] = CHAR_2; messagef”r R o
assigh message/3 = CHAR_3; message/ =
assign message/4 = CHAR_4; message/| R_1:
assign message/5 = CHAR_S; message/ RZ2:
assign message 6 = CHAR_6; message/ _3;
assign message[7] = CHAR_7; message/[-4
assign message[8] = CHAR_B8; message/| _5;
assign message[9] = CHAR_S; message _6;
assign message[18] = CHAR_A; message, _7:
assign message 11] = CHAR_B; message _8;
assign message[12] = CHAR_C; message _9:
assigh message/13] = CHAR_D; message _A;
assign message[14] = CHAR_E; message/| _B;
assign message[15] = CHAR_F; message/. _C;
message/ E
assign char = message/address]; message/ :E;
end R_F;
end
always @(pose
begin
if (reset == " if (reset == 1'68) ;| e
char <= 4'de; char <= 4'do; char message/address|;
else else end
char <= message[address]; char <= message[address]; end
end end

|assign char = message[address};lassign char = message[address];

p 33

initial

begin
message[@ = CHAR_®;
message/1l = CHAR_1;
message/2 = CHAR_2;
message/ 3 = CHAR_3;
message/4 = CHAR_4;
message/ 5 = CHAR_S;
message/[6 = CHAR_S6;
message/[7] = CHAR_7;
message/8] = CHAR_SB;
message/9] = CHAR_9;
message[18] = CHAR_A;
message[11] = CHAR_B;

message[17] = CHAR_C;

message/13] = CHAR_D;

message/14] = CHAR_E;

message/15] = CHAR_F;
end

always @(posedge clk)
begin
if (reset == 1'b8)
char <= 4'de;
else
char <= message[address];

|assign char = message[address];

end

Lab Assignment 1 | Overview Report

reg [2:0] message [©:15];

Registers’ Memory vs FPGA ROM

» Delivered code for required memory

» Which are correct?

always @(posedge clk always @(posedge clk or posedge reset always @(posedge clk or posedge reset initial
begin begin begin begin
assign message/@ = CHAR_®©; if (reset if (reset if (reset message/[@ = CHAR_®;
assign message[l = CHAR_1; begin L3 begin B PR message/1l = CHAR_1;
assign message/2] = CHAR_2; message/¥ 4 R 0: message/2] = CHAR_2;
assign message/3] = CHAR.3; message/[y message/3] = CHAR_3;
assign message/4] =/CHAR_4; message/ R_1i méssage/4] = CHAR_4;
assign message/5 = CHAR_S; message R2i message/ 5 = CHAR:S_;
assign message/6 = CHAR_6; message/. . 3; message[6 = CHAR_6;
assign message[7] = CHAR_7; message/ L ha) 4 message/7] = CHAR_7;
assign message[8] = CHAR_8; message/| 4 message[8] = CHAR:B_.‘
assign message[9] = CHAR_S; 6; message/9] = CHAR_9;
assign message[18] = CHAR_A; 7: message[18] = CHAR_A;
assign message/11] = CHAR_B; " 8; message/11] = CHAR_B;
assign message[12] = CHAR_C; message address -’. i message[17] = CHAR_C;
assigh message[13] = CHAR_D; A; message[13] = CHAR:D;
assign message[1l4] = CHAR_E; B; message/14] = CHAR_E;
assign message[15] = CHAR_F; C; message/15] = CHAR_F;
; end
assign char = message/address]; E:
end R_F: always @(posedge clk)
begin

assign char = message/address];

if (reset == 1'b8)
char <= 4'de;

if (reset == " if (reset == 1'68) else
 AAD . A AD . char message address];
GLEP &5 47E CHau end ’ char <= message[address];
else else
end
char <= message[address]; char <= message[address]; end

|assign char = message[addr‘ess};lass‘l’.gn char = message[address];|

) 34 Lab Assignment 1 | Overview Report

Registers’ Memory vs FPGA ROM

reg [3:0] message [0:15];

» Delivered code for required memory

» Which are correct?

always @(posedge clk)

always @(posedge clk or posedge reset) always @(posedge clk

begin begin begin
assign message/[@] = CHAR_@; cg) e |
.g g - __ if (reset) if (reset) if (reset)
assign message[l] = CHAR_1; begin begin oo
. o egin
assign message/2] = CHAR 2; message/@] = CHAR_@; message/@] = CHAR_@; o
. a1 . C - message/8] <= CHAR_®;
assign message/[3] = CHAR_3; message/1] = CHAR_1; message/1] = CHAR_1; L
assign message/4] =/CHAR_4; message/2] = CHAR_2; message/2] = CHAR_2; messageili __ CHAR_1
assign message/5] & CHAR S; message/3] = CHAR_3; message[3] = CHAR_3; L Ay
assign message/6]/ = CHAR_6; message/4] = CHAR_4; message/4] = CHAR_4; message[Bi - CHAR_3;
assign message[7] = CHAR_7; message/5] = CHAR_S; message/5] = CHAR_S; message[4] <= CHAR 4;
assign message[8] = CHAR_S; message[6] = CHAR_6; message/6] = CHAR_6; message[5] <= CHAR_5:
assign message[9] = CHAR_9; message/7] = CHAR_7; message[7] = CHAR_7; message[6] <= CHAR_6;
assign message[18] = CHAR_A; message/8] = CHAR_S; message/8] = CHAR_8; message[7] <= CHAR_7;
assign message/11] = CHAR_B; message/9] = CHAR_9; message/29] = CHAR_9; message/3] <= CHAR_8;
assign /message[12] ‘= CHAR_C; message/10] = CHAR_A; message[10] = CHAR_A; message/9] <= CHAR_9;
assigh message/13] = CHAR_D; message/11] = CHAR_B; message/11] = CHAR_B; message/18] <= CHAR_A;
assign message[14] = CHAR_E; message/12] = CHAR_C; message/12] = CHAR_C; message[11] <= CHAR_B;
assign message[15] = CHAR_F; message/13] = CHAR_D; message/13] = CHAR_D; message[12] <= CHAR_Cj
message{lﬂ{ = CHAR_E; mr.--ss.age;‘_l-ﬁl_L = CHAR_E; mes&age[12] <= CHAR_D;
assign char = message[address]; message/15] = CHAR_F; message/15] = CHAR_F; méssage[14] <= CHAR_E:
d s
d =« a end message/15] <= CHAR_F;
en en
| ' T d
always @(posedge clk) always @(posedge clk) | X
. . else
begin begin N
if (reset == 1'b0) if (reset == 1'b8) begin) .
char <= 4°d8; char <= 4'd0; char <= message[address];
else else end
char <= message/address]; char <= message/address]; end
end end

or posedge reset)

assign char = messagefaddress;;lassign char = message/address];

p 35

initial

begin
message[@] = CHAR_®;
message[1] = CHAR_1;
message[2] = CHAR_2;
message[3] = CHAR_3;
message/4] = CHAR_4;
message/5] = CHAR_S;
message/[6] = CHAR_G;
message/[7] = CHAR_7;
message/8] = CHAR_SB;
message/9] = CHAR_9;
message[18] = CHAR_A;
message[11] = CHAR_B;
message[17] = CHAR_C;
message/13] = CHAR_D;
message/14] = CHAR_E;
message[15] = CHAR_F;

end

always @(posedge clk)
begin
if (reset == 1"'b8)
char <= 4'd8;
else
char <- message/address];
end

assign char = message/address];

Lab Assignment 1 | Overview Report

Memory/Register Initialisation

}|Peg 3:0] message [©:15];

initial
begin
&- message/0 = CHAR_B©;
message/l = CHAR_1;
We can use an initial block only for e L am
registers & some ROMs/RAMs e oy
, but it is NOT ASIC- nessage/s] = CHAR_G;
message/7 = CHAR_7;
proven. message/28] = CHAR_8;
message/ S = CHAR_S;
message/12] = CHAR_A;
5 c 5 o opoO message/11] = CHAR_B;
Basically, we JUST define their initial Meencel s - CHAR C.
message/13] = CHAR_D;
value when the core turns on. e e
message/15] = CHAR_F;
end

) 36 Lab Assignment 1 | Overview Report

Overview

» Fundamental Acquired Skills after Completing Lab Assignment 1

» Dataflow & Top-level Module (Golden Rule #1)

» Combinational vs Sequential always blocks (Golden Rule #2)
» Minimal Implementation with Sequential Elements

» Reset & Clock Logic (Golden Rule #4)

» Review Implementation Faults

Hierarchical Design, Coding Style & Comments
Combinational Logic Reset

Anode Driver Refresh Period

Debouncer

MMCM Reset

MMCM Feedback

MMCM VCO Minimum Frequency

Registers’ Memory vs FPGA ROM

XDC Constraints Usage & Justification

v VvV VvV VvV VvV VvV Vv Vv v

» Fundamental Acquired Skills after Completing Lab Assignment 2

» FSMs
» Testbench
» Satisfy Timing Requirements

p 37 Lab Assignment 1 | Overview Report

XDC Constrains Usage & Justification

» Warning-Free vs Ignoring Warning(s)
» you have to justify both

» both choices are equally important

» Meaning we expect from you to resolve upcoming issues

with Critical ThinkingC}
o°
» So, whenever you ignore or add/implement something,

» You should be able to explain
» Why?

» How it works?
i.e, VOLTAGE CONFIG

) 38 Lab Assignment 1 | Overview Report

Wrong Initialisation on variables

count)

It is not valid to initialise registers and
wires like this!

It is not like C that we can set initial

1'b1; values on variables!
D1,

@] count;
count;

enable;
var_1;

All registers should get initial value on reset!

All wires should get value according to
register's value

<= count + 1'bl;

p 39 Lab Assignment 1 | Overview Report

Overview

» Fundamental Acquired Skills after Completing Lab Assignment 1

» Dataflow & Top-level Module (Golden Rule #1)

» Combinational vs Sequential always blocks (Golden Rule #2)
» Minimal Implementation with Sequential Elements

» Reset & Clock Logic (Golden Rule #4)

» Review Implementation Faults

Hierarchical Design, Coding Style & Comments
Combinational Logic Reset

Anode Driver Refresh Period

Debouncer

MMCM Reset

MMCM Feedback

MMCM VCO Minimum Frequency

Registers’ Memory vs FPGA ROM

XDC Constraints Usage & Justification

v Vv Vv Vv VvV VvV Vv Vv v

» Fundamental Acquired Skills after Completing Lab Assignment 2

» FSMs
» Testbench
» Satisfy Timing Requirements

) 40 Lab Assignment 1 | Overview Report

Questions

) 41 Lab Assignment 1 | Overview Report

	Default Section
	Διαφάνεια 1: 1st Lab Assignment | Overview Report
	Διαφάνεια 2: Overview
	Διαφάνεια 3: Overview
	Διαφάνεια 4: Golden Rule #1: Dataflow Design
	Διαφάνεια 5: Golden Rule #2: Procedural Block Assignments
	Διαφάνεια 6: Which one is better?
	Διαφάνεια 7: Which one is better?
	Διαφάνεια 8: Golden Rule #4: Reset & Clock Logic
	Διαφάνεια 9: Overview
	Διαφάνεια 10: Hierarchical Design, Coding Style & Comments
	Διαφάνεια 11: Overview
	Διαφάνεια 12: Combinational Logic & Reset
	Διαφάνεια 13: Correct Implementation of reset in combinational blocks
	Διαφάνεια 14: Overview
	Διαφάνεια 15: Anode Driver Refresh Period
	Διαφάνεια 16: Anode Driver Refresh Period
	Διαφάνεια 17: Overview
	Διαφάνεια 18: Debouncer & Reset Signal
	Διαφάνεια 19: Debouncer & Reset Signal
	Διαφάνεια 20: Debouncer & Logic Comparison in Time
	Διαφάνεια 21: Overview
	Διαφάνεια 22: MMCM Reset
	Διαφάνεια 23: MMCM Reset
	Διαφάνεια 24: MMCM Reset
	Διαφάνεια 25: Overview
	Διαφάνεια 26: MMCM Feedback
	Διαφάνεια 27: MMCM Feedback
	Διαφάνεια 28: Overview
	Διαφάνεια 29: MMCM VCO Minimum Frequency
	Διαφάνεια 30: Overview
	Διαφάνεια 31: Registers’ Memory vs FPGA ROM
	Διαφάνεια 32: Registers’ Memory vs FPGA ROM
	Διαφάνεια 33: Registers’ Memory vs FPGA ROM
	Διαφάνεια 34: Registers’ Memory vs FPGA ROM
	Διαφάνεια 35: Registers’ Memory vs FPGA ROM
	Διαφάνεια 36: Memory/Register Initialisation
	Διαφάνεια 37: Overview
	Διαφάνεια 38: XDC Constrains Usage & Justification
	Διαφάνεια 39: Wrong Initialisation on variables
	Διαφάνεια 40: Overview
	Διαφάνεια 41: Questions

