

Practical Problems in VLSI Physical
Design Automation

Sung Kyu Lim

Practical Problems in VLSI
Physical Design Automation

123

Sung Kyu Lim

Georgia Institute of Technology
School of Electrical and Computer Engineering
777 Atlantic Drive NW
Atlanta GA 30332-0250
USA
limsk@ece.gatech.edu

ISBN 978-1-4020-6626-9 e-ISBN 978-1-4020-6627-6

Library of Congress Control Number: 2008930560

All Rights Reserved
c© 2008 Springer Science + Business Media B.V.

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper.

9 8 7 6 5 4 3 2 1

springer.com

To Mina, Yuna, and Jeanie

Contents

Dedication v
List of Figures ix
List of Tables xxiii
Foreword xxvii
Foreword xxix
Preface xxxi
Acknowledgments xxxv

1. CLUSTERING 1

1 Rajaraman and Wong Algorithm 2

2 FlowMap Algorithm 10

3 Multi-Level Coarsening Algorithm 19

4 More Practice Problems 25

5 Probing Further 27

2. PARTITIONING 31

1 Kernighan and Lin Algorithm 32

2 Fiduccia and Mattheyses Algorithm 37

3 EIG Algorithm 44

4 FBB Algorithm 49

5 More Practice Problems 56

6 Probing Further 58

viii PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

3. FLOORPLANNING 63

1 Stockmeyer Algorithm 64

2 Normalized Polish Expression 70

3 ILP Floorplanning Algorithm 76

4 Sequence Pair Representation 87

5 More Practice Problems 95

6 Probing Further 97

4. PLACEMENT 101

1 Mincut Placement 102

2 GORDIAN Algorithm 112

3 TimberWolf Algorithm 122

4 More Practice Problems 132

5 Probing Further 134

5. STEINER ROUTING 139

1 L-Shaped Steiner Routing Algorithm 140

2 1-Steiner Routing Algorithms 151

3 Bounded Radius Routing Algorithms 160

4 A-tree Algorithm 170

5 Elmore Routing Tree Algorithms 181

6 More Practice Problems 190

7 Probing Further 192

6. MULTI-NET ROUTING 197

1 Steiner Min-Max Tree Algorithm 198

2 Multi-Commodity Flow Routing Algorithm 207

3 Iterative Deletion Algorithm 221

4 Yoshimura and Kuh Algorithm 235

5 More Practice Problems 245

6 Probing Further 247

References 251

List of Figures

1.1 A directed acyclic graph, where PI = {a, b, c}, and
PO = {k, l}. 3

1.2 Maximum delay matrix of the DAG in Figure 1.1. 4

1.3 The sub-tree rooted at i (= Gi) and cluster(i). The
timing critical path, shown in dotted path, contains four
nodes and a inter-cluster interconnect (D = 3). Thus,
the delay is 7, which agrees with l(i) = 7. 6

1.4 Illustration of cluster(k) and its input nodes {f, d, e, h}
shown in gray. 8

1.5 Clustered-level graph. 9

1.6 (a) 2-bounded Boolean network, (b) and its DAG. Note
that we do not model the POs explicitly but treat h, j,
and k as POs. 12

1.7 Visiting node a. (a) Na, (b) N ′
a, and (c) N ′′

a . The num-
bers next to the nodes denote their label. 12

1.8 Visiting node d. (a) Nd, (b) N ′
d, and (c) N ′′

d . Note that
N ′′

d contains a K-feasible cut with the height of 0 as
shown in dotted line. Bridging edges are shown in dot-
ted arrows. 13

1.9 Visiting node g. (a) Ng, (b) N ′
g , and (c) N ′′

g . N ′′
g con-

tains a K-feasible cut with height of 0 shown in dotted
line. 13

1.10 Visiting node h. (a) Nh, (b) N ′
h, and (c) N ′′

h . N ′′
h con-

tains a K-feasible cut with height of 0 shown in dotted
line. 13

x PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

1.11 Visiting node i. (a) Ni, (b) N ′
i , and (c) N ′′

i . N ′′
i does

not contain a K-feasible cut. 14
1.12 Visiting node j. (a) Nj , (b) N ′

j , and (c) N ′′
j . N ′′

j con-
tains a K-feasible cut with height of 1 shown in dotted
line. Infinite capacities are not shown for simplicity. 15

1.13 Visiting node k. (a) Nk, (b) N ′
k, and (c) N ′′

k . N ′′
k con-

tains a K-feasible cut with height of 1 shown in dotted
line. Infinite capacities are not shown for simplicity. 16

1.14 (a) Cluster rooted at h and its input nodes, (b) cluster
rooted at j and its input nodes, (c) cluster rooted at k
and its input nodes. 17

1.15 (a) Original network, (b) LUT-level network. 18
1.16 A gate-level circuit and its hypergraph representation. 20
1.17 (a) Original hypergraph with six hyperedges, (b) hyper-

graph after edge coarsening, which has five hyperedges. 21
1.18 (a) Original hypergraph, (b) hypergraph after hyper-

edge coarsening, which has four hyperedges. 23
1.19 (a) Original hypergraph, (b) hypergraph after modified

hyperedge coarsening, which has four hyperedges. 24
1.20 A gate-level circuit. 25
2.1 (a) Gate-level circuit, (b) its edge-weighted undirected

graph representation. The thin and the thick lines indi-
cate the weight of 0.5 and 1, respectively. 34

2.2 (a) Initial partitioning (cutsize = 5), (b) after swap 1,
(c) after swap 2. The thin and the thick edges denote
the weight of 0.5 and 1, respectively. The gray nodes
are locked. 34

2.3 (a) After swap 3, (b) after swap 4. The thin and the
thick lines denote the weight of 0.5 and 1, respectively.
The gray nodes denote locked cells. 36

2.4 A bipartitioning solution of the circuit shown in Figure
2.1(a) with cutsize 3. 36

2.5 (a) Gate-level circuit, (b) hypergraph representation. 38
2.6 Netlist of the circuit in Figure 2.5 and its initial parti-

tioning. Cutsize = 6. 39
2.7 Bucket structure based on Figure 2.6. 40
2.8 After moving e. Cutsize = 4. 40
2.9 After moving d. Cutsize = 3. 41
2.10 After moving b. Cutsize = 3. 41

List of Figures xi

2.11 After moving g. Cutsize = 3. 42

2.12 After moving a. Cutsize = 4. 42

2.13 After moving f . Cutsize = 5. 42

2.14 After moving h. Cutsize = 5. 43

2.15 After moving c. Cutsize = 6. 43

2.16 A gate-level circuit. 45

2.17 Clique-based edge-weighted undirected graph represen-
tation of the circuit in Figure 2.16. The dotted edges
have the weight of 0.5, and the solid edges with no label
have the weight of 0.25. 45

2.18 Adjacency matrix A. 46

2.19 Degree matrix D. 46

2.20 Laplacian matrix Q. 46

2.21 One-dimensional placement from the eigenvector. 47

2.22 Modeling a net into a flow network. 49

2.23 A gate-level circuit. 50

2.24 Flow network of the circuit in Figure 2.23. The capac-
ity of dotted edges is infinity, while the solid edges have
capacity of 1. 51

2.25 First maximum flow (value = 1) along with its aug-
menting path. 51

2.26 After merging s and d. (a) Circuit, (b) flow network. 52

2.27 Second maximum flow (value = 2) along with its two
augmenting paths. 53

2.28 After merging t and e. (a) Circuit, (b) flow network. 54

2.29 Third maximum flow (value = 3) along with its aug-
menting paths. 54

3.1 A slicing tree and its floorplan. Note that the lower left
corner of each block is placed at the lower left corner
of its room. 65

3.2 Slicing floorplan before and after the optimal rotation.
The darker blocks are rotated. 69

3.3 Slicing tree of PE1. 71

3.4 Slicing tree after swapping blocks 3 and 7 in PE1. The
bold part of the tree was updated. 73

3.5 Slicing tree after complementing the last chain (= the
orientation of nodes d and g) in PE2. The bold part of
the tree was updated. 73

xii PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

3.6 Slicing tree after swapping block 6 and V in PE3. The
bold part of the tree was updated. 74

3.7 Changes on the floorplan based on the M1, M2, and M3
moves. (a) Initial floorplan, (b) after M1, (c) after M2,
(d) after M3. 75

3.8 ILP floorplanning with fixed modules. The chip dimen-
sion is 12 × 12. 79

3.9 ILP floorplanning with fixed modules and rotation.
Rotated modules are shown darker. The chip dimension
is 11 × 11. 82

3.10 ILP floorplanning with fixed (1 and 2) and flexible (3
and 4) modules. The dimension of flexible modules is
based on linear approximation. Modules 1 and 2 are
rotated. The chip dimension is 10.46 × 10.32. 85

3.11 (a) Modified floorplan from the one shown in Figure
3.10 by using actual module dimension, (b) after remov-
ing the overlap. The chip dimension is 10.46 × 15.79. 86

3.12 Horizontal constraint graph of SP1. (a) Full graph, (b)
after removing transitive edges for simplicity. 89

3.13 Vertical constraint graph of SP1 with transitive edges
removed. 90

3.14 Sequence pair = SP1. (a) HCG with longest s-t path
length 11, (b) VCG with longest s-t path length 15.
The numbers next to each node denotes its width (in
HCG) or height (in VCG). 90

3.15 Non-slicing floorplan based on SP1. 91
3.16 Sequence pair = SP2. (a) HCG with longest s-t path

length 13, (b) VCG with longest s-t path length 14. 92
3.17 Non-slicing floorplan based on SP2. 93
3.18 Sequence pair = SP3. (a) HCG with longest s-t path

length 13, (b) VCG with longest s-t path length 12.
The numbers next to the nodes denote the weights. 94

3.19 Non-slicing floorpl an based on SP3. 94
3.20 Linear approximation of area. 96
4.1 (a) Breadth-first recursive bipartitioning, (b) terminal

propagation, where the right-half is being cut by a hori-
zontal cut (shown in dotted line). The left-half is already
partitioned into Pc and Pd, and y ∈ PC is located at the
center of Pc. We propagate y to p because it is located
outside the window. 103

List of Figures xiii

4.2 Clique-based graph model of the netlist shown in Table
4.1. The thick and the thin edges have weights of 1 and
0.5, respectively. 104

4.3 Quadrature mincut placement. The thick edges have a
weight of 1, and the thin edges have 0.5. The dotted
lines show the current partitioning. 105

4.4 Terminal propagation for the partitioning shown in Fig-
ure 4.9(c). Terminal p1 is propagated from nodes n and
j and is pulling nodes k, o, and g to the top partition.
Terminal p2 is propagated from nodes f and b and is
pulling node g to the bottom partition. 107

4.5 Terminal propagation for the partitioning shown in Fig-
ure 4.9(d). Terminal p1 is propagated from nodes o, k,
and g and is pulling nodes n and j to the right partition.
Nodes i and j are connected to nodes e, f , and a, but no
terminal is propagated because e, f , and a are located
within the mid-third window. 107

4.6 Terminal propagation for the partitioning shown in Fig-
ure 4.10(a). Three terminals p1, p2, and p3 are propa-
gated. p1 is pulling nodes a and e to the left partition,
and p2 and p3 are pulling nodes e, f , and b to the right
partition. 108

4.7 Terminal propagation for the partitioning shown in Fig-
ure 4.10(b). Terminal p1 is propagated from nodes n
and j and is pulling nodes o and k to the left partition. 108

4.8 Terminal propagation for the partitioning shown in Fig-
ure 4.10(c). Three terminals p1, p2, and p3 are propa-
gated. p1 is pulling g to the left, p2 is pulling g and l to
the left, and p3 is pulling l and d to the right. 109

4.9 Recursive bipartitioning mincut placement. The thick
edges have a weight of 1, and the thin edges have 0.5.
The dotted lines show the current partitioning. 110

4.10 Recursive bipartitioning mincut placement (continued
from Figure 4.9). 111

4.11 Gate-level circuit used for GORDIAN algorithm. 113

4.12 Fixed IO pin location. 114

4.13 Undirected graph model of the circuit in Figure 4.11.
The thick edges have a weight of 2/3, and the dotted
edges have a weight of 0.5. 114

4.14 GORDIAN placement at level l = 0. 117

xiv PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

4.15 GORDIAN placement at level l = 1 with a vertical cut.
X denotes the center location of the partitions. 119

4.16 The 4 partitions (p1 to p4) and their center locations at
level l = 2. 120

4.17 GORDIAN placement at level l = 2 with a vertical cut.
X denotes the center location of the partitions. 121

4.18 GORDIAN placement with wires shown. 121

4.19 (a) Before swapping (b, e), (b) after the swap. Cell h is
shifted to the right. 124

4.20 (a) Bounding box of n4 = {d, h, i} with h on the right
boundary, (b) bounding box of n7 = {c, e, f, h, n}
with h not on any boundary. 125

4.21 Piecewise-linear Wn graph for n4 and n7. Cell h is
shifted to the right by 1, causing the wirelength of n4

to increase by one and no change on n7. 126

4.22 (a) Before swapping (m, o), (b) after the swap. Cell d
and g are shifted to the right. 127

4.23 (a) Bounding box of n4 = {d, h, i}, where d is not
on any boundary, (b) bounding box of n6 = {d, k, j},
where d is on the right boundary, (c) bounding box of
n8 = {d, l}, where d is on the right boundary. 128

4.24 (a) Bounding box of n1 = {a, e, g}, where g is on the
right boundary, (b) bounding box of n9 = {b, g, i,m},
where g is on the right boundary. 129

4.25 (a) Before swapping (k,m), (b) after the swap. Cell c
is shifted to the left. 130

4.26 (a) Bounding box of n3 = {b, c, k, n}, where c is on
the left boundary, (b) bounding box of n7 = {c, e, f, h, n},
where c is not on any boundary. 131

4.27 A gate-level circuit. 132

5.1 Two sources of overlap in L-RST: (1) among the edges
incident on v, (2) overlaps in the sub-trees rooted at the
children of v. 141

5.2 Routing problem instance for L-RST algorithm. Node
b is the root node for the separable MST and L-RST
computation. 142

5.3 Adding the first four edges to the separable MST. 143

5.4 Adding the last four edges to the separable MST (con-
tinue from Figure 5.3). 144

List of Figures xv

5.5 Rooted tree Tb derived from the separable MST. 145
5.6 Partial L-RSTs for node c, where ec = (c, d). (a) Φl(c),

(b) Φu(c). 145
5.7 Partial L-RSTs for node e, where ee = (e, f). (a) Φl(e),

(b) Φu(e). 146
5.8 Partial L-RSTs for node g, where eg = (g, f). (a) Φl(g),

(b) Φu(g). 146
5.9 Partial L-RSTs for node d, where ed = (d, b). (a) Φl(d),

(b) Φu(d). 147
5.10 Partial L-RSTs for node f , where ef = (f, b). (a) Φl(f),

(b) Φu(f). Node f has two children e and g. 148
5.11 (a) Initial separable MST, (b) final L-RST. 150
5.12 (a) L-MST with Steiner points shown in X and alter-

nate staircase segments shown in dotted line, (b) stair-
case rerouting does not cause any additional overlap. 150

5.13 (a) Node p1 and edge (i, j) are paired, (b) connecting
p1 and e1 = (i, j) creates a cycle. e2 is the longest edge
in the cycle. p is the point along the rectilinear layout
of (i, j) that is closest to p1, (c) insertion of p causes e1

and e2 to be removed and (p, p1), (p, i), and (p, j) to
be added. 152

5.14 (a) Routing problem instance for the 1-Steiner algo-
rithm shown in Hanan grid, (b) initial MST with recti-
linear wirelength of 20, (c) candidate locations (shown
in X) for Steiner point insertion. 153

5.15 Insertion of the first 1-Steiner point. (a–f) 1-Steiner
points (shown in dotted circles) that reduce the wire-
length of the initial MST. 153

5.16 Insertion of the second 1-Steiner point. (a–c) 1-Steiner
points (shown in dotted circles) that reduce the wire-
length of the initial MST. 154

5.17 Insertion of the third 1-Steiner point. 154
5.18 Computing the gain for the {b, (a, c)} pair for 1-Steiner

point insertion. (a) Initial MST with wirelength 20, (b)
Steiner point p, the nearest point between b and (a, c),
is identified. Also, e2 is the longest edge on the b-to-a
path. (c) Tree after inserting p and deleting e1 and e2.
The wirelength is now reduced to 18. 155

5.19 1-Steiner point insertion for edge (b, c). The {a, (b, c)}
pair has the maximum gain of 2. 156

xvi PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

5.20 1-Steiner point insertion for edge (b, d). Both pairs
{c, (b, d)} and {e, (b, d)} have the maximum gain of 1. 157

5.21 1-Steiner point insertion for edge (c, e). All three pairs
{b, (c, e)}, {d, (c, e)}, and {f, (c, e)} have the maxi-
mum gain of 1. 158

5.22 1-Steiner point insertion for edge (e, f). This single
pair {c, (e, f)} has the maximum gain of 1. 158

5.23 single iteration of 1-Steiner point insertion. (a) Original
MST with wirelength 20, (b) after utilizing
{b, (a, c)}, (c) after utilizing {c, (e, f)}, where the final
wirelength is 17. 159

5.24 (a) Steiner tree built by the Kahng/Robins algorithm
with wirelength of 16, (b) Steiner tree built by the Borah/
Owens/Irwin algorithm with wirelength of 17. 159

5.25 Problem instance for the bounded-radius routing algo-
rithms. Node s is the source. 161

5.26 BPRIM algorithm under ε = 0, i.e., the radius bound
is 12. The dotted lines denote the “appropriate” edges
[Cong et al., 1992]. 162

5.27 BPRIM algorithm under ε = 0.5, i.e., the radius bound
is 18. The dotted lines denote the “appropriate” edges. 164

5.28 BPRIM algorithm under ε = ∞. This case corresponds
to Prim’s MST construction. There is no “appropriate”
edge used. 166

5.29 Comparison among the BR-MSTs built under various
radius bounds. (a) ε = 0, bound = 12, radius = 12,
wirelength = 56, (b) ε = 0.5, bound = 18, radius =
18, wirelength = 49, (c) ε = ∞, bound = ∞, radius =
22, wirelength = 36. 167

5.30 (a) Initial MST, (b) rooted tree of the initial MST for
DFS traversal. 167

5.31 BRBC algorithm under ε = 0.5. (a) Graph Q after
adding additional edges (shown in dotted lines), (b)
shortest path tree on Q, where the radius is 12, and the
wirelength is 52. 168

5.32 Bounded-radius MSTs under ε = 0.5. (a) BPRIM algo-
rithm, where the radius is 18 and the wirelength is 49,
(b) BRBC algorithm, where the radius is 12, and the
wirelength is 52. 169

List of Figures xvii

5.33 (a) Node b is blocked from c (= by a), while a and g
are not. We have mx(c, Fk) = a, and dx(c, F0) = 3.
(b) Node e is blocked from c (= by d), while h is not.
We have my(c, Fk) = d, and dy(c, F0) = 2. (c) We
have MF (c, F0) = {f, i}, df(c, F0) = 4, mfw = i,
and wfs = f . 171

5.34 Type-1 safe move for node b. (a) Before the move,
where dx = ∞, dy = 3, df = 2, and mfw = a,
(b) after the move, where b is no longer a root node. 172

5.35 Type-2 safe move for node a. (a) Before the move,
where dx = ∞, dy = 1, df = 5, and mfs = s, (b)
after the move, where the p-to-p′ length is computed as
min{dV (a, s), dy} = 1. a1 is the new root node. 173

5.36 Type-3 safe move for node c. (a) Before the move,
where dx = 3, dy = ∞, df = 4, and mfw = f , (b)
after the move, where the p-to-p′ length is computed as
min{dH(c, f), dx} = 2. c1 is the new root node. 173

5.37 Routing problem instance for the A-tree algorithm with
the source located at the origin. This is also the initial
forest F0, where the root set R(F0) = {a, b, c, d, e, f}. 174

5.38 (a) Computing dx(c, F0), where the shaded region
denotes NW (c). Node b is blocked by a, so
mx(c, F0) = a and dx(c, F0) = 3. (b) Computing
dy(c, F0), where the shaded region denotes SE(c). We
have my(c, F0) = ∅, and dy(c, F0) = ∞. (c) Comput-
ing df(c, F0), where the shaded region denotes D(c, F0).
Thus, we have MF (c, F0) = {f} and df(c, F0) = 4. 175

5.39 (a–i) Forests F1 to F9 obtained from a sequence of safe
moves. F9 in (i) is the final rectilinear Steiner arbores-
cence, where all source-sink paths are shortest, and the
overall wirelength is minimal. The black colored nodes
correspond to the current root nodes. 177

5.40 Routing problem instance for ERT/SERT algorithms in
Hanan grid. Node s is the source. 182

5.41 Second iteration of ERT algorithm. (a) Nearest neigh-
bor of a, (b) nearest neighbor of s. (b) is the tree with
minimum Elmore delay increase. 183

5.42 Third iteration of ERT algorithm. (a) Nearest neighbor
of a, (b) nearest neighbor of s, (c) nearest neighbor of
c. (b) is the tree with minimum Elmore delay increase. 184

xviii PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

5.43 Fourth iteration of ERT algorithm. (a) Nearest neigh-
bor of a, (b) nearest neighbor of s, (c) nearest neigh-
bor of c, (d) nearest neighbor of d. (a) is the tree with
minimum Elmore delay increase. 184

5.44 Final tree obtained by ERT algorithm with the maxi-
mum Elmore delay t(b) = 4630ps. 185

5.45 Second iteration of SERT algorithm. (a–b) Two ways
node b can connect to the tree, (c–d) two ways node
d can connect to the tree, (e–f) two ways node c can
connect to the tree. (e) is the tree with the minimum
Elmore delay increase. 186

5.46 Third iteration of SERT algorithm. (a–d) Four ways
node b can connect to the tree, (e–g) three ways node
d can connect to the tree. (f) is the tree with minimum
Elmore delay increase. 187

5.47 Fourth iteration of SERT algorithm. (a–f) Six ways node
b can connect to the tree. (s) is the tree with minimum
Elmore delay increase. 189

5.48 Final tree obtained by SERT algorithm with the maxi-
mum Elmore delay t(b) = 606.3ps. 189

6.1 (a) Net n1 with HPBB of 7, where the weight of all
edges in the underlying routing graph G is initially set
to zero, (b) a MST of G, (c) final SMMT with maxi-
mum edge weight of 0, and wirelength of 9. We accept
this solution because 9 < 2.0 × 7. 200

6.2 (a) Net n2 with HPBB of 7, where the edge label in
G denotes the current weight (no label indicates zero
weight), (b) a MST of G, (c) final SMMT with maxi-
mum edge weight of 0, and wirelength of 10. We accept
this solution because 10 < 2.0 × 7. 200

6.3 (a) Net n3 with HPBB of 7, (b) a MST of G, (c) final
SMMT with maximum edge weight of 1, and wire-
length of 15. We reject this solution because
15 > 2.0 × 7. 201

6.4 (a) Net n4 with HPBB of 8, (b) a MST of G, (c) final
SMMT with maximum edge weight of 1, and wire-
length of 15. We accept this solution because 15 <
2.0 × 8. 201

List of Figures xix

6.5 (a) Net n5 with HPBB of 8, (b) a MST of G, (c) final
SMMT with maximum edge weight of 1, and wire-
length of 12. We accept this solution because 12 <
2.0 × 8. 202

6.6 (a) Final routing graph, (b) SMMT of n1, (c) SMMT
of n2, (d) SMMT of n4, (e) SMMT of n5. Note that n3

routing has failed. 202

6.7 (a) SMMT of n1, (b) routing graph after ripping up
SMMT of n1. The arrow points to the source for SP
computation, (c) SP of n1. 203

6.8 (a) SMMT of n2, (b) routing graph after ripping up
SMMT of n2. The arrow points to the source for SP
computation, (c) SP of n2. 203

6.9 (a) SMMT of n3 does not exist due to the routing fail-
ure, (b) routing graph for n3. The arrow points to the
source for SP computation, (c) SP of n3. 204

6.10 (a) SMMT of n4, (b) routing graph after ripping up
SMMT of n4. The arrow points to the source for SP
computation, (c) SP of n4. 204

6.11 (a) SMMT of n5, (b) routing graph after ripping up
SMMT of n5. The arrow points to the source for SP
computation, (c) SP of n5. 205

6.12 SP routing results. (a) Final routing graph, (b–f) SP of
nets n1 to n5. 205

6.13 (a) Routing graph after SMMT phase, (b) routing graph
after ST phase. SMMT shows more uniform use of
routing resource. The edge capacity is set to 3. 206

6.14 (a) Routing graph, where the capacity of all edges is 2,
(b) its flow network. 209

6.15 Final result of ILP-based multi-commodity flow global
routing. 215

6.16 Initial step of MM algorithm: shortest paths for the
nets. Note that some paths are not unique. Two chan-
nels have overflow. 216

6.17 Iteration 1 of MM algorithm: shortest paths for the nets
under new cost. The cost of n2, n3, n4, n5 are infinity,
n1 is 24, and n6 is 23. 217

6.18 Final result of iteration 1. Net 1 is rerouted compared
with Figure 6.16. 218

xx PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

6.19 Iteration 2 of MM algorithm: shortest paths for the nets
under new cost. The cost of n3 is 22, n5 is 21, and n6

is infinity. 219

6.20 Final result of iteration 2. Net 3 is rerouted compared
with Figure 6.18. MM algorithm terminates because
there is no overflow. 220

6.21 A standard cell placement with four rows and three
channels 223

6.22 (a) Net connection graph for n1 = {b, c, g, h, i, k}, (b)
net connection graph for n2 = {a, d, e, f, j}, (c) net
connection graph for the entire netlist. 223

6.23 (a) After adding the first seven edges, (b) after adding
the eighth edge (e, j) and its feedthrough x, (c) after
adding the ninth edge (c, h) and its feedthrough y, which
corresponds to the final spanning forest. 225

6.24 Feedthrough insertion result. (a) Final routing tree for
n1, (b) final routing tree for n2. 227

6.25 (a) Simplified net connection graph for n1, where the
edges to be removed are shown in dotted lines, (b) sim-
plified net connection graph for n2, (c) simplified net
connection graph for the netlist. 228

6.26 Density at each column in each channel. The density of
channels 1, 2, and 3 are 4, 6, and 2, respectively. 228

6.27 Iterative deletion. (a) Deleting (x, f), (b) deleting (g, h),
(c) deleting (e, f) (in channel 2), (d) deleting (b, y), (e)
deleting (d, x), (f) deleting (d, e) (in channel 1). 230

6.28 (a) Final routing tree for n1 after iterative deletion, (b)
final routing tree for n2. 234

6.29 (a) Net connection graph after feedthrough insertion,
(b) net connection graph after iterative deletion. The
density of channel 1 is lower in (b) (= 3 vs 2). 234

6.30 Constraint graphs. 237

6.31 Zone representation. 238

6.32 VCG after track assignment. (a) Initial VCG, (b) after
assigning net 1, (c) after assigning net 3, (d) after assign-
ing net 4, (e) after assigning nets 2 and 5, (f) after
assigning nets 6 and 8. 238

6.33 Final routing after constrained LE algorithm is applied
on the original routing problem. 239

List of Figures xxi

6.34 Computation of u(x) and d(x) for nets 2, 5, and 6.
(a) u(2) = 4, d(2) = 1, (b) u(5) = 3, d(5) = 4,
(c) u(6) = 4, d(6) = 2. 240

6.35 Result after merging net (2, 6). (a) Zone representation,
(b) VCG. 241

6.36 Computation of u(x) and d(x) for nets 4, 26, 8, and 9.
(a) u(4) = 3, d(4) = 3, (b) u(26) = 4, d(26) = 2, (c)
u(8) = 4, d(8) = 3, (d) u(9) = 5, d(9) = 2. 242

6.37 Result after merging nets (26, 9) and (8, 4). (a) Zone
representation, (b) VCG. 243

6.38 VCGs after track assignment. (a) Initial VCG, (b) after
assigning net 1, (c) after assigning net 3, (d) after assign-
ing net 5, (e) after assigning net 48, (f) after assigning
net 269. 244

6.39 Final routing after performing constrained LE algorithm
on top of net merging result. 244

6.40 Routing graph for multi-commodity flow based routing. 245
6.41 A standard cell placement with three rows. 246

List of Tables

1.1 Summary of the labeling and clustering process of the
Rajaraman and Wong algorithm. 7

1.2 List of clusters generated by the Rajaraman and Wong
algorithm. 9

1.3 Summary of the labeling and clustering process of the
FlowMap algorithm. 17

1.4 List of LUTs generated by FlowMap algorithm. 17

1.5 Edge coarsening result. 21

1.6 Netlist transformation based on EC result. 21

1.7 Hyperedge coarsening result. 22

1.8 Netlist transformation based on HEC result. 22

1.9 Modified hyperedge coarsening result. 23

1.10 Netlist transformation based on MHEC result. 24

2.1 Gain computation for the first swap. The maximum gain
swap chosen (due to lexicographic ordering) is shown
in bold. 35

2.2 Gain computation for the second swap. The maximum
gain swap is shown in bold. 35

2.3 Gain computation for the third swap. The maximum
gain swap is shown in bold. 35

2.4 A single pass of Kernighan and Lin algorithm. The
minimum cutsize solutions are shown in bold. 36

2.5 A single pass of FM. The minimum cutsize solutions
are shown in bold. 43

xxiv PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

2.6 Summary of EIG algorithm. 48
2.7 Partitioning solutions derived from the first max-flow

computation. 51
2.8 Partitioning solutions derived from the second max-

flow computation. 53
2.9 Partitioning solutions derived from the third max-flow

computation. 55
3.1 Summary of the bottom-up dimension computation in

Stockmeyer algorithm. The minimum area floorplan is
13 × 9 = 117. 68

3.2 Relative positions among the modules in SP1. 88
3.3 Longest path lengths for the modules in HCG and VCG

for SP1. These values correspond to the location of the
lower left corner of each module. 91

3.4 Relative positions among the modules in SP2. 91
3.5 Longest path lengths for the modules in HCG and VCG

for SP2. 92
3.6 Relative positions among the modules in SP3. 93
3.7 Longest path lengths for the modules in HCG and VCG

for SP3. 94
4.1 Gate-level netlist used for mincut placement. 104
4.2 Gate-level netlist used in TimberWolf algorithm. 124
5.1 Maximum gain pair for each edge. 159
5.2 BPRIM algorithm under ε = 0, i.e., the radius of the

tree should not exceed 12. In case of tie among the
edges under “min dist(x, y)”, we choose the first entry
based on alphabetical order. 163

5.3 BPRIM algorithm under ε = 0.5, i.e., the radius of
the tree should not exceed 18. In case of tie among the
edges under “min dist(x, y)”, we choose the first entry
based on alphabetical order. 165

5.4 DFS traversal of MST and augmentation of graph Q
under ε = 0.5. 168

5.5 dx/dy/df values for R(F0) shown in Figure 5.37. 175
5.6 Safe moves exist in F0 shown in Figure 5.37. 176
5.7 dx/dy/df values and safe moves for R(F1) shown in

Figure 5.39(a). 177
5.8 dx/dy/df values and safe moves for R(F2) shown in

Figure 5.39(b). 178

List of Tables xxv

5.9 dx/dy/df values and safe moves for R(F3) shown in
Figure 5.39(c). 178

5.10 dx/dy/df values and safe moves for R(F4) shown in
Figure 5.39(d). 178

5.11 dx/dy/df values and safe moves for R(F5) shown in
Figure 5.39(e). 179

5.12 dx/dy/df values and safe moves for R(F6) shown in
Figure 5.39(f). 179

5.13 dx/dy/df values and safe moves for R(F7) shown in
Figure 5.39(g). 179

5.14 dx/dy/df values and safe moves for R(F8) shown in
Figure 5.39(h). 180

6.1 Summary of SMMT and SP phases based on Figures
6.6 and 6.12. 206

6.2 List of the arcs in the flow network. 209

6.3 A sorted list of the edges in the net connection graph
shown in Figure 6.22(c). We list the intersecting rows
for each edge under the Ri column. Ties are broken
based on lexicographical order. 224

6.4 Before and after adding the eighth edge (e, j) that cre-
ates a feedthrough in row 3. Gate h is shifted during
the feedthrough insertion. We update the weight of nine
edges that are affected by the feedthrough insertion. 226

6.5 Adding the ninth edge (c, h) that creates a feedthrough
in row 2. Gate f is shifted during the feedthrough inser-
tion. No more update is necessary because the spanning
forest is completed. 226

6.6 Sorted list of the edges in the simplified net connection
graph shown in Figure 6.25(c). 229

6.7 Deleting the first edge (x, f). The density of channel 2
reduces to 5, causing the weight of all edges in channel
2 to be updated. 231

6.8 Deleting the second edge (g, h). The density of chan-
nel 2 reduces to 4, causing the weight of all edges in
channel 2 to be updated. 231

6.9 Deleting the third edge (e, f) in channel 2. The den-
sity of channel 2 reduces to 3, causing the weight of all
edges in channel 2 to be updated. 232

xxvi PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

6.10 Deleting the fourth edge (b, y). Note that deleting (e, f)
results in isolation of node f . The density of channel 1
reduces to 3, causing the weight of all edges in channel
1 to be updated. 232

6.11 Deleting the fifth edge (d, x). The density of channel 2
reduces to 2, causing the weight of all edges in channel
2 to be updated. 233

6.12 Deleting the sixth edge (d, e) from channel 1. No more
edge deletion is necessary. 233

6.13 Horizonal span of the nets and their zones. 237

Foreword

The modern integrated circuit is among the most complex engineering prod-
ucts ever built by mankind. Since its invention some four decades ago (the
1960s), the number of transistors per integrated circuit has doubled every two
years, following the now-famous Moore’s Law. I began working on integrated
circuit design in late 1980s, and have witnessed an over-1000x increase in
complexity—for example, from Intel’s 80486 processor with 1.2 million tran-
sistors introduced in 1989 to Intel’s dual-core Itanium-2 processor with 1.7
billion transistors introduced in 2006. The exponential growth in such “elec-
tronic brains” has transformed practically all areas of modern society, making
possible all the recent revolutions in information technology: personal com-
puting, telecommunications, bioinformatics, digital imaging, electronic com-
merce, and more.

The design of very large-scale integrated (VLSI) circuits, however, has
become very challenging, involving hundreds of designers and extensive use
of computer-aided design (CAD) tools. One of the oldest, yet most impor-
tant CAD problems for VLSI circuits is physical design automation, where
one needs to compute the best physical layout of millions to billions of circuit
components on a tiny silicon surface (no more than 5cm2), a process similar
to solving a highly complex jigsaw puzzle with nano-scale pieces. The early
objective was on area minimization, that is, to come up with the most compact
layout. More recent focus includes optimization of circuit performance, power,
and manufacturability, as the physical arrangement of these circuit components
defines the amount of interconnects or wires needed to connect them, and the
interconnects play an increasingly important role (relative to the transistors) in
determining the overall circuit performance, power, area, and cost in today’s
nanometer process technologies.

I have been teaching a graduate course on VLSI circuit physical design
automation at UCLA for eighteen years (in fact, the author of this book was
a student in this class thirteen years ago). It is a rather demanding course,

xxviii PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

as it integrates the knowledge of VLSI circuits, algorithm design, combinato-
rial optimization, mathematical programming, and software implementation in
order to come up with an effective solution to a problem. Yet this has been a
fascinating subject to study and to teach, and it has been rewarding to see stu-
dents learn how to automate the design of one of the most complex man-made
systems on earth.

I have used and consulted several textbooks in developing my course materi-
als, such as Physical Design Automation of VLSI Systems by Preas and Loren-
zetti in the late 1980s and multiple editions of Algorithms for VLSI Physical
Design Automation by Sherwani in the 1990s. These books are very helpful, as
they capture a large body of research results distributed in various publications
and organize them in a systematic and unified way for algorithm description
and complexity analysis. However, given the complexity of most of the algo-
rithms, I have always recognized a need to have well-constructed, meaningful
examples to illustrate the execution of these algorithms so that students can
gain a deeper understanding and appreciation.

This book by Professor Sung Kyu Lim meets this need well. It selects
several classical algorithms in each key topic of physical design automation,
including clustering, partitioning, floorplanning, placement, and routing, and
explains each of these algorithms through a carefully constructed example
showing a step-by-step execution of the algorithm. Professor Lim intentionally
leaves out the detailed, pseudo-code type of algorithm description and formal
complexity analysis, but focuses on allowing students to observe and practice
the algorithm on practical examples. This style clearly differentiates this book
from others on this subject, and makes it a valuable additional resource to help
students and practitioners grasp key concepts and techniques in VLSI physical
design automation.

After forty years, VLSI physical design automation still remains a vibrant
field for both research and commercial development. Over a hundred research
papers are presented each year, with new ideas addressing the ever-increasing
design complexity and constraints. The modern physical design tools com-
mand hundreds of thousands of dollars per license, as offered by major VLSI
CAD tool vendors, and multiple start-up companies emerge every year. This
book will be a valuable addition to help you advance into this exciting and
rapidly moving field.

Jason Cong, Ph.D.
Professor and Chairman
Department of Computer Science
University of California at Los Angeles
Los Angeles, California
April 2008

Foreword

As VLSI technology advances into the nanometer era, physical effects have
to be considered in all stages of design. In the past, the audiences of physi-
cal design books were primarily limited to students and researchers who were
interested in the development of CAD tools for physical layout. This has
changed. Today, there is a strong demand of fundamental knowledge in phys-
ical design by CAD tools developers across the board. Basic techniques for
physical design can be modified to generate estimations of physical effects to
be used in higher level CAD tools for power minimization and timing closure.
These techniques can also be adapted to mitigate process variations cause by
downstream manufacturing steps (e.g., CMP, lithography). Thus an up-to-date
textbook on physical design would certainly be a welcome contribution to the
entire CAD community.

Prof. Lim’s book addresses the algorithmic aspects of the physical design of
VLSI circuits and systems. Although there have been several textbooks writ-
ten on this subject, this book distinguishes well from the others. First, the last
major book on this subject was published over 10 years ago, so a new book
obviously has the advantage of its ability to include most up-to-date devel-
opments. Second, Prof. Lim includes some classical materials that are not
available in previous textbooks. Finally, the most unique aspect of this book
is its presentation style. I cannot agree more with Prof. Lim that one learns the
best with examples. This book’s central theme indeed is to use small examples
to illustrate all steps of an algorithm in details. Moreover, examples are clearly
accompanied by many figures, taking full advantage of the power of visualiza-
tion. After all, a picture is worth a thousand words! In my opinion, Prof. Lim

xxx PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

has succeeded. CAD researchers and students will find this book a valuable
resource, as either a text or a reference.

Martin D. F. Wong, Ph.D.
Professor
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign
Urbana, Illinois
April 2008

Preface

If you are like me, I learn the best with examples. This is especially true
when it comes to understanding CAD papers with complex algorithms and
deep mathematical concepts. I remember how much I appreciated the exam-
ples in the calculus book when I was in college. The best part of “Introduction
to Algorithms” by Cormen, Leiserson, Rivest, and Stein to me was (and still is)
the examples. A good example with coherent figures goes a long way for me:
it not only helps me understand (or recall) how the algorithm itself works, but I
am able to follow the complexity analysis, discussions of limitations and exten-
sions, etc. This is why I use a small example of, say Fiduccia and Mattheyses
algorithm, and solve it “by hand” in my graduate course on physical design.

Most of the textbooks on physical design provide examples on some papers,
but I always wanted more. In addition, most of the popular papers that are fre-
quently used in physical design classes do not provide examples. This was why
I started designing them myself since I started offering a graduate course on
physical design at Georgia Institute of Technology in 2001. The students in my
class, mostly from the School of Electrical and Computer Engineering, do not
usually have background on algorithms, graph theory, and combinatorial opti-
mization. This is where the usefulness of good examples is revealed again. It is
usually not until they see an example that they begin to understand and appre-
ciate why the paper is so influential and the algorithm behind it is beautiful and
useful.

Overview of this Book
This book consists of 6 chapters on various topics of physical design including
clustering, partitioning, floorplanning, placement, Steiner routing, and multi-
net routing. Each chapter starts with the definition of the problem to be solved,
followed by sample problems and the solutions of some of the well-known

xxxii PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

works. Each section contains a brief introduction and an overview of each work
in addition to its sample problems. Some additional problems are provided at
the end of each chapter, mostly slight variations of the original sample prob-
lems. Each chapter is then concluded with a section that presents some of the
well-known follow-up works published in the literature. This book contains
a huge amount of figures and tables to help understand the algorithms in an
intuitive and organized fashion. A major effort was made to provide a sample
problem that (a) is not overwhelmingly difficult or trivial, (b) reveals the crux
of algorithm, and (c) contains enough explanation and illustration that are easy
to follow.

To the Teachers
This book is designed for a one semester-long introductory course on physical
design. This book can be used as a supplement to other textbooks. I also found
that this book together with the original research papers were equally effective.
The additional practice problems at the end of each chapter can be assigned as
homework. It would be interesting and educational to provide programming
projects that involve implementing any of the 25 algorithms presented in this
book.

A website "http://users.ece.gatech.edu/limsk/book" is provided
to offer the following resources:

1. Source files of all figures used in the book (in EPS, PNG, and JPG formats)

2. Source files of all the LP (linear programming) and QP (quadratic program-
ming) formulations used in the book

3. Presentation slides for all sample problems in the book (in PPT format)

4. Answers to the additional practice problems (in PDF format)

5. Electronic copies of the original research papers (in PDF format)

6. Bug report and errata

Some of these items are freely available on the web, but please contact me
at "limsk@ece.gatech.edu" for items #3 and #4. My future plan (or hope
I should say) is to provide source codes and/or binaries of all of the algo-
rithms presented in this book together with circuits to experiment with. This is
inspired by the widely-known GSRC Bookshelf that already provides similar
resources for state-of-the-art academic physical design tools.

To the Students
Physical design is an exciting and highly rewarding area, and students with
motivation and skills are always in huge demand. My goal is to see you realize

Preface xxxiii

that the learning curve is not so steep after all. Thus, a huge effort was poured
in to make this book easy and intuitive to follow. I tried to reduce the amount
mathematical notations as much as possible and use plain explanation instead.
But, in some cases, reading the original paper first before you read the book (or
the other way around) would still be helpful. The best way to learn algorithms
to me was to work out a small example by hand. Many students have shared the
same experience with me. You do not learn calculus just by reading the book,
but by solving the problems in the book by yourself. The same rule applies
here for physical design algorithms.

Another effective way to master the concept is in fact to implement the
algorithms using C or C++. Many people that I know in the physical design
community, including myself, started with an implementation of an existing
algorithm, which was then later developed into research projects.

Errors and Omissions
Despite our best attempt, there are many well-known works that are not included
in this first edition. In addition, other topics in physical design such as clock
and power routing, physical design for FPGA and MCM, layout and intercon-
nect optimization such as buffering and sizing, etc, are missing as well. Please
allow me to say that I have saved these items for the next edition!

Again, despite our effort, this book may still contain errors. We will be truly
grateful if you could help us correct those mistakes. Please send any reports of
bugs, misprints, and other errata to me at "limsk@ece.gatech.edu". Your
suggestion on the paper and topic selection as well as any other aspect of this
book will be greatly appreciated. In the meantime, please visit our website for
errata: "http://users.ece.gatech.edu/limsk/book"

Atlanta, May 2008
Sung Kyu Lim

Acknowledgments

My first thanks go to the foreword writers: Prof. Jason Cong at the Univer-
sity of California at Los Angeles, and Prof. Martin D. F. Wong at the University
of Illinois at Urbana-Champaign. I also thank Prof. Andrew B. Kahng at the
University of California at San Diego for his helpful comments on various parts
of this book. They are undoubtedly world leaders of research, education, and
commercialization in the field of physical design automation. Several sections
of this book are dedicated to their influential works.

I am thankful for the current members of Georgia Tech Computer-Aided
Design (GTCAD) laboratory, who spent days and nights thoroughly verify-
ing the answers in this book, thanks to their careless advisor: Faik Baskaya,
Michael Healy, Dae Hyun Kim, Young Joon Lee, Mohit Pathak, Ye Tao, and
Xin Zhao. Without their help, the errata would have been much lengthier than
it is now.

Thanks are due to the 21 students who took my graduate course “ECE6133:
Physical Design Automation of VLSI Systems” in spring 2008. They were
forced to participate in the alpha/beta testing of this book and had to suffer
from many mistakes in the earlier version. They also had to solve most of the
additional practice problems at the end of each chapter as their homework. I
am sure many future students will benefit from their sacrifice.

My personal thanks go to Mark de Jongh at Springer. He was the first one to
see the potential of this book and went an extra mile to convince his colleagues
at Springer. He remained supportive in the midst of my numerous requests for
deadline extensions. I thank Cindy Zitter at Springer for her patience with my
endless questions. Everyone at the production team deserves my thanks for
their hard work.

My sincere thanks go to my two daughters Mina and Yuna, and my wife
Jeanie. My daughters were too young to understand (4 and 2 years old) why

xxxvi PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

their daddy never had time on weekends and weekdays. I am not sure if they
will choose their career (or take a course) in physical design (I will try), but
if they do, I am curious to hear what they have to say about this book. I am
very fortunate to have a wife who designed such a professional cover for this
book. I sincerely believe that she deserves much more than what I can express
with my words. Last, but not least, this book would not even exist without our
parents.

Atlanta, May 2008
Sung Kyu Lim

Chapter 1

CLUSTERING

Given a gate-level circuit, the goal of circuit clustering is to group gates into
clusters and obtain the network of the clusters. The size of the cluster-level
network in terms of the number of clusters and the number of connections is
smaller than that of the original circuit. A typical objective is to minimize the
number of inter-cluster connections (= maximize the number of intra-cluster
connections), the maximum number of inter-cluster connections on any path,
etc. Typical constraints include the maximum cluster size, the maximum num-
ber of external connections for a cluster, etc. The number of clusters to be
obtained is not specified, and the area balance among the clusters is usually
not required. Circuit clustering is usually performed as a pre-process of cir-
cuit partitioning and placement to reduce the complexity of the problem. This
chapter presents sample problems related to the following works:

Rajaraman and Wong algorithm [Rajaraman and Wong, 1995]

FlowMap algorithm [Cong and Ding, 1992]

Multi-level Coarsening algorithm [Karypis et al., 1997]

The first two are delay-oriented algorithms, where the longest path delay in the
clustered-level circuit is minimized under a certain node/edge delay model.
The last is a cutsize-oriented algorithm, where the number of inter-cluster
connections is minimized.

S.K. Lim, Practical Problems in VLSI Physical Design Automation

c©Springer Science+Business Media B.V. 2008

2 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

1. Rajaraman and Wong Algorithm
Given a directed acyclic graph (DAG) that represents a gate-level circuit,

Rajaraman and Wong presented the first algorithm [Rajaraman and Wong,
1995] that produces a delay-optimal clustering solution under the “general
delay model”. In this model each node has a unique delay, the inter-cluster edge
has a constant delay, and the intra-cluster edge does not incur any delay. The
size of each cluster is bounded by another constant. The maximum delay from
any PI (primary input) to PO (primary output) in the clustered network is min-
imized. Some nodes in the original DAG may be duplicated in the clustering
solution.

Quick Overview
The algorithm consists of two phases, namely, labeling and clustering phase.

During the labeling phase, we compute the labels for each node in topological
order. This label denotes the longest path delay from any PI to each node,
where the path delay includes both the node and the inter-cluster edge delay.
During the labeling process, the clustering information is also collected, where
we compute which subset of nodes is clustered together for each node. In case
a node is included in multiple clusters, we duplicate this node. During the
clustering phase, the actual grouping and duplication occur while visiting the
nodes in the opposite topological order.

We first compute a n × n matrix Δ that contains all-pair maximum delay
values. Each entry at row x and column v, denoted by Δ(x, v), is the longest
path delay from the output of x to the output of v in the DAG using node delay
values only (= ignoring all interconnect delays). Next, we initialize the label
of all PI nodes to their delay values and all other nodes to zero. We then visit
non-PIs in a topological order to compute their labels. Given a node v, we do
the following to compute l(v), its label:

1. We compute the sub-graph rooted at v, denoted Gv, that includes all the
predecessors of v.

2. We compute lv(x) for each node x ∈ Gv\{v}, where lv(x) = l(x) +
Δ(x, v). l(x) denotes the current label for x, and Δ(x, v) is an entry of the
Δ matrix mentioned above.

3. We sort all nodes in Gv\{v} in decreasing order of their lv-values and put
them into a set S.

4. We remove a node from S one-by-one in the sorted order and add it to the
cluster for v, denoted cluster(v), until the size constraint is violate.

5. We compute two values l1 and l2. If cluster(v) contains any PI nodes, the
maximum lv value among these PI nodes becomes l1. If S is not empty after

Clustering 3

filling up cluster(v), the maximum lv + D among the nodes remaining in
S becomes l2, where D is the inter-cluster delay.

6. The new label for v is the maximum between l1 and l2.

During the clustering phase, we first put all PO nodes in a set L. We then
remove a node from L and form its cluster. Given a node v, we form a cluster
by grouping all nodes in cluster(v), which was computed during the labeling
phase. We then compute input(v), the set of input nodes of cluster(v). Next,
we remove a node x from input(v) one-by-one and add it to L if we have
not formed the cluster for x yet. We repeat the entire process until L becomes
empty.

Practice Problem
Consider the directed acyclic graph in Figure 1.1. Assume that the delay of

the nodes is 1, and the inter-cluster delay is 3. The clustering size limit is set to
4.

1. Compute Δ(x, y), the maximum delay matrix.

Recall that each delay value is computed from the output of the source node
to the output of the destination node. See Figure 1.2.

2. Obtain a topological order T of the non-PI nodes.

T = [d, e, f, g, h, i, j, k, l]

3. Compute the label and clustering information for node d.

a b

d
c

e

hg

j

f

i

k l

Figure 1.1. A directed acyclic graph, where PI = {a, b, c}, and PO = {k, l}.

4 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

a b c d e f g h i j k l

a 0 0 0 1 0 1 0 0 2 0 3 0
b 0 0 0 1 1 0 2 0 3 3 4 4
c 0 0 0 0 1 0 2 1 3 3 4 4
d 0 0 0 0 0 0 0 0 1 0 2 0
e 0 0 0 0 0 0 1 0 2 2 3 3
f 0 0 0 0 0 0 0 0 1 0 2 0
g 0 0 0 0 0 0 0 0 1 1 2 2
h 0 0 0 0 0 0 0 0 0 1 2 2
i 0 0 0 0 0 0 0 0 0 0 1 0
j 0 0 0 0 0 0 0 0 0 0 1 1
k 0 0 0 0 0 0 0 0 0 0 0 0
l 0 0 0 0 0 0 0 0 0 0 0 0

Figure 1.2. Maximum delay matrix of the DAG in Figure 1.1.

First, Gd = {a, b, d}. By definition l(a) = l(b) = 1. Thus,

ld(a) = l(a) + Δ(a, d) = 1 + 1 = 2
ld(b) = l(b) + Δ(b, d) = 1 + 1 = 2

Then we have S = {a, b} (recall that S contains Gd\{d} with their ld
values sorted in a decreasing order). Since both a and b can be clustered
together with d while not violating the size constraint of 4, we form

cluster(d) = {a, b, d}
Since both a and b are PI nodes, we see that

l1 = max{ld(a), ld(b)} = 2

Since S is empty after clustering, l2 remains zero. Thus,

l(d) = max{l1, l2} = 2

4. Compute the label and clustering information for the remaining nodes.

We visit the nodes in topological order T :

(a) Node e: Ge = {b, c, e}. l(b) = l(c) = 1. Thus,

le(b) = l(b) + Δ(b, e) = 1 + 1 = 2
le(c) = l(c) + Δ(c, e) = 1 + 1 = 2

We see that S = {b, c}, and we form cluster(e) = {e, b, c}. Since b
and c are PI nodes, l1 = max{le(b), le(c)} = 2. Since S is empty after
clustering, l2 remains zero. Thus, l(e) = 2.

Clustering 5

(b) Node f : Gf = {a, f}, and l(a) = 1. Thus,

lf (a) = l(a) + Δ(a, f) = 1 + 1 = 2

S = {a}, and cluster(f) = {a, f}. Since a is a PI node and S is
empty, l1 = max{lf (a)} = 2 = l(f).

(c) Node g: Gg = {b, c, e, g}. Thus,

lg(b) = l(b) + Δ(b, g) = 1 + 2 = 3
lg(c) = l(c) + Δ(c, g) = 1 + 2 = 3
lg(e) = l(e) + Δ(e, g) = 2 + 1 = 3

S = {b, c, e} and cluster(g) = {b, c, e, g}. Since b and c are PI nodes,
l1 = lg(b) = lg(c) = 3. Since S is empty after clustering, l(g) = l1 =
3.

(d) Node h: Gh = {c, h}, and l(c) = 1. Thus,

lh(c) = l(c) + Δ(c, h) = 1 + 1 = 2

S = {c}, and cluster(h) = {c, h}. Since c is a PI node and S is empty,
l1 = max{lh(c)} = 2 = l(h).

(e) Node i: Gi = {a, b, c, d, e, f, g, i} (see Figure 1.3). Thus,

li(a) = l(a) + Δ(a, i) = 1 + 2 = 3
li(b) = l(b) + Δ(b, i) = 1 + 3 = 4
li(c) = l(c) + Δ(c, i) = 1 + 3 = 4
li(d) = l(d) + Δ(d, i) = 2 + 1 = 3
li(e) = l(e) + Δ(e, i) = 2 + 2 = 4
li(f) = l(f) + Δ(f, i) = 2 + 1 = 3
li(g) = l(g) + Δ(g, i) = 3 + 1 = 4

S = {g, e, c, b, a, d, f}, and we form cluster(i) = {i, g, e, c}.1 Note
that c is PI, so l1 = li(c) = 4. Since S = {b, a, d, f} �= ∅ after
clustering, we have l2 = li(m(S)) + D = li(b) + D = 4 + 3 = 7
(recall that m(S) is the node in S with the maximum value of li value).
Thus, l(i) = max{l1, l2} = 7.

1cluster(i) = {i, g, e, b} is another possible solution.

6 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

li(b) = 4

cluster(i)

a b

d
c

e

gf

i

l(i) = 7

D=3

Figure 1.3. The sub-tree rooted at i (= Gi) and cluster(i). The timing critical path, shown in
dotted path, contains four nodes and a inter-cluster interconnect (D = 3). Thus, the delay is 7,
which agrees with l(i) = 7.

(f) Node j: Gj = {b, c, e, h, g, j}. Thus,

lj(b) = l(b) + Δ(b, j) = 1 + 3 = 4
lj(c) = l(c) + Δ(c, j) = 1 + 3 = 4
lj(e) = l(e) + Δ(e, j) = 2 + 2 = 4
lj(h) = l(h) + Δ(h, j) = 2 + 1 = 3
lj(g) = l(g) + Δ(g, j) = 3 + 1 = 4

S = {g, b, c, e, h}, and we form cluster(j) = {b, e, g, j}.2 b is PI,
so l1 = lj(b) = 4. Since S = {c, h} �= ∅ after clustering, we have
l2 = lj(m(S)) + D = lj(c) + D = 4 + 3 = 7. Thus, l(j) = 7.

(g) Node k: Gk = {a, b, c, d, e, f, g, h, i, j, k}. Thus,

lk(a) = l(a) + Δ(a, k) = 1 + 3 = 4
lk(b) = l(b) + Δ(b, k) = 1 + 4 = 5
lk(c) = l(c) + Δ(c, k) = 1 + 4 = 5
lk(d) = l(d) + Δ(d, k) = 2 + 2 = 4
lk(e) = l(e) + Δ(e, k) = 2 + 3 = 5
lk(f) = l(f) + Δ(f, k) = 2 + 2 = 4
lk(g) = l(g) + Δ(g, k) = 3 + 2 = 5
lk(h) = l(h) + Δ(h, k) = 2 + 2 = 4
lk(i) = l(i) + Δ(i, k) = 7 + 1 = 8
lk(j) = l(j) + Δ(j, k) = 7 + 1 = 8

2cluster(j) = {c, e, g, j} is another possible solution.

Clustering 7

S = {i, j, g, b, c, e, a, d, f, h}, and we form cluster(k) = {g, i, j, k}.
There is no PI in cluster(k), so l1 = 0. Since S = {b, c, e, a, d, f, h} �=
∅ after clustering, l2 = lk(m(S))+D = lk(b)+D = 5+3 = 8. Thus,
l(k) = 8.

(h) Node l: Gl = {b, c, e, h, g, j, l}. Thus,

ll(b) = l(b) + Δ(b, l) = 1 + 4 = 5
ll(c) = l(c) + Δ(c, l) = 1 + 4 = 5
ll(e) = l(e) + Δ(e, l) = 2 + 3 = 5
ll(h) = l(h) + Δ(h, l) = 2 + 2 = 4
ll(g) = l(g) + Δ(g, l) = 3 + 2 = 5
ll(j) = l(j) + Δ(j, l) = 7 + 1 = 8

S = {j, g, b, c, e, h}, and we form cluster(l) = {e, g, j, l}. There is no
PI in cluster(l), so l1 = 0. Since S = {b, c, h} �= ∅ after clustering,
we have l2 = ll(m(S)) + D = ll(b) + D = 5 + 3 = 8. Thus, l(l) = 8.

Table 1.1 summarizes the labeling and clustering results.

5. Generate the clusters and draw the clustered-level graph.

We initially set L = {k, l} and S = ∅.3 We use a short-hand notation cl(v)
to denote cluster(v).

Table 1.1. Summary of the labeling and clustering process of the Rajaraman and Wong
algorithm.

Node Label Clustering
a 1 {a}
b 1 {b}
c 1 {c}
d 2 {a, b, d}
e 2 {b, c, e}
f 2 {a, f}
g 3 {b, c, e, g}
h 2 {c, h}
i 7 {c, e, g, i}
j 7 {b, e, g, j}
k 8 {g, i, j, k}
l 8 {e, g, j, l}

3Note that this S is different from the S used during the labeling phase. Despite the confusion it may cause,
we try use the same notation as the one that is used in the original paper [Rajaraman and Wong, 1995].

8 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

a b

d
c

e

hg

j

f

i

k l

cluster(k)

Figure 1.4. Illustration of cluster(k) and its input nodes {f, d, e, h} shown in gray.

(a) Remove k from L, and add cl(k) to S = {cl(k)}. According to
Table 1.1, we see that cl(k) = {g, i, j, k}. Then, I[cl(k)] = {f, d, e, h}
as illustrated in Figure 1.4. Since S does not contain clusters rooted at
f , d, e, and h, we have L = {l} ∪ {f, d, e, h} = {l, f, d, e, h}.

(b) Remove l from L: S = {cl(k), cl(l)}. Then, I[cl(l)] = {b, c, h}. We
have L = {f, d, e, h} ∪ {b, c, h} = {f, d, e, h, b, c}.

(c) Remove f from L: S = {cl(k), cl(l), cl(f)}. Since I[cl(f)] = ∅, L =
{d, e, h, b, c}.

(d) Remove d from L: S = {cl(k), cl(l), cl(f), cl(d)}. Since I[cl(d)] = ∅,
L = {e, h, b, c}.

(e) Remove e from L: S = {cl(k), cl(l), cl(f), cl(d), cl(e)}. Since
I[cl(e)] = ∅, L = {h, b, c}.

(f) Remove h from L: S = {cl(k), cl(l), cl(f), cl(d), cl(e), cl(h)}. Since
I[cl(h)] = ∅, L = {b, c}.

(g) Remove b from L: S = {cl(k), cl(l), cl(f), cl(d), cl(e), cl(h), cl(b)}.
Since I[cl(b)] = ∅, L = {c}.

(h) Remove c from L: S = {cl(k), cl(l), cl(f), cl(d), cl(e), cl(h), cl(b),
cl(c)}. Since I[cl(c)] = ∅, L = ∅.

From the final S we see that 8 clusters are generated. Table 1.2 shows the
list of these clusters. Figure 1.5 shows the clustered-level graph. Note that
eight nodes are duplicated, where b and c are duplicated twice.

6. What is the maximum delay in the clustered graph? Give an example of the
longest path.

Clustering 9

Table 1.2. List of clusters generated by the Rajaraman and Wong algorithm.

Root Elements
k {g, i, j, k}
l {e, g, j, l}
f {a, f}
d {a, b, d}
e {b, c, e}
h {c, h}
b {b}
c {c}

g

ji

k

e

g

j

l

a

f

a b

d

b

c

e

c

h

b

c

cluster(k) cluster(l)

cluster(h)
cluster(f)

cluster(d)
cluster(e)cluster(b)

cluster(c)

Figure 1.5. Clustered-level graph.

According to Table 1.1, the maximum label is 8, which corresponds to the
maximum delay. The path c − e − g − i − k shown in Figure 1.5 has the
delay of 8. The path c − e − g − j − l also has the delay of 8. Note that
there exist several other paths with the delay of 8.

10 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

2. FlowMap Algorithm
Cong and Ding presented the first algorithm named FlowMap [Cong and

Ding, 1992] that produces a delay-optimal clustering solution under the “unit
delay model”. In this model the inter-cluster edge has a unit delay while the
nodes and intra-cluster edges do not incur any delay. The difference between
the clustering problem that Cong and Ding solved compared with Rajaraman
and Wong [Rajaraman and Wong, 1995] is that the number of external connec-
tions, not the area, for each cluster is bounded by a constant. This so called “pin
constraint” is applicable to the K-input look-up table (LUT) mapping problems
for field-programmable gate array (FPGA) designs. The maximum delay from
any primary input (PI) to primary output (PO) in the clustered network is mini-
mized in the solution. Some nodes in the original directed acyclic graph (DAG)
may be duplicated in the clustering solution.

Quick Overview
FlowMap algorithm consists of two phases, namely, labeling and mapping

phase. During the labeling phase, two values are computed for each node v in
topological order: clustering Xv and label l(v). Xv denotes the set of nodes to
be clustered together with v, and l(v) denotes the longest path delay measured
from the PI nodes to v, where only the inter-cluster edges incur a unit delay.
During the mapping phase, the actual grouping and duplication occur while
visiting the nodes in the reverse topological order.

During the labeling phase, we first initialize the label for all PI nodes to zero.
We then visit non-PIs in topological order. Given a node t, we do the following
to compute its new label, l(t): (it is assumed that the readers are familiar with
the network flow concept):

1. We compute the sub-graph rooted at t, denoted Nt, that includes all of the
predecessors of t. We then add a source node s to Nt and connect it to all
PIs in Nt.

2. We compute p, which is the maximum label among all fan-in nodes of t.

3. We obtain N ′
t , where all nodes with their labels equal to p are collapsed

into t.

4. We obtain a flow-network N ′′
t , where each node x in N ′

t except s and t is
split into two nodes (x, x′) and connected via a “bridging edge” e(x, x′).
We assign the capacity of 1 to all bridging edges and ∞ to all non-bridging
edges in N ′′

t .

5. We compute a cut C(X ′′,X ′′) that separates s and t in N ′′
t with the cutsize

not larger than K, the pin constraint. This is done by finding augmenting
paths from s to t (= if N ′′

t contains more than K augmenting paths, we

Clustering 11

conclude that the s-t mincut has a cutsize larger than K .) If multiple fea-
sible cuts are found, we choose the one with the “minimum height”, where
the height of a cut C(X,X) is defined to be the maximum label among the
nodes in X, the source-side partition.

6. If C (= min-height K-feasible cut) is found, we first include all nodes in
X

′′
(= sink-side partition) into Xt (= cluster for t). If a node x is split into

(x, x′) during the Nt to N ′
t transformation in step 4, and e(x, x′) is cut in

C , we remove x′ from X t (= in this case x becomes an input node of X t).
Lastly, l(t) = p.

7. If C is not found, Xt contains t only, and l(t) = p + 1.

During the mapping phase, we first put all PO nodes in a set L. We then
remove a node from L and form its cluster as follows: given a node v, we form
a cluster, named v′, by grouping all non-PI nodes in Xv, which was computed
during the labeling phase. We then compute input(v′), the set of input nodes
of v′, and include them in L. A node x is an input node of v′ if e(x, y) exists
in the original DAG and y ∈ v′. We repeat the entire process until L becomes
empty.

Practice Problem
Consider the 2-bounded Boolean network (= all gates have up to 2 inputs)

and its directed acyclic graph representation in Figure 1.6. Assume that the pin
constraint K is set to 3.

1. Compute the label (= l(v)) and clustering (= Xv) for all nodes in the
graph.

First, all PIs are assigned zero for their label. We then visit the remaining
nodes in topological order T = [a, b, c, d, e, f, g, h, i, j, k].

(a) Node a: We first build Na as shown in Figure 1.7(a). We see that p = 0.
This helps us build N ′

a and N ′′
a as shown in Figure 1.7(b) and Figure

1.7(c). Note that it is not possible to find a cut in N ′′
a with a cutsize

smaller or equal to K = 3. Thus, Xa = {a} and l(a) = p + 1 = 1.

(b) Node b and c: This is similar to the case for node a, so Xb = {b},
l(b) = 1, Xc = {c}, and l(c) = 1.

(c) Node d: Figure 1.8 shows Nd, N ′
d, and N ′′

d under p = 1. There is a
possible cut in N ′′

d as shown on Figure 1.8(c), where the maximum
flow value and the cutsize is 3. The height of this cut is zero because
the label for all nodes in the source-side partition is zero. Nodes a and d
are partitioned to the sink-side. Thus, Xd = {a, d}, and l(d) = p = 1.

12 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

d

a b c

e f

g

i
h

j k

cba

d e f

h
i

g

j k

(a) (b)

Figure 1.6. (a) 2-bounded Boolean network, (b) and its DAG. Note that we do not model the
POs explicitly but treat h, j, and k as POs.

a

0 0

p=0

s

a

s

a

s

(a) (b) (c)

Figure 1.7. Visiting node a. (a) Na, (b) N ′
a, and (c) N ′′

a . The numbers next to the nodes denote
their label.

(d) Node e: This is similar to node a, so Xe = {e}, and l(e) = 1.

(e) Node f : This is similar to node d, so Xf = {c, f}, and l(f) = 1.

(f) Node g: Figure 1.9 shows Ng, N ′
g, and N ′′

g . There is only one cut
possible in N ′′

g as shown on Figure 1.9(c). Thus, Xg = {c, g}, and
l(g) = p = 1.

(g) Node h: Figure 1.10 shows Nh, N ′
h, and N ′′

h . In this case, N ′
h, and N ′′

h

are identical to those for node d. Thus, Xh = {a, d, h}, and l(h) =
l(d) = 1.

Clustering 13

a

s

1

p=1d

0 0 0

(a)

d

s

(b)

d

s

(c)

0 0 0

Figure 1.8. Visiting node d. (a) Nd, (b) N ′
d, and (c) N ′′

d . Note that N ′′
d contains a K-feasible

cut with the height of 0 as shown in dotted line. Bridging edges are shown in dotted arrows.

(a) (b) (c)

c

g

s

0 0

1

p=1

g

s

g

s

0 0

Figure 1.9. Visiting node g. (a) Ng , (b) N ′
g , and (c) N ′′

g . N ′′
g contains a K-feasible cut with

height of 0 shown in dotted line.

(a)

s

1

p=1

a

d

h

000

1

h

s

(b)

h

s

(c)

0 0 0

Figure 1.10. Visiting node h. (a) Nh, (b) N ′
h, and (c) N ′′

h . N ′′
h contains a K-feasible cut with

height of 0 shown in dotted line.

14 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

(a)

p=1

(b)

(c)

1

cb

f

i

s

0
0 0 0 0

1

1
1

s

i

s

i

1 1 1 1

Figure 1.11. Visiting node i. (a) Ni, (b) N ′
i , and (c) N ′′

i . N ′′
i does not contain a K-feasible

cut.

(h) Node i: Figure 1.11 shows Ni, N ′
i , and N ′′

i . We see that p = 1. In
this case, N ′′

i does not contain a K-feasible cut. Thus, X i = {i}, and
l(i) = p + 1 = 2.

(i) Node j: Figure 1.12 shows Nj , N ′
j , and N ′′

j . p = 2 in this case. There

is only one K-feasible cut in N ′′
j , and its height is 1. Thus, Xj = {i, j},

and l(j) = p = 2.

(j) Node k: Figure 1.13 shows Nk, N ′
k, and N ′′

k . p = 2 in this case. There
is only one K-feasible cut in N ′′

k , and its height is 1. Thus, Xk = {i, k},
and l(k) = p = 2.

Table 1.3 summarizes the labeling and clustering results.

2. Generate the LUTs for each node and draw the LUT-level network.

We initially set L = {h, j, k}. The following steps are based on Table 1.3
and Figure 1.6(b).

(a) Remove h from L. Then, h′, the K-LUT implementation of h, contains
{a, d, h} according to Table 1.3. We note that input(h′) contains three
PI nodes as shown in Figure 1.14(a). Since we do not add PI nodes into
L, we have L = {j, k}.

Clustering 15

(a)

p=2

(b)

(c)

0
0 0 0 0

1 1
cb

e f

i

j

s

0

1 1

2

cb

e f

j

s

cb

e f

j

s

cb

1 1

fe

1 1

0 0 0 0 0 0

Figure 1.12. Visiting node j. (a) Nj , (b) N ′
j , and (c) N ′′

j . N ′′
j contains a K-feasible cut with

height of 1 shown in dotted line. Infinite capacities are not shown for simplicity.

(b) Remove j from L: j′ = {i, j} according to Table 1.3. We see that
input(j′) = {e, b, f} as shown in Figure 1.14(b). Thus, L = {k} ∪
{e, b, f} = {k, e, b, f}.

(c) Remove k from L: k′ = {i, k}, and input(k′) = {b, f, g} as shown in
Figure 1.14(c). Thus, L = {e, b, f} ∪ {b, f, g} = {e, b, f, g}.

(d) Remove e from L: e′ = {e}, and input(e′) contains two PI nodes.
L = {b, f, g}.

16 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

(a)

p=2

(b)

(c)

00 0 0 0

1 1

1
1

2

cb

f

i
g

k

s

cb

f

g
k

s

cb

f

g
k

s

cb

1 1

f

1

1g

00 0 0 0

Figure 1.13. Visiting node k. (a) Nk, (b) N ′
k, and (c) N ′′

k . N ′′
k contains a K-feasible cut with

height of 1 shown in dotted line. Infinite capacities are not shown for simplicity.

(e) Remove b from L: b′ = {b}, and input(b′) contains two PI nodes.
L = {f, g}.

(f) Remove f from L: f ′ = {c, f}, and input(f ′) contains three PI nodes.
L = {g}.

(g) Remove g from L: g′ = {c, g}, and input(g′) contains two PI nodes.
L = ∅.

Table 1.4 shows the 7 LUTs generated. Figure 1.15 shows the LUT-level
network. Nodes c and i are duplicated in the LUT network.

Clustering 17

Table 1.3. Summary of the labeling and clustering process of the FlowMap algorithm.

Node Label Clustering
a 1 {a}
b 1 {b}
c 1 {c}
d 1 {a, d}
e 1 {e}
f 1 {c, f}
g 1 {c, g}
h 1 {a, d, h}
i 2 {i}
j 2 {i, j}
k 2 {i, k}

a

d

h

(a)

b

e f

i

j

(b)

b

f

i
g

k

(c)

Figure 1.14. (a) Cluster rooted at h and its input nodes, (b) cluster rooted at j and its input
nodes, (c) cluster rooted at k and its input nodes.

Table 1.4. List of LUTs generated by FlowMap algorithm.

Root Elements

h {a, d, h}
j {i, j}
k {i, k}
e {e}
b {b}
f {c, f}
g {c, g}

18 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

d

a b c

e f

g

i
h

j k

LUT
adh

LUT
e

LUT
b

LUT
ij

LUT
ik

LUT
cg

LUT
cf

Figure 1.15. (a) Original network, (b) LUT-level network.

3. What is the maximum delay in the LUT-level network?

According to Table 1.3, the maximum label is 2, which corresponds to the
maximum delay value in the LUT-level network.

Clustering 19

3. Multi-Level Coarsening Algorithm
hMetis algorithm [Karypis et al., 1997] solves the balanced bipartitioning

problem, where the given circuit is divided into two roughly equal sized parti-
tions. The objective is to minimize the number of inter-partition interconnects.
hMetis consists of two phases, namely, clustering and partitioning. The basic
principle behind the clustering (or coarsening as called in the paper) phase of
hMetis is called “multi-level optimization” that requires multiple iterations of
clustering process. During the first iteration, the gates in the original circuit
are grouped to form level-1 clusters. At the end of this clustering process, we
derive the network of these level-1 clusters. Note that the size (= number of
nodes) of this network is smaller than that of the original circuit. Next, we
group level-1 clusters together to form level-2 clusters and obtain their net-
work. We repeat this process of “grouping clusters and reducing the size of
their network” until we obtain the desired number of levels, say K , in the
clustering hierarchy.

During the partitioning (or uncoarsening as called in the paper) phase of
hMetis, we first perform bipartitioning among the level-K clusters using an
existing partitioning algorithm such as FM [Fiduccia and Mattheyses, 1982].
After the partitioning solution reaches a local minima, these level-K clusters
are decomposed (or uncoarsened) to reveal the level-K-1 clusters contained
in them. We then further optimize the current partitioning solution using these
level-K-1 clusters. This “decomposition and refinement” process is repeated
until we obtain the partitioning of the gates in the original circuit. The cluster-
ing algorithms used in hMetis are shown to be effective in reducing the number
of inter-cluster interconnects at higher levels, which in turn helps improve the
partitioning solution quality.

Quick Overview
Given a hypergraph that models the gate-level circuit to be partitioned,

hMetis algorithm utilizes three algorithms to compute the multi-level cluster
hierarchy, namely, edge coarsening (EC), hyperedge coarsening (HEC), and
modified hyperedge coarsening (MHEC).

Edge coarsening (EC): The nodes in the hypergraph are first unmarked
and visited in a random order. Given an unmarked node v, we first col-
lect the “neighbors” of v, which is the set of nodes that are unmarked and
are included in the hyperedges that contain v. For each neighbor n of v, we
compute the weight of edge (v, n) by assigning a value 1/(|h| − 1), where
h denotes the hyperedge that contains both n and v. After examining all
neighbors of v, we select the neighbor with the maximum edge weight and
merge v and n together. We mark both n and v so that these nodes are not
clustered again later. This process completes when all nodes are visited.

20 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

Hyperedge coarsening (HEC): Initially, all nodes are unmarked. The hyper-
edges are then sorted in an increasing order of their sizes. In case the
hyperedges are weighted, we sort the hyperedges in a decreasing order of
their weights and break ties in favor of smaller size. Next, we visit the
hyperedges in the sorted order. Given a hyperedge, we examine if it con-
tains any node that is already marked. If not, we group all nodes in the
hyperedge to form a cluster. Otherwise, we skip to the next hyperedge.
After visiting all hyperedges, each node that is not part of any cluster
becomes a cluster of its own.

Modified hyperedge coarsening (MHEC): This algorithm first applies HEC
to the given hypergraph. After the hyperedges to be clustered have been
selected, we visit the hyperedges again in the sorted order. For each hyper-
edge that has not yet been clustered (because it contains marked nodes), all
the unmarked nodes in this hyperedge are clustered together. MHEC tends
to further reduce the hyperedge counts after clustering and balance the size
among the clusters.

Practice Problem
Consider the gate-level circuit shown in Figure 1.16. Assume that the weight

of all nets is 1.

1. Perform Edge Coarsening and derive the cluster-level netlist. Visit the gates
and break ties in alphabetical order. How many clusters were generated?
How many hyperedges are included in the cluster-level circuit?

(a) Visit a: Note that a is contained in n1 only. So, neighbor(a) = {c, e}.
The weight of (a, c) = 1/(|n1| − 1) = 0.5. The weight of (a, e) =
1/(|n1| − 1) = 0.5. Thus, we break the tie based on alphabetical order.
So, a merges with c. We form C1 = {a, c} and mark a and c.

(b) Visit b: Note that b is contained in n2 only. So, neighbor(b) = {c, d}.
Since c is already marked, b merges with d. We form C2 = {b, d} and
mark b and d.

f

a

b
c

d

e

g

h

n1

n2

n3

n4

n5

n6

a

f
d

e

b h

c
g

Figure 1.16. A gate-level circuit and its hypergraph representation.

Clustering 21

(c) Since c and d are marked, we skip them.

(d) Visit e: the unmarked neighbors of e are g and f . We see that w(e, g) =
1 and w(e, f) = 0.5. So, e merges with g. We form C3 = {e, g} and
mark e and g.

(e) Visit f : Node f is contained in n3, n4, and n6. So, neighbor(f) =
{c, d, e, g, h}. But, the only unmarked neighbor is h. So, f merges with
h. We form C4 = {f, h} and mark f and h.

(f) Since g and h are marked, we skip them.

Table 1.5 shows the summary of the clustering result, and Table 1.6 shows
how we obtain the cluster-level netlist. Note that (i) we removed duplicated
entries in the cluster-level network, and (ii) the net that contains single clus-
ter is deleted. Figure 1.17 shows the hypergraphs before and after EC. We
generated 4 clusters that are connected by five hyperedges.

Table 1.5. Edge coarsening result.

Cluster Nodes
C1 {a, c}
C2 {b, d}
C3 {e, g}
C4 {f, h}

Table 1.6. Netlist transformation based on EC result.

Net Gate-level Cluster-level Final
n1 {a, c, e} {C1, C1, C3} {C1, C3}
n2 {b, c, d} {C2, C1, C2} {C1, C2}
n3 {c, e, f} {C1, C3, C4} {C1, C3, C4}
n4 {d, f} {C2, C4} {C2, C4}
n5 {e, g} {C3, C3} ∅
n6 {f, g, h} {C4, C3, C4} {C3, C4}

C1

C3

C2

C4

(a) (b)

a

f
d

e

b h

c
g

Figure 1.17. (a) Original hypergraph with six hyperedges, (b) hypergraph after edge coarsen-
ing, which has five hyperedges.

22 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

2. Perform Hyperedge Coarsening and derive the cluster-level netlist. Break
ties in alphabetical order. How many clusters were generated? How many
hyperedges are included in the cluster-level circuit?

We first sort the hyperedges in an increasing order of their sizes: n4, n5, n1,
n2, n3, n6. We unmark all nodes initially.

(a) Visit n4 = {d, f}: since d and f are not marked yet, we form C1 =
{d, f} and mark d and f .

(b) Visit n5 = {e, g}: since e and g are not marked yet, we form C2 =
{e, g} and mark e and g.

(c) Visit n1 = {a, c, e}: since e is already marked, we skip n1.

(d) Visit n2 = {b, c, d}: since d is already marked, we skip n2.

(e) Visit n3 = {c, e, f}: since e and f are already marked, we skip n3.

(f) Visit n6 = {f, g, h}: since f and g are already marked, we skip n6.

At this point, each unmarked node becomes a cluster of its own: C3 = a,
C4 = b, C5 = c, and C6 = h. Table 1.7 shows the summary of the HEC
clustering result, and Table1.8 shows how we obtain the cluster-level netlist.
Figure 1.18 shows the hypergraphs before and after HEC. We generated 6
clusters that are connected by four hyperedges.

3. Perform Modified Hyperedge Coarsening and derive the cluster-level netlist.
Break ties in alphabetical order. How many clusters were generated? How
many hyperedges are included in the cluster-level circuit?

Table 1.7. Hyperedge coarsening result.

Cluster Nodes
C1 {d, f}
C2 {e, g}
C3 {a}
C4 {b}
C5 {c}
C6 {h}

Table 1.8. Netlist transformation based on HEC result.

Net Gate-level Cluster-level Final
n1 {a, c, e} {C3, C5, C2} {C3, C5, C2}
n2 {b, c, d} {C4, C5, C1} {C4, C5, C1}
n3 {c, e, f} {C5, C2, C1} {C5, C2, C1}
n4 {d, f} {C1, C1} ∅
n5 {e, g} {C2, C2} ∅
n6 {f, g, h} {C1, C2, C6} {C1, C2, C6}

Clustering 23

C1

C3

C2

C4

(a) (b)

a

f
d

e

b h

c
g C5 C6

Figure 1.18. (a) Original hypergraph, (b) hypergraph after hyperedge coarsening, which has
four hyperedges.

Table 1.9. Modified hyperedge coarsening result.

Cluster Nodes
C1 {d, f}
C2 {e, g}
C3 {a, c}
C4 {b}
C5 {h}

From the prior hyperedge coarsening, we note that we skipped n1, n2, n3,
and n6. So we visit these again during MHEC:

(a) Visit n1 = {a, c, e}: since e is already marked during HEC, we group
the remaining unmarked nodes a and c. We form C3 = {a, c} and mark
a and c.

(b) Visit n2 = {b, c, d}: since d is marked during HEC and c during MHEC
as above, we form C4 = {b} and mark b.

(c) Visit n3 = {c, e, f}: since all of the nodes are already marked, we skip
n3.

(d) Visit n6 = {f, g, h}: since f and g are already marked, we form C5 =
{h} and mark h.

Table 1.9 shows the summary of the MHEC clustering result, and Table 1.10
shows how we obtain the cluster-level netlist. Figure 1.19 shows the hyper-
graphs before and after MHEC. We generated 5 clusters that are connected
by four hyperedges.

24 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

Table 1.10. Netlist transformation based on MHEC result.

Net Gate-level Cluster-level Final
n1 {a, c, e} {C3, C3, C2} {C3, C2}
n2 {b, c, d} {C4, C3, C1} {C4, C3, C1}
n3 {c, e, f} {C3, C2, C1} {C3, C2, C1}
n4 {d, f} {C1, C1} ∅
n5 {e, g} {C2, C2} ∅
n6 {f, g, h} {C1, C2, C5} {C1, C2, C5}

(a) (b)

a

f
d

e

b h

c
g C1

C3

C2

C4

C5

Figure 1.19. (a) Original hypergraph, (b) hypergraph after modified hyperedge coarsening,
which has four hyperedges.

Clustering 25

4. More Practice Problems

1. Perform Rajaraman and Wong algorithm on the graph shown in Figure 1.1
under the following assumptions:

Inter-cluster delay is 5.

Cluster size limit is set to 4.

The delay of nodes {a, b, c, k, l} is 1. The delay of {d, f, h} is 3, {e, g}
is 2, and {i, j} is 4.

Draw the cluster-level graph. How many clusters are generated? How many
nodes are duplicated? What is the maximum delay in the clustered graph?

2. Perform Rajaraman and Wong algorithm on the following circuit:

Assume that the inter-cluster delay is 3, cluster size limit is 3, and all gates
have a unit delay.

3. Perform FlowMap algorithm to map the gate-level circuit shown in Figure
1.6 to 4-LUT, i.e., K = 4. Draw the LUT-level network. How many LUTs
are generated? How many nodes are duplicated? What is the maximum
delay in the LUT-level network?

4. Perform FlowMap algorithm to map the gate-level circuit shown in Figure
1.20 to 3-LUT. Draw the LUT-level network. How many LUTs are gener-
ated? How many nodes are duplicated? What is the maximum delay in the
LUT-level network?

5. Perform Hyperedge Coarsening on the hypergraph shown in Figure 1.16.
Assume that the weight of the nets is as follows: w(n1) = 5, w(n2) = 2,
w(n3) = 3, w(n4) = 3, w(n5) = 1, and w(n6) = 5.

6. Perform Edge Coarsening on the hypergraph shown in Figure 1.17(b). How
many clusters and hyperedges are included in the new clustered-level?

g

d

e

f

hb

c i

a
i1

i2

i3

z1

z2

Figure 1.20. A gate-level circuit.

26 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

7. Perform Edge Coarsening, Hyperedge Coarsening, and Modified Hyper-
edge Coarsening on the following netlist and obtain the cluster-level netlists:
n1 = {a, b, d, e}, n2 = {b, d, f}, n3 = {a, e, g}, n4 = {c, e, f, h},
n5 = {c, g}, n6 = {a, d, f, h}. Assume that the weight of all nets is 1. For
EC, visit the gates and break ties in alphabetical order. For HEC/MHEC,
break ties randomly.

Clustering 27

5. Probing Further
Disclaimer: The list here is meant to be representative, not comprehensive.

A comprehensive survey on LUT-based FPGA mapping algorithms is provided
in [Cong and Ding, 1996].

Rajaraman and Wong Algorithm
The authors of [Yang and Wong, 1995] solve the min-cut replication prob-

lem by extending the Rajaraman and Wong algorithm [Rajaraman and Wong,
1995]. The problem is to determine min-cut replication sets for a k-way par-
titioning solution such that the cutsize of the partition is minimized after the
replication. They optimally solve the min-area min-cut replication problem on
directed graphs, which is to find min-cut replication sets with the minimum
sizes. More importantly, they give an optimal solution to the hypergraph min-
area min-cut replication problem using a much smaller flow network model.

Power minimization together with delay optimality was the goal in [Vaish-
nav and Pedram, 1995]. Their algorithm provides a way to implicitly enu-
merate alternate clustering solutions and selects a solution that has the same
optimal delay but less power dissipation. The delay optimal clustering options
are generated by the Rajaraman and Wong algorithm. For tree circuits, the
proposed algorithm produces delay and power optimal partitioning, whereas
for non-tree circuits it produces delay optimal clustering with significantly
improved power dissipation.

The authors of [Yang and Wong, 1997] considered both area and pin con-
straints for delay optimal clustering. Note that [Rajaraman and Wong, 1995]
considers area constraint only, and [Cong and Ding, 1992] considers pin con-
straint only. This work is used to divide the circuit into multiple FPGAs. They
developed a repeated network cut technique for finding a cluster that is bounded
by both area and pin constraints. Their algorithm achieves optimal delay under
either the area constraint only or the pin constraint only. Under both area and
pin constraints, this algorithm achieves optimal delay in most cases.

The authors of [Pan et al., 1998] perform delay optimal clustering for sequen-
tial circuits, whereas [Rajaraman and Wong, 1995] is targeting combinational
circuits. In addition, retiming is performed simultaneously to determine the
optimal locations of flip-flops (FF) for further delay reduction. This work mod-
els FFs as edge weights in its graph model of the netlist and performs retiming
together with clustering. The algorithm produces clustering solutions with the
optimal delay under the unit delay model, i.e., gates have delay, but intercon-
nects do not. For the general delay model, i.e., both gate and interconnects
have delay, it produces clustering solutions with a clock period provably close
to optimal.

28 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

The basic delay optimal clustering problem is extended to two-level hierar-
chy in [Cong and Romesis, 2001], where clustering is applied twice recur-
sively. This has an application to the latest field programmable gate array
(FPGA) hierarchical architecture. The goal is to minimize the longest path
delay in the two-level clustering solution. The authors showed that this prob-
lem, unlike the single-level clustering, is NP-hard. Their heuristic provides
area-delay trade-off by controlling the amount of node duplication.

FlowMap Algorithm
The authors of [Yang and Wong, 1994] proposed EdgeMap, a delay optimal

clustering algorithm under the “general delay model”, where the gates and
interconnect have delay. This is an extension of the “unit delay model” used in
FlowMap algorithm [Cong and Ding, 1992], where only the gates have delay.
EdgeMap is a non-trivial generalization of the FlowMap algorithm, where a
key problem to solve is to compute a K-feasible network cut such that the
circuit delay on every cut edge is upper-bounded by a specific value.

Area (= number of LUT clusters) minimization is another important objec-
tive for look-up table (LUT)-based FPGA mapping. The authors of FlowMap-
r algorithm [Cong and Ding, 1994] studied the area and depth trade-off in
LUT-based FPGA mapping. Starting from a depth-optimal mapping solution
obtained by the FlowMap algorithm, they perform a sequence of depth relax-
ation operations and area-minimizing mapping procedures to produce a set of
mapping solutions for a given design with smooth area and depth trade-off. A
key part of FlowMap-r is a polynomial time optimal algorithm for computing
an area-minimum mapping solution without node duplication for a K-bounded
general Boolean network.

CutMap [Cong and Hwang, 1995] is another significant improvement of
the FlowMap algorithm, which combines depth and area minimization dur-
ing the LUT-based FPGA mapping process. CutMap computes min-cost min-
height K-feasible cuts for critical nodes for depth minimization and computes
min-cost K-feasible cuts for non-critical nodes for area minimization. CutMap
guarantees depth-optimal mapping solutions in polynomial time as FlowMap
but uses considerably fewer LUTs.

The authors of [Kukimoto et al., 1998] presented the first linear-time algo-
rithm for the optimal delay technology mapping for standard library-based
design instead of LUT-based FPGA. They showed that the basic dynamic pro-
gramming approach in the FlowMap algorithm is not specific to FPGA map-
ping and can be easily adapted to library-based mapping. A key is to use the
actual pin-to-pin delays of gates specified in a given library instead of unit
delay as in the FlowMap algorithm.

Hermes [Teslenko and Dubrova, 2004] is a depth-optimal LUT based FPGA
mapping algorithm, where a new strategy is presented to find depth-optimal

Clustering 29

LUTs in a significantly shorter time compared to FlowMap. The quality of
results is improved by enabling LUT re-implementation and by introducing a
cost function which encourages input sharing among LUTs. In addition, Her-
mes performs flow computation directly on the original circuit graph instead
of using the subgraphs as in FlowMap.

DAOmap [Chen and Cong, 2004] performs area minimization under delay
constraints for LUT based FPGA mapping. The authors consider the potential
node duplications during the cut enumeration/generation procedure so that the
mapping costs encoded in the cuts drive the area-optimization objective more
effectively. After the timing constraint is determined, they relax the non-critical
paths by considering both local and global optimality information to minimize
mapping area. DAOmap significant outperforms CutMap [Cong and Hwang,
1995] in terms of area and runtime.

The authors of [Mishchenko et al., 2007] avoid exhaustive cut enumeration
for LUT mapping by computing only a small fixed number of so called “prior-
ity cuts” at each node. The criteria used to prioritize the cuts differ depending
on the mapping goals. In case of delay minimization, the cuts are prioritized
first by delay, then by the number of inputs, and finally by area. The authors
showed that such prioritization gives a depth-optimum mapping for 95% of all
benchmarks and LUT sizes, even if only one cut is stored at each node. The
memory and runtime of the proposed algorithm are linear in circuit size.

Multi-Level Coarsening Algorithm
ML algorithm [Alpert et al., 1998] is another popular multi-level parti-

tioning algorithm. Their multi-level clustering engine is similar to the Edge
Coarsening algorithm used in the hMetis algorithm [Karypis et al., 1997],
where a pair of nodes is matched and merged so that the area balance among
the clusters is promoted. The authors enhanced their basic multi-level partition-
ing refinement engine by integrating last-in-first-out (LIFO) bucket structure
[Hagen et al., 1997], and CLIP scheme [Dutt and Deng, 1996a] that basically
promotes the moving of cells in local proximity.

hMetis-Kway algorithm [Karypis and Kumar, 1999] is an extension of the
hMetis algorithm that solves the K-way partitioning problem. Given a circuit
netlist, the K-way partitioning problem divides the circuit into K partitions so
that the cutsize is minimized. The same set of coarsening algorithms used in the
hMetis algorithm is used for the hMetis-Kway algorithm. A major difference,
however, is that the cell move in their partitioning refinement engine is greedy,
where we choose a cell to move randomly instead of based on its gain. Once a
cell is chosen, the destination partition is determined by the gain.

Simultaneous cutsize and delay optimization is the goal of the multi-level
partitioning algorithm named HPM [Cong et al., 2000]. The first-level of the
cluster hierarchy is built first using the PRIME algorithm [Cong et al., 1999b]

30 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

for performance optimization. The rest of the levels in the cluster hierarchy are
built by the global connectivity-based algorithm named ESC [Cong and Lim,
2004] for cutsize minimization. This combination of delay and cutsize-oriented
clustering in the multi-level optimization framework proves to be effective in
simultaneous cutsize and delay optimization.

The authors of [Ababei and Bazargan, 2003] presented a statistical timing-
driven hMetis-based partitioning. They adopt the “statistical timing criticality”
concept to guide the partitioning process, which is done by extending the
hyperedge coarsening scheme of the hMetis partitioner. Using this method, the
most critical nets in the circuit are not cut so that the timing minimization is
achieved. The use of the hMetis partitioning algorithm makes their partitioning
algorithm run fast.

The authors of [Hwang and Pedram, 2005] presented a performance-oriented
multi-level partitioning algorithm. Given a directed acyclic graph (DAG) rep-
resentation of a sequential circuit, its bipartitioning solution (L,R), and its
preferred direction (either L-to-R or R-to-L), the goal is to minimize the num-
ber of cut edges not in the preferred direction. This is useful because the delay
of an IO path increases if it contains a “backward edge.” In case of multi-level
clustering, they use the Edge Coarsening scheme in hMetis and use the max-
imum depth or the maximum hop-count of any path containing the edge as a
tie-breaker.

Chapter 2

PARTITIONING

Given a gate-level circuit, the goal of circuit partitioning problem is to divide
the circuit into K roughly equal-sized partitions. The traditional objective is to
minimize the number of nets connecting gates in multiple partitions, which is
typically called the “cutsize” in the literature. Other objectives include crit-
ical path delay, total power consumption, etc. This chapter presents sample
problems related to the following works:

Kernighan and Lin algorithm [Kernighan and Lin, 1970]

Fiduccia and Mattheyses algorithm [Fiduccia and Mattheyses, 1982]

EIG algorithm [Hagen and Kahng, 1992]

FBB algorithm [Yang and Wong, 1996]

The first two algorithms are so called move-based, where the given partition-
ing solution is improved by moving the gates across the partitions. The third
algorithm minimizes so called the “ratio cut” metric based on eigenvector
computation. The last algorithm adopts the maximum flow model to perform
partitioning under cutsize minimization.

S.K. Lim, Practical Problems in VLSI Physical Design Automation

c©Springer Science+Business Media B.V. 2008

32 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

1. Kernighan and Lin Algorithm
Kernighan and Lin proposed an efficient heuristic algorithm [Kernighan and

Lin, 1970] that solves the NP-hard Balanced Bipartitioning Problem, where the
given gate-level circuit is divided into two equal-sized partitions. An impor-
tant concept proposed by the authors is called the “gain-based cell swap.” In
this approach, a randomly generated initial partitioning solution is iteratively
improved by swapping a pair of two gates (= cells) across the partitioning
boundary. This cell swap is guided by the “gain” that represents how much
the current cutsize will decrease after the swap. At every swap, the algorithm
chooses the pair with the maximum gain.

Another important concept proposed by Kernighan and Lin is called the
“pass”, where all pairs are swapped exactly once during a single pass. When
a pair is chosen to swap because it has the maximum gain, we swap it even
when the gain value is negative. At the end of the current pass, we accept the
first K swaps that lead to the minimum cutsize discovered during the entire
pass, which may contain negative gain swaps. This concept of pass allows a
limited degree of “uphill moves”, where we accept worse moves during the
exploration of the solution search in the hope of finding better local minima.

Kernighan and Lin motivated several successful follow-up algorithms such
as [Fiduccia and Mattheyses, 1982; Karypis et al., 1997]. Instead of undi-
rected graphs that Kernighan and Lin use to represent the circuits, the authors
of [Fiduccia and Mattheyses, 1982] use hypergraphs, which are more natu-
ral representation of the circuits. In addition, they proposed to perform cell
move instead of cell swap, where a cell is moved to the other partition instead
of a pair of cells being swapped. Lastly, an efficient data structure is used
to improve the time complexity significantly. More details of [Fiduccia and
Mattheyses, 1982] are presented in Chapter 2, Section 2. In [Karypis et al.,
1997], a multi-level bottom-up clustering is first performed, and an initial
bipartitioning solution is obtained among the top-level clusters. This initial
solution is refined by [Fiduccia and Mattheyses, 1982] in a “multi-level” fash-
ion. More details of [Karypis et al., 1997] are presented in Chapter 1, Section 3.

Quick Overview
Given a gate-level circuit, the first step is to obtain an edge-weighted undi-

rected graph G that represents the circuit. We typically use so called the k-
clique model, where a net that contains k gates forms a k-clique in G, and
each edge in the clique gets a weight of 1/(k − 1). In case an edge (x, y)
already exists from a prior net conversion, we just add the new weights instead
of adding a parallel edge. We apply the KL algorithm on this graph, so the cut-
size and gain are computed based on this graph, not the original circuit. Next,
we obtain an initial balanced bipartitioning solution (P1, P2) of G, which is

Partitioning 33

usually obtained randomly. For a cell x ∈ P1, we define the external cost of x
as follows:

Ex =
∑

i∈P2

c(x, i)

where c(x, i) denotes the weight of the edge e(x, i). This Ex denotes the sum
of the weight of edges that connect x and its neighbors in the other partition,
where the neighbors of x are defined to be the nodes that are connected with x
via an edge. The internal cost of x is defined similarly as follows:

Ix =
∑

i∈P1

c(x, i)

This Ix denotes the sum of the weight of edges that connect x and its neigh-
bors in the same partition. Finally, the gain of swapping x and y is defined as
follows:

gain(x, y) = (Ex − Ix) + (Ey − Iy) − 2c(x, y)

We first unlock all cells before we start the first pass. Once the pass begins,
we repeat the following at every swap until all cells are locked: (i) we compute
the gain of all unlocked pairs, (ii) swap the pair with the maximum gain and
lock the cells in the pair, and (iii) record the gain and the current cutsize. At
the end of the pass, we identify and accept the first K swaps that lead to the
minimum cutsize discovered during the entire pass. If the initial cutsize has
reduced during the current pass, we attempt another pass using the best solution
discovered from the current pass as the initial solution; otherwise we terminate
the algorithm. Since we swap the cells, the area is always balanced between
the two partitions. Note also that the entire Kernighan and Lin algorithm can
be repeated with another random initial solution.

Practice Problem
Consider the gate-level circuit shown in Figure 2.1(a). Figure 2.1(b) shows

an undirected graph model of this circuit.

1. Given an initial partition {abde, cfgh}, perform a single pass of KL algo-
rithm. Break ties in lexicographical order.

Figure 2.2(a) shows the initial partitioning. The initial cutsize is 5. Note
that the cutsize is the sum of the weights of the cut edges, not the count of
them. The gain values are computed based on the edge weights as well.

(a) Swap 1: we first compute the gain of all unlocked pairs as shown in
Table 2.1. Both pairs (d, c) and (e, c) have the maximum gain of 2, and
we choose (d, c) based on lexicographical order. Figure 2.2(b) shows
the resulting graph after swapping d and c.

34 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

f

a

b
c

d

e

g

h

a

b

c

d

e

f

g

h

(a) (b)

n1

n2

n3

n4

n5

n6

Figure 2.1. (a) Gate-level circuit, (b) its edge-weighted undirected graph representation. The
thin and the thick lines indicate the weight of 0.5 and 1, respectively.

d

c

a c

f

g

b

e

d

h

a

f

g

b

e h

(a) (b)

d

c

a

f

b

g

e h

(c)

Figure 2.2. (a) Initial partitioning (cutsize = 5), (b) after swap 1, (c) after swap 2. The thin
and the thick edges denote the weight of 0.5 and 1, respectively. The gray nodes are locked.

(b) Swap 2: we compute the gain of all unlocked pairs as shown in
Table 2.2. (b, g) is the maximum gain pair. Figure 2.2(c) shows the
resulting graph after the swap.

(c) Swap 3: we compute the gain of all unlocked pairs as shown in Table
2.3. (a, f) is the maximum gain pair (based on lexicographical order).
Figure 2.3(a) shows the resulting graph after the swap.

(d) Swap 4: the only remaining unlocked pair is (e, h), and its gain is

(0.5 − 2.5) + (1 − 0) − 2 · 0 = −1

Figure 2.3(b) shows the resulting graph after the swap.

2. Give the cutsize after each swap. What are the initial, the final, and the best
cutsizes discovered during the pass?

Table 2.4 shows the summary of the pass. The initial, the final, and the best
cutsizes are 5, 5, and 3, respectively. We found two solutions with cutsize
3, and Figure 2.4 shows the first minimum cut.

Partitioning 35

Table 2.1. Gain computation for the first swap. The maximum gain swap chosen (due to
lexicographic ordering) is shown in bold.

Pair Ex − Ix Ey − Iy c(x, y) Gain

(a, c) 0.5 − 0.5 2.5 − 0.5 0.5 1
(a, f) 0.5 − 0.5 1.5 − 1.5 0 0
(a, g) 0.5 − 0.5 1 − 1 0 0
(a, h) 0.5 − 0.5 0 − 1 0 −1

(b, c) 0.5 − 0.5 2.5 − 0.5 0.5 1
(b, f) 0.5 − 0.5 1.5 − 1.5 0 0
(b, g) 0.5 − 0.5 1 − 1 0 0
(b, h) 0.5 − 0.5 0 − 1 0 −1

(d, c) 1.5 − 0.5 2.5 − 0.5 0.5 2
(d, f) 1.5 − 0.5 1.5 − 1.5 1 −1
(d, g) 1.5 − 0.5 1 − 1 0 1
(d, h) 1.5 − 0.5 0 − 1 0 0

(e, c) 2.5 − 0.5 2.5 − 0.5 1 2
(e, f) 2.5 − 0.5 1.5 − 1.5 0.5 1
(e, g) 2.5 − 0.5 1 − 1 1 0
(e, h) 2.5 − 0.5 0 − 1 0 1

Table 2.2. Gain computation for the second swap. The maximum gain swap is shown in bold.

Pair Ex − Ix Ey − Iy c(x, y) Gain

(a, f) 0 − 1 1 − 2 0 −2
(A, g) 0 − 1 1 − 1 0 −1
(a, h) 0 − 1 0 − 1 0 −2

(b, f) 0.5 − 0.5 1 − 2 0 −1
(b, g) 0.5 − 0.5 1 − 1 0 0
(b, h) 0.5 − 0.5 0 − 1 0 −1

(e, f) 1.5 − 1.5 1 − 2 0.5 −2
(e, g) 1.5 − 1.5 1 − 1 1 −2
(e, h) 1.5 − 1.5 0 − 1 0 −1

Table 2.3. Gain computation for the third swap. The maximum gain swap is shown in bold.

Pair Ex − Ix Ey − Iy c(x, y) Gain

(a, f) 0 − 1 1.5 − 1.5 0 −1
(a, h) 0 − 1 0.5 − 0.5 0 −1

(e, f) 0.5 − 2.5 1.5 − 1.5 0.5 −3
(e, h) 0.5 − 2.5 0.5 − 0.5 0 −2

36 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

Figure 2.3. (a) After swap 3, (b) after swap 4. The thin and the thick lines denote the weight
of 0.5 and 1, respectively. The gray nodes denote locked cells.

Table 2.4. A single pass of Kernighan and Lin algorithm. The minimum cutsize solutions are
shown in bold.

i Pair gain(i)
∑

gain(i) Cutsize

0 – – – 5
1 (d, c) 2 2 3
2 (b, g) 0 2 3
3 (a, f) −1 1 4
4 (e, h) −1 0 5

Figure 2.4. A bipartitioning solution of the circuit shown in Figure 2.1(a) with cutsize 3.

Partitioning 37

2. Fiduccia and Mattheyses Algorithm
Fiduccia and Mattheyses (FM) proposed a widely-used heuristic algorithm

[Fiduccia and Mattheyses, 1982] for the Balanced Circuit Bipartitioning Prob-
lem. FM inherits several important concepts from Kernighan and Lin (KL)
algorithm [Kernighan and Lin, 1970] such as gain computation and pass-based
hill-climbing as explained in Chapter 2, Section 1. However, FM improves KL
in the following three significant ways. First, FM applies directly on hyper-
graphs, a natural way to represent circuits. KL applies on an edge-weighted
undirected graph instead. A study shows that it is not possible to assign weights
to the edges in an undirected graph G so that any cut in G correctly represents
the cutsize in the original circuit [Ihler et al., 1993]. On the other hand, the
cutsize computed in the hypergraph exactly matches with the cutsize in the
circuit.

Second, FM performs “cell moves” instead of “cell swaps” as in KL. At
every move, the cell with the maximum gain is chosen to move to the other
partition. Each cell move is constrained by the area balance requirement so that
a cell move is legal only when the area constraint after the move is not violated.
This cell move allows a significant time complexity improvement because we
do not need O(n2) all-pair swap gain computation as in KL. Instead, we just
need O(n) gain computation.

Third, FM utilizes a special data structure called “bucket” to enable O(1)
search for the maximum gain cell, and O(1) update of the gain values at each
move. Before a pass begins in FM, we compute the gain values of all cells.
Once the pass begins, we “update” the gain values of “affected cells” only
instead of “computing” the gain values of “all cells” from scratch. This in turn
means that the complexity of each cell move is O(1) instead of O(n2) as in KL.
Thus, the overall time complexity of FM is O(n) compared to O(n3) in KL.

Quick Overview
The algorithm starts with an initial balanced bipartitioning solution (P1, P2)

of the given hypergraph, which is usually obtained randomly. For a cell x ∈ P1,
we define FS(x) as the number of nets that have x as the only cell in P1.
TE(x) is defined as the number of nets that contain x and are entirely located
in P1, i.e., all cells in the net are partitioned in P1. Finally, the gain of moving
x from P1 to P2 is simply:

gain(x) = FS(x) − TE(x)

We perform the following three steps before the first pass begins: (i) unlock
all cells, (ii) compute the gain of all cells based on the initial partitioning, and
(iii) add the cells to the bucket structure. Once the pass begins, we repeat the
following four steps at every move until all cells are locked: (i) we choose the

38 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

cell with the maximum gain and is “legal”. A cell move is legal if moving it
to the other partition does not violate the area constraint, (ii) move the chosen
cell and lock it in the destination partition, (iii) update the gain values of the
neighbors of the moved cell and update their positions in the bucket, and (iv)
record the gain and the current cutsize. At the end of the pass, we identify and
accept the first K moves that lead to the minimum cutsize discovered during
the entire pass. If the initial cutsize has reduced during the current pass, we
attempt another pass using the best solution discovered from the current pass as
the initial solution; otherwise we terminate the algorithm. Note that the entire
FM algorithm can be repeated with another random initial solution.

Practice Problem
Consider the gate-level circuit shown in Figure 2.5(a).

1. Model the circuit with a non-weighted hypergraph.

See Figure 2.5(b).

2. Given an initial partition {acdg, befh}, calculate the initial gain of all cells
and draw the bucket structure.

Figure 2.6 shows the initial partitioning result. We compute the gain of the
cells in the left partition as follows:

(a) Cell a: a is contained in net n1 = {a, c, e}. But a is not the only cell
in n1 that is located in the left partition, so FS(a) = 0. In addition,
n1 is not entirely located in the left partition. So, TE(a) = 0. Thus,
gain(a) = FS(a) − TE(a) = 0.

(b) Cell c: c is contained in net n1 = {a, c, e}, n2 = {b, c, d}, and n3 =
{c, f, e}. n3 contains c as its only cell located in the left partition, so
FS(c) = 1. In addition, none of these three nets are located entirely in
the left partition. So, TE(c) = 0. Thus, gain(c) = 1.

(c) Cell d: d is contained in net n2 = {b, c, d} and n5 = {d, f}. n5

contains d as its only cell located in the left partition, so FS(d) =

f

a

b
c

d

e

g

h

(a) (b)

a

b

c

d

e

f

g

h

Figure 2.5. (a) Gate-level circuit, (b) hypergraph representation.

Partitioning 39

a

b

c

d

e

f
g

h

a c e

b c d

c f e

g f h

d f

g e

n1

n2

n3

n4

n5

n6

Figure 2.6. Netlist of the circuit in Figure 2.5 and its initial partitioning. Cutsize = 6.

1. In addition, none of these two nets are located entirely in the left
partition. So, TE(d) = 0. Thus, gain(d) = 1.

(d) Cell g: g is contained in net n6 = {g, e} and n4 = {g, f, h}. Both
n6 and n4 contain g as their only cell located in the left partition, so
FS(g) = 2. In addition, none of these two nets are located entirely in
the left partition. So, TE(g) = 0. Thus, gain(g) = 2.

We compute the gain of the cells in the right partition as follows:

(a) Cell b: g is contained in net n2 = {b, c, d}. n2 contains b as its only
cell located in the right partition, so FS(b) = 1. In addition, n2

is not entirely located in the right partition, so, TE(b) = 0. Thus,
gain(b) = 1.

(b) Cell e: e is contained in net n3 = {c, f, e}, n6 = {g, e}, and n1 =
{a, c, e}. Both n6 and n1 contain e as their only cell located in the
right partition, so FS(e) = 2. In addition, none of these three nets
are entirely located in the right partition, so, TE(e) = 0. Thus,
gain(e) = 2.

(c) Cell f : f is contained in net n3 = {c, f, e}, n5 = {d, f}, and n4 =
{g, f, h}. n5 contains f as its only cell located in the right partition, so
FS(f) = 1. In addition, none of these three nets are entirely located in
the right partition, so, TE(f) = 0. Thus, gain(f) = 1.

(d) Cell h: h is contained in net n4 = {g, f, h}. But, h is not the only cell
in n4 that is located in the right partition, so FS(h) = 0. In addition,
n4 is not entirely located in the right partition. So, TE(h) = 0. Thus,
gain(h) = 0.

From Figure 2.5(b) we see that the maximum net degree is Pmax =
deg(c) = deg(e) = deg(f) = 3, where deg(x) denotes the number of
hyperedges incident to x. Accordingly to [Fiduccia and Mattheyses, 1982],

40 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

3

2

1

0

-1

-2

-3

a

dc

g

3

2

1

0

-1

-2

-3

h

fb

e

LEFT RIGHT

Pmax

-Pmax

Figure 2.7. Bucket structure based on Figure 2.6.

a

b

c

e f
g

hd

3

2

1

0

-1

-2

-3

a

d

c

g

3

2

1

0

-1

-2

-3

h

f

b

Figure 2.8. After moving e. Cutsize = 4.

Pmax defines the range of the headers in the bucket structure. Figure 2.7
shows the bucket structure.

3. Perform a single pass of FM algorithm based on the area constraint [3, 5].
Ties should be broken in alphabetical order.

(a) Move 1: From Figure 2.6, we see that both cell g and e have the max-
imum gain and can be moved without violating the area constraint.
We move e based on alphabetical order. Figure 2.8 shows the result-
ing hypergraph. Next, we update the gain of the unlocked neighbors of
e, N(e) = {a, c, g, f}, as follows: gain(a) = FS(a) − TE(a) =
0 − 1 = −1, gain(c) = 0 − 1 = −1, gain(g) = 1 − 1 = 0,
gain(f) = 2 − 0 = 2. Figure 2.8 shows the updated bucket structure.

(b) Move 2: f has the maximum gain, but moving f will violate the area
constraint. So we move d. Figure 2.9 shows the resulting hypergraph.
Next, we update the gain of the unlocked neighbors of d, N(d) =
{b, c, f}, as follows: gain(b) = 0 − 0 = 0, gain(c) = 1 − 1 = 0,
gain(f) = 1 − 1 = 0. Figure 2.9 shows the updated bucket structure.

Partitioning 41

a

b

c
d

e f
g

h

3

2

1

0

-1

-2

-3

a

g

3

2

1

0

-1

-2

-3

h f bc

Figure 2.9. After moving d. Cutsize = 3.

a

b

c
d

e f
g

h

3

2

1

0

-1

-2

-3

a

g

3

2

1

0

-1

-2

-3

h f

c

Figure 2.10. After moving b. Cutsize = 3.

(c) Move 3: Among the maximum gain cells {g, c, h, f, b}, we choose b
based on alphabetical order. Figure 2.10 shows the resulting hyper-
graph. Next, we update the gain of the unlocked neighbors of b, N(b) =
{c} as follows: gain(c) = 0− 1 = −1. Figure 2.10 shows the updated
bucket structure.

(d) Move 4: Among the maximum gain cells {g, h, f}, we choose g based
on the area constraint. Figure 2.11 shows the resulting hypergraph.
Next, we update the gain of the unlocked neighbors of g, N(g) =
{f, h}, as follows: gain(f) = 1 − 2 = −1, gain(h) = 0 − 1 = −1.
Figure 2.11 shows the updated bucket structure.

(e) Move 5: We choose a based on alphabetical order. Figure 2.12 shows
the resulting hypergraph. Next, we update the gain of the unlocked
neighbors of a, N(a) = {c}, as follows: gain(c) = 0 − 0 = 0. Figure
2.12 shows the updated bucket structure.

(f) Move 6: We choose f based on the area constraint and alphabetical
order. Figure 2.13 shows the resulting hypergraph. Next, we update

42 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

a

b

c
d

e f

g

h

3

2

1

0

-1

-2

-3

a

3

2

1

0

-1

-2

-3

hfc

Figure 2.11. After moving g. Cutsize = 3.

a

b

c
d

e f

g

h

3

2

1

0

-1

-2

-3

3

2

1

0

-1

-2

-3

hf

c

Figure 2.12. After moving a. Cutsize = 4.

a

b

c
d

e f

g

h

3

2

1

0

-1

-2

-3

3

2

1

0

-1

-2

-3

h

c

Figure 2.13. After moving f . Cutsize = 5.

the gain of the unlocked neighbors of f , N(f) = {h, c}, as follows:
gain(h) = 0 − 0 = 0, gain(c) = 0 − 1 = −1. Figure 2.13 shows the
updated bucket structure.

(g) Move 7: We move h. Figure 2.14 shows the resulting hypergraph and
bucket structure. h has no unlocked neighbor.

(h) Move 8: We move c. Figure 2.15 shows the resulting hypergraph.

Partitioning 43

a

b

c
d

e f

gh

3

2

1

0

-1

-2

-3

3

2

1

0

-1

-2

-3

c

Figure 2.14. After moving h. Cutsize = 5.

a

b
d

e f

gh

c

Figure 2.15. After moving c. Cutsize = 6.

Table 2.5. A single pass of FM. The minimum cutsize solutions are shown in bold.

i Cell g(i)
∑

g(i) Cutsize
0 – – – 6
1 e 2 2 4
2 d 1 3 3
3 b 0 3 3
4 g 0 3 3
5 a –1 2 4
6 f –1 1 5
7 h 0 1 5
8 c –1 0 6

4. Give the cutsize after each move. What are the initial, final, and best cut-
sizes?

Table 2.5 shows the summary of the FM pass. The initial, final, and best
cutsizes are 6, 6, and 3, respectively. We found three solutions with cutsize
3 shown in Figures 2.9–2.11.

44 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

3. EIG Algorithm
Hagen and Kahng proposed a partitioning algorithm [Hagen and Kahng,

1992] named EIG that utilizes the second smallest eigenvalue and its eigen-
vector of a netlist matrix to optimize so called the “ratio cut” metric [Wei
and Cheng, 1989]. This ratio cut metric, defined as c(X,Y)/|X||Y |, where
c(X,Y) denotes the cutsize between the two partitions X and Y , captures not
only the cutsize minimization but also the area balancing that is important in
circuit partitioning. Given an undirected graph G and its so called Laplacian
matrix Q that basically shows the connectivity among the nodes in G, Hall
[Hall, 1970] showed that the eigenvector of the second smallest eigenvalue of
Q defines a one-dimensional placement of the nodes in G. In this placement
solution, the “squared length” of the edges in G is minimized under the con-
straint

∑
i x

2
i = 1, where xi denotes the location of node i. Hagen and Kahng

showed in [Hagen and Kahng, 1992] that the second smallest eigenvalue of
Q is a tight lower bound of the ratio cut metric. Based on this theoretical
result, they proposed a partitioning algorithm that utilizes this one-dimensional
placement to derive bipartitioning solutions with minimal ratio cut metric.

Quick Overview
Given a gate-level circuit H , we first derive its undirected graph representa-

tion G based on the standard k-clique model. In this model, a net with k gates
forms a k-clique, and each edge in the clique gets a weight of 1/(k − 1). The
remaining part of the algorithm proceeds as follows:

1. We build the n × n Laplacian matrix Q = D − A, where n is the number
of nodes in G. A is the adjacency matrix, where each entry aij denotes the
weight of edge e(i, j) in G. D is the degree matrix, where each entry dii is
the sum of the weights of all edges incident to node i in G.

2. We compute the second smallest eigenvalue and its eigenvector of Q using
Lanczos method.

3. We sort the nodes in G based on their values in the eigenvector and obtain
the node ordering Z = {v1, v2, · · · , vn}.

4. We use Z to derive and evaluate n − 1 partitioning solutions. More specif-
ically, we first obtain a bipartitioning solution ({v1}, {v2, · · · , vn}) and
compute its ratio cut metric.4 Next, we evaluate the ratio cut metric of
({v1, v2}, {v3, · · · , vn}) from H , etc. Lastly, we choose the partitioning
solution with the minimum ratio cut metric.

4Note that we can use H or G to compute cutsize. We use G in this section.

Partitioning 45

The authors presented another algorithm named EIG-IG. Instead of using G to
compute eigenvectors, they use so called “intersection graph” (IG) instead. In
IG, the nets in H become the nodes, and an edge (x, y) exists in IG if net x
and y contain the same node.5

Practice Problem
Consider the gate-level circuit in Figure 2.16.

1. Build the k-clique based edge-weighted undirected graph of the circuit.

See Figure 2.17.

2. Obtain the adjacency matrix A, degree matrix D, and Laplacian matrix Q.

A is shown in Figure 2.18. D is shown in Figure 2.19. Lastly, Q is shown
in Figure 2.20.

3. Find the second smallest eigenvalue and its eigenvector. Build the node
ordering Z .

a

b

c

f
d

e

g

h

i

j

Figure 2.16. A gate-level circuit.

a

b

h

d
e

f
g

i
j

c

1

1
0.75

0.83
1.33

1.08

0.33

0.58
0.58

Figure 2.17. Clique-based edge-weighted undirected graph representation of the circuit in Fig-
ure 2.16. The dotted edges have the weight of 0.5, and the solid edges with no label have the
weight of 0.25.

5See the related practice problem #5 on page 56.

46 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

a b c d e f g h i j

a 0 0 0 0.5 0 0.5 0 0 0 0
b 0 0 0 0.25 0.25 0 0.25 0.25 0 0
c 0 0 0 0 0.5 0 0 0.5 0 0
d 0.5 0.25 0 0 0.25 1.0 0.75 0.25 0 0
e 0 0.25 0.5 0.25 0 0 0.58 1.08 0 0.33
f 0.5 0 0 1.0 0 0 0.5 0 1.0 0
g 0 0.25 0 0.75 0.58 0.5 0 0.58 0.5 0.83
h 0 0.25 0.5 0.25 1.08 0 0.58 0 0 1.33
i 0 0 0 0 0 1.0 0.5 0 0 0.5
j 0 0 0 0 0.33 0 0.83 1.33 0.5 0

Figure 2.18. Adjacency matrix A.

a b c d e f g h i j

a 1.0 0 0 0 0 0 0 0 0 0
b 0 1.0 0 0 0 0 0 0 0 0
c 0 0 1.0 0 0 0 0 0 0 0
d 0 0 0 3.0 0 0 0 0 0 0
e 0 0 0 0 2.99 0 0 0 0 0
f 0 0 0 0 0 3.0 0 0 0 0
g 0 0 0 0 0 0 3.99 0 0 0
h 0 0 0 0 0 0 0 3.99 0 0
i 0 0 0 0 0 0 0 0 2.0 0
j 0 0 0 0 0 0 0 0 0 2.99

Figure 2.19. Degree matrix D.

a b c d e f g h i j

a 1.0 0 0 −0.5 0 −0.5 0 0 0 0
b 0 1.0 0 −0.25 −0.25 0 −0.25 −0.25 0 0
c 0 0 1.0 0 −0.5 0 0 −0.5 0 0
d −0.5 −0.25 0 3.0 −0.25 −1.0 −0.75 −0.25 0 0
e 0 −0.25 −0.5 −0.25 2.99 0 −0.58 −1.08 0 −0.33
f −0.5 0 0 −1.0 0 3.0 −0.5 0 −1.0 0
g 0 −0.25 0 −0.75 −0.58 −0.5 3.99 −0.58 −0.5 −0.83
h 0 −0.25 −0.5 −0.25 −1.08 0 −0.58 3.99 0 −1.33
i 0 0 0 0 0 −1.0 −0.5 0 2.0 −0.5
j 0 0 0 0 −0.33 0 −0.83 −1.33 −0.5 2.99

Figure 2.20. Laplacian matrix Q.

We use Matlab for the eigenvalue/eigenvector computation. The second
smallest eigenvalue is 0.6281, and its eigenvector is: [−0.6346, 0.1605,
0.5711, −0.1898, 0.2254, −0.2822, 0.0038, 0.1995, −0.1641, 0.1104]T .
We observe the following:

The squared sum of the values in the vector is 1 as shown by Hall [Hall,
1970].

Partitioning 47

1-1

a f d g be c

i 0 j h

Figure 2.21. One-dimensional placement from the eigenvector.

These values define a one-dimensional placement of the ten nodes
within the range of [−1, 1], where the sum of the squared length of
all edges is minimized. Figure 2.21 shows this placement.

These values define the following ordering among the nodes:

Z = {a, f, d, i, g, j, b, h, e, c}

4. Obtain the partitioning solution with the minimum ratio cut cost.

(a) Partitioning ({a}, {f, d, i, g, j, b, h, e, c}):
From Figure 2.17, we see that the cut edges are (a, f) and (a, d). Thus,
the cutsize is 0.5 + 0.5 = 1.0. Lastly, the ratio cut is 1.0/(1 · 9) =
0.1111.

(b) Partitioning ({a, f}, {d, i, g, j, b, h, e, c}):
From Figure 2.17, we see that the cut edges are (f, i), (f, g), (f, d) and
(a, d). Thus, the cutsize is 1.0+0.5+1.0+0.5 = 3.0. Lastly, the ratio
cut is 3.0/(2 · 8) = 0.1875.

(c) Partitioning ({a, f, d}, {i, g, j, b, h, e, c}):
From Figure 2.17, we see that the cut edges are (f, i), (f, g), (d, g),
(d, h), (d, e), and (d, b). Thus, the cutsize is 1.0+0.5+0.75+3·0.25 =
3.0. Lastly, the ratio cut is 3.0/(3 · 7) = 0.1429.

(d) Partitioning ({a, f, d, i}, {g, j, b, h, e, c}):
From Figure 2.17, we see that the cut edges are (i, j), (i, g), (f, g),
(d, g), (d, h), (d, e), and (d, b). Thus, the cutsize is 0.5 · 3 + 0.75 + 3 ·
0.25 = 3.0. Lastly, the ratio cut is 3.0/(4 · 6) = 0.125.

(e) Partitioning ({a, f, d, i, g}, {j, b, h, e, c}):
From Figure 2.17, we see that the cut edges are (i, j), (g, j), (g, h),
(g, e), (g, b), (d, h), (d, e), and (d, b). Thus, the cutsize is 0.5 + 0.83 +
0.58 · 2+0.25 · 4 = 3.49. Lastly, the ratio cut is 3.49/(5 · 5) = 0.1396.

(f) Partitioning ({a, f, d, i, g, j}, {b, h, e, c}):
From Figure 2.17, we see that the cut edges are (j, e), (j, h), (g, h),
(g, e), (g, b), (d, h), (d, e), and (d, b). Thus, the cutsize is 0.33+1.33+
0.58 · 2+0.25 · 4 = 3.82. Lastly, the ratio cut is 3.82/(6 · 4) = 0.1592.

(g) Partitioning ({a, f, d, i, g, j, b}, {h, e, c}):
From Figure 2.17, we see that the cut edges are (j, e), (j, h), (g, h),

48 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

Table 2.6. Summary of EIG algorithm.

PA PB Cutsize Ratio cut

{a} {f, d, i, g, j, b, h, e, c} 1.0 1.0/(1 · 9) = 0.1111
{a, f} {d, i, g, j, b, h, e, c} 3.0 3.0/(2 · 8) = 0.1875
{a, f, d} {i, g, j, b, h, e, c} 3.0 3.0/(3 · 7) = 0.1429
{a, f, d, i} {g, j, b, h, e, c} 3.0 3.0/(4 · 6) = 0.125
{a, f, d, i, g} {j, b, h, e, c} 3.49 3.49/(5 · 5) = 0.1396
{a, f, d, i, g, j} {b, h, e, c} 3.82 3.82/(6 · 4) = 0.1592
{a, f, d, i, g, j, b} {h, e, c} 3.82 3.82/(7 · 3) = 0.1819
{a, f, d, i, g, j, b, h} {e, c} 2.99 2.99/(8 · 2) = 0.1869
{a, f, d, i, g, j, b, h, e} {c} 1.0 1.0/(9 · 1) = 0.1111

(g, e), (d, h), (d, e), (b, h), and (b, e). Thus, the cutsize is 0.33+1.33+
0.58 · 2+0.25 · 4 = 3.82. Lastly, the ratio cut is 3.82/(7 · 3) = 0.1819.

(h) Partitioning ({a, f, d, i, g, j, b, h}, {e, c}):
From Figure 2.17, we see that the cut edges are (h, c), (h, e), (j, e),
(g, e), (d, e), and (b, e). Thus, the cutsize is 0.5+1.08+0.33+0.58+
0.25 + 0.25 = 2.99. Lastly, the ratio cut is 2.99/(8 · 2) = 0.1869.

(i) Partitioning ({a, f, d, i, g, j, b, h, e}, {c}):
From Figure 2.17, we see that the cut edges are (h, c) and (e, c). Thus,
the cutsize is 0.5 + 0.5 = 1.0. Lastly, the ratio cut is 1.0/(9 · 1) =
0.1111.

Table 2.6 shows the summary of EIG algorithm. We found two solutions
with the minimum ratio cut cost value of 0.1111:

({a}, {f, d, i, g, j, b, h, e, c})
({a, f, d, i, g, j, b, h, e}, {c})

These solutions are very unbalanced in terms of area. But, the following
solution is perfectly balanced and has the third lowest ratio cut cost of
0.1369:

({a, f, d, i, g}, {j, b, h, e, c})
5. Verify that the second smallest eigenvalue is a tight lower bound of the ratio

cut metric.

The eigenvalue is λ = 0.6281. It is shown in [Hagen and Kahng, 1992] that
c ≥ λ/n, where c is the ratio cut cost, and n is the number of nodes in the
graph. Since n = 10 in our case, we see that λ/n = 0.06281 is smaller
than all of the ratio cut values shown in Table 2.6.

Partitioning 49

4. FBB Algorithm
Yang and Wong proposed a bipartitioning algorithm [Yang and Wong, 1996]

named FBB that is based on the maximum flow computation. Given a flow
network G and a pair of source and sink nodes (s, t), the Maximum Flow Min-
imum Cut Theorem [Ford and Fulkerson, 1962] states that the maximum flow
from s to t defines a bipartitioning of G so that the weight of the cut is mini-
mized among all cuts separating s and t. Since this so called s-t mincut may not
be balanced in terms of the partition area, Yang and Wong proposed a method
to repeat max-flow computations until a balanced partitioning is found. What
is unique in their work is that the overall time complexity of this multi-iteration
approach is asymptotically the same as a single max-flow computation. This
is possible through the recycling of augmenting paths from the previous itera-
tions. They also proposed a model to transform multi-terminal nets in the given
circuit into a flow network G so that any cut in G preserves the correct cutsize
information in the circuit. Lastly, they proposed an effective way to obtain the
next cut if the current cut is not balanced, which is based on making a minor
perturbation to the current flow network.

Quick Overview
Given a circuit NL, we first build the flow network G, where each net n =

{v1, v2, · · · , vk} ∈ NL is transformed as follows:

We add node v1, v2, · · · , vk into G if not added yet.

We add two auxiliary nodes n1 and n2 into G and connect them with so
called “bridging edge” e(n1, n2) that has a capacity of 1.

We connect v1, v2, · · · , vk to n1 with edges of ∞ capacity. We connect n2

to v1, v2, · · · , vk with edges of ∞ capacity.

An illustration is shown in Figure 2.22. Next, we choose a pair of source and
sink (s, t) randomly. We then repeat the following until we find a balanced
bipartitioning solution:

Step 1: We find the maximum flow from s to t using the augmenting path
method.

v1 n

v2

v3

v1

v1

v1

n1

n2

Figure 2.22. Modeling a net into a flow network.

50 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

Step 2: We construct the partitioning solutions based on the max-flow com-
putation, which is done by cutting some subset of the saturated nets. In
the meantime, we choose the best solution, denoted C(X,X ′), in terms of
area balance. Note that all of these solutions have the same cutsize, which
is equal to the max-flow value. If we find a solution that satisfies the area
constraint, we terminate the algorithm.

Step 3: If the solution above is still not area-balanced, we see if the area of
X is smaller than the area lower bound. If yes, we choose a node v ∈ Y
that is contained in a cut net. Lastly, we merge all nodes in X and v into a
single node, which becomes a new source s. We go back to step 1.

Step 4: Otherwise, if the area of X is bigger than the area upper bound, we
find a node v ∈ X that is contained in a cut net. Lastly, we merge all nodes
in X ′ and v into a single node, which becomes a new sink t. We go back to
step 1.

During step 1 of some iteration, some of the augmenting paths are already
found from the previous iterations. This simplifies the process of finding addi-
tional augmenting paths to find a new max-flow. In addition, while we are
finding a node v to merge with X (step 3) or with X ′ (step 4), we choose v
among the nodes in the cut net randomly. As the algorithm approaches closer
to a balanced solution, we exhaustively search the best v among all the nodes
in the cut nets.

Practice Problem
Consider the gate-level circuit shown in Figure 2.23. Assume that the area

constraint is set to [4, 5] for bipartitioning. Perform the node merging based on
alphabetical order.

1. Model the circuit with a flow network.

See Figure 2.24.

2. Find the maximum flow from node a to i.

a

b

c

f
d

e

g
h

i

n1
n6

n4

n7

n2

n3 n5

Figure 2.23. A gate-level circuit.

Partitioning 51

d

e

fa

b

c

g

h

i

n1 n6

n4

n7

n2

n3

n5

Figure 2.24. Flow network of the circuit in Figure 2.23. The capacity of dotted edges is
infinity, while the solid edges have capacity of 1.

d

e

fs

b

c

g

h

t

n1 n6

n4

n7

n2

n3

n5

Figure 2.25. First maximum flow (value = 1) along with its augmenting path.

Table 2.7. Partitioning solutions derived from the first max-flow computation.

Cut net Source partition Sink partition

n1 s b, c, d, e, f, g, h, t
n4 No cut No cut
n7 No cut No cut

Figure 2.25 shows a maximum flow value of 1.6 Nets n1, n4, and n7 are sat-
urated and define the partitioning solutions shown in Table 2.7. For example,

6Note that this maximum flow solution is not unique as there exist several other augmenting paths from s
to t.

52 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

removal of n1 from Figure 2.23 leads to a a-i mincut. But, removal of n4 or
n7 does not lead to a a-i mincut. Thus, we cut n1 and obtain the following
solution:

Ps = {s}, Pt = {b, c, d, e, f, g, h, t}
3. Choose a node to merge with s.

Since the area of Ps, the source-side partition, is smaller than the lower
bound of 4, we choose a node from the sink side. In this case, the node
should be contained in the cut net n1. Since n1 = {a, d, f}, we choose d
based on alphabetical order.

4. Show the circuit and its flow network after the merging.

See Figure 2.26. Note that the merged node now has multiple outputs
attached to n1 and n4.

5. Perform the remaining part of FBB algorithm to obtain a balanced biparti-
tioning solution.

s

b

c

f

e

g
h

t

n6

n4

n7

n2

n3 n5

n1

s

e

f

b

c

g

h

t

n6

n4

n7

n2

n3

n5

n1

(a)

(b)

Figure 2.26. After merging s and d. (a) Circuit, (b) flow network.

Partitioning 53

s

e

f

b

c

g

h

t

n6

n4

n7

n2

n3

n5

n1

Figure 2.27. Second maximum flow (value = 2) along with its two augmenting paths.

Table 2.8. Partitioning solutions derived from the second max-flow computation.

Cut net Source partition Sink partition
n1, n4 No cut No cut
n1, n5 No cut No cut
n6, n4 No cut No cut
n6, n5 No cut No cut
n7, n4 No cut No cut
n7, n5 s, b, c, e, f, g, h t

(a) Second max-flow computation:

Figure 2.27 shows the augmenting paths, and the maximum flow (value
= 2). Nets n1, n6, n7, n4, and n5 are saturated and define the partition-
ing solutions shown in Table 2.8. Since the max-flow value is 2, our
cutset will contain two nets. From Table 2.8 and Figure 2.26(b), we
note that the cutset includes n7 and n5, which gives us the following
partitioning solution:

Ps = {s, b, c, e, f, g, h}, Pt = {t}

Since the area of source partition is larger than the upper bound of 5
above, we choose a node from the source side. The set of nodes con-
tained in n7, n5 and partitioned into the source side include {g, h, e}.
Thus, we choose e to merge with t based on alphabetical order. Figure
2.28 shows the circuit and its flow network after the merging.

(b) Third max-flow computation:

Figure 2.29 shows the augmenting paths, and the maximum flow (value
= 3). Nets n1, n6, n7, n4, n5, and n2 are saturated and define the

54 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

s

b

c

f

g
h

n6

n4

n7

n2

n3

n1

s

t

f

b

c

g

h
n6

n4

n7

n2

n3

n5

n1

t
n5

(a)

(b)

Figure 2.28. After merging t and e. (a) Circuit, (b) flow network.

s

t

f

b

c

g

h
n6

n4

n7

n2

n3

n5

n1

Figure 2.29. Third maximum flow (value = 3) along with its augmenting paths.

Partitioning 55

Table 2.9. Partitioning solutions derived from the third max-flow computation.

Cut net Source partition Sink partition
n1, n4, n2 s, b c, t, g, f, h
n1, n5, n2 No cut No cut
n6, n4, n2 s, b, f c, t, g, h
n6, n5, n2 No cut No cut
n7, n4, n2 s, f, h, b c, t, g
n7, n5, n2 s, f, g, h c, t, b

partitioning solutions shown in Table 2.9. Note that node b can be par-
titioned to either side because net n2 will need to be always cut in the
s-t mincut. In this case, node b is partitioned to improve the area bal-
ance in each cut. From Table 2.9 we found three balanced partitioning
solutions with the cutsize of 3.

Thus, the final partitioning results are as follows:

({a, b, d, f}, {c, e, g, h, i})
({a, b, d, f, h}, {c, e, g, i})
({a, d, f, g, h}, {b, c, e, i})

The cutsize in all of these solutions is 3.

56 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

5. More Practice Problems

1. Perform a single pass of Kernighan and Lin algorithm on the circuit in
Figure 2.1(a) using {aceg, bdfh} as the initial solution. Break ties in lexi-
cographical order.

2. Consider the gate-level circuit in Figure 2.16. Perform a single pass of
Kernighan and Lin algorithm using {acegi, bdfhj} as the initial solution.
Fix cells a and b in their initial partition, and do not move them.

3. Consider the clustered netlist shown in Table 1.9 and Table 1.10 based on
Modified Hyperedge Coarsening algorithm. The area constraint for biparti-
tioning is set to [2, 6].

(a) Perform a single pass of Fiduccia and Mattheyses algorithm on the
clustered netlist. The initial solution is ({C1, C4, C5}, {C2, C3}).

(b) Perform a single pass of Fiduccia and Mattheyses algorithm on the
original netlist using the best solution obtained in part (a) as the initial
solution.

4. Perform a single pass of Fiduccia and Mattheyses algorithm on the circuit
shown in Figure 2.5(a) using {bcde, afgh} as the initial solution. Break
ties in alphabetical order. The area constraint is set to [3, 5].

5. Perform EIG Algorithm on the circuit in Figure 2.5(a) and obtain biparti-
tioning solutions that minimize the following metrics:

(a) Ratio cut under area constraint [3, 5].

(b) Cutsize under area constraint [3, 5].

6. Consider the gate-level circuit shown in Figure 2.1(a).

(a) Draw its “intersection graph” (see Figure 7 of [Hagen and Kahng,
1992]). Use the following correct definition of A′

ab:

A′
ab =

q∑

l=1

1
dl − 1

(
1
|sa| +

1
|sb|
)

(b) Obtain the second smallest eigenvalue and its eigenvector of the inter-
section graph.

(c) Perform the module assignment heuristic shown in Figure 8 of [Hagen
and Kahng, 1992] to obtain the best ratio-cut partition. What is the best
ratio-cut value and its partitioning solution?

Partitioning 57

7. Perform FBB algorithm on the circuit in Figure 2.23 using (c, f) as the
source/sink pair. The area constraint is set to [4, 5]. The node merging
should be done in alphabetical order.

8. Perform FBB algorithm on the circuit in Figure 2.5(a) using (a, h) as the
source/sink pair. The area constraint is set to [3, 5]. The node merging
should be done in alphabetical order.

58 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

6. Probing Further
Disclaimer: The list here is meant to be representative, not comprehen-

sive. A comprehensive survey on circuit partitioning algorithms is provided
in [Alpert and Kahng, 1995b].

Kernighan and Lin Algorithm
Fiduccia and Mattheyses algorithm [Fiduccia and Mattheyses, 1982] is the

most well-known extension of Kernighan and Lin algorithm [Kernighan and
Lin, 1970]. As discussed earlier in Section 2, the three major extensions include
handling of hypergraphs, replacing cell swaps with cell moves, and adopting
bucket sorting.

Fiduccia and Mattheyses Algorithm
The author of [Krishnamurthy, 1984] extended the gain concept used in the

Fiduccia and Mattheyses (FM) algorithm to quantify the impact of cell moves
on future gains. Under this so called lookahead scheme, each cell has a vector
of gains with k entries. The first entry is the same as the FM gain: immediate
cutsize reduction. The second entry shows the change in the gain of neighbor-
ing cells if the cell is moved, i.e. a prediction of what will happen to other cells
after the cell move. These gain vectors are then lexicographically sorted for
cell move selection. This scheme provides an effective way to break ties when
choosing the maximum gain cell.

The cell gain concept of FM is extended to handle multi-way partitioning
problem in [Sanchis, 1989]. Under this so called K-way FM (KFM) algorithm,
the entire netlist is first partitioned into K partitions. Each cell now has K − 1
gain values to indicate the impact on the cutsize if the cell is moved to any of
the K − 1 target partitions. A follow-up study on KFM [Cong and Lim, 1998]
showed that a recursive FM (RFM) significantly outperforms KFM for K-way
partitioning problem and that a simple heuristic named KPM can improve
KFM significantly KFM.

The authors of [Dutt and Deng, 1996b] extended FM to prevent densely
connected sub-circuits (= clusters) from being cut. Under this so called CLIP
scheme, the first cell move of each pass is chosen based on the initial gain.
Once the first cell v is chosen, the gain values of all other cells are initial-
ized to zero. We then move v, lock it, and update the gain of its neighboring
cells. From this point on, FM finishes the remaining moves of the pass. The
scheme pays more attention to the neighbors of moved cells and encourages
the successive moves of closely connected cells (= clusters).

Buckets are the main data structure used in FM for managing cell gain
values. The authors of [Hagen et al., 1997] showed that gain buckets main-
tained with last-in-first-out (LIFO) stacks lead to significantly better results

Partitioning 59

than first-in-first-out (FIFO) queues or random management as in FM. They
also showed that the LIFO selection scheme results in improvement over ran-
dom schemes for KFM [Sanchis, 1989]. Under the LIFO scheme, most recently
visited modules are placed near the beginning of the buckets, implicitly caus-
ing the neighborhoods or clusters of modules to be moved together. This has a
similar “cluster removal” effect as the CLIP scheme [Dutt and Deng, 1996b].

The authors of [Hauck and Borriello, 1997] examined many of the exist-
ing techniques for FM and presented a methodology for determining the best
mix of these approaches. These techniques include various clustering and un-
clustering schemes, initial partitioning creation, LIFO bucket management
[Hagen et al., 1997], lookahead gain scheme [Krishnamurthy, 1984], and net
partitioning. The result is a novel bipartitioning algorithm that includes both
new and existing techniques.

EIG Algorithm
Spectral bipartitioning for ratio-cut minimization has been extended to multi-

way partitioning by [Chan et al., 1994]. Their approach involves finding the
k-smallest eigenvalue/eigenvector pairs of the Laplacian of the circuit graph.
The eigenvectors provide an embedding of the graph’s n vertices into a k-
dimensional subspace. They also proposed a clustering heuristic to reduce the
size of the problem before the eigenvalue/eigenvector computation.

The authors of [Riess et al., 1994] derived minimal ratio-cut partitioning
solutions from the placement result obtained by the Gordian-L algorithm [Sigl
et al., 1991a]. Gordian-L is an analytical placer, where the original quadratic
placement formulation is modified to optimize linear objective under linear
constraint. The 1-dimensional placement obtained by Gordian-L determines
an ordering among the cells. Partitioning solutions are generated based on this
ordering and evaluated in terms of ratio cut.

Spectral partitioning methods use the eigenvectors of the Laplacian matrix
of the netlist graph to obtain partitioning solutions. Given d eigenvectors, the
authors of [Alpert and Yao, 1995] map each vertex in the netlist graph to a
vector in d-dimensional space such that these vectors constitute an instance
of the vector partitioning problem. When all the eigenvectors are used, they
showed that graph partitioning exactly reduces to vector partitioning. Based on
this result, the authors presented an algorithm named MELO that is based on
a simple vertex ordering scheme that can be used to yield high-quality 2-way
and multi-way partitioning solutions.

The authors of [Alpert and Kahng, 1995a] presented a spectral partition-
ing algorithm that exploits both the geometric embedding and netlist topology
information. The geometric embedding is done by the computation of d eigen-
vectors of the Laplacian matrix. This embedding is then partitioned based on
the topological information from the netlist. They begin with a d-dimensional

60 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

spectral embedding and construct a heuristic 1-dimensional ordering of the
modules. Dynamic programming is then applied to efficiently compute the
optimal k-way split of the ordering for a variety of objective functions. This
integrated technique yields multi-way partitioning with lower cost than previ-
ous spectral approaches.

It has been shown that a linear objective yields better spectral placement in
terms of wirelength than a quadratic objective. On the other hand, a quadratic
objective tends to place nodes more sparsely than a linear objective, resulting
in less overlap among the nodes. The authors of [Li et al., 1996] proposed so
called the α-order objective function, which is linearα (1 ≤ α ≤ 2). Depending
on how to tune α, the objective becomes closer to linear or quadratic. The goal
is to capture the benefit of both the linear and quadratic objectives.

FBB Algorithm
Logic replication has been shown empirically to reduce pin count and parti-

tion size in partitioned networks. The authors of [Hwang and El Gamal, 1995]
presented a network flow based algorithm for determining min-cut replication
from a given partitioning solution. The algorithm is extended to hypergraphs,
and replication heuristics are proposed to handle area balance constraints.
When applied to the problem of partitioning a given design to multiple field-
programmable gate arrays (FPGA), it is shown that min-cut replication pro-
vides substantial reductions in the numbers of FPGAs and pins required.

Given a flow network G with only two-pin nets, the authors of [Liu et al.,
1995] first introduced an algorithm for optimum partitioning with replication
under no area constraints. Compared with [Hwang and El Gamal, 1995] which
requires an initial partitioning solution, this work computes both partitioning
and replication simultaneously. Several heuristic extensions are then added to
handle multi-pin nets and area balance constraints. The authors show that the
area overhead from replication can be traded for cutsize reduction.

The authors of [Liu and Wong, 1998] extended the FBB algorithm to han-
dle multi-way partitioning under both area and pin constraints. This problem
occurs when a design needs to be partitioned into multiple FPGAs. Given a
netlist graph G(V,E), the basic approach is to find a subset of nodes Vi ∈ V
so that Vi satisfies both area and pin constraint. This is done by repeated com-
putation of maximum flow. The authors try to maximize the area of Vi in order
to reduce the number of FPGAs used.

Given a partitioning solution, the min-cut replication solution by [Hwang
and El Gamal, 1995] is optimal only in terms of the cutsize but not in terms
of the number of replicated nodes. Since the number of replicated nodes can
be huge especially for large circuits, min-area replication is an important goal.
The min-area min-cut replication problem is solved optimally by [Yang and

Partitioning 61

Wong, 1998] using network flow based algorithm. The authors also proposed
a new compact flow network model to handle hypergraphs easily.

Dynamically reconfigurable FPGAs (DR-FPGA) have the potential to dra-
matically improve the logic density by time-sharing logic. To implement a
design on a DR-FPGA, it has to be partitioned into multiple stages. The authors
of [Mak and Young, 2003] proposed the idea of temporal logic replication in
DR-FPGA to reduce the communication cost among the partitions. An opti-
mal algorithm based on network flow model is presented to solve the min-area
min-cut replication problem in the context of DR-FPGA partitioning.

Chapter 3

FLOORPLANNING

The input to the floorplanning problem is a set of blocks (soft or hard) and its
netlist. The goal of floorplanning is to determine the location of the blocks so
that the blocks do not overlap with each other. In case of soft blocks, we deter-
mine their dimensions as well. Traditional objectives include area and wire-
length, and modern floorplanners address thermal hotspot, power supply noise,
etc. Floorplanning problem is often solved under such design constraints as
fixed outline, pre-placed blocks, alignment constraint, etc. This chapter presents
sample problems related to the following works:

Stockmeyer algorithm [Stockmeyer, 1983]

Normalized polish expression [Wong and Liu, 1986]

ILP-based floorplanning algorithm [Sutanthavibul et al., 1991]

Sequence pair representation [Murata et al., 1995]

The first work determines the optimal orientation of the blocks in a given slic-
ing floorplan. The second work presented an efficient way to represent slicing
floorplans. The third work performs floorplanning for soft blocks with the
integer linear programming (ILP) approach. The last work presented an effi-
cient way to represent non-slicing floorplans. These works are targeting the
traditional objectives such as area and wirelength.

S.K. Lim, Practical Problems in VLSI Physical Design Automation

c©Springer Science+Business Media B.V. 2008

64 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

1. Stockmeyer Algorithm
Given a slicing floorplan, Stockmeyer presented an optimal algorithm

[Stockmeyer, 1983] that determines the orientation of the blocks in the floor-
plan so that the overall floorplan area is minimized. This algorithm is often
used as a post-process of the given slicing floorplan to further optimize the
area objective. Stockmeyer also proved in his paper that the optimal orientation
problem for non-slicing floorplan is NP-complete.

Quick Overview
The algorithm starts with a tree that represents the given slicing floorplan.

The goal is to traverse the internal nodes in this so called “slicing tree” in
bottom-up fashion so that we compute the candidate dimensions of each inter-
nal node. When we obtain the dimension list of the top node in the tree, we
choose the one with the minimum area. We then traverse the tree in top-down
fashion to select the dimensions for the internal nodes as well as the orientation
of the leaf nodes, i.e., the blocks themselves, based on the decision made for
the parent node.

The core part of Stockmeyer algorithm is the computation of candidate
dimensions of the given node during the bottom-up traversal. Given a verti-
cal internal node for which we want to compute the dimension list, we begin
by merging the first dimensions of the left (wl, hl) and the right child (wr, hr).
In this case, the dimensions of the left and the right child are sorted so that
the width is increasing and the height is decreasing. The resulting dimension
after the merging is (wl + wr,max{hl, hr}). If hl > hr , we merge the sec-
ond dimension of the left child and the first dimension of the right child. If
hl < hr , we merge the first dimension of the left child and the second dimen-
sion of the right child. In case hl = hr, we merge the second dimension of
both the left and the right child. The merging (or joining as called in the paper)
finishes when we reach the end of the dimension list for either the left or the
right child.

In case we want to compute the dimensions for a horizontal internal node,
the dimensions of the children are sorted so that the width is decreasing and
the height is increasing. We merge the first dimensions of the left (wl, hl)
and the right child (wr, hr). The resulting dimension after the merging is
(max{wl, wr}, hl + hr). The way to choose the next merging candidate is the
same as in vertical cut. An important observation made by Stockmeyer is that
the total number of dimensions for any internal node is O(L + R) instead of
O(L ·R), where L and R respectively denote the number of dimensions for the
left and the right child. This helps reduce the runtime and space complexity of
Stockmeyer algorithm significantly.

Floorplanning 65

H

3

H

7 V

V

6

V 4

V H

8 25 1

a b

c

d

fe

g

2

3

4

5 6

7

8

1

Figure 3.1. A slicing tree and its floorplan. Note that the lower left corner of each block is
placed at the lower left corner of its room.

Practice Problem
Consider the slicing floorplan shown in Figure 3.1. The (width, height) of

the blocks 1 through 8 are {(2,4), (1,3), (3,3), (3,5), (3,2), (5,3), (1,2), (2,4)}.
Assume that xHy means x is top and y is bottom, and xV y means x is left and
y is right. Place the lower left corner of each block to the lower left corner of
its room.

1. Perform Stockmeyer algorithm to compute the minimum area of the floor-
plan.

In case of vertical cut, the width is increasing and the height is decreasing
in the dimension list. In case of horizontal cut, the width is decreasing and
the height is increasing.

(a) Visit node a: Since the cut orientation is vertical;

L = {(2, 3), (3, 2)}
R = {(2, 4), (4, 2)}

(i) Join l1 = (2, 3) and r1 = (2, 4): we get (2 + 2,max{3, 4}) =
(4, 4). Since the maximum is from R, we join l1 and r2 next.

(ii) Join l1 = (2, 3) and r2 = (4, 2): we get (2 + 4,max{3, 2}) =
(6, 3). Since the maximum is from L, we join l2 and r2 next.

(iii) Join l2 = (3, 2) and r2 = (4, 2): we get (3 + 4,max{2, 2}) =
(7, 2).

Thus, the resulting dimensions are {(4, 4), (6, 3), (7, 2)}.

66 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

(b) Visit node b: Since the cut orientation is horizontal;

L = {(4, 2), (2, 4)}
R = {(3, 1), (1, 3)}

(i) Join l1 = (4, 2) and r1 = (3, 1): we get (max{4, 3}, 2 + 1) =
(4, 3). Since the maximum is from L, we join l2 and r1 next.

(ii) Join l2 = (2, 4) and r1 = (3, 1): we get (max{2, 3}, 4 + 1) =
(3, 5). Since the maximum is from R, we join l2 and r2 next.

(iii) Join l2 = (2, 4) and r2 = (1, 3): we get (max{2, 1}, 4 + 3) =
(2, 7).

Thus, the resulting dimensions are {(4, 3), (3, 5), (2, 7)}.

(c) Visit node c: Since the cut orientation is vertical;

L = {(4, 4), (6, 3), (7, 2)}
R = {(2, 7), (3, 5), (4, 3)}

Note that we obtained R from reversing the order we computed for b
earlier.

(i) Join l1 = (4, 4) and r1 = (2, 7): we get (4 + 2,max{4, 7}) =
(6, 7). Since the maximum is from R, we join l1 and r2 next.

(ii) Join l1 = (4, 4) and r2 = (3, 5): we get (4 + 3,max{4, 5}) =
(7, 5). Since the maximum is from R, we join l1 and r3 next.

(iii) Join l1 = (4, 4) and r2 = (4, 3): we get (4 + 4,max{4, 3}) =
(8, 4). Since the maximum is from L, we join l2 and r3 next.

(iv) Join l2 = (6, 3) and r3 = (4, 3): we get (6 + 4,max{3, 3}) =
(10, 3). Since the maximum is from R (and L), we reach the end
of R and thus terminate.

Thus, the resulting dimensions are {(6, 7), (7, 5), (8, 4), (10, 3)}.

(d) Visit node d: Since the cut orientation is vertical;

L = {(6, 7), (7, 5), (8, 4), (10, 3)}
R = {(3, 5)(5, 3)}

(i) Join l1 = (6, 7) and r1 = (3, 5): we get (6 + 3,max{7, 5}) =
(9, 7). Since the maximum is from L, we join l2 and r1 next.

(ii) Join l2 = (7, 5) and r1 = (3, 5): we get (7 + 3,max{5, 5}) =
(10, 5). Since the maximum is from both L and R, we join l3 and
r2 next.

(iii) Join l3 = (8, 4) and r2 = (5, 3): we get (8 + 5,max{4, 3}) =
(13, 4). Since the maximum is from L, we join l4 and r2 next.

Floorplanning 67

(iv) Join l4 = (10, 3) and r2 = (5, 3): we get (10 + 5,max{3, 3}) =
(15, 3).

Thus, the resulting dimensions are {(9, 7), (10, 5), (13, 4), (15, 3)}.

(e) Visit node f : Since the cut orientation is vertical;

L = {(9, 7), (10, 5), (13, 4), (15, 3)}
R = {(3, 5)(5, 3)}

(i) Join l1 = (9, 7) and r1 = (3, 5): we get (9 + 3,max{7, 5}) =
(12, 7). Since the maximum is from L, we join l2 and r1 next.

(ii) Join l2 = (10, 5) and r1 = (3, 5): we get (10 + 3,max{5, 5}) =
(13, 5). Since the maximum is from both L and R, we join l3 and
r2 next.

(iii) Join l3 = (13, 4) and r1 = (5, 3): we get (13 + 5,max{4, 3}) =
(18, 4). Since the maximum is from L, we join l4 and r2 next.

(iv) Join l4 = (15, 3) and r1 = (5, 3): we get (15 + 5,max{3, 3}) =
(20, 3).

Thus, the resulting dimensions are {(12, 7), (13, 5), (18, 4), (20, 3)}.

(f) Visit node e: Since the cut orientation is horizontal;

L = {(3, 3)}
R = {(2, 1)(1, 2)}

(i) Join l1 = (3, 3) and r1 = (2, 1): we get (max{3, 2}, 3 + 1) =
(3, 4). Since the maximum is from L, we terminate.

Thus, the resulting dimension is {(3, 4)}.

(g) Visit node g: Since the cut orientation is horizontal;

L = {(3, 4)}
R = {(20, 3), (18, 4), (13, 5), (12, 7)}

(i) Join l1 = (3, 4) and r1 = (20, 3): we get (max{3, 20}, 4 + 3) =
(20, 7). Since the maximum is from R, we join l1 and r2 next.

(ii) Join l1 = (3, 4) and r2 = (18, 4): we get (max{3, 18}, 4 + 4) =
(18, 8). Since the maximum is from R, we join l1 and r3 next.

(iii) Join l1 = (3, 4) and r3 = (13, 5): we get (max{3, 13}, 4 + 5) =
(13, 9). Since the maximum is from R, we join l1 and r4 next.

(iv) Join l1 = (3, 4) and r4 = (12, 7): we get (max{3, 12}, 4 + 7) =
(12, 11).

Thus, the resulting dimensions are {(20, 7), (18, 8), (13, 9), (12, 11)}.
The minimum area floorplan is 13 × 9 = 117.

68 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

Table 3.1. Summary of the bottom-up dimension computation in Stockmeyer algorithm. The
minimum area floorplan is 13 × 9 = 117.

Node Dir Dimensions
a ver L = {(2, 3), (3, 2)}

R = {(2, 4), (4, 2)}
D = {(4, 4), (6, 3), (7, 2)}

b hor L = {(4, 2), (2, 4)}
R = {(3, 1), (1, 3)}
D = {(4, 3), (3, 5), (2, 7)}

c ver L = {(4, 4), (6, 3), (7, 2)}
R = {(2, 7), (3, 5), (4, 3)}
D = {(6, 7), (7, 5), (8, 4), (10, 3)}

d ver L = {(6, 7), (7, 5), (8, 4), (10, 3)}
R = {(3, 5)(5, 3)}
D = {(9, 7), (10, 5), (13, 4), (15, 3)}

f ver L = {(9, 7), (10, 5), (13, 4), (15, 3)}
R = {(3, 5)(5, 3)}
D = {(12, 7), (13, 5), (18, 4), (20, 3)}

e hor L = {(3, 3)}
R = {(2, 1)(1, 2)}
D = {(3, 4)}

g hor L = {(3, 4)}
R = {(20, 3), (18, 4), (13, 5), (12, 7)}
D = {(20, 7), (18, 8), (13, 9), (12, 11)}

Table 3.1 shows the summary of the bottom-up dimension computation.

2. Find the optimal orientation and draw the floorplan.

We now visit the nodes in the slicing tree in top-down fashion to compute
the dimension and location of the internal nodes.

(a) Node g: we choose (13, 9) for this root node. This is from joining (3, 4)
and (13, 5). Thus, node e is (3, 4), and node f is (13, 5).

(b) Node e: we choose (3, 4), which is from joining (3, 3) and (2, 1). Thus,
the optimal orientation of block 3 is (3, 3), and block 7 is (2, 1).

(c) Node f : we choose (13, 5), which is from joining (10, 5) and (3, 5).
Thus, node d is (10, 5), and the optimal orientation of block 6 is (3, 5).

(d) Node d: we choose (10, 5), which is from joining (7, 5) and (3, 5).
Thus, node c is (7, 5), and the optimal orientation of block 4 is (3, 5).

(e) Node c: we choose (7, 5), which is from joining (4, 4) and (3, 5). Thus,
node a is (4, 4), and node b is (3, 5).

(f) Node a: we choose (4, 4), which is from joining (2, 3) and (2, 4). The
optimal orientation of block 5 is (2, 3), and block 1 is (2, 4).

Floorplanning 69

2

3

4

5 6

7

8

1

2

3

4
5

6

7

8
1

Figure 3.2. Slicing floorplan before and after the optimal rotation. The darker blocks are
rotated.

(g) Node b: we choose (3, 5), which is from joining (2, 4) and (3, 1). The
optimal orientation of block 8 is (2, 4), and block 2 is (3, 1).

Figure 3.2 shows the floorplans before and after the rotation.

70 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

2. Normalized Polish Expression
Wong and Liu presented a method named Normalized Polish Expression

[Wong and Liu, 1986] to represent slicing floorplans. Given a binary tree that
represents a slicing floorplan of n blocks, the polish expression of this tree
is a string of length 2n − 1 that consists of the block numbers and H (for
horizontal cut) and V (for vertical cut). The numbers in the expression are
called operands, and the H and V are called operators. The authors showed
that the normalized polish expression corresponds to the post-order traversal
of the slicing tree and satisfies the following properties: (i) each block appears
exactly once in the string, (ii) the number of operands is larger than the num-
ber of operators at all positions in the string, which is called the “balloting
property” in the paper, and (iii) there are no consecutive operators of the same
type in the string, which is called the “normality property.” This normalized
polish expression has 1-to-1 correspondence to a slicing floorplan so that we
can obtain a unique slicing floorplan from a normalized polish expression, vice
versa.

The main advantage of normalized polish expression is twofold. First, we
can easily perturb the current slicing floorplanning solution to obtain a new
neighboring solution. The authors provided three kinds of “moves” to perturb
the normalized polish expression so that the resulting expression remains nor-
malized and satisfies the balloting property. This is helpful when we utilize an
iterative improvement type of optimization method such as Simulated Anneal-
ing [Kirkpatrick et al., 1983]. Second, we can quickly evaluate the quality of
the given polish expression, which is done by computing the location of the
blocks in the floorplan with a O(n log n) bottom-up traversal of the corre-
sponding slicing tree. We can then obtain the area of the floorplan as well as
the total wirelength. This is again important for Simulated Annealing-based
optimization because this quick evaluation allows us to explore more solutions
and increase the chance of finding high quality solutions.

Quick Overview
We first obtain a random initial polish expression PE0. Next, we deter-

mine the following parameters used in Simulated Annealing: initial and final
temperature, cooling rate, and number of moves at each temperature (= Mt).
We compute C0, the cost of PE0, by C0 = A0 + λ · W0, where A0 and
W0 respectively denote the area and wirelength of PE0, and λ is the user-
defined parameter. We set Z = PE0, the best solution we return at the end
of annealing. Once the annealing process begins, we make Mt moves at the
initial temperature level. There are three types of moves: M1 is swapping two
adjacent operands, M2 is complementing some chain, and M3 is swapping a
pair of adjacent operand and operator. A chain is a set of consecutive operators

Floorplanning 71

in a polish expression, and its complementation involves swapping H and V
in the chain. At each move we randomly select one of these three types and
randomly choose a pair or chain. In case of M3, we examine if the balloting
and normality properties are violated.

Next, we perform the chosen move and obtain a new neighboring polish
expression. If the cost of this new solution is lower than the current, we accept
the move; otherwise, we accept the move based on a probability function that
is temperature-dependent. This function offers a high probability of accepting
“bad moves” during the high temperature period and a low probability during
the low temperature period. At the end of the move, we update Z , the best
solution to be returned. After making all the moves at the current temperature
level, we reduce the temperature using a cooling ratio r < 1 and repeat the
moves. When the temperature reaches the final temperature, or the number of
moves accepted is sufficiently low, we stop the annealing process and return Z .

Practice Problem
Consider the following polish expression:

PE1 = 25V 1H374V H6V 8V H

The (width, height) of the modules 1 through 8 are {(2,4), (1,3), (3,3), (3,5),
(3,2), (5,3), (1,2), (2,4)}.

1. Draw the corresponding slicing tree.

See Figure 3.3.

H

3

7

6

4

V 8

2 5

1

a(4,5)

b(4,8)

c(9,8)

d(11,8)f(4,7)

e(4,3)

g(11,15)

V

H

V

V

H

Figure 3.3. Slicing tree of PE1.

72 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

2. What is the minimum area of the slicing floorplan? Rotation is not allowed.

(a) Visit node a: vertical merging of (1, 2) and (3, 5) results in

(1 + 3,max{2, 5}) = (4, 5)

(b) Visit node b: horizontal merging of (3, 3) and (4, 5) results in

(max{3, 4}, 3 + 5) = (4, 8)

(c) Visit node c: vertical merging of (4, 8) and (5, 3) results in (9, 8).

(d) Visit node d: vertical merging of (9, 8) and (2, 4) results in (11, 8).

(e) Visit node e: vertical merging of (1, 3) and (3, 2) results in (4, 3).

(f) Visit node f : horizontal merging of (4, 3) and (2, 4) results in (4, 7).

(g) Visit node g: horizontal merging of (4, 7) and (11, 8) results in (11, 15).

3. Draw the corresponding slicing floorplan. Place the lower left corner of
each block to the lower left corner of its room.

See Figure 3.7(a).

4. Consider an M1 move that swaps module 3 and 7 in PE1. Draw the new
slicing tree and perform incremental area computation.

The new polish expression is

PE2 = 25V 1H734V H6V 8V H

The slicing tree is shown in Figure 3.4. We only need to update the dimen-
sion of nodes a, b, c, d, and g.

(a) Visit node a: vertical merging of (3, 3) and (3, 5) results in (6, 5).

(b) Visit node b: horizontal merging of (1, 2) and (6, 5) results in (6, 7).

(c) Visit node c: vertical merging of (6, 7) and (5, 3) results in (11, 7).

(d) Visit node d: vertical merging of (11, 7) and (2, 4) results in (13, 7).

(e) Visit node g: horizontal merging of (4, 7) and (13, 7) results in (13, 14).

Figure 3.7(b) shows the change on the floorplan.

5. Consider an M2 move that complements the last chain in PE2. Draw the
new slicing tree and perform incremental area computation.

The new polish expression is

PE3 = 25V 1H734V H6V 8HV

Floorplanning 73

H

7

3

6

4

V 8

2 5

1

a(6,5)

b(6,7)

c(11,7)

d(13,7)f(4,7)

e(4,3)

g(13,14)

V

H

V

V

H

Figure 3.4. Slicing tree after swapping blocks 3 and 7 in PE1. The bold part of the tree was
updated.

H

7

3

6

4

V 8

2 5

1

a(6,5)

b(6,7)

c(11,7)

d(11,11)f(4,7)

e(4,3)

g(15,11)

V

H

V

H

V

Figure 3.5. Slicing tree after complementing the last chain (= the orientation of nodes d and
g) in PE2. The bold part of the tree was updated.

The slicing tree is shown in Figure 3.5. We only need to update the dimen-
sion of nodes d and g.

(a) Visit node d: horizontal merging of (11, 7) and (2, 4) results in (11, 11).

(b) Visit node g: vertical merging of (4, 7) and (11, 11) results in (15, 11).

Figure 3.7(c) shows the change on the floorplan.

74 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

H

7

3 4

V

2 5

1 a(6,5)

f(4,7)

e(4,3) V

H 6 8

b(6,7)

c(10,7) d(5,7)

g(15,7)

H

V

V

Figure 3.6. Slicing tree after swapping block 6 and V in PE3. The bold part of the tree was
updated.

6. Consider an M3 move that swaps 6 and V in PE3. Draw the new slicing
tree and perform incremental area computation.

The new polish expression is

PE4 = 25V 1H734V HV 68HV

The slicing tree is shown in Figure 3.6. We only need to update the dimen-
sion of nodes c, d and g.

(a) Visit node c: vertical merging of (4, 7) and (6, 7) results in (10, 7).
(b) Visit node d: horizontal merging of (5, 3) and (2, 4) results in (5, 7).
(c) Visit node g: vertical merging of (10, 7) and (5, 7) results in (15, 7).

Figure 3.7(d) shows the change on the floorplan.

7. What is the average change on the area among the three moves M1, M2,
and M3? Compute the initial annealing temperature based on this average
and the acceptance probability of 0.9.

The area changed from 11 × 15 to 13 × 14 to 15 × 11 to 15 × 7. Thus, the
average area change is

Δave =
|165 − 182| + |182 − 165| + |165 − 105|

3
= 31.33

Thus,

T0 =
−Δave

ln(0.9)
= 297.39

Floorplanning 75

2

3
4

5 6
7

81

2

3

4

5

67
8

1

2

3
4

5

6

7

8

1

(a) (b)

(c) (d)

3
4

6

7

8

2
5

1

Figure 3.7. Changes on the floorplan based on the M1, M2, and M3 moves. (a) Initial
floorplan, (b) after M1, (c) after M2, (d) after M3.

76 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

3. ILP Floorplanning Algorithm
An analytical method for floorplanning optimization is presented in

[Sutanthavibul et al., 1991]. This method is based on mixed integer linear
programming (ILP) formulation that considers various floorplanning objec-
tives including area, wirelength, and routability. This work can handle both
fixed and flexible modules and considers rotation of the fixed modules. Vari-
ous techniques were utilized to convert non-linear objectives and constraints
into linear equations. In order to handle large-scale problems, the authors pre-
sented a heuristic called “successive augmentation”. In this method, a subset
of modules is first floorplanned, and these modules are merged to form bigger
modules. We then floorplan these bigger modules together with the next sub-
set of modules. The goal is to keep the number of modules to be floorplanned
(= number of variables in the ILP formulation) low so that the computation
time remains reasonable.

Quick Overview
The ILP formulation consists of four parts: objective function, non-overlap

constraints, variable type constraints, and chip boundary constraints.

Objective function: The primary objective is the floorplan area minimiza-
tion. Since the area objective is non-linear (width × height), we set the
width as a constraint and minimize the height.

Non-overlap constraints: Given a pair of modules, we assign only one “rel-
ative position relation” to this pair out of four possibilities: right of, left of,
below, and above. This can be done by utilizing all-pair binary variables xij

and yij for modules i and j as follows:

– xij = 0 and yij = 0: module i is to the left of module j.

– xij = 0 and yij = 1: module i is below module j.

– xij = 1 and yij = 0: module i is to the right of module j.

– xij = 1 and yij = 1: module i is above module j.

For each pair of blocks, we set up these four equations so that only one
of them becomes non-trivial based on the actual relative position. In case
the module rotation is desired, an integer variable zi for module i is used so
that if zi = 1, the non-overlap constraint equations utilize the width in place
of the height, vice versa. If we have a flexible module with fixed area and
bounded aspect ratio, we set the width as a continuous variable and obtain
the linear equation for the height. Since the width and height relation is
non-linear, i.e., wi · hi = Ai, we utilize Taylor series to approximate the
width-height relation.

Floorplanning 77

Variable type constraints: We define the type and range of the continuous
and integer variables.

Chip boundary constraints: We make sure that the modules are located
within the chip boundary.

Practice Problem
Formulate the ILP floorplanning for the following problem instances.

Assume that the dimension of the fixed modules is given as (width, height).
The desired aspect ratio (= width/height) is 1.

1. Four fixed modules: m1(4, 5), m2(3, 7), m3(6, 4), and m4(7, 7). Rotation
is not allowed.

First, we obtain the list of continuous and integer variables as follows:

8 continuous variables: the coordinate variables (x1, x2, x3, x4, y1, y2,
y3, y4)

12 integer variables: the all-pair relative position variables (x12, x13,
x14, x23, x24, x34, y12, y13, y14, y23, y24, y34).

The upper bound of chip boundary is computed as follows:

W =
∑

wi = 4 + 3 + 6 + 7 = 20

H =
∑

hi = 5 + 7 + 4 + 7 = 23

Lastly, we construct the ILP formulation as follows:

Minimize y∗
Subject to
non-overlap constraints:

x1 + w1 ≤ x2 + 20(x12 + y12)
x1 − w2 ≥ x2 − 20(1 − x12 + y12)
y1 + h1 ≤ y2 + 23(1 + x12 − y12)
y1 − h2 ≥ y2 − 23(2 − x12 − y12)

x1 + w1 ≤ x3 + 20(x13 + y13)
x1 − w3 ≥ x3 − 20(1 − x13 + y13)
y1 + h1 ≤ y3 + 23(1 + x13 − y13)
y1 − h3 ≥ y3 − 23(2 − x13 − y13)

78 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

x1 + w1 ≤ x4 + 20(x14 + y14)
x1 − w4 ≥ x4 − 20(1 − x14 + y14)
y1 + h1 ≤ y4 + 23(1 + x14 − y14)
y1 − h4 ≥ y4 − 23(2 − x14 − y14)

x2 + w2 ≤ x3 + 20(x23 + y23)
x2 − w3 ≥ x3 − 20(1 − x23 + y23)
y2 + h2 ≤ y3 + 23(1 + x23 − y23)
y2 − h3 ≥ y3 − 23(2 − x23 − y23)

x2 + w2 ≤ x4 + 20(x24 + y24)
x2 − w4 ≥ x4 − 20(1 − x24 + y24)
y2 + h2 ≤ y4 + 23(1 + x24 − y24)
y2 − h4 ≥ y4 − 23(2 − x24 − y24)

x3 + w3 ≤ x4 + 20(x34 + y34)
x3 − w4 ≥ x4 − 20(1 − x34 + y34)
y3 + h3 ≤ y4 + 23(1 + x34 − y34)
y3 − h4 ≥ y4 − 23(2 − x34 − y34)

variable type constraints:

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0
y1 ≥ 0, y2 ≥ 0, y3 ≥ 0, y4 ≥ 0
x12, x13, x14, x23, x24, x34 ∈ {0, 1}
y12, y13, y14, y23, y24, y34 ∈ {0, 1}

chip width constraints:

x1 + w1 ≤ y∗

x2 + w2 ≤ y∗

x3 + w3 ≤ y∗

x4 + w4 ≤ y∗

chip height constraints:

y1 + h1 ≤ y∗

y2 + h2 ≤ y∗

y3 + h3 ≤ y∗

y4 + h4 ≤ y∗

Floorplanning 79

2

1

3

4

Figure 3.8. ILP floorplanning with fixed modules. The chip dimension is 12 × 12.

We solve this ILP formulation using GLPK [FSF, 2006] and obtain the
following solutions:7

y∗ = 12
(x1, y1) = (7, 7), (x2, y2) = (9, 0), (x3 , y3) = (0, 0), (x4, y4) = (0, 4)
(x12, y12) = (1, 1) : (1 is above 2)
(x13, y13) = (1, 1) : (1 is above 3)
(x14, y14) = (1, 0) : (1 is to the right of 4)
(x23, y23) = (1, 0) : (2 is to the right of 3)
(x24, y24) = (1, 0) : (2 is to the right of 4)
(x34, y34) = (0, 1) : (3 is below 4)

Figure 3.8 shows the floorplanning result. The chip dimension is 12 × 12.
Note that this floorplanning is sub-optimal because module 2 can be shifted
to the left by 1 to reduce the chip width to 11. The source of this sub-
optimality is twofold: linear approximation of the area objective (= y∗)
and the chip boundary constraint (= xi + wi ≤ y∗). In fact, y∗ = 12 is an
optimal solution, and the solutions satisfy all of the constraints specified.

2. The same modules as in problem 1, but rotation is allowed for all modules.

In addition to the variables used in problem 1, we need four more inte-
ger variables for rotation: z1, z2, z3, and z4. In addition, we need M =
max{W,H} = 23. The ILP is given as follows:

Minimize y∗
Subject to

7The source files for all of the integer linear programming formulations presented in this section are
available at: http://users.ece.gatech.edu/limsk/book.

80 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

non-overlap constraints:

x1 + z1h1 + (1 − z1)w1 ≤ x2 + 23(x12 + y12)
x1 − z2h2 − (1 − z2)w2 ≥ x2 − 23(1 − x12 + y12)
y1 + z1w1 + (1 − z1)h1 ≤ y2 + 23(1 + x12 − y12)
y1 − z2w2 − (1 − z2)h2 ≥ y2 − 23(2 − x12 − y12)

x1 + z1h1 + (1 − z1)w1 ≤ x3 + 23(x13 + y13)
x1 − z3h3 − (1 − z3)w3 ≥ x3 − 23(1 − x13 + y13)
y1 + z1w1 + (1 − z1)h1 ≤ y3 + 23(1 + x13 − y13)
y1 − z3w3 − (1 − z3)h3 ≥ y3 − 23(2 − x13 − y13)

x1 + z1h1 + (1 − z1)w1 ≤ x4 + 23(x14 + y14)
x1 − z4h4 − (1 − z4)w4 ≥ x4 − 23(1 − x14 + y14)
y1 + z1w1 + (1 − z1)h1 ≤ y4 + 23(1 + x14 − y14)
y1 − z4w4 − (1 − z4)h4 ≥ y4 − 23(2 − x14 − y14)

x2 + z2h2 + (1 − z2)w2 ≤ x3 + 23(x23 + y23)
x2 − z3h3 − (1 − z3)w3 ≥ x3 − 23(1 − x23 + y23)
y2 + z2w2 + (1 − z2)h2 ≤ y3 + 23(1 + x23 − y23)
y2 − z3w3 − (1 − z3)h3 ≥ y3 − 23(2 − x23 − y23)

x2 + z2h2 + (1 − z2)w2 ≤ x4 + 23(x24 + y24)
x2 − z4h4 − (1 − z4)w4 ≥ x4 − 23(1 − x24 + y24)
y2 + z2w2 + (1 − z2)h2 ≤ y4 + 23(1 + x24 − y24)
y2 − z4w4 − (1 − z4)h4 ≥ y4 − 23(2 − x24 − y24)

x3 + z3h3 + (1 − z3)w3 ≤ x4 + 23(x34 + y34)
x3 − z4h4 − (1 − z4)w4 ≥ x4 − 23(1 − x34 + y34)
y3 + z3w3 + (1 − z3)h3 ≤ y4 + 23(1 + x34 − y34)
y3 − z4w4 − (1 − z4)h4 ≥ y4 − 23(2 − x34 − y34)

Floorplanning 81

variable type constraints:

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0
y1 ≥ 0, y2 ≥ 0, y3 ≥ 0, y4 ≥ 0
x12, x13, x14, x23, x24, x34 ∈ {0, 1}
y12, y13, y14, y23, y24, y34 ∈ {0, 1}
z1, z2, z3, z4 ∈ {0, 1}

chip width constraints:

x1 + (1 − z1)w1 + z1h1 ≤ y∗

x2 + (1 − z2)w2 + z2h2 ≤ y∗

x3 + (1 − z3)w3 + z3h3 ≤ y∗

x4 + (1 − z4)w4 + z4h4 ≤ y∗

chip height constraints:

y1 + (1 − z1)h1 + z1w1 ≤ y∗

y2 + (1 − z2)h2 + z2w2 ≤ y∗

y3 + (1 − z3)h3 + z3w3 ≤ y∗

y4 + (1 − z4)h4 + z4w4 ≤ y∗

We solve this ILP formulation and obtain the following solutions:

y∗ = 11
(x1, y1) = (7, 6), (x2, y2) = (0, 0), (x3 , y3) = (7, 0), (x4, y4) = (0, 3)
z1 = 0, z2 = 1, z3 = 1, z4 = 0: (2 and 3 are rotated.)

(x12, y12) = (1, 1) : (1 is above 2)
(x13, y13) = (1, 1) : (1 is above 3)
(x14, y14) = (1, 0) : (1 is to the right of 4)
(x23, y23) = (0, 0) : (2 is to the left of 3)
(x24, y24) = (0, 1) : (2 is below 4)
(x34, y34) = (1, 0) : (3 is to the right of 4)

Figure 3.9 shows the floorplanning result. The chip dimension is 11 × 11.

3. Two fixed modules: m1(4, 5), m2(3, 7), and two flexible modules: m3 (area
is 24, and aspect ratio range is [0.5, 2]), and m4 (area is 49, and aspect ratio
range is [0.3, 2.5]). Rotation is allowed for the fixed modules.

82 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

2

1

3

4

Figure 3.9. ILP floorplanning with fixed modules and rotation. Rotated modules are shown
darker. The chip dimension is 11 × 11.

First, we obtain the list of continuous and integer variables as follows:

Ten continuous variables: the coordinate variables (x1, x2, x3, x4, y1,
y2, y3, y4), and the sizing variables (w3, w4) for the flexible modules.

Fourteen integer variables: the all-pair relative position variables (x12,
x13, x14, x23, x24, x34, y12, y13, y14, y23, y24, y34), and the rotation
variables (z1, z2) for the fixed modules.

Next, we obtain a linear approximation of the height of flexible modules
in terms of the width. The goal is to avoid using the non-linear relation
hi = Si/wi. Based on Taylor expansion, we have:

hi =
Si

wi,max
+ (wi,max − wi)

Si

w2
i,max

where Si denotes the area of module i. From the aspect ratio constraints,
we get

wi · hi ≥ Si, li ≤ wi

hi
≤ ui

From the above, we get:

wi,min =
√

Si · li, wi,max =
√

Si · ui

which gives us the following ranges for the module width:

3.46 ≤ w3 ≤ 6.93 (3.1)

3.83 ≤ w4 ≤ 11.07 (3.2)

Thus, we obtain the following linear approximation for h3 and h4:

h3 =
24√
24 · 2 + (

√
24 · 2 − w3)

24
24 · 2 = −0.5w3 + 6.93 (3.3)

Floorplanning 83

h4 =
49√

49 · 2.5 + (
√

49 · 2.5 − w4)
49

49 · 2.5 = −0.4w4 + 8.85 (3.4)

Based on Equation (3.1), (3.2), (3.3), and (3.4) we get

3.47 ≤ h3 ≤ 5.20 (3.5)

4.42 ≤ h4 ≤ 7.32 (3.6)

Lastly, we compute the upper bound of chip width (= W) and chip height
(= H) as follows:

W =
∑

wi = max{4, 5} + max{3, 7} + 6.93 + 11.07 = 30.00

H =
∑

hi = max{4, 5} + max{3, 7} + 5.20 + 7.32 = 24.52

Thus, M = max{W,H} = 30.00. We construct the ILP formulation as
follows:

Minimize y∗
Subject to
non-overlap constraints:

x1 + z1h1 + (1 − z1)w1 ≤ x2 + 30.00(x12 + y12)
x1 − z2h2 − (1 − z2)w2 ≥ x2 − 30.00(1 − x12 + y12)
y1 + z1w1 + (1 − z1)h1 ≤ y2 + 30.00(1 + x12 − y12)
y1 − z2w2 − (1 − z2)h2 ≥ y2 − 30.00(2 − x12 − y12)

x1 + z1h1 + (1 − z1)w1 ≤ x3 + 30.00(x13 + y13)
x1 − w3 ≥ x3 − 30.00(1 − x13 + y13)
y1 + z1w1 + (1 − z1)h1 ≤ y3 + 30.00(1 + x13 − y13)
y1 − (−0.5w3 + 6.93) ≥ y3 − 30.00(2 − x13 − y13)

x1 + z1h1 + (1 − z1)w1 ≤ x4 + 30.00(x14 + y14)
x1 − w4 ≥ x4 − 30.00(1 − x14 + y14)
y1 + z1w1 + (1 − z1)h1 ≤ y4 + 30.00(1 + x14 − y14)
y1 − (−0.4w4 + 8.85) ≥ y4 − 30.00(2 − x14 − y14)

x2 + z2h2 + (1 − z2)w2 ≤ x3 + 30.00(x23 + y23)
x2 − w3 ≥ x3 − 30.00(1 − x23 + y23)

84 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

y2 + z2w2 + (1 − z2)h2 ≤ y3 + 30.00(1 + x23 − y23)
y2 − (−0.5w3 + 6.93) ≥ y3 − 30.00(2 − x23 − y23)

x2 + z2h2 + (1 − z2)w2 ≤ x4 + 30.00(x24 + y24)
x2 − w4 ≥ x4 − 30.00(1 − x24 + y24)
y2 + z2w2 + (1 − z2)h2 ≤ y4 + 30.00(1 + x24 − y24)
y2 − (−0.4w4 + 8.85) ≥ y4 − 30.00(2 − x24 − y24)

x3 + w3 ≤ x4 + 30.00(x34 + y34)
x3 − w4 ≥ x4 − 30.00(1 − x34 + y34)
y3 + (−0.5w3 + 6.93) ≤ y4 + 30.00(1 + x34 − y34)
y3 − (−0.4w4 + 8.85) ≥ y4 − 30.00(2 − x34 − y34)

variable type constraints:

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0
y1 ≥ 0, y2 ≥ 0, y3 ≥ 0, y4 ≥ 0
3.46 ≤ w3 ≤ 6.93
3.83 ≤ w4 ≤ 11.07
x12, x13, x14, x23, x24, x34 ∈ {0, 1}
y12, y13, y14, y23, y24, y34 ∈ {0, 1}
z1, z2 ∈ {0, 1}

chip width constraints:

x1 + (1 − z1)w1 + z1h1 ≤ y∗

x2 + (1 − z2)w2 + z2h2 ≤ y∗

x3 + w3 ≤ y∗

x4 + w4 ≤ y∗

chip height constraints:

y1 + (1 − z1)h1 + z1w1 ≤ y∗

y2 + (1 − z2)h2 + z2w2 ≤ y∗

y3 + (−0.5w3 + 6.93) ≤ y∗

y4 + (−0.4w4 + 8.85) ≤ y∗

Floorplanning 85

We solve this ILP formulation and obtain the following solutions:

y∗ = 10.46
(x1, y1) = (5.46, 5.20, (x2 , y2) = (0, 0), (x3, y3) = (7, 0),
(x4, y4) = (0, 3)
z1 = 1, z2 = 1: (1 and 2 are rotated)

w3 = 3.46, w4 = 3.83
(x12, y12) = (1, 1) : (1 is above 2)
(x13, y13) = (1, 1) : (1 is above 3)
(x14, y14) = (1, 0) : (1 is to the right of 4)
(x23, y23) = (0, 0) : (2 is to the left of 3)
(x24, y24) = (0, 1) : (2 is below 4)
(x34, y34) = (1, 0) : (3 is to the right of 4)

Based on our linear approximation, i.e., Equation (3.3) and (3.4), we get

h3 = −0.5w3 + 6.93 = 5.20
h4 = −0.4w4 + 8.85 = 7.32

Figure 3.10 shows the floorplanning result. The chip dimension is (7 +
3.46) × (3 + 7.32) = 10.46 × 10.32.

One important thing to note here is that the area of module 3 based on the
linear approximation is 3.46 × 5.20 = 17.99, which is smaller than the
actual area 24. A similar error is found for module 4, where 3.83 × 7.32 =
28.04 vs 49. Thus, the correct dimension for module 3 is (3.46, 24/3.46 =
6.94) and module 4 is (3.83, 49/3.83 = 12.79). Figure 3.11(a) shows
the floorplan based on the correct module dimensions. We note that the

2

1

3

4

Figure 3.10. ILP floorplanning with fixed (1 and 2) and flexible (3 and 4) modules. The dimen-
sion of flexible modules is based on linear approximation. Modules 1 and 2 are rotated. The chip
dimension is 10.46 × 10.32.

86 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

2

1

4

3

2

14

3

(a) (b)

Figure 3.11. (a) Modified floorplan from the one shown in Figure 3.10 by using actual module
dimension, (b) after removing the overlap. The chip dimension is 10.46 × 15.79.

chip height increased considerably, and overlap is introduced. The floor-
plan dimension after removing the overlaps is (7 + 3.46) × (3 + 12.79) =
10.46 × 15.79 as shown in Figure 3.11(b). The aspect ratio is 0.66. Note
that the module overlap can be avoided by using a linear approximation that
over-estimates the area instead of under-estimating it.8

8A sample problem included at the end of this chapter (problem 3, page 95) discusses this point.

Floorplanning 87

4. Sequence Pair Representation
Murata et al. presented a method named Sequence Pair [Murata et al., 1995]

to encode non-slicing floorplans. Given a non-slicing floorplan of n modules,
the sequence pair is a pair of module name sequences that contains all the
information about which subset of modules is above, below, to the right of,
and to the left of a given module. There is 1-to-1 correspondence between
a sequence pair and its non-slicing floorplan so that we can obtain a unique
non-slicing floorplan from a sequence pair, vice versa.

Quick Overview
To go from a floorplan to its sequence-pair, we first draw so called “up-right

step-line” for each module as follows: starting from the upper right corner of a
module until we reach the upper right corner of the floorplan, we draw vertical
lines (going up) and horizontal lines (going right) in an alternate fashion so that
we do not cross any module boundary in the floorplan. We also draw “down-
left step-lines” in a similar way. A pair of up-right step-line and down-left
step-line for a given module forms the “positive step-line.” Likewise, a pair of
left-up and right-down step-lines of a module forms the “negative step-line.”
The authors showed that the positive step-lines of the modules do not cross
each other, and the same is true for the negative step-lines. Finally, the order
among the positive step-lines from the left to right forms the first sequence in
a sequence pair. Likewise, the order among the negative step-lines from the
bottom to top forms the second sequence in a sequence pair.

To go from a sequence pair to its floorplan, we do the following: given a
module x in a sequence pair SP (S1, S2), we obtain the list of modules that
appear before x in both S1 and S2. These modules are located to the left of
x in the floorplan. The set of modules that appear after x in both S1 and S2

are located to the right of x in the floorplan. The set of modules that appear
after x in S1 and before x in S2 are located below x in the floorplan. Lastly,
the set of modules that appear before x in S1 and after x in S2 are located
above x in the floorplan. Next, we build a directed graph named Horizontal
Constraint Graph (HCG) based on the “right-of” and “left-of” relation, where
a directed edge e(a, b) means module a is to the left of b. We add a source
node and connect it to all nodes in HCG. We also add a sink node to HCG
and connect all nodes to this sink. A longest path length from the source to
each node in HCG denotes the x coordinate of the module in the floorplan.
The longest source-sink path length is the width of the floorplan. Likewise, we
construct a Vertical Constraint Graph (VCG) using the “above” and “below”
relation and compute the y coordinates of the modules and the height of the
floorplan in a similar way.

88 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

Sequence pair offers similar kinds of advantages as the Polish Expression
[Wong and Liu, 1986] when used in conjunction with Simulated Annealing: (i)
efficient exploration of the solution space via local search, and (ii) polynomial
time evaluation of a candidate solution. In addition, the authors showed that
the solution space defined by sequence pair is so called “P-admissible” in that
there always exists an optimal solution to the floorplanning problem that can
be encoded using sequence pair. The authors provide three types of moves that
are used to perturb the current sequence pair: M1 is swapping a random pair
of modules in the first sequence, M2 is swapping a random pair of modules in
both sequences, and M3 is rotating a randomly selected module by 90-degree.

Practice Problem
Consider the following sequence pair SP1 = (17452638, 84725361). The

(width, height) of the modules 1 through 8 are {(2,4), (1,3), (3,3), (3,5), (3,2),
(5,3), (1,2), (2,4)}.

1. Draw the horizontal and vertical constraint graphs.

Table 3.2 shows the relative positions derived from SP1. The corresponding
horizontal and vertical constraint graphs are shown in Figures 3.12 and
3.13, respectively.

2. What is the minimum area of the non-slicing floorplan?

Figure 3.14 shows the constraint graphs with the longest s-t paths. The
width of the floorplan is 11 from the HCG, and the height is 15 from the
VCG. Thus, the floorplan area is 11 × 15 = 165.

3. Draw the corresponding non-slicing floorplan. Find the location of the lower
left corner of each module.

Table 3.3 shows the longest path length from the source to each module in
HCG and VCG. Note that the weight of the module itself is not included,
which result in the (x, y) location of the lower left corner of the modules.
Figure 3.15 shows the floorplan.

Table 3.2. Relative positions among the modules in SP1.

Module Right-of Left-of Above Below
1 ∅ ∅ ∅ {2, 3, 4, 5, 6, 7, 8}
2 {3, 6} {4, 7} {1, 5} {8}
3 ∅ {2, 4, 5, 7} {1, 6} {8}
4 {2, 3, 5, 6} ∅ {1, 7} {8}
5 {3, 6} {4, 7} {1} {2, 8}
6 ∅ {2, 4, 5, 7} {1} {3, 8}
7 {2, 3, 5, 6} ∅ {1} {4, 8}
8 ∅ ∅ {1, 2, 3, 4, 5, 6, 7} ∅

Floorplanning 89

8

1

7

4

5

2

6

3
ts

8

1

7

4

5

2

6

3
ts

(a)

(b)

Figure 3.12. Horizontal constraint graph of SP1. (a) Full graph, (b) after removing transitive
edges for simplicity.

4. Consider a new sequence pair SP2, where the modules 1 and 3 in the pos-
itive sequence of SP1 are swapped. Draw the constraint graphs and the
floorplan.

The resulting sequence pair is (37452618, 84725361). Table 3.4 shows the
relative positions derived from the sequence pair. Figure 3.16 shows the
corresponding HCG and VCG along with their s-t longest paths. The chip
dimension is 13 × 14. Table 3.5 shows the longest path length from the
source to each module in HCG and VCG, which corresponds to the (x, y)
location of the lower left corner of each module. Figure 3.17 shows the
floorplan.

90 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

8

1

7

4

5

2

6

3

t

s

Figure 3.13. Vertical constraint graph of SP1 with transitive edges removed.

8

1

7

4

5

2

6

3
ts

(a)

2

1 33

3 51

2

8

1

7

4

5

2

6

3

t

s

35

2 2 3

3

4

4

(b)

Figure 3.14. Sequence pair = SP1. (a) HCG with longest s-t path length 11, (b) VCG with
longest s-t path length 15. The numbers next to each node denotes its width (in HCG) or height
(in VCG).

Floorplanning 91

Table 3.3. Longest path lengths for the modules in HCG and VCG for SP1. These values
correspond to the location of the lower left corner of each module.

Module HCV VCG
1 0 11
2 3 4
3 6 4
4 0 4
5 3 7
6 6 7
7 0 9
8 0 0

2 3
4

5 6

7

8

1

Figure 3.15. Non-slicing floorplan based on SP1.

Table 3.4. Relative positions among the modules in SP2.

Module Right-of Left-of Above Below
1 ∅ {2, 3, 4, 5, 6, 7} ∅ {8}
2 {1, 6} {4, 7} {3, 5} {8}
3 {1, 6} ∅ ∅ {2, 4, 5, 7, 8}
4 {1, 2, 5, 6} ∅ {3, 7} {8}
5 {1, 6} {4, 7} {3} {2, 8}
6 {1} {2, 3, 4, 5, 7} ∅ {8}
7 {1, 2, 5, 6} ∅ {3} {4, 8}
8 ∅ ∅ {1, 2, 3, 4, 5, 6, 7} ∅

92 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

8

3

7

4

5

2

6 1
ts

t

s

8

3

7

4

5

2

6 1

(a) (b)

3 1

3

1 3

5 2

2

5

2 2

3

3

3 4

4

Figure 3.16. Sequence pair = SP2. (a) HCG with longest s-t path length 13, (b) VCG with
longest s-t path length 14.

Table 3.5. Longest path lengths for the modules in HCG and VCG for SP2.

Module HCV VCG
1 11 4
2 3 4
3 0 11
4 0 4
5 3 7
6 6 4
7 0 9
8 0 0

5. Consider a new sequence pair SP3, where the modules 4 and 6 in both
sequences of SP2 are swapped. Draw the constraint graphs and the floor-
plan.

The resulting sequence pair is (37652418, 86725341). Table 3.6 shows the
relative positions derived from the sequence pair. Figure 3.18 shows the
corresponding HCG and VCG along with their s-t longest paths.9 The chip
dimension is 13 × 12. Table 3.7 shows the longest path length from the
source to each module in HCG and VCG, which corresponds to the (x, y)

9The path s-8-6-7-3-t is another longest path.

Floorplanning 93

2

3

4

5

6

7

8

1

Figure 3.17. Non-slicing floorplan based on SP2.

Table 3.6. Relative positions among the modules in SP3.

Module Right-of Left-of Above Below
1 ∅ {2, 3, 4, 5, 6, 7} ∅ {8}
2 {1, 4} {6, 7} {3, 5} {8}
3 {1, 4} ∅ ∅ {2, 5, 6, 7, 8}
4 {1} {2, 3, 5, 6, 7} ∅ {8}
5 {1, 4} {6, 7} {3} {2, 8}
6 {1, 2, 4, 5} ∅ {3, 7} {8}
7 {1, 2, 4, 5} ∅ {3} {6, 8}
8 ∅ ∅ {1, 2, 3, 4, 5, 6, 7} ∅

location of the lower left corner of each module. Figure 3.19 shows the
floorplan.

94 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

8

3

7

6

5

2

4 1
ts

t

s

8

3

7

6

5

2

4 1

(a) (b)

5 1

3

1 3

3 2

2

3

2 2

3

3

5 4

4

Figure 3.18. Sequence pair = SP3. (a) HCG with longest s-t path length 13, (b) VCG with
longest s-t path length 12. The numbers next to the nodes denote the weights.

Table 3.7. Longest path lengths for the modules in HCG and VCG for SP3.

Module HCV VCG
1 11 4
2 5 4
3 0 9
4 8 4
5 5 7
6 0 4
7 0 7
8 0 0

2

3

4

5

6

7

8

1

Figure 3.19. Non-slicing floorpl an based on SP3.

Floorplanning 95

5. More Practice Problems

For problems #1 and #2, assume that xHy means x is top and y is bottom,
and xV y means x is left and y is right in the polish expression. The module
dimension is given as (width, height). Place the lower left corner of each block
to the lower left corner of its room.

1. Perform Stockmeyer algorithm on the slicing floorplan that is represented
by 435H1V 67V H2V 8HV . The dimension of the modules 1 through 8
are {(5,3), (2,3), (6,3), (2,5), (6,2), (5,1), (3,8), (6,3)}. Draw the floorplans
before and after the orientation optimization.

2. Consider the following polish expression:

PE1 = 435H1V 67V H2V 8HV

The (width, height) of the modules 1 through 8 are {(5,3), (2,3), (6,3), (2,5),
(6,2), (5,1), (3,8), (6,3)}. Assume that rotation is not allowed.

(a) Draw the slicing tree and its floorplan for PE1.

(b) Consider an M1 move that swaps module 2 and 6 in PE1. Name this
new polish expression PE2. Draw the new slicing tree and its floorplan.

(c) Consider an M2 move that complements the third chain from the left
in PE2. Name this new polish expression PE3. Draw the new slicing
tree and its floorplan.

(d) Consider an M3 move that swaps 5 and H in PE3. Draw the new
slicing tree and its floorplan.

3. Consider the ILP floorplanning problem with flexible modules shown in
page 81. The authors of [Sutanthavibul et al., 1991] used a linear approxi-
mation that under-estimates the area (line 1 in Figure 3.20).

(a) Obtain the linear equations for the module height h3 and h4 based on
the over-estimation (line 2 in Figure 3.20).

(b) Formulate the ILP formulation using the over-estimation in part (a) and
obtain the floorplan.

(c) What is the drawback of the over-estimation? Which method results in
smaller floorplan area between the under- and over-estimation?

4. Formulate the ILP floorplanning for the following problem instances. The
desired aspect ratio (= width/height) is 1.

96 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

Wmin Wmax

Hmax

Hmin
line 1

line 2

Figure 3.20. Linear approximation of area.

(a) Four fixed modules: m1(2, 5), m2(3, 6), m3(7, 4), and m4(6, 6). Rota-
tion is not allowed.

(b) The same modules as in problem (a), but rotation is allowed for all
modules.

(c) Two fixed modules: m1(2, 5), m2(3, 6), and two flexible modules: m3

(area is 28, and aspect ratio range is [0.3, 2.5]), and m4 (area is 36,
and aspect ratio range is [0.5, 2]). Rotation is allowed for the fixed
modules. Use the under-estimating linear area approximation shown
in [Sutanthavibul et al., 1991].

5. Consider the following sequence pair:

SP1 = (63528417, 17452836)

The dimension of the modules 1 through 8 are {(5,3), (2,3), (6,3), (2,5),
(6,2), (5,1), (3,8), (6,3)}.

(a) Draw the constraint graphs and the floorplan for SP1.

(b) Consider a new sequence pair SP2, where the modules 3 and 4 in the
positive sequence of SP1 are swapped. Draw the constraint graphs and
the floorplan.

(c) Consider a new sequence pair SP3, where the modules 1 and 6 in both
sequences of SP2 are swapped. Draw the constraint graphs and the
floorplan.

Floorplanning 97

6. Probing Further
Disclaimer: The list here is meant to be representative, not comprehensive.

A comprehensive survey on non-slicing floorplan representation methods is
provided in [Chen and Chang, 2007].

Stockmeyer Algorithm
The authors of [Pan and Liu, 1992] presented a way to generalize Stock-

meyer’s algorithm [Stockmeyer, 1983] to handle non-slicing floorplans. Their
method handles any non-slicing floorplans but works more effectively with
the ones that are “approximately” slicing. Given a non-slicing floorplan, they
identify a group of contiguous lines (instead of single line) that separates the
blocks into two partitions. This so called “generalized cutline” can be viewed
as a generalization of a slicing line. Using this concept together with Stock-
meyer’s bottom-up recursive merging process, they minimize the area of the
final non-slicing floorplan.

Stockmeyer’s algorithm has O(n · d) time/space complexity, where n is the
number of blocks, and d is the depth of the slicing tree. Thus, the worst-case
complexity is O(n2) if the tree is not balanced, and the best-case is O(n log n)
if the tree is balanced. The author of [Shi, 1995] presented an algorithm that
improves the worst-case complexity to O(n log n) regardless of the tree struc-
ture. This is done by a new data structure called “realization tree”, which is
utilized during the bottom-up merging process.

Normalized Polish Expression
The authors of [Young and Wong, 1998] extended the normalized polish

expression [Wong and Liu, 1986] to handle pre-placed modules. They pro-
posed a shape curve computation procedure that can take the positions of the
pre-placed modules into consideration. The shape curve computation proce-
dure is used repeatedly during the floorplanning process to fully exploit the
shape flexibility of the modules.

Floorplanning with uncertainty is the problem of obtaining a good floorplan
when the information about module dimensions is not complete. In this for-
mulation introduced by [Bazargan et al., 1999], the width and the height of the
modules are random variables instead of fixed values. The authors extended
the normalized polish expression to handle these random variables and used
statistical addition and maximum operations to compute the distributions of
the final floorplan area.

Bus routability is another important issue in floorplanning because the blocks
are usually connected with very wide buses, causing congestion and routing
failure. The authors of [Rafiq et al., 2003] considered bus routability, area, and
timing objectives in their slicing floorplanning formulation. In order to improve

98 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

the timing, they use channels in between the blocks for buffer insertion, which
is done by exploiting the slicing structure and its normalized polish expression.
The bus routing is done using a mixed integer linear programming (ILP).

Slicing floorplans are commonly believed to suffer from poor utilization of
space when all modules are hard. For this reason, a large body of literature has
recently been devoted to various new representations of non-slicing floorplans
to improve space utilization. The authors of [Lai and Wong, 2001] showed that
a simple compaction procedure extends the capability of normalized polish
expression to represent non-slicing floorplans. They conclude that slicing tree
is a complete floorplan representation for all non-slicing floorplans as well.

ILP-based Floorplanning Algorithm
In [Moh et al., 1996], floorplanning with soft modules is formulated as a

non-linear geometric programming. It is well-known that the geometric pro-
gramming problem, after a simple transformation, can be converted into a
convex optimization problem, which in turn can be solved efficiently by a non-
linear solver. The advantage of this approach over the mixed integer linear
programming by [Sutanthavibul et al., 1991] is that it does not suffer from
the solution degradation caused by various schemes to linearize non-linear
objectives and constraints.

The number of variables and constraints used in [Moh et al., 1996] is signif-
icantly reduced in a new convex programming formulation presented in [Chen
and Fan, 1998]. Since the complexity of solving a convex programming prob-
lem typically increases dramatically with the numbers of variables and con-
straints, this new formulation leads to a significant reduction of computational
effort in solving the floorplan area minimization problem.

The works by [Moh et al., 1996] and [Chen and Fan, 1998] are not scalable
because they suffer from the high complexity to solve a convex program-
ming problem. The authors of [Chen and Kuh, 2000] presented a new linear
programming (LP) based formulation that handles soft, hard, and pre-placed
modules. They solve a set of LP problems in an iterative fashion to obtain
global minimum solution. They do not use integer variables and constraints,
thereby further speeding up the runtime compared to [Sutanthavibul et al.,
1991].

The authors of [Ekpanyapong et al., 2004] adopted the mixed integer linear
programming formulation of [Sutanthavibul et al., 1991] to perform floorplan-
ning with micro-architectural modules. A major difference between floorplan-
ningwithcircuitmodulesandmicro-architecturalmodules is thatanarchitectural
simulation can be performed for a given software application to collect various
kinds of dynamic runtime profiling information. They exploited the frequency
of block-to-block interconnect usage to obtain floorplans that improve the
performance of the target micro-architecture.

Floorplanning 99

Sequence Pair Representation
Since the introduction of sequence pair representation [Murata et al., 1995],

VLSI CAD community has seen a huge volume of works on efficient repre-
sentation of non-slicing floorplans including Bounded Slice-line Grid (BSG),
O-tree, B*-tree, Corner Block List (CBL), Transitive Closure Graph (TCG), T-
tree, Adjacent Constraint Graph (ACG), Q sequence, MP-tree, etc. In addition,
many studies have been done on how to exploit these representation meth-
ods to satisfy various geometric constraints in the floorplan such as adjacency,
boundary, alignment, etc. Comprehensive reviews of these methods and com-
parisons are provided in [Yao et al., 2001; Cong et al., 2004a; Chen and Chang,
2007]. The following works are strictly related to Sequence Pair extension and
application.

The original paper on sequence pair [Murata et al., 1995] did not discuss
how to handle soft modules or pre-placed modules. A sequence pair based
non-slicing floorplanning problem with a mixture of soft, hard, and pre-placed
modules is solved by the authors of [Murata and Kuh, 1998]. Given a sequence
pair, they first formulated a convex programming to determine the width and
height of the soft modules under the area constraint. The solution to this sub-
problem is then used in Simulated Annealing framework to obtain the sequence
pair that results in the best possible floorplan area. They also perform a fea-
sibility test to see if the given sequence pair satisfies the pre-placed module
constraint.

The time complexity of obtaining a block placement from a given sequence
pair is significantly improved by the authors of [Tang et al., 2001]. Since this
process is repeated many times during Simulated Annealing, this runtime sav-
ing translates to significantly more sequence pairs we can explore. The main
idea is to compute the longest common subsequence in a pair of weighted
sequences. With the help of sophisticated data structure, the complexity of
placement construction from a given sequence pair is reduced from O(n2) to
O(n log log n).

The authors of [Adya and Markov, 2003] studied the fixed-outline floorplan
problem, where the goal is to floorplan the modules inside a given rectangular
“outline” so that the wirelength is minimized. Compared with the classical
formulation where no target outline is given, this new formulation is shown to
be more relevant to hierarchical design style for very large-scale ASIC designs
[Kahng, 2000]. The authors empirically showed that instances of the fixed-
outline floorplan problem are significantly harder than the related instances of
classical floorplan problems. New objective functions and new types of moves
are presented in the context of sequence pair based non-slicing floorplanner
named Parquet to handle the fixed outline constraint efficiently.

The authors of [Lin and Chang, 2004] presented a new non-slicing floorplan
representation scheme named TCG-S, which is a combination of transitive

100 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

constraint graph (TCG) representation [Lin and Chang, 2001] and sequence
pair (SP). The goal is to combine the advantages of SP and TCG and eliminate
their disadvantages. The benefits of SP include faster packing and perturbation
schemes. The benefits of TCG include faster convergence to a desired solution,
easy handling of geometric constraints, and incremental update for cost evalu-
ation. These nice properties make TCG-S a superior representation than TCG
and SP themselves.

Traditional floorplanning problem deals with module sizing and placement
in a single 2D plane. In 3D floorplanning (or alternatively called 2.5D), which
is applicable in 3D stacked IC technology, the modules are placed in a stack of
multiple 2D planes. The authors of [Cong et al., 2004b] presented a thermal-
driven 3D floorplanning algorithm that is based on transitive constraint graph
(TCG) [Lin and Chang, 2001]. Their new floorplan representation scheme
called Combined Bucket and 2D Array (CBA) is an extension of TCG, where
the placement information among the modules across the planes is encoded
efficiently. CBA is used in its Simulated Annealing-based optimization [Kirk-
patrick et al., 1983] to obtain 3D floorplans with high thermal and area quality
results.

Most of the modern floorplanners rely on efficient floorplan representation
schemes such as the normalized polish expression [Wong and Liu, 1986] or the
sequence pair [Murata et al., 1995] that are optimized with Simulated Anneal-
ing [Kirkpatrick et al., 1983] under various objectives and constraints. The
runtime and parameter tuning effort involved with such approaches, however,
are a major drawback. The authors of [Cong et al., 2006] presented a fast floor-
planner named PATOMA that does not rely on Simulated Annealing. PATOMA
utilizes top-down recursive partitioning and legalization to obtain high quality
floorplans within a fraction of runtime. PATOMA also outperforms other exist-
ing fast floorplanners in the literature [Ranjan et al., 2001; Adya and Markov,
2003; Adya et al., 2004; Sassone and Lim, 2006].

Chapter 4

PLACEMENT

Circuit placement is the process of determining the location of each gate
(or block in some cases) in the netlist. The traditional objectives include wire-
length, timing, and congestion. Recently, thermal hotspot, power consumption,
and power supply noise issues drew much attention because the location of
gates has a non-negligible impact on these reliability concerns. In order to han-
dle large-scale circuits, placement is usually done in two steps: global place-
ment and detailed placement as in the case with routing. Global placement
is mainly concerned with “rough” location of the gates, e.g., which region of
the chip a gate is located. Some gates may be overlapping with each other in a
global placement solution. These overlaps are then removed during the detailed
placement. This chapter presents sample problems related to the following
works:

Mincut placement [Breuer, 1977] and terminal propagation [Dunlop and
Kernighan, 1985]

Gordian placement [Kleinhans et al., 1991]

TimberWolf algorithm [Sun and Sechen, 1995]

The first work is based on utilizing partitioning to perform placement. The
second work is based on quadratic placement. The third work is based on Sim-
ulated Annealing [Kirkpatrick et al., 1983]. The first two are global placers,
while the third does both. These works are targeting wirelength reduction.

S.K. Lim, Practical Problems in VLSI Physical Design Automation

c©Springer Science+Business Media B.V. 2008

102 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

1. Mincut Placement
The mincut placement method pioneered by Breuer [Breuer, 1977] utilizes

partitioning to perform placement. In this method the given circuit is repeatedly
partitioned into two sub-circuits. Correspondingly, the layout region occupied
by the circuit is divided either horizontally or vertically to accommodate the
sub-circuits. This partitioning process repeats until each partition is occupied
by a single gate or by a sub-circuit that is small enough. In case of the former,
we have a legal placement with no overlap among the gates. In case of the latter,
a post-process so called “placement legalization” is performed to find unique
locations for the gates in each sub-circuit. Breuer suggested that the cutsize
be minimized during the partitioning, which tends to minimize the overall
wirelength of the final placement. Breuer presented several “cut orientation
sequences” to decide how to partition the placement region. The one that is
presented in this section is called the quadrature placement, where the placement
region is divided into four partitions by a pair of vertical and horizontal cut. This
process can be recursively performed to obtain the desired number of partitions.

Dunlop and Kernighan presented an important enhancement to mincut place-
ment called “terminal propagation” [Dunlop and Kernighan, 1985]. They noted
that during the partitioning process of mincut placement, some gates in the
partition to be divided are connected to the gates located outside the partition.
They suggested that this kind of “external connection” should be used to bias
the bipartitioning process. In order to facilitate this biasing, they add termi-
nals that represent the external connections to the both sides of the placement
region to be partitioned and use these terminals as anchor points to “pull the
gates” to certain partitions. They proposed a way to limit the number of exter-
nal connections to be considered in order to balance the “internal” vs “external”
connections. In order to best benefit from terminal propagation, a cut orienta-
tion sequence called “breadth-first recursive bipartitioning” is used, where an
alternate sequence of horizontal and vertical cuts are recursively inserted to
divide the placement region in a breadth-first fashion.

Quick Overview
Here we discuss the recursive bipartitioning based mincut placement along

with terminal propagation. We assume that all gates are located at the center
of the placement region (= alternatively called block) before the partitioning
starts. In addition, if a bipartitioning cutline is inserted to divide the given
block, the gates are located at the center of the two sub-blocks. Assuming that
the first cutline is vertical, the gates are now located at the center of the left and
the right sub-block. Next, we add a horizontal cutline to divide the left block
into the left top and the left bottom blocks. The gates are now located at three
distinct locations. We then insert the third cutline to divide the right block into
the right top and the right bottom blocks. This breadth-first cutline insertion

Placement 103

y
p

window

x

(a) (b)

window cutline

Pa

Pb

Pc

Pd

Figure 4.1. (a) Breadth-first recursive bipartitioning, (b) terminal propagation, where the
right-half is being cut by a horizontal cut (shown in dotted line). The left-half is already parti-
tioned into Pc and Pd, and y ∈ PC is located at the center of Pc. We propagate y to p because
it is located outside the window.

continues until we obtain the desired number of partitions. An illustration is
shown in Figure 4.1(a).

Given a block to be bipartitioned, we perform terminal propagation as illus-
trated in Figure 4.1(b). Assume that the left half of the chip L is already
partitioned into {Pc, Pd}. Also assume that y ∈ Pc is located at the center
of Pc. We are now partitioning the right half R into {Pa, Pb}. For each gate
x ∈ R that is connected to another gate y located outside R, we check to see if
y is too closely located to the cutline. In this case, y is considered too close if y
is located inside the “window” created by two parallel lines to the cutline. If y
is outside the window, we “propagate” y to p, a point on the boundary of R. In
this case, p becomes the “propagated terminal” for y. We then connect x and
p and ignore the x-p connection. During the partitioning refinement, p is fixed
at this initial location and acts like an “anchor” that pulls x into Pa that p is
locked in. This is due to the fact that if x is not partitioned together with p, the
x-p connection increases the cutsize by one. If an external neighbor is located
inside the window, we do not propagate it.

Practice Problem
Consider the gate-level netlist shown in Table 4.1. Figure 4.2 shows the

undirected graph model of the netlist, where the thick and the thin edges have
weights of 1 and 0.5, respectively.10 The primary inputs and outputs do not
need to be placed.

10This undirected graph representation is suitable for KL partitioning algorithm [Kernighan and Lin, 1970].
However, a hypergraph representation can be used if FM partitioning algorithm [Fiduccia and Mattheyses,
1982] is desired.

104 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

Table 4.1. Gate-level netlist used for mincut placement.

n1 = {e, f}
n2 = {a, e, i}
n3 = {b, f, g}
n4 = {c, g, l}
n5 = {d, l, h}
n6 = {e, i, j}
n7 = {f, j}
n8 = {g, j, k}
n9 = {l, o, p}
n10 = {h, p}
n11 = {i, m}
n12 = {j, m, n}
n13 = {k, n, o}

a b

c

d

e gf h
i

j k

l

m

n
o

p

Figure 4.2. Clique-based graph model of the netlist shown in Table 4.1. The thick and the thin
edges have weights of 1 and 0.5, respectively.

1. Perform the quadrature mincut starting with vertical cut first, and place the
16 gates into 4 × 4 grid. Show the placement after each cut. The area skew
is set to zero, i.e., we desire perfectly balanced bipartitioning (= bisection)
at every mincut.

The following six cuts are added sequentially. Note that any partitioning
algorithm can be used for the bisection such as KL [Kernighan and Lin,
1970] or FM [Fiduccia and Mattheyses, 1982].

Cut 1: Figure 4.3(a) shows the placement after the first cut (= verti-
cal) with cutsize 3. Note that there exist other bisections with the same
cutsize.

Cut 2: Figure 4.3(b) shows the placement after the second cut (= hori-
zontal) with cutsize 5. At this point the first-level quadrants are formed.

Cut 3: Figure 4.3(c) shows the placement after the third cut (= vertical)
with cutsize 5.

Placement 105

a b

c

d

e
gf

hi

j k

l

m

n
o

p

a

e

i

m

f

j

n

c

d

g

h

k

l

o

p

b

a

e

i

m

f

b

n

j c

d

g

h

k

l

o

p

a

e

i

m

f

b

n

j

p

h

l

d

k

o

g

c

n b

j f

c o

g k

a

e

i

m p

h

l

d

(e) cut 5

(d) cut 4(c) cut 3

(a) cut 1 (b) cut 2, 1st-level quadrants formed

n b

j f

c o

g k

a

e

i

m p

h

l

d

(f) cut 6, 2nd-level quadrants formed

Figure 4.3. Quadrature mincut placement. The thick edges have a weight of 1, and the thin
edges have 0.5. The dotted lines show the current partitioning.

106 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

Cut 4: Figure 4.3(d) shows the placement after the fourth cut (= verti-
cal) with cutsize 4.

Cut 5: Figure 4.3(e) shows the placement after the fifth cut (= horizon-
tal) with cutsize 5.

Cut 6: Figure 4.3(f) shows the placement after the sixth cut (= hor-
izontal) with cutsize 5. At this point the second-level quadrants are
formed.

From Figure 4.3(f), we compute the half-perimeter of the bounding box of
the nets as follows: w(n1) = 1, w(n2) = 2, w(n3) = 2, w(n4) = 2,
w(n5) = 2, w(n6) = 3, w(n7) = 1, w(n8) = 3, w(n9) = 3, w(n10) = 1,
w(n11) = 1, w(n12) = 2, w(n13) = 4. Thus, the total wirelength cost is
27.

2. Perform the recursive bipartitioning mincut starting with a vertical cut first,
and place the gates into 4 × 4 grid. Use terminal propagation, where the
terminals located within the mid-third window should be ignored. Show
the placement after each cut. The area skew is set to zero.

The following 15 cuts are added sequentially in a breadth-first fashion.

Cut 1: Figure 4.9(a) shows the placement after the first cut. No terminal
propagation is possible.

Cut 2: Figure 4.9(b) shows the placement after the second cut. No
terminal propagation is possible.

Cut 3: Figure 4.9(c) shows the placement after the third cut. Figure 4.4
shows the terminal propagation performed for this cut. Nodes k and o
have external connections to n and j. Assuming n and j are placed at
the center of the left top partition, we propagate their terminal p1. Note
that p1 is located outside the mid-third window. In addition, node g has
external connections to j, f , and b. Assuming that f and b are placed
at the center of the left bottom partition, p2 represents their propagated
terminal. Note again that p2 is located outside the mid-third window.
Based on these fixed terminals, the nodes k and o are partitioned to the
top, and g to the bottom to minimize the cutsize across the partition
boundary.

Cut 4: Figure 4.9(d) shows the placement after the fourth cut. Figure 4.5
shows the terminal propagation performed for this cut. The node p1

represents the terminal propagated from o, k, and g. These nodes are
the external connections of n and j and are located outside the mid-
third window. Nodes i and j are connected to nodes e, f , and a outside,

Placement 107

o

pk

h

c

d

g l

n j

f b

p1

p2

h

cwindow

Figure 4.4. Terminal propagation for the partitioning shown in Figure 4.9(c). Terminal p1 is
propagated from nodes n and j and is pulling nodes k, o, and g to the top partition. Terminal p2

is propagated from nodes f and b and is pulling node g to the bottom partition.

m

i

n

j
k
o

g

e

f

a

p1

window

e

f

a

Figure 4.5. Terminal propagation for the partitioning shown in Figure 4.9(d). Terminal p1 is
propagated from nodes o, k, and g and is pulling nodes n and j to the right partition. Nodes i
and j are connected to nodes e, f , and a, but no terminal is propagated because e, f , and a are
located within the mid-third window.

but no terminal is propagated because they are located within the mid-
third window. The nodes n and j are partitioned to the right due to the
propagated terminal p1.

Cut 5: Figure 4.10(a) shows the placement after the fifth cut. Figure 4.6
shows the terminal propagation performed for this cut. Node i is prop-
agated to terminal p1, and nodes e and a are connected to p1. Node j
is propagated to terminal p2, and nodes e and f are connected to p2.
Lastly, node g is propagated to terminal p3, and nodes f and b are con-
nected to p3. All of these propagated terminals are located outside the

108 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

a b

e f

p1

ji

p2

p3
g

window

Figure 4.6. Terminal propagation for the partitioning shown in Figure 4.10(a). Three terminals
p1, p2, and p3 are propagated. p1 is pulling nodes a and e to the left partition, and p2 and p3 are
pulling nodes e, f , and b to the right partition.

o

k

p

hp1

window

n
j

Figure 4.7. Terminal propagation for the partitioning shown in Figure 4.10(b). Terminal p1 is
propagated from nodes n and j and is pulling nodes o and k to the left partition.

mid-third window. Due to these propagated terminals, nodes e and a
are partitioned to the left, and nodes f and b to the right.

Cut 6: Figure 4.10(b) shows the placement after the sixth cut. Figure
4.7 shows the terminal propagation performed for this cut. Nodes n
and j are propagated to terminal p1, and nodes o and k are connected
to p1. p1 is located outside the mid-third window. Nodes o and k are
partitioned to the left due to their connection to p1.

Cut 7: Figure 4.10(c) shows the placement after the seventh cut. Fig-
ure 4.8 shows the terminal propagation performed for this cut. Nodes j,
f , and b are propagated to terminal p1, and node g has three connections
to p1. Nodes o and k are propagated to terminal p2, and nodes g and l
are connected to p2. Lastly, nodes h and p are propagated to terminal

Placement 109

g

dc

l

window

p1

p2 p3

f
b

j k ho p

p3p3

k

Figure 4.8. Terminal propagation for the partitioning shown in Figure 4.10(c). Three terminals
p1, p2, and p3 are propagated. p1 is pulling g to the left, p2 is pulling g and l to the left, and p3

is pulling l and d to the right.

p3, and nodes l and d are connected to p3. All of these propagated
terminals are located outside the mid-third window. Due to these prop-
agated terminals, nodes g and c are partitioned to the left, and nodes l
and d to the right.

Cuts 8–15: Figure 4.10(d) shows the placement after all the remain-
ing cuts inserted. The terminal propagation results for these cuts are
straightforward and omitted.

From Figure 4.10(d), we compute the half-perimeter of the bounding box
of the nets as follows: w(n1) = 1, w(n2) = 2, w(n3) = 2, w(n4) = 2,
w(n5) = 2, w(n6) = 2, w(n7) = 1, w(n8) = 2, w(n9) = 3, w(n10) = 1,
w(n11) = 1, w(n12) = 2, w(n13) = 2. Thus, the total wirelength cost is
23. This is lower than the wirelength of the quadrature mincut shown in
Figure 4.3(f), which is 27.

110 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

a b

c

d

e
gf

hi

j k

l

m

n
o

p

(d) cut 4(c) cut 3

(a) cut 1 (b) cut 2

c

d

g
h

k

l

o

p

m
n

i
j

a b

e f

m
n

i
j

a b

e f

o

pk

h

c

d

g l

o

pk

h

c

d

g l
a b

e f

m

i

n

j

Figure 4.9. Recursive bipartitioning mincut placement. The thick edges have a weight of 1,
and the thin edges have 0.5. The dotted lines show the current partitioning.

Placement 111

(d) cut 8 to 15(c) cut 7

g

dc

l

a b

e f

m

i

n

j

o

k

p

h

m

i

e

a

n

j

f

b

o

k

p

h

g

c

l

d

(b) cut 6(a) cut 5

o

pk

h

c

d

g l
a b

e f

m

i

n

j

c

d

g l
a b

e f

m

i

n

j

o

k

p

h

Figure 4.10. Recursive bipartitioning mincut placement (continued from Figure 4.9).

112 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

2. GORDIAN Algorithm
GORDIAN placement [Kleinhans et al., 1991] is one of the most successful

works that adopt quadratic programming (QP) into circuit placement prob-
lem. In GORDIAN the placement problem is formulated as a sequence of QP
derived from the connectivity information of the circuit. A set of constraints
restricting the freedom of movement of the gates is imposed at every iteration,
causing the placement solution to reduce the amount of overlap among the cells
gradually. In this case, a top-down partitioning is performed so that the cells
grouped into the same partition satisfy so called the “center of gravity” con-
straint, which requires that the area-weighted center of the cells coincide with
the center location of the partition. This alternating sequence between QP and
top-down partitioning repeats until the sizes of the partitions is small enough.
Note that there may still exist overlaps among the cells once GORDIAN ter-
minates. Thus, a post-process such as DOMINO [Doll et al., 1994] is used to
remove the overlap and derive a standard cell placement.

The goal of GORDIAN placement is to minimize the squared wirelength
among the cells, which necessitates a quadratic objective function. Later a
pseudo-linear objective is introduced in GORDIAN-L [Sigl et al., 1991a] to
minimize the linear wirelength while still using a quadratic solver. An impor-
tant point to note is that GORDIAN uses QP as a global optimizer unlike other
existing QP/partitioning-based placers. In other words, QP is applied to the
entire circuit instead of local regions.

Quick Overview
Given a circuit to be placed, GORDIAN first constructs a clique-based undi-

rected graph model, where each edge in a k-clique gets a weight of 2/k.
GORDIAN requires that some of the IO cells are fixed along the boundary
of the placement region; otherwise, GORDIAN places all cells at one location.
Once the fixed and the movable cells are identified, GORDIAN computes one
matrix (= C) and two vectors (= dx, dy), where C is so called the Laplacian
matrix that shows the connectivity among the cells. This is the same as the
Q matrix used in the eigenvector-based partitioner [Hagen and Kahng, 1992]
presented in Chapter 2, Section 3. dx and dy show the connectivity between
the movable and fixed cells. Each entry in these vectors basically denotes the
weighted sum of the edges that connect each cell to the fixed cells. We then
perform the iterations as follows:

1. At the optimization level l = 0, we solve the following QP to obtain x that
specifies the x-coordinates of the cells: Minimize 1/2 ·xT Cx+ dx

T x. The
y-coordinates of the cells are computed similarly using dy and y.

2. At the optimization level l = 1, we first partition the placement region
into two using either vertical or horizontal cutline. We compute ux and

Placement 113

uy vectors that contain the center location of the sub-partitions. Next, we
compute the matrix A that specifies the center-of-gravity constraint. Each
entry in A basically shows (i) which partition each cell belongs to, and (ii)
the ratio of the cell area to the partition area. Lastly, we solve the following
Linearly constrained QP (LQP) to obtain x: Minimize 1/2 · xT Cx + dx

T x
subject to Ax = ux. The y-coordinates of the cells are computed similarly
using dy , y, and uy.

3. At the optimization level l = 2, we add two cutlines that are perpendicular
to the cutline inserted at l = 1. The rest of the steps is the same as those in
l = 1.

GORDIAN terminates after an enough number of cutlines are added so that
the size of the partitions is small enough, i.e., it is used for global placement.

Practice Problem
Consider the circuit shown in Figure 4.11. Assume the following: (1) cells

have unit area, (2) pins are located at the center of the cells, (3) the weight of
all nets is 1, (4) IO pins are fixed at the boundary of the placement region as
shown in Figure 4.12, (5) when performing bipartitioning, use the area balance
factor α = 0.5 whenever possible.

1. Set up the clique-based graph model of the netlist.

Each net of size k in the netlist forms a k-clique, and all the edges in the
clique receives a weight of 2/k. Figure 4.13 shows the graph.

2. Build the system matrix C and fixed node vectors dx and dy . Show all the
intermediate matrices and vectors involved.

g

e

f
i

j

w1

w2

w3

w4

z1

z2

z3

z4

h

a

b

c

d

Figure 4.11. Gate-level circuit used for GORDIAN algorithm.

114 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

Figure 4.12. Fixed IO pin location.

Figure 4.13. Undirected graph model of the circuit in Figure 4.11. The thick edges have a
weight of 2/3, and the dotted edges have a weight of 0.5.

We need the following matrices and vectors:

(a) Adjacency matrix: the connections among the movable nodes (= a to
j) are specified as follows:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2
3

0 0 7
6

1
2

0 0 0 0
2
3

0 1
2

1
2

0 1 0 0 0 0

0 1
2

0 7
6

0 2
3

2
3

0 0 0

0 1
2

7
6

0 0 0 0 0 0 1
7
6

0 0 0 0 1
2

0 1 0 0
1
2

1 2
3

0 1
2

0 2
3

2
3

2
3

0

0 0 2
3

0 0 2
3

0 0 2
3

2
3

0 0 0 0 1 2
3

0 0 2
3

0

0 0 0 0 0 2
3

2
3

2
3

0 2
3

0 0 0 1 0 0 2
3

0 2
3

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Placement 115

(b) Pin connection matrix: the connections between the movable nodes (a
to j) and the fixed nodes (= wi and zi, 1 ≤ i ≤ 4) are specified as
follows:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
3

2
3 0 0 1

2 0 0 0
2
3 0 1

2 0 0 0 0 0
0 0 1

2
2
3 0 0 0 0

0 0 1
2

2
3 0 0 0 0

0 2
3 0 0 1

2 0 0 0
0 0 0 0 1

2 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The rows correspond to the movable nodes, and the columns corre-
spond to the fixed nodes. For example, the entry in row 1, column 1 is
the weight of the edge that connects cell a and IO pin w1, which is 2/3
from Figure 4.13.

(c) Degree matrix: this matrix is built based on both the adjacency matrix
and the pin connection matrix. Each entry in this diagonal matrix is
the summation of the entries in the corresponding rows in both the
adjacency and pin connection matrices.

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

25
6 0 0 0 0 0 0 0 0 0
0 23

6 0 0 0 0 0 0 0 0
0 0 25

6 0 0 0 0 0 0 0
0 0 0 23

6 0 0 0 0 0 0
0 0 0 0 23

6 0 0 0 0 0
0 0 0 0 0 31

6 0 0 0 0
0 0 0 0 0 0 8

3 0 0 0
0 0 0 0 0 0 0 10

3 0 0
0 0 0 0 0 0 0 0 11

3 0
0 0 0 0 0 0 0 0 0 10

3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(d) System (= Laplacian) matrix: this matrix is simply the degree matrix
minus the adjacency matrix:

116 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

25
6 −2

3 0 0 −7
6 −1

2 0 0 0 0
−2

3
23
6 −1

2 −1
2 0 −1 0 0 0 0

0 −1
2

25
6 −7

6 0 −2
3 −2

3 0 0 0
0 −1

2 −7
6

23
6 0 0 0 0 0 −1

−7
6 0 0 0 23

6 −1
2 0 −1 0 0

−1
2 −1 −2

3 0 −1
2

31
6 −2

3 −2
3 −2

3 0
0 0 −2

3 0 0 −2
3

8
3 0 −2

3 −2
3

0 0 0 0 −1 −2
3 0 10

3 −2
3 0

0 0 0 0 0 −2
3 −2

3 −2
3

11
3 −2

3

0 0 0 −1 0 0 −2
3 0 −2

3
10
3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(e) Fixed pin vectors: we compute dx and dy based on the pin connec-
tion matrix and the IO pin location (= Figure 4.12). Each row i in dx,
denoted dx,i, is computed as follows:

dx,i = −
∑

j

pij · x(pj)

where pij denotes the entry of the pin connection matrix at row i, col-
umn j. x(pj) denotes the x-coordinate of the corresponding IO pin j.
From Figure 4.12, we see that the x-coordinates of the pins wi and zi

(1 ≤ i ≤ 4) are 0, 0, 0, 1, 2, 3, 4, and 4. Thus,

dx,1 = −(
2
3
· 0+

2
3
· 0+ 0 · 0+ 0 · 1+

1
2
· 2+ 0 · 3+ 0 · 4+ 0 · 4) = −1

By examining the remaining 9 movable cells, we get

dT
x =

(−1 0 −2
3 −2

3 −1 −1 0 −3 −4 −4
)

Each row i in dy, denoted dy,i, is computed as follows:

dy,i = −
∑

j

pij · y(pj)

where y(pj) denotes the y-coordinate of the corresponding IO pin j.
From Figure 4.12, we see that the y-coordinates of the pins wi and zi

(1 ≤ i ≤ 4) are 1, 2, 3, 4, 0, 0, 1, and 2. Thus,

dy,1 = −(
2
3
· 1+

2
3
· 2+ 0 · 3+ 0 · 4+

1
2
· 0+ 0 · 0+ 0 · 1+ 0 · 2) = −2

Placement 117

By examining the remaining 9 movable cells, we get

dT
y =

(−2 −13
6 −25

6 −25
6 −4

3 0 0 0 −1 −2
)

3. Perform placement at the top optimization level (l = 0).

We first compute the x-coordinate of the movable cells by minimizing the
following objective function:

φ(x) =
1
2
xT Cx + dx

T x

Since this is the top-level placement, there is no “center-of-gravity” con-
straint applied. Similarly, the y-coordinates of the movable cells are found
by minimizing the following objective function:

φ(y) =
1
2
yT Cy + dy

T y

Using, MOSEK, a popular quadratic programming solver, we obtain the
following solution11:

xT =
(
0.95 0.92 1.21 1.32 1.32 1.61 1.98 2.13 2.59 2.51

)

yT =
(
1.27 1.83 2.48 2.61 1.16 1.45 1.84 0.92 1.41 2.03

)

Figure 4.14 shows the corresponding placement result.

w1

w2

w3

w4

z3

z4

z2z1

a

b

c

d

e

f

g

h

i

j

Figure 4.14. GORDIAN placement at level l = 0.

11The source files for all of the quadratic programming formulations presented in this section are available
for download at: http://users.ece.gatech.edu/limsk/book

118 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

4. Perform placement at the optimization level (l = 1). Perform vertical
partitioning with area balance factor α = 0.5.

We first sort the nodes based on their x-coordinates and obtain the following
order:

{b, a, c, e, d, f, g, h, j, i}
Since the area of the nodes is uniform, we place the first five nodes to left
partition and the remaining to the right partition under α = 0.5:

Sρ′ = {b, a, c, e, d}
Sρ′′ = {f, g, h, j, i}

Since we divide the 4 × 4 placement region into equal parts, the center
location of the partitions are (1, 2) and (3, 2). Thus, the center location
vectors are:

u(1)
x =

(
1
3

)
, u(1)

y =
(

2
2

)

Next we build the matrix A(1) for the center-of-gravity constraint at level
l = 1:

A(1) =

(
1
5

1
5

1
5

1
5

1
5 0 0 0 0 0

0 0 0 0 0 1
5

1
5

1
5

1
5

1
5

)

where the first (second) row corresponds to the left (right) partition. The
columns corresponds to the cells a through j. For example, the entry in
row 1, column 1 is the ratio between the area of cell a to the area of left
partition, which is 1/5.

We now solve the following Linearly constrained QP (LQP) to obtain the
new x-coordinates of the movable nodes:

Minimize φ(x) =
1
2
xT Cx + dx

T x, subject to A(1) · x = u(1)
x

Similarly, we solve the following LQP to obtain the new y-coordinates of
the movable nodes:

Minimize φ(y) =
1
2
yT Cy + dy

T y, subject to A(1) · y = u(1)
y

The solutions are as follows:

xT =
(
0.70 0.71 1.17 1.21 1.22 2.17 3.10 2.84 3.56 3.33

)

yT =
(
1.34 1.94 2.66 2.76 1.30 1.83 2.45 1.32 1.91 2.49

)

Figure 4.15 shows the corresponding placement results.

Placement 119

w1

w2

w3

w4

z3

z4

z2z1

d

a

b

c

e

f

g

h

i

j

Figure 4.15. GORDIAN placement at level l = 1 with a vertical cut. X denotes the center
location of the partitions.

5. Verify that the center of gravity constraint is satisfied in the left partition
from level 1 placement.

The following cells are partitioned to the left: a(0.70, 1.34), b(0.71, 1.94),
c(1.17, 2.66), d(1.21, 2.76), and e(1.22, 1.30). Thus, the center of gravity
is located at:

0.70 + 0.71 + 1.17 + 1.21 + 1.22
5

= 1.00

1.34 + 1.94 + 2.66 + 2.76 + 1.30
5

= 2.00

This agrees with the center location (1, 2).

6. Perform placement at the optimization level (l = 2).

We add two horizontal cutlines as shown in Figure 4.16. Note that area-
balanced partitioning is not possible. The gates in the left partition in
Figure 4.15 are partitioned into top = (d, c) and bottom = (a, b, e) based
on their y-coordinates. Similarly, we split the nodes in the right partition
into top = (g, j) and bottom = (f, h, i) based on their y-coordinates. These
level 2 cutlines result in the following center locations of the partitions (see
Figure 4.16):

(xp1, yp1) = (1, 3.2)
(xp2, yp2) = (1, 1.2)
(xp3, yp3) = (3, 3.2)
(xp4, yp4) = (3, 1.2)

120 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

w1

w2

w3

w4

z3

z4

z2z1

p1

p2

p3

p4

Figure 4.16. The 4 partitions (p1 to p4) and their center locations at level l = 2.

Thus,

u(2)
x =

⎛

⎜⎜⎝

1
1
3
3

⎞

⎟⎟⎠ , u(2)
y =

⎛

⎜⎜⎝

3.2
1.2
3.2
1.2

⎞

⎟⎟⎠

Next, we build the matrix A(2) for the center-of-gravity constraint at level
l = 2. Recall that p1 = {c, d}, p2 = {a, b, e}, p3 = {g, j}, p4 = {f, h, i}.
Thus,

A(2) =

⎛

⎜⎜⎝

0 0 1
2

1
2 0 0 0 0 0 0

1
3

1
3 0 0 1

3 0 0 0 0 0
0 0 0 0 0 0 1

2 0 0 1
2

0 0 0 0 0 1
3 0 1

3
1
3 0

⎞

⎟⎟⎠

where the rows denote the partitions p1 through p4, and the columns denote
the cells a through j.

We now solve the following LQP to obtain the new x-coordinates of the
movable nodes:

Minimize φ(x) =
1
2
xT Cx + dx

T x, subject to A(2) · x = u(2)
x

Similarly, we solve the following LQP to obtain the new y-coordinates of
the movable nodes:

Minimize φ(y) =
1
2
yT Cy + dy

T y, subject to A(2) · y = u(2)
y

Placement 121

w1

w2

w3

w4

z3

z4

z2z1

f

a

b

c

d

e

g

h

i

j

Figure 4.17. GORDIAN placement at level l = 2 with a vertical cut. X denotes the center
location of the partitions.

w1

w2

w3

w4

z3

z4

z2z1

f
a

b

c

d

e

g

h

i

j

Figure 4.18. GORDIAN placement with wires shown.

The solutions are as follows:

xT =
(
0.83 0.78 1.00 1.00 1.39 2.28 2.89 3.06 3.66 3.11

)

yT =
(
1.01 1.78 3.08 3.32 0.82 1.44 3.18 0.59 1.57 3.22

)

Figure 4.17 shows the corresponding placement results.

7. Show the connection among the cells and IO pads using cliques.

Figure 4.18 shows the placement with wiring.

122 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

3. TimberWolf Algorithm
The TimberWolf package [Sechen and Sangiovanni-Vincentelli, 1985] is a

widely used placement and routing tool based on Simulated Annealing
[Kirkpatrick et al., 1983]. The latest version TimberWolf 7.0 [Sun and Sechen,
1995] includes two important enhancements added to its standard cell place-
ment engine. First, a hierarchical placement approach is used, where the netlist
is clustered twice in a recursive fashion. The top-level (= second-level) clusters
are first placed during the high annealing temperature region. These clusters
are then decomposed to reveal the first-level clusters. The placement among
the first-level clusters is refined during the mid annealing temperature region.
Lastly, the first-level clusters are decomposed to reveal the original gate-level
netlist. TimberWolf 7.0 refines this gate-level placement during the low anneal-
ing temperature region. This so called “multi-level” approach is also used in
hMetis partitioning algorithm [Karypis et al., 1997] presented in Chapter 1,
Section 3.

The second enhancement is the introduction of overlap-free placement. In
general, cell moves/swaps introduce overlaps among the cells due to the non-
uniform cell width. Since the removal of overlap is a time-consuming process,
TimberWolf 6.0 [Swartz and Sechen, 1990] allows cell overlap and tries to
minimize it by utilizing a penalty function. In case the overlap is not com-
pletely removed, cells are shifted at the end of annealing process to obtain
a legal placement. It is during this post-process step that the solution quality
degrades significantly in many cases. Thus, the authors of TimberWolf 7.0 [Sun
and Sechen, 1995] proposed a way to maintain overlap-free placement during
annealing while performing cell shifting efficiently. This section focuses on
this overlap-free cell placement scheme.

Quick Overview
Given a pair of cells (x, y) to swap, we compute the change in the wirelength

cost as follows:
ΔC = ΔW + ΔWS

where ΔW denotes the wirelength change due to swapping x and y, and ΔWS

is the wirelength change due to shifting the cells to remove overlap. After
the swap, we shift the cells in the row that receives the cell with larger width
between x and y. In this case, we choose the shift direction, either to the right
or left, so that the number of cells shifted is minimized, i.e., shift the cells on
the shorter side of the row. Note that the row that receives a narrower cell
from the swap will have a small gap, but we do not attempt to shift the cells
to remove the gap. The reason is that this gap is likely to be filled by the sub-
sequent swaps. Cell swap is chosen carefully so that the difference among the

Placement 123

row lengths is minimal. This has an effect of keeping the overall amount of gap
to be small.

After we choose the set of cells to be shifted, we first compute ΔW accu-
rately by examining the nets incident on the swapped cells. Next, we estimate
ΔWS instead of computing the exact value. The reason is that the runtime
involved with the exact computation could be significant if the number of
cells shifted is large. Given a cell z to be shifted, the authors of Timber-
Wolf 7.0 proposed two different ways for this estimation, namely, Model A
and Model B.

Model A: for each net incident to z, we find two “break points” a and b,
which defines a range [a, b]. The wirelength of the net (1) does not change
if z is located within the range, (2) increases if z is located to the right of b,
and (3) decreases if z is located to the left of a. The superposition of these
break points for all nets incident to z efficiently estimates the change in the
wirelength from shifting z.

Model B: we first compute the “gradient” of z as follows:

gradient(z) =
∑

i∈Nz

Di(0)

where Nz denotes the nets incident to z, and Di(0) denotes the “rate of
wirelength change of net i measured at the origin.” If z is at the left bound-
ary of the bounding box of net i, Di(0) = −1. If at the right boundary,
Di(0) = 1. Otherwise, Di(0) = 0. Once the gradient of all cells to be
shifted is computed, we estimate ΔWS as follows:

ΔWS =
∑

j∈shifted cell

gradient(j) · shift amount(j)

where shift amount(j) denotes the distance cell j is shifted by (right is
positive, left is negative).

It is shown in [Sun and Sechen, 1995] that Model B is as accurate as Model A
but runs faster.

Practice Problem
Consider the gate-level netlist shown in Table 4.2 and its standard cell place-

ment shown in Figure 4.19(a). Use the “Model B” of TimberWolf 7.0 [Sun and
Sechen, 1995] when estimating the wirelength change from cell shifting. Use
the lower left corner of each cell to represent the cell location.

1. Compute the half-perimeter wirelength of each net.

124 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

Table 4.2. Gate-level netlist used in TimberWolf algorithm.

n1 = {a, e, g}
n2 = {f, o}
n3 = {b, c, k, n}
n4 = {d, h, i}
n5 = {j, l, m}
n6 = {d, k, j}
n7 = {c, e, f, h, n}
n8 = {d, l}
n9 = {b, g, i, m}
n10 = {a, k, o}

a j l e h

m c o d g

f b i k n

5 10 15

15

10

 5

a j l b h

m c o d g

f e i k n

5 10 15
(a) (b)

Figure 4.19. (a) Before swapping (b, e), (b) after the swap. Cell h is shifted to the right.

We compute the half-perimeter of the bounding box as follows:

n1 = 12+7 = 19, n2 = 7+7 = 14, n3 = 12+7 = 19, n4 = 5+14 = 19,
n5 = 4+7 = 11, n6 = 7+14 = 21, n7 = 14+14 = 28, n8 = 5+7 = 12,
n9 = 12 + 7 = 19, n10 = 9 + 14 = 23.

2. Perform swap (b, e). What is the change on the wirelength cost?

Figure 4.19(b) shows the placement after the swap. We shift the cells on
“the shorter side of the row that receives the wider cell”, which explains
why cell h is shifted. The change in the cost function is calculated as

ΔC = ΔW + ΔWS

(a) Computation of ΔW : In this case, we examine the swapped cells and
compute their wirelength change. The set of nets containing b is
{n3, n9}, and e is {n1, n7}. Let w(x) and w′(x) respectively denote

Placement 125

the wirelength before and after the swap. Then,

Δ(n3) = w′(n3) − w(n3) = 24 − 19 = 5
Δ(n9) = w′(n9) − w(n9) = 26 − 19 = 7
Δ(n1) = w′(n1) − w(n1) = 26 − 19 = 7
Δ(n7) = w′(n7) − w(n7) = 28 − 28 = 0

Thus,

ΔW = Δ(n3) + Δ(n9) + Δ(n1) + Δ(n7) = 19

(b) Estimation of ΔWS: In this case, we examine the shifted cells and
estimate the wirelength change as follows:

ΔWS =
∑

i∈shifted

gradient(i) · shift amount(i)

We see that h is the only shifted cell. The nets that contain h are n4 =
{d, h, i} and n7 = {c, e, f, h, n}. Figure 4.20 shows the bounding
boxes of these nets. We start with gradient(h) = 0:

n4: h is located on the right boundary, so we increment
gradient(h).

n7: h is located on neither the left nor the right boundary, so we do
not change gradient(h).

Figure 4.20. (a) Bounding box of n4 = {d, h, i} with h on the right boundary, (b) bounding
box of n7 = {c, e, f, h, n} with h not on any boundary.

126 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

Thus, gradient(h) = 1. Since h is shifted to the right by 1

shift amount(h) = 1

Thus,

ΔWS = gradient(h) · shift amount(h) = 1 · 1 = 1 (4.1)

Based on the calculation of ΔW and ΔWS , we get

ΔC = ΔW + ΔWS = 19 + 1 = 20

3. How accurate is the “Model B” estimation of ΔWS in Equation (4.1)?

From Figure 4.19 we note that w(n4) = 19, w′(n4) = 20, w(n7) = 28,
and w′(n7) = 28. Thus, the actual change on the wirelength from shifting
h is

w′(n4) − w(n4) + w′(n7) − w(n7) = 20 − 19 + 28 − 28 = 1

Thus, we see that the estimation results in a correct calculation.

4. Use the “Model A” instead to estimate the wirelength change from shifting
cell h.

Figure 4.21 shows the Wn graph of n4 and n7. The “break points” for n4

are cell i and d, and for n7 are cell f and n. The wirelength of n4 and n7

h

i

d

h

nf
e

c

28

20

17

Wn

n7

n4

h(new)h(old)

Figure 4.21. Piecewise-linear Wn graph for n4 and n7. Cell h is shifted to the right by 1,
causing the wirelength of n4 to increase by one and no change on n7.

Placement 127

a j l b h

o c m d g

f e i k n

5 10 15
(b)

a j l b h

m c o d g

f e i k n

5 10 15
(a)

15

10

 5

Figure 4.22. (a) Before swapping (m, o), (b) after the swap. Cell d and g are shifted to the
right.

increase outside the range [i, d] and [f, n]. We note that cell h is shifted to
the right by 1, causing the wirelength of n4 to increase by one (from 19 to
20) and no change on n7 (staying at 28).

5. Perform swap (m, o). What is the change on the wirelength cost?

Figure 4.22 shows the placement before and after the swap. We shift cell d
and g.

(a) Computation of ΔW : The set of nets containing m is {n5, n9}, and o
is {n2, n10}. Then,

Δ(n5) = w′(n5) − w(n5) = 12 − 11 = 1
Δ(n9) = w′(n9) − w(n9) = 22 − 26 = −4
Δ(n2) = w′(n2) − w(n2) = 7 − 14 = −7
Δ(n10) = w′(n10) − w(n10) = 23 − 23 = 0

Thus,

ΔW = Δ(n5) + Δ(n9) + Δ(n2) + Δ(n10) = −10

(b) Estimation of ΔWS: Recall that cell d and g are shifted. First, the nets
that contain d are n4 = {d, h, i}, n6 = {d, k, j}, and n8 = {d, l}.
Figure 4.23 shows the bounding boxes of these nets. We start with
gradient(d) = 0:

128 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

Figure 4.23. (a) Bounding box of n4 = {d, h, i}, where d is not on any boundary, (b) bound-
ing box of n6 = {d, k, j}, where d is on the right boundary, (c) bounding box of n8 = {d, l},
where d is on the right boundary.

n4: d is not on any boundary, so we do not change gradient(d).
n6: d is on the right boundary, so we increment gradient(d).
n8: d is on the right boundary, so we increment gradient(d).

Thus, gradient(d) = 2. Second, the nets that contain g are n1 =
{a, e, g} and n9 = {b, g, i,m}. Figure 4.24 shows the bounding boxes
of these nets. We start with gradient(g) = 0:

n1: g is on the right boundary, so we increment gradient(g).
n9: g is on the right boundary, so we increment gradient(g).

Placement 129

Figure 4.24. (a) Bounding box of n1 = {a, e, g}, where g is on the right boundary,
(b) bounding box of n9 = {b, g, i, m}, where g is on the right boundary.

We have gradient(g) = 2. Both cell d and g are shifted to the right by
2. Thus,

ΔWS = gradient(d) · shift amount(d) +
gradient(g) · shift amount(g) = 2 · 2 + 2 · 2 = 8

Based on the calculation of ΔW and ΔWS , we get

ΔC = ΔW + ΔWS = −10 + 8 = −2

6. Perform swap (k,m). What is the change on the wirelength cost?

Figure 4.25 shows the placement before and after the swap. We shift cell c
to the left because the middle row receives the wider cell (= k), and cell o
and c are on the shorter side of the row.

(a) Computation of ΔW : The set of nets containing k is {n3, n6, n10}, and
m is {n5, n9}. Then,

Δ(n3) = w′(n3) − w(n3) = 25 − 24 = 1
Δ(n6) = w′(n6) − w(n6) = 16 − 23 = −7
Δ(n10) = w′(n10) − w(n10) = 13 − 23 = −10
Δ(n5) = w′(n5) − w(n5) = 21 − 12 = 9
Δ(n9) = w′(n9) − w(n9) = 22 − 22 = 0

130 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

a j l b h

o c m d g

f e i k n

5 10 15
(a)

a j l b h

o c k d g

f e i m n

5 10 15
(b)

15

10

 5

Figure 4.25. (a) Before swapping (k, m), (b) after the swap. Cell c is shifted to the left.

Thus,

ΔW = Δ(n3) + Δ(n6) + Δ(n10) + Δ(n5) + Δ(n9) = −7

(b) Estimation of ΔWS: The nets that contain c are n3 = {b, c, k, n}, and
n7 = {c, e, f, h, n}. Figure 4.26 shows the bounding boxes of these
nets. We start with gradient(c) = 0:

n3: c is on the left boundary, so we decrement gradient(c).

n7: c is not on any boundary, so we do not change gradient(c).

Thus, gradient(c) = −1. Since c is shifted to the left by 1,

shift amount(c) = −1

Lastly,

ΔWS = gradient(c) · shift amount(c) = −1 · −1 = 1

Based on the calculation of ΔW and ΔWS , we get

ΔC = ΔW + ΔWS = −7 + 1 = −6

Placement 131

a j l b h

o c k d g

f e i m n

5 10 15
(b)

a j l b h

o c k d g

f e i m n

5 10 15
(a)

15

10

 5

Figure 4.26. (a) Bounding box of n3 = {b, c, k, n}, where c is on the left boundary,
(b) bounding box of n7 = {c, e, f, h, n}, where c is not on any boundary.

132 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

4. More Practice Problems

1. Perform quadrature mincut placement on the circuit shown in Figure 4.27
starting with a vertical cut first, and place the gates into 2 × 4 grid. Show
the placement after each cut. The area skew is set to zero.

2. Perform the recursive bipartitioning mincut on the circuit shown in Figure
4.27 starting with a vertical cut first, and place the gates into 2 × 4 grid.
Use terminal propagation, where the terminals located within the mid-third
window should be ignored. Show the placement after each cut. The area
skew is set to zero.

3. Perform GORDIAN placement at the optimization level 3 by adding four
vertical cutlines into the partitioning result shown in Figure 4.16 and Fig-
ure 4.17. Partitions p1

12 and p3 are to be divided evenly, p2 into 2-to-1
(= left partition contains 2 cells), and p4 into 1-to-2. Show the quadratic
programming formulation and placement figure.

4. Perform GORDIAN-L placement [Sigl et al., 1991a] on the circuit shown in
Figure 4.11. Use the same set of assumptions and partitioning patterns used
in the practice problem in Section 2. Show the first three-level placement
results (l = 0, 1, 2).

5. Perform GORDIAN placement (first three levels only) on the circuit shown
in Figure 4.27. Use the same set of assumptions and partitioning patterns
used in the practice problem in Section 2. Assume that the IO pads are fixed
at the following locations: w1(0, 2), w2(0, 3), w3(1, 4), z1(4, 1), z2(4, 2).

6. Consider the gate-level netlist shown in Table 4.2 and its standard cell
placement shown in Figure 4.19(a). Perform the following swaps in the
given order and compute the change in the wirelength:

g

d

e

f

hb

c

a
w1

w2

w3

z1

z2

Figure 4.27. A gate-level circuit.

12Break the tie by partitioning c to the left.

Placement 133

(a) Swap (a, k)

(b) Swap (h, j)

(c) Swap (m, f)

Use the “Model B” of TimberWolf 7.0 [Sun and Sechen, 1995] when esti-
mating the wirelength change from cell shifting. Use the lower left cor-
ner of each cell to represent the cell location. When selecting the cells
to be shifted, try to minimize the number of cells being shifted. The x-
coordinates of the cells should be non-negative.

134 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

5. Probing Further
Disclaimer: The list here is meant to be representative, not comprehen-

sive. A comprehensive survey on circuit placement algorithms is provided in
[Shahookar and Mazumder, 1991; Cong et al., 2005; Nam and Cong, 2007].

Mincut Placement
The authors of [Suaris and Kedem, 1989] developed a standard cell place-

ment procedure based on recursively partitioning the netlist into four parts
(instead of two parts as in the traditional approaches), while minimizing the
partitioning cost. Their cost function prefers vertical wiring compared to hori-
zontal connections, which is applicable in standard cell placement.

The authors of [Zhong and Dutt, 2000] improved the traditional mincut
placement in the following ways: (1) they partition the entire circuit globally
in every level of the partitioning tree, across the current cutlines, (2) cell gain
computation is based on a global view of entire nets, thereby obviating termi-
nal propagation [Dunlop and Kernighan, 1985], (3) cell gain is minimizing the
half-perimeter cost instead of cutsize.

Capo [Caldwell et al., 2000a] is a congestion-driven recursive bisection
placer. It incorporates a multilevel min-cut partitioner [Alpert et al., 1998],
techniques for partitioning with small tolerance [Caldwell et al., 2000b], and
end-case min-wirelength placers [Caldwell et al., 2000c]. The authors show
that despite a potential mismatch of objectives, improved mincut bisection can
still lead to improved wirelength and congestion.

The authors of [Ou and Pedram, 2000] presented a timing-driven mincut
placer that is based on solving a quadratic programming problem iteratively.
In its timing-driven partitioning, the authors control the number of times that a
path in the circuit can be cut. In addition, a pre-locking mechanism and timing-
aware terminal propagation are integrated into the flow. The detailed placement
step is formulated as a constrained quadratic program and solved efficiently.

Dragon [Wang et al., 2000] performs placement in two steps: global and
detailed placement. During the global placement step, a hMetis-based [Karypis
et al., 1997] top-down quadrisection and terminal propagation is performed
first, followed by simulated annealing based refinement. During the detailed
placement step, cell overlaps are removed first, and a greedy cell exchange
algorithm is used to further reduce wirelength.

Fengshui [Yildiz and Madden, 2001] improves the traditional mincut place-
ment by adopting a dynamic programming approach to cut sequence gen-
eration. The authors developed a mathematical foundation for wirelength
estimation in mincut placement, allowing the determination of an optimal
cut sequence under a simplified model. Based on this study of the optimal
sequences, they proposed a simple method to construct sequences that are near
optimal.

Placement 135

The authors of [Alpert et al., 2003b] proposed an enhancement to min-
cut placement called analytic constraint generation (ACG). ACG utilizes an
analytic engine to distribute available free space appropriately by determin-
ing balance constraints for each partitioning step. This is useful in handling
IP blocks and large macro cells since they tend to cause an increase in the
available free space.

The authors of [Kahng and Reda, 2006] improved the accuracy of terminal
propagation by a “placement feedback” mechanism. At each level of mincut
placement, all blocks are partitioned first. Then they “undo” all the partitioning
but keep the node locations as assigned by the partitioning. Lastly, they use
these node locations to “redo” terminal propagation and block partitioning.
This yields substantial reductions in wirelength and congestion.

GORDIAN Algorithm
The quadratic wirelength objective in Gordian [Kleinhans et al., 1991] is

replaced with a linear wirelength objective in Gordian-L [Sigl et al., 1991b].
It is generally believed that the quadratic objective tends to make long nets
shorter than the linear objective at the expense of short nets. Thus, the total
wirelength tends to be shorter with the linear objective. The authors presented
an iterative method to minimize the linear wirelength using quadratic program-
ming.

The author of [Vygen, 1997] combined quadratic placement with quadri-
section approach. The quadrisection partitions the circuit into 4 regions based
on the positions obtained by the quadratic optimization so that the capacity
constraint is satisfied and the total displacement is minimized. The goal is to
preserve the placement quality obtained with the quadratic placement while
removing the overlap among the cells.

Kraftwerk [Eisenmann and Johannes, 1998] is a force-directed global placer.
Besides the traditional wirelength dependent forces, which is formulated as a
quadratic objective, the authors use additional forces to reduce cell overlaps
and to consider the placement area. This iterative approach is shown to be
flexible to handle various objectives such as area, timing, congestion and heat
distribution.

Mongrel [Hur and Lillis, 2000] is a two-step standard cell placer. Their
global placement is based on the Relaxation-Based Local Search (RBLS)
framework, in which a combinatorial search mechanism is driven by an ana-
lytical engine. This enables a more global view of the problem and results
in complex modifications of the placement in a single search move. When a
global placement has converged, a detailed placement is formed and further
optimized by an optimal interleaving technique.

mPL [Chan et al., 2003] is a multi-level placer, where the original circuit
is coarsened in a bottom-up hierarchical fashion and placed in a top-down

136 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

recursive manner. The enhancements added to mPL include (1) unconstrained
quadratic relaxation at every level of the hierarchy; (2) improved interpolation
(de-clustering) method, and (3) better quadratic placement refinement using
additional geometric information for aggregation in subsequent refinement.

Grid-warping [Xiu et al., 2004] is a unique placement algorithm based on
a simple idea: rather than moving the gates to optimize their location, they
elastically deform the 2D grid surface on which the gates have been roughly
placed. They stretch the grid until the gates arrange themselves to meet the
goals. Deforming the elastic grid is a simple, low-dimensional nonlinear opti-
mization, and augments a traditional quadratic formulation.

APlace [Kahng and Wang, 2005] is a multi-level analytic placer for mixed-
size placement. The authors presented an effective objective function for
spreading cells over the placement area while reducing wirelength and con-
gestion. Timing objective is also considered during placement. They extended
the placer to perform I/O-core co-placement and handle various geometric
constraints for mixed-signal designs.

mFAR [Hu and Marek-Sadowska, 2005] is a multi-level analytic placer,
where the placement problem is formulated as a quadratic program with non-
linear constraints. Since these non-linear constraints are difficult to handle,
the authors solve the unconstrained version that causes overlaps among the
cells. The authors introduce fixed points into the non-constrained quadratic-
programming formulation. These fixed points act as pseudo-cells to pull cells
away from the dense regions to reduce overlapping.

FastPlace [Viswanathan and Chu, 2005] is a quadratic placer, where the
wirelength minimization objective is formulated as a convex quadratic pro-
gram. The authors presented an efficient cell shifting technique to remove cell
overlap from the quadratic program solution and also accelerate the conver-
gence of the solver. They also proposed a hybrid net model that is a combi-
nation of the traditional clique and star models. This net model results in a
significant speedup of the solver.

DPlace [Ren et al., 2007] is a diffusion-based placement refinement method
based on a discrete approximation to the closed-form solution of the continu-
ous diffusion equation. It has the advantage of smooth spreading, which helps
preserve neighborhood characteristics of the original placement. Applying this
technique to placement legalization demonstrates significant improvements in
wirelength and timing compared with other commonly used techniques.

TimberWolf Algorithm
The authors of [Tsay and Lin, 1995] presented a standard cell placer that

is based on cone-based clustering. They first extract cones based on signal
direction and group them to form fragments. They then perform a macro-cell
placement using TimberWolf-MC [Swartz and Sechen, 1990], treating each

Placement 137

cone as a soft macro. Next, they map the resulting macro-cell placement into a
row-based placement. Finally, they apply TimberWolf-SC [Swartz and Sechen,
1990] to refine the row-based placement.

TimberWolf 7.0 [Sun and Sechen, 1995] was extended to perform timing
optimization by the authors of [W. Swartz, 1995]. They used a timing graph to
obtain path delay equations and added to the annealing cost function to address
wirelength and timing optimization simultaneously. During the annealing pro-
cess, they primarily target a set of critical paths for delay improvement, which
is regularly updated at each iteration.

The authors of [Sun and Sechen, 1997] presented a parallel version of Tim-
berWolf 7.0 [Sun and Sechen, 1995]. Their algorithm is targeted toward net-
works of Unix workstations connected with a local area network. This is the
first reported parallel algorithm for standard cell placement which yields as
good or better placement results than its serial version. The processor utiliza-
tion is high, up to 98% for two processors and 90% for six processors.

The authors of [Chandy et al., 1997] presented another parallel version of
TimberWolf-SC [Sechen and Sangiovanni-Vincentelli, 1985]. They proposed
a parallel move strategy that is based on dynamic message sizing, message pri-
oritization, and error control. They also investigated two approaches to parallel
cell placement: multiple Markov chains and speculative computation. They
show that parallel moves and multiple Markov chains are effective approaches
to parallel simulated annealing, yet speculative computation is inadequate.

MGP [Chang et al., 2003] is a multi-level global placer for congestion man-
agement. MGP integrates a fast incremental global routing for accurately updat-
ing and optimizing congestion cost during physical hierarchy generation. A
hierarchical area density control is developed for placing objects with signifi-
cant size variations. TimberWolf 7.0 [Sun and Sechen, 1995] is used to place
the clusters at the top-level hierarchy.

Chapter 5

STEINER ROUTING

Given a set of points P in a 2D plane, the Steiner tree problem seeks a set of
additional points S so that the wirelength of minimum spanning tree (MST) of
P ∪S is minimum. Additional objectives include performance-related metrics
such as radius and delay. The rectilinear version of this problem—rectilinear
Steiner tree (RST)—has an important application in VLSI routing and has seen
a huge volume of works. This chapter presents sample problems related to the
following works:

L-shaped Steiner routing algorithm [Ho et al., 1990]

1-Steiner algorithms by Kahng and Robins [Kahng and Robins, 1992] and
by Borah, Owens, and Irwin [Borah et al., 1994]

BPRIM (Bounded Prim) and BRBC (Bounded Radius Bounded Cost) algo-
rithms [Cong et al., 1992]

A-tree algorithm [Cong et al., 1993]

ERT (Elmore Routing Tree) and SERT (Steiner Elmore Routing Tree) algo-
rithms [Boese et al., 1995]

The first two works focus on wirelength minimization, while the last three
are delay-oriented works. The first work constructs an MST first and recti-
linearize it by transforming the edges in the MST into L-shapes. The second
work transforms a given MST into a Steiner tree by adding Steiner points one-
by-one. The third work addresses the wirelength and delay (= measured by so
called radius) trade-off during rectilinear MST construction. The fourth work
builds the minimum-cost rectilinear Steiner arborescence, where the source-
sink path length is the shortest for all sinks. The last work constructs Steiner
trees that directly minimize Elmore delay objective.

S.K. Lim, Practical Problems in VLSI Physical Design Automation

c©Springer Science+Business Media B.V. 2008

140 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

1. L-Shaped Steiner Routing Algorithm
One of the most popular ways to solve the RST (Rectilinear Steiner Tree)

problem is to construct a R-MST (Rectilinear Minimum Spanning Tree) on the
original set of points and refine this tree in some way. The rationale behind this
approach is the well-known fact that the quality of any R-MST is not worse
than 3/2 of that of the optimal RST [Hwang, 1976]. In addition, the construc-
tion of R-MST can be done efficiently by the classical Prim [Prim, 1957] or
Kruskal [Kruskal, 1956] algorithm.

The L-RST (L-shaped Rectilinear Steiner Tree) algorithm [Ho et al., 1989;
Ho et al., 1990] refines an initial R-MST by replacing the Euclidean edges
in the initial R-MST with either an upper or a lower rectilinear L-shape. The
goal is to maximize the overlap between the L-shapes and the existing tree
during the replacement. If done naively, the complexity of optimally replac-
ing the edges for wirelength minimization is O(2n), where n is the number
of edges in the initial R-MST. However, L-RST algorithm solves this prob-
lem in linear time by exploiting the “separability” property, which states that
it is possible to build an R-MST so that the L-shapes among non-adjacent
edges do not overlap with each other. This property, together with the well-
known fact that the maximum degree among all nodes in any R-MST is 6,
enables an efficient (= linear time) recursive method for an optimal L-shape
replacement.

Quick Overview
The first step of L-RST algorithm is to build a separable MST. Given a set

of points P in a 2D plane, we first construct the |P |-clique using the points
in P . Each edge (i, j) in this complete graph is associated with the following
3-tuple as its weight13:

weight(i, j) = (D(i, j),−|y(i) − y(j)|,−max{x(i), x(j)}) (5.1)

where D(i, j) is the rectilinear distance between i and j, and x(i)/y(i) is
the x/y coordinate of i. This 3-tuple prefers the edges that are shorter, taller,
and located further right during the MST construction. We apply Prim [Prim,
1957] or Kruskal [Kruskal, 1956] algorithm using the 3-tuples to construct a
separable MST.

Next, we choose any node in the separable MST as the root and build a
rooted tree. The process of converting the edges in an initial separable MST
into L-shape consists two phases, namely, bottom-up and top-down tree traver-
sal. Given a node v during the bottom-up traversal of a rooted tree, let Tv

13The authors first suggested 4-tuple in their conference version [Ho et al., 1989] and later changed it to
3-tuple in their journal version [Ho et al., 1990].

Steiner Routing 141

v

parent of v

children of v

overlap

overlap

Figure 5.1. Two sources of overlap in L-RST: (1) among the edges incident on v, (2) overlaps
in the sub-trees rooted at the children of v.

denote the sub-tree rooted at v, ev denote the edge between v and its parent,
and T+

v = Tv ∪ ev.14 Our goal is to compute Φl(v) and Φu(v), where Φl(v)
denotes the L-RST of T+

v with the minimum wirelength (= maximum overlap)
under the constraint that ev is fixed to lower-L shape. Φu(v) is defined simi-
larly except that we use upper-L for ev . The total amount of overlap in T+

v is
the sum of the following two factors:

Z1: overlap in T S
v , where T S

v denotes the set of edges incident to v.

Z2: overlap in the Φ(wi), where wi denotes the children of v.

Figure 5.1 provides an illustration. Given a certain set of L-shape choices for
the edges in T S

v , we first compute Z1. Then, for each edge (v,wi), we compute
Z2 by utilizing Φl(wi) or Φu(wi) that we have already computed during the
bottom-up traversal. Lastly, we compute Φl(v) by fixing ev to lower-L and
examining all 2d L-shape choices for the children, where d is the total number
of the children. We compute Φu(v) similarly using upper-L for ev. When we
reach the root node, we first choose the L-shape orientations for the edges
incident to the root node that result in the maximum overlap. We then visit
the rest of the nodes in the tree in top-down fashion to retrieve their L-shape
orientations (see the sample problem for details).

Practice Problem
Consider the routing problem instance shown in Figure 5.2.

14We use the terminologies used in the conference version [Ho et al., 1989] instead of the journal version
[Ho et al., 1990].

142 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

a

c
i

g

d

e

h
b

f

Figure 5.2. Routing problem instance for L-RST algorithm. Node b is the root node for the
separable MST and L-RST computation.

1. Construct a separable MST using node b as the root.

We perform Prim’s MST algorithm [Prim, 1957] using the 3-tuple weights
defined in Equation (5.1). Edges that are shorter, taller, and located further
right have the priority. We initially set our separable MST T = {b}.

(a) Iteration 1: T contains three nearest neighbors: a, d, and f . These
nodes can connect to T via the following edges (sorted based on their
weights):

(b, d) = (4,−3,−4)
(b, f) = (4,−1,−7)
(b, a) = (4,−1,−4)

Thus, we add (b, d) to T based on this lexicographical order. The result-
ing tree is shown in Figure 5.3(a).

(b) Iteration 2: Node c is the nearest neighbor of the tree T shown in Fig-
ure 5.3(a). Thus, we add (c, d) to T . The resulting tree is shown in
Figure 5.3(b).

(c) Iteration 3: T shown in Figure 5.3(b) contains two nearest neighbors:
a and f . These nodes can connect to T via the following edges (sorted
based on their weights):

(a, c) = (4,−3,−2)
(a, d) = (4,−2,−3)
(b, f) = (4,−1,−7)
(b, a) = (4,−1,−4)

Thus, we add (a, c) to T based on this lexicographical order. The result-
ing tree is shown in Figure 5.3(c).

Steiner Routing 143

a

c
i

g

d

e

h
b

f a

c
i

g

d

e

h
b

f

(a) (b)

a

c
i

g

d

e

h
b

f a

c
i

g

d

e

h
b

f

(c) (d)

Figure 5.3. Adding the first four edges to the separable MST.

(d) Iteration 4: Node f is the nearest neighbor of the tree T shown in Fig-
ure 5.3(c). Thus, we add (b, f) to T . The resulting tree is shown in
Figure 5.3(d).

(e) Iteration 5: T shown in Figure 5.3(d) contains two nearest neighbors:
e and g. These nodes can connect to T via the following edges (sorted
based on their weights):

(f, g) = (5,−4,−8)
(f, e) = (5,−4,−7)

(d, e) = (5,−2,−6)

Thus, we add (f, g) to T based on this lexicographical order. The result-
ing tree is shown in Figure 5.4(e).

(f) Iteration 6: Node h is the nearest neighbor of the tree T shown in Fig-
ure 5.4(e). Thus, we add (g, h) to T . The resulting tree is shown in
Figure 5.4(f).

144 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

a

c
i

g

d

e

h
b

f a

c
i

g

d

e

h
b

f

(e) (f)

a

c
i

g

d

e

h
b

f a

c
i

g

d

e

h
b

f

(g) (h)

Figure 5.4. Adding the last four edges to the separable MST (continue from Figure 5.3).

(g) Iteration 7: Node e is the nearest neighbor of the tree T shown in Fig-
ure 5.4(f). This node can connect to T via the following edges (sorted
based on their weights):

(f, e) = (5,−4,−7)
(d, e) = (5,−2,−6)

Thus, we add (f, e) to T based on this lexicographical order. The result-
ing tree is shown in Figure 5.4(g).

(h) Iteration 8: we add (e, i) to T . The resulting tree is shown in Fig-
ure 5.4(h).

Figure 5.4(h) shows the final separable MST with the wirelength of 32.

2. Perform Ho, Vijayan, and Wong algorithm and obtain an optimal L-RST
using b as the root node.

Figure 5.5 shows Tb, the tree rooted at node b. Let Z(T) denote the amount
of overlap in tree T . We visit each non-leaf node v ∈ Tb in bottom-up
fashion and compute Φl(v) and Φu(v) as follows:

Steiner Routing 145

b

c e

d f

hi

g

a

Figure 5.5. Rooted tree Tb derived from the separable MST.

a

c
d

(a) (b)

a

c
d

Figure 5.6. Partial L-RSTs for node c, where ec = (c, d). (a) Φl(c), (b) Φu(c).

(a) Node c: First, we obtain the edge ec = (c, d).

Φl(c): (c, d) is fixed to lower-L. Figure 5.6(a) shows Φl(c). We
assign lower-L to (c, a) in order to maximize the overlap in T S

c .
Thus, Z(Φl(c)) = 1.

Φu(c): (c, d) is fixed to upper-L. Figure 5.6(b) shows Φu(c). The
orientation of (c, a) is irrelevant because no overlap occurs in T S

c .
Thus, Z(Φu(c)) = 0.

(b) Node e: First, we obtain the edge ee = (e, f).

Φl(e): (e, f) is fixed to lower-L. Figure 5.7(a) shows Φl(e). The
orientation of (e, i) is irrelevant because no overlap occurs in T S

e .
Thus, Z(Φl(e)) = 0.

Φu(e): (e, f) is fixed to upper-L. Figure 5.7(b) shows Φu(e). We
assign lower-L to (e, i) in order to maximize the overlap in T S

e .
Thus, Z(Φu(e)) = 1.

(c) Node g: First, we obtain the edge eg = (g, f).

146 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

i
e

f

(a) (b)

i
e

f

Figure 5.7. Partial L-RSTs for node e, where ee = (e, f). (a) Φl(e), (b) Φu(e).

g
h

f

(a) (b)

g
h

f

Figure 5.8. Partial L-RSTs for node g, where eg = (g, f). (a) Φl(g), (b) Φu(g).

Φl(g): (g, f) is fixed to lower-L. Figure 5.8(a) shows Φl(g). The
orientation of (g, h) is irrelevant because no overlap occurs in T S

g .
Thus, Z(Φl(g)) = 0.

Φu(g): (g, f) is fixed to upper-L. Figure 5.8(b) shows Φu(g). We
assign upper-L to (g, h) in order to maximize the overlap in T S

g .
Thus, Z(Φu(g)) = 1.

(d) Node d: First, we obtain the edge ed = (d, b).

Φl(d): (d, b) is fixed to lower-L. Figure 5.9(a) shows Φl(d). There
is no overlap in T S

d , but we choose lower-L for (d, c) because
Z(Φl(c)) > Z(Φu(c)) from Part (a). Thus,

Z(Φl(d)) = Z(T S
d) + max{Z(Φl(c)), Z(Φu(c))}

= 0 + max{1, 0} = 1

Steiner Routing 147

a

c

d

b

(a) (b)

a

c

d

b

Figure 5.9. Partial L-RSTs for node d, where ed = (d, b). (a) Φl(d), (b) Φu(d).

Φu(d): (d, b) is fixed to upper-L. Figure 5.9(b) shows Φu(d). There
is no overlap in T S

d , but we choose lower-L for (d, c) because
Z(Φl(c)) > Z(Φu(c)) from Part (a). Thus,

Z(Φu(d)) = Z(T S
d) + max{Z(Φl(c)), Z(Φu(c))}

= 0 + max{1, 0} = 1

(e) Node f : First, we obtain the edge ef = (f, b).

Φl(f): (f, b) is fixed to lower-L. Since f has two children e and g,
we consider the following four cases to compute the total amount
of overlap in Φl(f). We use the results from Part (b) and Part (c):

(i) lower-L for both (f, e) and (f, g): we have

Z(Φl(f)) = Z(T S
f) + Z(Φl(e)) + Z(Φl(g))

= 1 + 0 + 0 = 1

(ii) lower-L for (f, e) and upper-L for (f, g): we have

Z(Φl(f)) = Z(T S
f) + Z(Φl(e)) + Z(Φu(g))

= 0 + 0 + 1 = 1

(iii) upper-L for (f, e) and lower-L for (f, g): we have

Z(Φl(f)) = Z(T S
f) + Z(Φu(e)) + Z(Φl(g))

= 1 + 1 + 0 = 2

148 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

i

g

e

h

b f

(a) (b)

i

g

e

h

b f

Figure 5.10. Partial L-RSTs for node f , where ef = (f, b). (a) Φl(f), (b) Φu(f). Node f has
two children e and g.

(iv) upper-L for both (f, e) and (f, g): we have

Z(Φl(f)) = Z(T S
f) + Z(Φu(e)) + Z(Φu(g))

= 0 + 1 + 1 = 2

Thus, the maximum overlap occurs in two cases. We break the tie
randomly and choose the first case, where we use upper-L for (f, e)
and lower-L for (f, g). This Φl(f) is shown in Figure 5.10(a).
Φu(f): (f, b) is fixed to upper-L. We again consider the following
four cases to compute the total amount of overlap in Φu(f):
(i) Lower-L for both (f, e) and (f, g): we have

Z(Φu(f)) = Z(T S
f) + Z(Φl(e)) + Z(Φl(g))

= 1 + 0 + 0 = 1

(ii) Lower-L for (f, e) and upper-L for (f, g): we have

Z(Φu(f)) = Z(T S
f) + Z(Φl(e)) + Z(Φu(g))

= 1 + 0 + 1 = 2

(iii) Upper-L for (f, e) and lower-L for (f, g): we have

Z(Φu(f)) = Z(T S
f) + Z(Φu(e)) + Z(Φl(g))

= 0 + 1 + 0 = 1

(iv) Upper-L for both (f, e) and (f, g): we have

Z(Φu(f)) = Z(T S
f) + Z(Φu(e)) + Z(Φu(g))

= 0 + 1 + 1 = 2

Steiner Routing 149

Thus, the maximum overlap occurs in two cases. We break the tie
randomly and choose the first case, where we use lower-L for (f, e)
and upper-L for (f, g). This Φu(f) is shown in Figure 5.10(b).

(f) Node b: b has two children d and f . So, we examine the following four
cases and pick the best solution. We use the results from Part (d) and
Part (e):

(i) Lower-L for both (b, d) and (b, f): we have

Z(Φ(b)) = Z(T S
b) + Z(Φl(d)) + Z(Φl(f))

= 0 + 1 + 2 = 3

(ii) Lower-L for (b, d) and upper-L for (b, f): we have

Z(Φ(b)) = Z(T S
b) + Z(Φl(d)) + Z(Φu(f))

= 0 + 1 + 2 = 3

(iii) Upper-L for (b, d) and lower-L for (b, f): we have

Z(Φ(b)) = Z(T S
b) + Z(Φu(d)) + Z(Φl(f))

= 0 + 1 + 2 = 3

(iv) Upper-L for both (b, d) and (b, f): we have

Z(Φ(b)) = Z(T S
b) + Z(Φu(d)) + Z(Φu(f))

= 1 + 1 + 2 = 4

Thus, the maximum overlap of 4 occurs when we assign upper-L for
both (b, d) and (b, f).

3. Construct the final L-RST.

We visit each node v ∈ Tb shown in Figure 5.5 in top-down fashion and
obtain the L-shape orientations of the edges in Tb.

(a) Node b: we choose Φu(d) and Φu(f) to maximize the overlap. Thus,
we assign upper-L to both (d, b) and (f, b).

(b) Node d: Φu(d) requires Φl(c). Thus, we assign lower-L to (c, d).
(c) Node f : Φu(f) requires Φl(e) and Φu(g). Thus, we assign lower-L to

(e, f) and upper-L to (g, f).
(d) Node c: Φl(c) requires Φl(a). Thus, we assign lower-L to (a, c).
(e) Node e: Φl(e) requires either Φl(i) or Φu(i). Thus, we can assign either

lower-L or upper-L to (i, e).
(f) Node g: Φu(g) requires Φu(h). Thus, we assign upper-L to (h, g).

150 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

a

c
i

g

d

e

h
b

fa

c
i

g

d

e

h
b

f

(a) (b)

Figure 5.11. (a) Initial separable MST, (b) final L-RST.

(b)

a

c
i

g

d

e

h
b

f

(a)

a

c
i

g

d

e

h
b

f

Figure 5.12. (a) L-MST with Steiner points shown in X and alternate staircase segments
shown in dotted line, (b) staircase rerouting does not cause any additional overlap.

Figure 5.11 shows the final L-RST. The total wirelength is 28. The wire-
length of the initial separable MST is 32, and the total overlap is 4. This
agrees with the calculation 28 = 32 − 4.

4. Show that the resulting L-RST is stable under re-routing.

Figure 5.12(a) shows the L-RST we obtained. The Steiner points are marked
with X, and alternate staircase segments are shown in dotted line. Fig-
ure 5.12(b) shows that using these alternate paths do not result in any
additional overlaps (= wirelength reduction).

Steiner Routing 151

2. 1-Steiner Routing Algorithms
Given a set of points P along with its Minimum Spanning Tree (MST),

denoted MST (P), the 1-Steiner problem seeks one additional Steiner point
s so that the wirelength of MST (P ∪ s) is shorter than that of MST (P).
The point s is called 1-Steiner point. Note that the solution to this problem
can be used to iteratively insert as many 1-Steiner points until no more wire-
length improvement is possible. This approach—adding one Steiner point at a
time—is quite different from the L-RST algorithm [Ho et al., 1990], where the
edges in the given initial MST is rectilinearized into L-shapes. The authors of
[Georgakopoulos and Papadimitriou, 1987] solved the 1-Steiner problem by a
computational geometry-based method for Euclidean space, and the authors of
[Kahng and Robins, 1992] extended this method to rectilinear space for VLSI
routing application.

Kahng and Robins presented two 1-Steiner algorithms [Kahng and Robins,
1992]: naive and sophisticated. The O(n5)-time naive algorithm constructs
MST for all possible 1-Steiner point locations and choose the best loca-
tion. The sophisticated algorithm adopts the method in [Georgakopoulos and
Papadimitriou, 1987] for more efficient computation of 1-Steiner computation
and runs in O(n3).15 It has been shown in [Kahng and Robins, 1992] that
these 1-Steiner algorithms provide better quality solutions compared with L-
RST algorithm [Ho et al., 1990] but at the cost of longer runtime. The 1-Steiner
heuristic presented by Borah, Owens, and Irwin [Borah et al., 1994] produces
results that are comparable to [Kahng and Robins, 1992] but with a complexity
of only O(n2). This method improves an initial MST by finding the shortest
edge between a node in P and any point along any MST edge. If the edge is
inserted, a cycle is formed. Then, the removal of the longest edge on this cycle
may result in wirelength reduction of the MST.

Quick Overview
The “naive” 1-Steiner algorithm presented in [Kahng and Robins, 1992]

works in an iterative fashion: given an initial MST we first identify all possible
locations of 1-Steiner points, usually based on Hanan grid [Hanan, 1966]. We
then insert a 1-Steiner point at each candidate location and build its MST. The
last step is to choose the MST with the minimum wirelength, which serves as
the initial MST for the next 1-Steiner point insertion. This entire exhaustive
search repeats until there is no more wirelength improvement.

The 1-Steiner heuristic presented by Borah, Owens, and Irwin [Borah et al.,
1994] starts by computing the gain of all (node, edge) pairs in the MST. For a

15This book provides a sample problem on the naive algorithm only. The sophisticated algorithm is outside
the scope of this book.

152 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

i
p1

e1

e2

p

j

i
p1

p

j

(a) (b) (c)

i
p1

e1

e2

j

Figure 5.13. (a) Node p1 and edge (i, j) are paired, (b) connecting p1 and e1 = (i, j) creates
a cycle. e2 is the longest edge in the cycle. p is the point along the rectilinear layout of (i, j)
that is closest to p1, (c) insertion of p causes e1 and e2 to be removed and (p, p1), (p, i), and
(p, j) to be added.

given pair {p1, e1 = (i, j)}, the gain of 1-Steiner point insertion is computed
as follows (see Figure 5.13):

gain{p1, (i, j)} = length(e2) − length(p, p1) (5.2)

where e2 is the longest edge along the cycle formed by connecting p1 and (i, j),
and p, the 1-Steiner point, is the point along the “rectilinear” layout of (i, j)
that is the closest to p1. All length and distance values are based on rectilinear
space. Upon the insertion of p as the 1-Steiner point, we remove (i, j) and e2

and connect p to p1, i, and j. Note that e2 is removed and (p, p1) is added after
inserting p, which explains the gain computation in Equation (5.2).

The algorithm consists of multiple passes. In each pass we first compute
the gain for all (node, edge) pairs. Then we select only the maximum gain
pair for each edge and sort them in a descending order of their gain values.
Note that some edges are removed during 1-Steiner point insertion, namely,
e1 and e2. Thus, some pairs are infeasible if some of the required edges are
removed during the earlier 1-Steiner point insertion. We process only the fea-
sible edges in the sorted order in each pass. After all the feasible pairs are
processed, we attempt the next pass using the final MST from the current pass
as its initial MST. We terminate the algorithm if the current pass cannot reduce
the wirelength any further.

Practice Problem
Consider the routing problem instance shown in Figure 5.14(a). Figure

5.14(b) shows an initial MST with rectilinear wirelength of 20.

1. Perform 1-Steiner point insertion using the “naive” method presented in
[Kahng and Robins, 1992].

Steiner Routing 153

a

b

d

c
e

f

a

b

d

c
e

f

(a) (b) WL=20 (c)

Figure 5.14. (a) Routing problem instance for the 1-Steiner algorithm shown in Hanan grid,
(b) initial MST with rectilinear wirelength of 20, (c) candidate locations (shown in X) for Steiner
point insertion.

a

b

d

c
e

f

(a) WL=19

a

b

d

c
e

f

(b) WL=19

a

b

d

c
e

f

(e) WL=19

a

b

d

c
e

f

(c) WL=18

a

b

d

c
e

f

(d) WL=18

a

b

d

c
e

f

(f) WL=19

Figure 5.15. Insertion of the first 1-Steiner point. (a–f) 1-Steiner points (shown in dotted
circles) that reduce the wirelength of the initial MST.

(a) First 1-Steiner point: The initial MST shown in Figure 5.14(b) con-
tains 16 candidate locations for 1-Steiner point insertion as shown in
Figure 5.14(c). Figure 5.15 shows 6 1-Steiner points that reduce the
wirelength of this initial MST. The MSTs shown in Figure 5.15(c) and
Figure 5.15(d) have the same minimum wirelength of 18.

(b) Second 1-Steiner point: We start with the MST shown in Fig-
ure 5.15(c).16 Figure 5.16 shows three 1-Steiner points that reduce the

16See the related practice problem #6 on page 190.

154 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

a

b

d

c
e

f

(a) WL=17

a

b

d

c
e

f

(b) WL=17

a

b

d

c
e

f

(c) WL=17

Figure 5.16. Insertion of the second 1-Steiner point. (a–c) 1-Steiner points (shown in dotted
circles) that reduce the wirelength of the initial MST.

a

b

d

c
e

f

WL=16

Figure 5.17. Insertion of the third 1-Steiner point.

wirelength of this initial MST. All three MSTs have the same minimum
wirelength of 17.

(c) Third 1-Steiner point: The first two MST shown in Figure 5.16(a) and
Figure 5.16(b) do not contain a 1-Steiner point that reduces the wire-
length further. However, the MST shown in Figure 5.16(c) contains a
1-Steiner point. Figure 5.17 shows the MST after inserting the third 1-
Steiner point. This final MST has wirelength of 16, and all of the MST
edges are rectilinearized.

2. Perform a single pass of 1-Steiner point insertion using the edge-based
heuristic presented in [Borah et al., 1994].

First, we compute the maximum gain (node, edge) pair for each edge in the
initial MST shown in Figure 5.14(b) as follows:

(a) Edge (a, c): Out of the four nodes (= b, d, e, f), b is the only node that
can pair up with (a, c) because d and e are “blocked” by edge (b, c).
In case of f , the location of Steiner point coincides with c, making it
impossible for 1-Steiner point insertion.
Figure 5.18 shows how to compute the gain for the {b, (a, c)} pair.
We first let p1 = b and e1 = (a, c). Next, we compute the shortest

Steiner Routing 155

a

b d

c
e

f

a

b
d

c
e

f

(a) (b) (c)

a

b=p1 d

c
e

f

e1

e2p p

Figure 5.18. Computing the gain for the {b, (a, c)} pair for 1-Steiner point insertion. (a) Initial
MST with wirelength 20, (b) Steiner point p, the nearest point between b and (a, c), is identified.
Also, e2 is the longest edge on the b-to-a path. (c) Tree after inserting p and deleting e1 and e2.
The wirelength is now reduced to 18.

Manhattan distance between p1 and e1, which is 2 in this case. The
node p shown in Figure 5.18(b) corresponds to the nearest point on a
“rectilinear layout” of e1 to p1. Next, we look for e2, the longest edge
on p1-to-a path, which is e2 = (b, c). Thus,

gain{b, (a, c)} = length(e2) − length(p, p1) = 4 − 2 = 2

We connect p to p1 and the two end points of e1 (= a and c) as shown in
Figure 5.18(c). The total rectilinear wirelength of this final tree is 18.
This verifies our gain computation 18 = 20 − 2, where the 20 is the
rectilinear wirelength of the initial MST tree shown in Figure 5.18(a),
and the 2 is the gain value we computed. Thus, {b, (a, c)} is the only
pair with positive gain.

(b) Edge (b, c): There are three nodes that can pair up with (b, c) for
1-Steiner point insertion, namely, a, d, and e. We see from Figure 5.19
that all three nodes have positive gain as follows:

gain{a, (b, c)} = length(a, c) − length(p, a) = 4 − 2 = 2
gain{d, (b, c)} = length(b, d) − length(p, d) = 5 − 4 = 1
gain{e, (b, c)} = length(c, e) − length(p, e) = 4 − 3 = 1

The {a, (b, c)} pair has the maximum gain of 2.

156 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

a
b

d

c
e

f

a
b

d

c
e

f

p

a
b

d

c
e

f

a
b

d

c
e

f

p

a
b

d

c
e

f

a

b

d

c
e

f

gain=2

gain=1

gain=1

p

Figure 5.19. 1-Steiner point insertion for edge (b, c). The {a, (b, c)} pair has the maximum
gain of 2.

(c) Edge (b, d): There are two nodes that can pair up with (b, d) for
1-Steiner point insertion, namely, c and e. We see from Figure 5.20
that both c and e have positive gain as follows:

gain{c, (b, d)} = length(b, c) − length(p, c) = 4 − 3 = 1
gain{e, (b, d)} = length(b, c) − length(p, e) = 4 − 3 = 1

Both pairs have the maximum gain of 1.17

(d) Edge (c, e): There are three nodes that can pair up with (c, e) for
1-Steiner point insertion, namely, b, d, and f . We see from Figure 5.21
that all three of them have positive gain as follows:

gain{b, (c, e)} = length(b, c) − length(p, b) = 4 − 3 = 1
gain{d, (c, e)} = length(b, d) − length(p, d) = 5 − 4 = 1
gain{f, (c, e)} = length(e, f) − length(p, f) = 3 − 2 = 1

All three pairs have the maximum gain of 1.

17Note that edge (c, e) can be removed for the {e, (b, d)} pair instead of (b, c).

Steiner Routing 157

a
b

d

c
e

f

a
b

d

c
e

f

p

a

b d

c

e

f

a

b

d

c
e

f

gain=1

gain=1

p

Figure 5.20. 1-Steiner point insertion for edge (b, d). Both pairs {c, (b, d)} and {e, (b, d)}
have the maximum gain of 1.

(e) Edge (e, f): Node c is the only node that can pair up with (e, f) for
1-Steiner point insertion. We see from Figure 5.22 that the {c, (e, f)}
pair has positive gain as follows:

gain{c, (e, f)} = length(c, e) − length(p, c) = 4 − 3 = 1

Table 5.1 shows the maximum gain pair for each edge, where ties are bro-
ken randomly.18 Our next step is to visit these pairs in a descending order of
their gain values. We first choose {b, (a, c)} and perform 1-Steiner inser-
tion as shown in Figure 5.23(b). Since this insertion removes two edges,
namely, e1 = (a, c) and e2 = (b, c), all other pairs in Table 5.1 that have
these edges as their e1 or e2 cannot be used. Thus, we skip {a, (b, c)},
{c, (b, d)}, and {b, (c, e)}. Since the last pair {c, (e, f)} is not involved
with (a, c) nor (b, c), we choose this pair and perform 1-Steiner insertion
as shown in Figure 5.23(c). This final MST has the wirelength of 17.

3. Compare the Steiner trees built by the two algorithms in terms of wire-
length.

Figure 5.24 shows the comparison. The tree built by Kahng and Robins
algorithm [Kahng and Robins, 1992] has a shorter wirelength.

18See the related practice problem #6 on page 190.

158 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

a

b d

c
e

f

a

b

d

c
e

f

a
b

d

c
e

f

a
b

d

c
e

f

p

a

b d

c
e

f

a

b

d

c

e

f

gain=1

gain=1

gain=1

p

p

Figure 5.21. 1-Steiner point insertion for edge (c, e). All three pairs {b, (c, e)}, {d, (c, e)},
and {f, (c, e)} have the maximum gain of 1.

a

b d

c

e

f

a

b

d

c

e

f

gain=1
p

Figure 5.22. 1-Steiner point insertion for edge (e, f). This single pair {c, (e, f)} has the
maximum gain of 1.

Steiner Routing 159

Table 5.1. Maximum gain pair for each edge.

Pair Gain e1 e2

{b, (a, c)} 2 (a, c) (b, c)
{a, (b, c)} 2 (b, c) (a, c)
{c, (b, d)} 1 (b, d) (b, c)
{b, (c, e)} 1 (c, e) (b, c)
{c, (e, f)} 1 (e, f) (c, e)

a

b d

c
e

f

a

b
d

c
e

f

(a) (b) (c)

a

b
d

c

e

f

pp

Figure 5.23. Single iteration of 1-Steiner point insertion. (a) Original MST with wirelength
20, (b) after utilizing {b, (a, c)}, (c) after utilizing {c, (e, f)}, where the final wirelength is 17.

(a) (b)

a

b
d

c
e

f

a

b

d

c
e

f

Figure 5.24. (a) Steiner tree built by the Kahng/Robins algorithm with wirelength of 16,
(b) Steiner tree built by the Borah/Owens/Irwin algorithm with wirelength of 17.

160 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

3. Bounded Radius Routing Algorithms
Given a routing tree of a signal net, the radius is defined to be the longest

source-sink path length among all sinks. The minimization of radius has been a
focus of performance-oriented Steiner tree construction because the reduction
of sink-source path length naturally translates to sink-source delay reduction
and thus better performance. In addition to the radius reduction, the total wire-
length is still important for performance optimization due to the capacitive
effect of wires. The Bounded Radius Minimum Routing Tree (BR-MRT) prob-
lem seeks a rectilinear spanning tree with minimum wirelength under a given
radius bound.

Cong, Kahng, Robins, Sarrafzadeh, and Wong presented two algorithms for
the construction of BR-MST [Cong et al., 1992]: Bounded Prim (BPRIM),
and Bounded Radius Bounded Cost (BRBC). BPRIM is a simple extension
of the Prim’s MST algorithm [Prim, 1957], where the growth of tree is con-
trolled by the radius bound. Every time a node y is added to the growing tree
via an edge (x, y), we make sure the radius bound is not violated. Otherwise,
we seek another node x′ in the tree, so called “appropriate” node, so that the
radius bound is satisfied after inserting (x′, y). BRBC algorithm extended the
“shallow-light” tree construction algorithm by Awerbuch, Baratz, and Peleg
[Awerbuch et al., 1990], which was originally designed for communication
protocols. The goal is to construct spanning trees that have bounded wirelength
and diameter values. Total wirelength is at most (2 + 2/ε) times that of a min-
imum spanning tree, while the diameter is at most (1 + 2ε) times that of the
diameter of the node set. The ε parameter is used to trade off wirelength and
diameter.

Quick Overview
Given a set of nodes P including a source s, BPRIM algorithm starts with

an initial tree T that contains s only. The goal, as in Prim’s MST algorithm,
is to add edges one by one to grow T until T spans all nodes in P so that the
radius is bounded and the wirelength is minimized. Every time we add an edge
to grow T , we look for the closest neighbor to T among the nodes not in T .
Assume we attempt to add an edge (x, y), where x ∈ T and y /∈ T is the
closest neighbor. The radius bound is violated if:

distT (s, x) + dist(x, y) > (1 + ε) · R
where distT (s, x) denotes the path length between s and x measured on T ,
dist(x, y) is the rectilinear distance between x and y, ε is the user-specified
constant, and R is the radius of P . This equation is checking to see if the
distance between the source and y measured on T is larger than the bound
that is calculated based on R. If not, we add (x, y) into T . Otherwise, we seek

Steiner Routing 161

another node x′ in the tree, so called “appropriate” node, so that the radius
bound is satisfied after inserting (x′, y). In order to find x′, we back-trace from
x to s and find the first node that satisfy:

distT (s, x′) + dist(x′, y) ≤ R

Note that we use a tighter condition than the original radius bound, i.e., R
instead of (1 + ε) · R. The authors of [Cong et al., 1992] note that this helps
reduce the number of appropriate edges used. Note that the more appropriate
edges we use, the longer the wirelength tends to become.

We start BRBC algorithm by constructing an MST of P and setting it to
Q = MST (P). Next, we obtain a rooted tree version of MST (P), denoted
Ts. We then perform a depth-first traversal on Ts and obtain a node ordering
L, where the nodes are listed in L based on the order they are visited during
the traversal. Next, we traverse L while computing S, where S is simply the
total cost of visited edges so far during the traversal. Given a node Li ∈ L, we
check to see if:

ε · dist(s, Li) < S

where dist(s, Li) is the rectilinear distance between s and Li. If so, we reset
S = 0 and add the edge (s, Li) into Q. After we traverse all nodes in L and
finish adding edges to Q, we compute a shortest path tree (SPT) on Q. This
SPT is the final BR-MST.

Practice Problem
Consider the routing problem instance shown in Figure 5.25. Break ties in

alphabetical order.

1. What is the radius R of this signal net?

The radius R = 12, which corresponds to the rectilinear distance between
the source s and h, the farthest sink.

a

b h

c

d

g

e

s f

Figure 5.25. Problem instance for the bounded-radius routing algorithms. Node s is the
source.

162 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

a

b h

c

d

g

e

s f

(a) (b)

a

b h

c

d

g

e

s f

a

b h

c

d

g

e

s f

(c) (d)

a

b h

c

d

g

e

s f

a

b h

c

d

g

e

s f

(e) (f)

(g) (h)

a

b h

c

d

g

e

s f

a

b h

c

d

g

e

s f

a

b h

c

d

g

e

s f

Figure 5.26. BPRIM algorithm under ε = 0, i.e., the radius bound is 12. The dotted lines
denote the “appropriate” edges [Cong et al., 1992].

Steiner Routing 163

2. Construct BR-MSTs using BPRIM algorithm under ε = 0, ε = 0.5, and
ε = ∞. Compare these trees in terms of radius and wirelength.

(a) ε = 0: Figure 5.26 shows the illustration of the BPRIM algorithm
progress. In addition, Table 5.2 shows the summary. The entries under
the “min dist(x, y)” are the edges to closest neighbors of the current
tree that is growing. In case of ties, we choose the edge based on alpha-
betical order. The entries under the “distT (s, x) + dist(x, y)” are the
distance from the source s to the selected closest neighbor y. If this dis-
tance is larger than the bound 12, we start back-tracing from x back to
s and search for the first “appropriate” node x′, where the s → x′ → y
path is shorter than the radius bound.

(b) ε = 0.5: Figure 5.27 shows the illustration of the BPRIM algorithm
progress. Table 5.3 shows the summary.

(c) ε = ∞: This case corresponds to Prim’s MST construction. There
is no appropriate edge used. Figure 5.28 shows the illustration of the
algorithm progress.

Figure 5.29 shows the comparison among the three BR-MSTs built.19 We
observe that as ε increases (0, 0.5, ∞), the radius bound increases (12, 18,
∞), the actual radius increases (12, 18, 22), and the wirelength decreases
(56, 49, 36).

3. Construct a BR-MST using BRBC algorithm under ε = 0.5. Use s as the
root node.

Table 5.2. BPRIM algorithm under ε = 0, i.e., the radius of the tree should not exceed 12.
In case of tie among the edges under “min dist(x, y)”, we choose the first entry based on
alphabetical order.

distT (s, x) + dist(x, y) Appropriate
min dist(x, y) Chosen of chosen edge edge

(s, a) (s, a) 0 + 5 –
(a, b) (a, b) 5 + 4 –
(b, c) (b, c) 9 + 3 –
(c, d), (c, e) (c, d) 12 + 5 (s, d)

(c, e), (d, h) (c, e) 12 + 5 (a, e)

(e, g) (e, g) 11 + 4 (s, g)

(d, h), (e, h), (e, f), (g, f) (d, h) 11 + 5 (s, h)

(e, f), (g, f) (e, f) 11 + 5 (s, f)

19See the related practice problem #6 on page 190.

164 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

a

b h

c

d

g

e

s f

(a) (b)

a

b h

c

d

g

e

s f

a

b h

c

d

g

e

s f

(c) (d)

a

b h

c

d

g

e

s f

a

b h

c

d

g

e

s f

(e) (f)

(g) (h)

a

b h

c

d

g

e

s f

a

b h

c

d

g

e

s f

a

b h

c

d

g

e

s f

Figure 5.27. BPRIM algorithm under ε = 0.5, i.e., the radius bound is 18. The dotted lines
denote the “appropriate” edges.

Steiner Routing 165

Table 5.3. BPRIM algorithm under ε = 0.5, i.e., the radius of the tree should not exceed
18. In case of tie among the edges under “min dist(x, y)”, we choose the first entry based on
alphabetical order.

distT (s, x) + dist(x, y) Appropriate
min dist(x, y) Chosen of chosen edge edge

(s, a) (s, a) 0 + 5 –
(a, b) (a, b) 5 + 4 –
(b, c) (b, c) 9 + 3 –
(c, d), (c, e) (c, d) 12 + 5 –
(c, e), (d, h) (c, e) 12 + 5 –
(e, g) (e, g) 17 + 4 (a, g)
(d, h), (e, h), (g, h), (e, f), (g, f) (d, h) 17 + 5 (c, h)
(e, f), (g, f) (e, f) 17 + 5 (a, f)

The first step is to build an MST, which is shown in Figure 5.30(a). Next,
we perform depth-first traversal on the rooted-MST shown in Figure 5.30(b)
and obtain the following node ordering:

L = {s, a, b, c, e, f, e, g, e, c, d, h, d, c, b, a, s}
Next, we set the graph Q = MST and augment it during the traversal of L.
Table 5.4 shows the summary of this process. For example, if we visit node
a via edge (s, a), the running total becomes S = 5. Note that dist(s, a) = 5
from Figure 5.25. Thus, ε ·dist(s, a) = 0.5 ·5 = 2.5, which is smaller than
S. Thus, we reset S = 0 and add (s, a) to Q. Note that (s, a) already exists
in Q.

Figure 5.31(a) shows the graph Q after the augmentation (added edges are
shown in dotted lines) during the traversal of L. The last step is to construct
a shortest path tree on Q to obtain the final BR-MST. Figure 5.31(b) shows
the result, where the radius is 12, and the wirelength is 52.

4. Compare the BR-MSTs built by BPRIM and BRBC algorithms under ε =
0.5 in terms of radius and wirelength.

Figure 5.32 shows the two BR-MSTs. The tree generated by BPRIM algo-
rithm has radius = 18 and wirelength = 49. The tree by BRBC algorithm
has radius = 12 and wirelength = 52. We observe that BRBC has signif-
icantly shorter radius at the cost of slightly longer wirelength compared to
BPRIM. This observation agrees with that made by the original authors of
[Cong et al., 1992]:

“For any given value of ε, the BPRIM approach, being inherently greedy,
will yield a routing solution with radius approaching (1 + ε) · R, but with
small tree weight. On the other hand, the BRBC approach, being more

166 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

a

b h

c

d

g

e

s f

(a) (b)

a

b h

c

d

g

e

s f

a

b h

c

d

g

e

s f

(c) (d)

a

b h

c

d

g

e

s f

a

b h

c

d

g

e

s f

(e) (f)

a

b h

c

d

g

e

s f

a

b h

c

d

g

e

s f

(g) (h)

a

b h

c

d

g

e

s f

Figure 5.28. BPRIM algorithm under ε = ∞. This case corresponds to Prim’s MST
construction. There is no “appropriate” edge used.

Steiner Routing 167

(a) (b) (c)

a

b h

c

d

g

e

s f

a

b h

c

d

g

e

s f

a

b h

c

d

g

e

s f

Figure 5.29. Comparison among the BR-MSTs built under various radius bounds. (a) ε =
0, bound = 12, radius = 12, wirelength = 56, (b) ε = 0.5, bound = 18, radius = 18,
wirelength = 49, (c) ε = ∞, bound = ∞, radius = 22, wirelength = 36.

(a) (b)

a

b h

c

d

g

e

s f

s

a

b

c

d

h

e

f g

Figure 5.30. (a) Initial MST, (b) rooted tree of the initial MST for DFS traversal.

conservative, will yield a routing solution with radius noticeably smaller
than (1 + ε) · R, but at the expense of slightly larger tree cost. In practice,
the asymptotic efficiency of implementation and the provably good output
provide compelling reasons to adopt the BRBC algorithm, rather than the
BPRIM approach.”

168 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

Table 5.4. DFS traversal of MST and augmentation of graph Q under ε = 0.5.

Edge Li ε · dist(s,Li) S Reset S?

(s, a) a 0.5 · 5 5 yes
(a, b) b 0.5 · 7 4 yes
(b, c) c 0.5 · 6 3 no
(c, e) e 0.5 · 7 8 yes
(e, f) f 0.5 · 6 5 yes
(f, e) e 0.5 · 7 5 yes
(e, g) g 0.5 · 9 4 no
(g, e) e 0.5 · 7 8 yes
(e, c) c 0.5 · 6 5 yes
(c, d) d 0.5 · 11 5 no
(d, h) h 0.5 · 12 10 yes
(h, d) d 0.5 · 11 5 no
(d, c) c 0.5 · 6 10 yes
(c, b) b 0.5 · 7 3 no
(b, a) a 0.5 · 5 7 yes
(a, s) s 0.5 · 0 5 yes

a

b h

c

d

g

e

s f

a

b h

c

d

g

e

s f

(a) (b)

Figure 5.31. BRBC algorithm under ε = 0.5. (a) Graph Q after adding additional edges
(shown in dotted lines), (b) shortest path tree on Q, where the radius is 12, and the wirelength
is 52.

Steiner Routing 169

a

b h

c

d

g

e

s f

(a) (b)

a

b h

c

d

g

e

s f

Figure 5.32. Bounded-radius MSTs under ε = 0.5. (a) BPRIM algorithm, where the radius
is 18 and the wirelength is 49, (b) BRBC algorithm, where the radius is 12, and the wirelength
is 52.

170 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

4. A-tree Algorithm
Given an edge-weighted undirected graph G(V,E), a set of nodes N ⊆ V ,

and a root node r ∈ N , the Minimum Shortest Path Steiner Arborescence
(MSP-SA) of N is a Steiner tree rooted at r spanning all nodes in N such
that every source-sink path is a shortest path in G, and the total tree weight is
minimized. The rectilinear version of MSP-SA is called the Minimum Recti-
linear Steiner Arborescence (MRSA) problem, where the underlying graph G
is either the Hanan grid graph [Hanan, 1966] or uniform grid graph. The MSP-
SA problem is shown to be NP-hard in [Hwang et al., 1992] and the MSRA
problem in [Shi and Su, 2000]. The goal of MRSA is to simultaneously min-
imize the the source-sink path length for all sinks and the total wirelength
of the routing tree. Note that a similar goal is achieved under the Bounded
Radius Minimum Routing Tree (BR-MRT) problem presented in Section 3 of
this chapter, where the radius (= maximum source-sink path length) is bounded
and the wirelength is minimized.

Note that the delay of a path under the popular Elmode delay model pre-
sented in Section 5 of this chapter is quadratically proportional to its length.
Under the deep sub-micron technology, however, various interconnect opti-
mization techniques such as buffer insertion, wire/driver sizing, etc, are applied
to reduce the interconnect delay. In this case, the path delay tends to become
linearly proportional to its length. This phenomenon is one of the main reasons
behind the recent popularity of the MRSA problem since it targets the min-
imization of the linear path length. The A-tree algorithm proposed by Cong,
Leung, and Zhou [Cong et al., 1993] is one of the well-known algorithms that
constructs an MRSA using a sequence of moves that minimizes the overall
wirelength while maintaining the shortest linear path lengths for all sinks.

Quick Overview
The A-tree algorithm starts with an initial forest F0, where each sink node

of the given net becomes its own root node. The goal is to make a sequence
of “moves” that either grow an existing rooted-tree or merge two rooted-trees
until there is only one rooted-tree left. Let Fk denote the forest after the k-th
move, and R(Fk) denote the set of root nodes in Fk.20 The A-tree algorithm
utilizes three kinds of “safe” moves and two kinds of “heuristic” moves, where
the safe moves are proven to keep the forest optimal in terms of wirelength.
In case of the heuristic moves, the methods suggested in [Rao et al., 1992]
are adopted, where the wirelength optimality is not guaranteed. We discuss the

20We use the following shorthand notations to improve readability: R(Fk) denotes ROOR(Fk) originally
used in [Cong et al., 1993], D(p, Fk) denotes DOM(p,Fk), mfw denotes mfwest , and mfs denotes
mfsouth.

Steiner Routing 171

computation of dx/dy/df values that are used to determine the safe moves in
the following section.

Node Blockage and dx/dy/df Value Computation

Given a node p ∈ Fk, the A-tree algorithm distinguishes the neighboring
nodes of p into the following three sets: (1) northwest, NW (p): set of nodes
with x-coordinate strictly smaller than that of p and y-coordinate strictly larger
than that of p. (2) southeast, SE(p): set of nodes with x-coordinate strictly
larger than that of p and y-coordinate strictly smaller than that of p. (3) domi-
nated, D(p, Fk): set of nodes with both x and y-coordinate smaller or equal to
that of p. In this case, a node q ∈ D(p, Fk) is said to be “dominated” by p.

Given a pair of nodes p and q, there are two ways q can be “blocked from”
p. In case q is located in the northwest of p, we draw a vertical line from
q towards p until it reaches the y-coordinate of p. If there is any other node
intersecting with this vertical line, q is blocked from p. An illustration is shown
in Figure 5.33(a). Similarly, in case q is located in the southeast of p, we draw
a horizontal line from q towards p until it reaches the x-coordinate of p. If there
is any other node intersecting with this horizontal line, q is again blocked from
p. An illustration is shown in Figure 5.33(b).

Given a pair of nodes p and q, let dH(p, q) = |xp −xq| denote the horizonal
distance between nodes p and q. We define dV (p, q), the vertical distance, using
y-coordinates similarly. Given a root node p ∈ R(Fk), the A-tree algorithm
utilizes the following three values:

dx(p, F): we first compute the set of root nodes located in the northwest
of p that are not blocked from p. From this set, we choose q = mx(p, Fk)

a

b

c

(a) (b) (c)

c

e

d

c

f

s

dx = 3
df = 4

NW(c)

SE(c)
D(c,Fk)

dy = 2

g

h

i

Figure 5.33. (a) Node b is blocked from c (= by a), while a and g are not. We have
mx(c, Fk) = a, and dx(c, F0) = 3. (b) Node e is blocked from c (= by d), while h is not. We
have my(c, Fk) = d, and dy(c, F0) = 2. (c) We have MF (c, F0) = {f, i}, df(c, F0) = 4,
mfw = i, and wfs = f .

172 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

with the minimum horizontal distance dH(p, q). dx(p, Fk) is this minimum
dH(p, q) value. An illustration is shown in Figure 5.33(a).

dy(p, Fk): we first compute the set of root nodes located in the southeast
of p that are not blocked from p. From this set, we choose q = my(p, Fk)
with the minimum vertical distance dV (p, q). dy(p, Fk) is this minimum
dV (p, q) value. An illustration is shown in Figure 5.33(b).

df(p, Fk): we first compute MF (p, Fk), the set of nodes (= not necessar-
ily root nodes) that are dominated by p and are separated by p with the
minimum rectilinear distance. df(p, Fk) is this minimum rectilinear dis-
tance value. In addition, we compute mkw, the node in MF (p, Fk) with
the minimum x-coordinate. Similarly, mks is the node in MF (p, Fk) with
the minimum y-coordinate. An illustration is shown in Figure 5.33(c).

Safe and Heuristic Moves

Based on the dx/dy/df values computed, we define the three safe moves as
follows:

Type-1 (S1): if dx(p, Fk) ≥ df(p, Fk) and dy(p, Fk) ≥ df(p, Fk) for a
p ∈ R(Fk), we add a path that connects p to mfw. We remove p from
R(Fk). This move merges two trees. Figure 5.34 shows an illustration.

Type-2 (S2): if dx(p, Fk) ≥ df(p, Fk) and dy(p, Fk) < df(p, Fk) for a p ∈
R(Fk), we add a down-ward vertical path of length p′ from p, where p′ is
the minimum between (1) the vertical distance between p and mfs(p, Fk),
and (2) dy(p, Fk). We remove p from R(Fk) and add p′. This move grows
the tree rooted at p. Figure 5.35 shows an illustration.

Type-3 (S3): if dx(p, Fk) < df(p, Fk) and dy(p, Fk) ≥ df(p, Fk) for
a p ∈ R(Fk), we add a left-ward horizontal path of length p′ from p,

(a) (b)

a

b

c

s

a

b

c

s

Figure 5.34. Type-1 safe move for node b. (a) Before the move, where dx = ∞, dy = 3,
df = 2, and mfw = a, (b) after the move, where b is no longer a root node.

Steiner Routing 173

a
c

s

a1

(a) (b)

a
c

s

Figure 5.35. Type-2 safe move for node a. (a) Before the move, where dx = ∞, dy = 1,
df = 5, and mfs = s, (b) after the move, where the p-to-p′ length is computed as
min{dV (a, s), dy} = 1. a1 is the new root node.

(a) (b)

a

c

f
s

a

c

f
s

c1

Figure 5.36. Type-3 safe move for node c. (a) Before the move, where dx = 3, dy = ∞,
df = 4, and mfw = f , (b) after the move, where the p-to-p′ length is computed as
min{dH(c, f), dx} = 2. c1 is the new root node.

where p′ is the minimum between (1) the horizontal distance between p
and mfw(p, Fk), and (2) dx(p, Fk). We remove p from R(Fk) and add p′.
This move grows the tree rooted at p. Figure 5.36 shows an illustration.

The definitions of two heuristic moves [Rao et al., 1992] are as follows:

Type-1 (H1): select a node p ∈ R(Fk) such that its mfw(p, Fk), called p′,
is the farthest away from the source. We add a path between p and p′, and
remove p from R(Fk). This move merges two trees.

Type-2 (H2): select two nodes p, q ∈ R(Fk) such that p′, the lower left
corner of the lower L-shaped edge connecting p and q, is the farthest from
the source. We connect p and p′, and then q and p′. We remove p and q from
R(Fk) and add p′. This move merges two trees.

The algorithm starts with computing the dx/dy/mf values for all root
nodes in F0. Then, a sequence of safe moves is applied to obtain the successive

174 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

forests until we obtain the final rectilinear Steiner arborescence. Note that the
order of the safe moves chosen is irrelevant since they maintain the wirelength
optimality and shortest path length for all sinks. In case there is no more safe
move available, heuristic moves H1 and H2 are performed. Preference is given
to a move that results in the farthest p′, the newly added root node after the
tree merging. Note that each move, regardless of its type, requires an update of
the dx/dy/mf values of all root nodes in the current forest as well as the root
node set itself.

Practice Problem
Consider the routing problem instance shown in Figure 5.37.

1. Compute dx(c, F0), dy(c, F0), and df(c, F0) for node c in the initial
forest F0.

We begin with R(F0) = {a, b, c, d, e, f}.21 Figure 5.38 shows the illustra-
tion.

dx(c, F0): we see that NW (c) ∩ R(F0) = {a, b} as shown in Figure
5.38(a). In this case, node b is blocked from node c (= by a) while a
is not. Thus, we have mx(c, F0) = a. Since dH(a, c) = 3, we have
dx(c, F0) = 3.

dy(c, F0): we see that SE(c)∩R(F0) = ∅ as shown in Figure 5.38(b).
Thus, we have my(c, F0) = ∅, and dy(c, F0) = ∞.

df(c, F0): we see that D(c, F0) = {s, f} as shown in Figure 5.38(c).
Thus, we have MF (c, F0) = {f} and df(c, F0) = 4. Since f is only
node in MF (c, F0), we have mfw(c, F0) = mfs(c, F0) = f .

a

b

c

d

e

f
s

Figure 5.37. Routing problem instance for the A-tree algorithm with the source located at the
origin. This is also the initial forest F0, where the root set R(F0) = {a, b, c, d, e, f}.

21The source node s is not included in R(F0) because it does not affect the routing result at all. Even if s
is included, it causes a trivial safe move (of type-1) that creates a connection to itself with zero wirelength
and then is removed from R(F0) afterwards.

Steiner Routing 175

a

b

c

d

e

f
s

(a) (b) (c)

a

b

c

d

e

f

s

a

b

c

d

e

f

s

dx = 3
df = 4

NW(c)

SE(c) D(c,F0)

Figure 5.38. (a) Computing dx(c, F0), where the shaded region denotes NW (c). Node b is
blocked by a, so mx(c, F0) = a and dx(c, F0) = 3. (b) Computing dy(c, F0), where the
shaded region denotes SE(c). We have my(c, F0) = ∅, and dy(c, F0) = ∞. (c) Computing
df(c, F0), where the shaded region denotes D(c, F0). Thus, we have MF (c, F0) = {f} and
df(c, F0) = 4.

Table 5.5. dx/dy/df values for R(F0) shown in Figure 5.37.

p mx dx my dy MF mfw mfs df

a ∅ ∞ c 1 {s} s s 5
b ∅ ∞ c 3 {a} a a 2
c a 3 ∅ ∞ {f} f f 4
d ∅ ∞ e 4 {b, c} b c 6
e d 1 ∅ ∞ {c} c c 3
f a 1 ∅ ∞ {s} s s 3

2. Compute dx(p, F0), dy(p, F0), and df(p, F0) for the remaining root nodes
in the initial forest F0.

Table 5.5 shows the result.

3. What kind of safe moves does node a contain?

From Table 5.5, we see that dx(a, F0) = ∞, dy(a, F0) = 1, and
df(a, F0) = 5.

Type-1: we check to see if dx(a, F0) ≥ df(a, F0) and dy(a, F0) ≥
df(a, F0). Since the second condition is not met, a does not contain
type-1 safe move.

Type-2: we check to see if dx(a, F0) ≥ df(a, F0) and dy(a, F0) <
df(a, F0). Since both conditions are met, a contains type-2 safe move.

176 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

Table 5.6. Safe moves exist in F0 shown in Figure 5.37.

Node Type-1 Type-2 Type-3

a No Yes No
b Yes No No
c No No Yes
d No Yes No
e No No Yes
f No No Yes

Type-3: we check to see if dx(a, F0) < df(a, F0) and dy(a, F0) ≥
df(a, F0). Since neither condition is not met, a does not contain type-3
safe move.

Thus, node a contains type-2 safe move only.

4. Identify all safe moves exist in F0.

Table 5.6 shows the result.

5. Perform the first safe move using node a and update the related variables.

Node a contains a type-2 safe move. First, we see that dV (mfs(a, F0), a) =
dV (s, a) = 4, and dy(a, F0) = 1 according to Table 5.5 and Figure 5.37.
Thus, the length of vertical path to be added to node a is min{4, 1} = 1. We
connect a to a newly added root node a1. We then update R(F1) = R(F0)−
{a} + {a1} = {a1, b, c, d, e, f}. Figure 5.39(a) shows the resulting F1.

Table 5.7 shows the updated dx/dy/df values for R(F1), the root nodes in
F1. We also show the safe moves for R(F1). We see that all nodes in R(F1)
contain a safe move.

6. Perform the remaining moves on F1 and obtain the final rectilinear Steiner
arborescence. Choose the safe moves based on alphabetical order.22

(a) Move 2: we choose the type-2 safe move for node a1 in Table 5.7. First,
we see that dV (mfs(a1, F1), a1) = dV (s, a1) = 3, and dy(a1, F1) = 2
according to Table 5.7 and Figure 5.39(a). Thus, the length of vertical
path to be added to node a1 is min{3, 2} = 2. We connect a1 to a
newly added root node a2. We then update R(F2) = R(F1) − {a1} +
{a2} = {a2, b, c, d, e, f}. Figure 5.39(b) shows the resulting F2. Table
5.8 shows the updated dx/dy/df values and safe moves for R(F2).

(b) Move 3: we choose the type-1 safe move for node a2 in Table 5.8. In
this case, we connect a2 to mfw(a2, F2) = s. We then update R(F3) =

22See the related practice problem #6 on page 190.

Steiner Routing 177

a

b

c

d

e

f
s

a1

a

b

c

d

e

f
s

a1

a2

a

b

c

d

e

f
s

a1

a2

a

b

c

d

e

f
s

a1

a2

a

b

c

d

e

f
s

a1

a2

a

b

c

d

e

f
s

a1

a2

d1

a

b

c

d

e

f
s

a1

a2

d1

a

b

c

d

e

f
s

a1

a2

d1

a

b

c

d

e

f
s

a1

a2

d1

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.39. (a–i) Forests F1 to F9 obtained from a sequence of safe moves. F9 in (i) is the
final rectilinear Steiner arborescence, where all source-sink paths are shortest, and the overall
wirelength is minimal. The black colored nodes correspond to the current root nodes.

Table 5.7. dx/dy/df values and safe moves for R(F1) shown in Figure 5.39(a).

p mx dx my dy MF mfw mfs df Type-1 Type-2 Type-3

a1 ∅ ∞ f 2 {s} s s 4 No Yes No
b ∅ ∞ c 3 {a} a a 2 Yes No No
c ∅ ∞ ∅ ∞ {a1} a1 a1 3 Yes No No
d ∅ ∞ e 4 {b, c} b c 6 No Yes No
e d 1 ∅ ∞ {c} c c 3 No No Yes
f a1 1 ∅ ∞ {s} s s 3 No No Yes

178 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

Table 5.8. dx/dy/df values and safe moves for R(F2) shown in Figure 5.39(b).

p mx dx my dy MF mfw mfs df Type-1 Type-2 Type-3

a2 ∅ ∞ ∅ ∞ {s} s s 2 Yes No No
b ∅ ∞ c 3 {a} a a 2 Yes No No
c ∅ ∞ ∅ ∞ {a1} a1 a1 3 Yes No No
d ∅ ∞ e 4 {b, c} b c 6 No Yes No
e d 1 ∅ ∞ {c} c c 3 No No Yes
f ∅ ∞ ∅ ∞ {a2} a2 a2 1 Yes No No

Table 5.9. dx/dy/df values and safe moves for R(F3) shown in Figure 5.39(c).

p mx dx my dy MF mfw mfs df Type-1 Type-2 Type-3

b ∅ ∞ c 3 {a} a a 2 Yes No No
c ∅ ∞ ∅ ∞ {a1} a1 a1 3 Yes No No
d ∅ ∞ e 4 {b, c} b c 6 No Yes No
e d 1 ∅ ∞ {c} c c 3 No No Yes
f ∅ ∞ ∅ ∞ {a2} a2 a2 1 Yes No No

Table 5.10. dx/dy/df values and safe moves for R(F4) shown in Figure 5.39(d).

p mx dx my dy MF mfw mfs df Type-1 Type-2 Type-3

c ∅ ∞ ∅ ∞ {a1} a1 a1 3 Yes No No
d ∅ ∞ e 4 {b, c} b c 6 No Yes No
e d 1 ∅ ∞ {c} c c 3 No No Yes
f ∅ ∞ ∅ ∞ {a2} a2 a2 1 Yes No No

R(F2) − {a2} = {b, c, d, e, f}. Figure 5.39(c) shows the resulting F3.
Note that either L-shape is fine for the a2-to-s connection. Table 5.9
shows the updated dx/dy/df values and safe moves for R(F3).

(c) Move 4: we choose the type-1 safe move for node b in Table 5.9. In
this case, we connect b to mfw(b, F3) = a. We then update R(F4) =
R(F3) − {b} = {c, d, e, f}. Figure 5.39(d) shows the resulting F4.
Table 5.10 shows the updated dx/dy/df values and safe moves for
R(F4).

(d) Move 5: we choose the type-1 safe move for node c in Table 5.10. In
this case, we connect c to mfw(c, F4) = a1. We then update R(F5) =
R(F4)− {c} = {d, e, f}. Figure 5.39(e) shows the resulting F5. Table
5.11 shows the updated dx/dy/df values and safe moves for R(F5).

(e) Move 6: we choose the type-2 safe move for node d in Table 5.11. First,
we see that dV (mfs(d, F5), d) = dV (c, d) = 4, and dy(d, F5) = 4

Steiner Routing 179

Table 5.11. dx/dy/df values and safe moves for R(F5) shown in Figure 5.39(e).

p mx dx my dy MF mfw mfs df Type-1 Type-2 Type-3

d ∅ ∞ e 4 {b, c} b c 6 No Yes No
e d 1 ∅ ∞ {c} c c 3 No No Yes
f ∅ ∞ ∅ ∞ {a2} a2 a2 1 Yes No No

Table 5.12. dx/dy/df values and safe moves for R(F6) shown in Figure 5.39(f).

p mx dx my dy MF mfw mfs df Type-1 Type-2 Type-3

d1 ∅ ∞ ∅ ∞ {c} c c 2 Yes No No
e ∅ ∞ ∅ ∞ {d1} d1 d1 1 Yes No No
f ∅ ∞ ∅ ∞ {a2} a2 a2 1 Yes No No

Table 5.13. dx/dy/df values and safe moves for R(F7) shown in Figure 5.39(g).

p mx dx my dy MF mfw mfs df Type-1 Type-2 Type-3

e ∅ ∞ ∅ ∞ {d1} d1 d1 1 Yes No No
f ∅ ∞ ∅ ∞ {a2} a2 a2 1 Yes No No

according to Table 5.11 and Figure 5.39(e). Thus, the length of vertical
path to be added to node d is min{4, 4} = 4. We connect d to a newly
added root node d1. We then update R(F6) = R(F5) − {d} + {d1} =
{d1, e, f}. Figure 5.39(f) shows the resulting F6. Table 5.12 shows the
updated dx/dy/df values and safe moves for R(F6).

(f) Move 7: we choose the type-1 safe move for node d1 in Table 5.12. In
this case, we connect d1 to mfw(d1, F6) = c. We then update R(F7) =
R(F6) − {d1} = {e, f}. Figure 5.39(g) shows the resulting F7. Table
5.13 shows the updated dx/dy/df values and safe moves for R(F7).

(g) Move 8: we choose the type-1 safe move for node e in Table 5.13. In
this case, we connect e to mfw(e1, F7) = d1. We then update R(F8) =
R(F7)−{e} = {f}. Figure 5.39(h) shows the resulting F8. Table 5.14
shows the updated dx/dy/df values and safe moves for R(F8).

(h) Move 9: we choose the last safe move remaining in Table 5.14. In this
case, we connect f to mfw(f1, F8) = a2. Figure 5.39(i) shows the
resulting F9.

180 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

Table 5.14. dx/dy/df values and safe moves for R(F8) shown in Figure 5.39(h).

p mx dx my dy MF mfw mfs df Type-1 Type-2 Type-3

f ∅ ∞ ∅ ∞ {a2} a2 a2 1 Yes No No

Figure 5.39(i) is the final rectilinear Steiner arborescence, where all source-
sink path lengths are shortest. The total wirelength is 18.23 The white square
nodes correspond to the Steiner nodes used. Note that all moves performed
are safe.

23See the related practice problem #6 on page 190.

Steiner Routing 181

5. Elmore Routing Tree Algorithms
Historically, wirelength and radius have been popular objectives for per-

formance oriented Steiner routing. Reduction of radius naturally translates to
lower source-sink resistance and thus better performance. In addition, wire-
length reduction translates to lower capacitance to handle and thus better per-
formance. The bounded-radius, bounded-wirelength algorithms [Cong et al.,
1992] presented in Section 3 of this chapter is a state-of-the-art in this direction.
Although these wirelength and radius metrics provide high-fidelity in perfor-
mance optimization, they are still an indirect metric, i.e., their units are not in
time domain.

Boese, Kahng, McCoy, and Robins presented a class of algorithms [Boese
et al., 1995] that directly minimizes the popular Elmore delay metric [Elmore,
1948]. Their approach is iterative and resembles Prim’s MST (Minimum Span-
ning Tree) algorithm in that the tree is grown by adding one node at a time. The
major difference is on how to select the next node to be added. Given a candi-
date node v to be evaluated, we add v to the current tree and compute Elmore
delay at all sinks. We also record the maximum Elmore delay among the sinks.
After examining all possible candidates, we choose the node that results in the
minimum maximum Elmore delay among the sinks. The ERT (Elmore Rout-
ing Tree) algorithm constructs an MST that minimizes Elmore delay, and the
SERT (Steiner Elmore Routing Tree) algorithm builds a Steiner tree.

Quick Overview
The Elmore delay [Elmore, 1948] of a given node ni in RC tree T is defined

as follows:

telmore(ni) = rd · Cn0 +
∑

ev∈path(n0,ni)

rev

(cev

2
+ Cv

)

where rd is the driver output resistance, n0 is the source (= driver) node, Cni

is the total capacitance of a subtree of T rooted at ni, ev is an edge along the
n0 → ni path, rev is the resistance of ev, and cev is the capacitance of ev. Note
that the Elmore delay is almost quadratically proportional to the path length
due to the multiple inclusions of the RC parasitics of some wires along the
source-sin path into the calculation, especially the edges closer to the sink. The
Elmore delay is computed by visiting each edge along the source-sink path,
where the downstream capacitance at all intermediate nodes are pre-computed
using a bottom-up tree traversal.

Given a net to be routed, we start ERT algorithm with an initial tree that
contains the source node only. We grow this tree by adding a node at a time.
Given a tree T and a set of nodes not included in the tree, our goal is to find the
node pair (u, v), where u ∈ T and v /∈ T , so that the maximum Elmore delay

182 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

among all sinks in T ∪ v is minimized. This is simply done by visiting each
node u ∈ T and finding its nearest neighbor (= shortest rectilinear distance) not
included in T .24 After examining all trees derived from the candidate nodes,
we choose the one that minimizes the maximum Elmore delay. ERT terminates
if the tree spans all nodes in the net.

Given a tree T and a set of nodes not included in the tree, our goal in SERT
algorithm is to find the edge-node pair (e, v), where e ∈ T and v /∈ T , so
that the maximum Elmore delay in T ∪ v is minimized. In addition, we allow
v to directly connect to the source. In case of an edge-node pair (e, v) for
evaluation, we connect v to e using the shortest distance. Note that this may
require a Steiner node p along e so that (p, v) becomes the shortest. We exam-
ine |E|+1 connections for each node outside the tree and choose the edge-node
pair (or source-node pair) that minimizes the maximum Elmore delay. SERT
terminates if the tree spans all nodes in the net.

Practice Problem
Consider the routing problem instance shown in Figure 5.40. Assume that

the minimum grid edge is 1mm long. Let Cx denote the total capacitance of
the sub-tree rooted at x, zx denote the input capacitance of sink x, and r(x,y)

and c(x,y) denote the resistance and capacitance of edge (x, y).

1. Perform ERT algorithm using the following parameters (typical for global
wires in 65nm technology): unit-length resistance is r = 0.4Ω/μm, unit-
length capacitance is c = 0.2fF/μm, driver output resistance is rd =
250Ω, and input capacitance of the sinks is 50fF . Break ties based on
alphabetical order.

s

a
b

c
d

Figure 5.40. Routing problem instance for ERT/SERT algorithms in Hanan grid. Node s is the
source.

24This approach works only when the sink capacitance is uniform among all sinks. Otherwise, this nearest
neighbor may not minimize the Elmore delay. Thus, we have to examine all other nodes not included in
T to find the pair for u. Note that this is a O(n) operation as opposed to O(1) in case of uniform sink
capacitance.

Steiner Routing 183

s

a
b

c
d

s

a
b

c
d

(a) (b)

Figure 5.41. Second iteration of ERT algorithm. (a) Nearest neighbor of a, (b) nearest
neighbor of s. (b) is the tree with minimum Elmore delay increase.

We add s to the initial tree and grow it by adding edges in the following
sequence:

(a) First iteration: we simply add the nearest neighbor, node a.

(b) Second iteration: Figure 5.41 shows two candidate connections we con-
sider: edge (a, b) because node b is the nearest neighbor of a, and edge
(s, c) because node c is the nearest neighbor of s.

Edge (a, b): From Figure 5.41(a) we compute t(b) as follows (resis-
tance is in kΩ, and capacitance is in fF):

t(b) = rd · Cs + r(s,a)(0.5c(s,a) + Ca) + r(a,b)(0.5c(a,b) + zb)
= rd · (c(s,a) + za + c(a,b) + zb) + r(s,a)(0.5c(s,a) + za

+ c(a,b) + zb) + r(a,b)(0.5c(a,b) + zb)
= 0.25(600 + 50 + 1200 + 50) + 1.2(300 + 50 + 1200

+ 50) + 2.4(600 + 50)
= 3955ps

Edge (s, c): From Figure 5.41(b) we need both t(a) and t(c) to
compute the maximum Elmore delay. Since it is easy to see that
t(c) > t(a), we only compute t(c) and obtain 2035ps.

Thus, adding (s, c) results in the minimum Elmore delay increase.

(c) Third iteration: Figure 5.42 shows three candidate connections we con-
sider.

Edge (a, b): From Figure 5.42(a) we note that node b has the max-
imum Elmore delay. We obtain t(b) = 4267.5ps.
Edge (s, d): From Figure 5.42(b) we note that node d has the max-
imum Elmore delay. We obtain t(d) = 2937.5ps.

184 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

s

a
b

c
d

s

a
b

c d

(a) (b) (c)

s

a
b

c d

Figure 5.42. Third iteration of ERT algorithm. (a) Nearest neighbor of a, (b) nearest neighbor
of s, (c) nearest neighbor of c. (b) is the tree with minimum Elmore delay increase.

s

a
b

c
d

s

a
b

c
d

(a) (b)

s

a
b

c
d

s

a
b

c
d

(c) (d)

Figure 5.43. Fourth iteration of ERT algorithm. (a) Nearest neighbor of a, (b) nearest neighbor
of s, (c) nearest neighbor of c, (d) nearest neighbor of d. (a) is the tree with minimum Elmore
delay increase.

Edge (c, d): From Figure 5.42(c) we note that node d has the max-
imum Elmore delay. We obtain t(d) = 5917.5ps.

Thus, adding (s, d) results in the minimum Elmore delay increase.

(d) Fourth iteration: Figure 5.43 shows four candidate connections we con-
sider.

Steiner Routing 185

s

a
b

c
d

Figure 5.44. Final tree obtained by ERT algorithm with the maximum Elmore delay t(b) =
4630ps.

Edge (a, b): From Figure 5.43(a) we note that node b has the max-
imum Elmore delay. We obtain t(b) = 4630ps.
Edge (s, b): From Figure 5.43(b) we note that node b has the max-
imum Elmore delay. We obtain t(b) = 4720ps.
Edge (c, b): From Figure 5.43(c) we note that node b has the max-
imum Elmore delay. We obtain t(b) = 10720ps.
Edge (d, b): From Figure 5.43(d) we note that node b has the max-
imum Elmore delay. We obtain t(b) = 8310ps.

Thus, adding (a, b) results in the minimum Elmore delay increase.

Figure 5.44 shows the final tree built by ERT algorithm, where the maxi-
mum Elmore delay t(b) = 4630ps.

2. Perform SERT algorithm using the following parameters for 1.2μm tech-
nology (similar to the “IC2 technology” used in [Boese et al., 1995]):
unit-length resistance is r = 0.073Ω/μm, unit-length capacitance is c =
0.083fF/μm, driver output resistance is rd = 212Ω, and input capacitance
of the sinks is 7.1fF .25

We add each sink and its Steiner point in the following sequence:

(a) First iteration: we simply add the nearest neighbor of s, which is a. The
L-shape orientation of edge (s, a) remain flexible.

(b) Second iteration: Figure 5.45 shows the six candidate connections we
consider. Each node outside the tree can connect to either the nearest
point in the tree via a Steiner point or the source directly.

Edge (a, b): From Figure 5.45(a) we see that the nearest point
between b and (s, a) along (s, a) is a. Thus, no additional Steiner

25See the related practice problem #6 on page 191.

186 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

(a) (b) (c)

s

a
b

c
d

s

a
b

c
d

s

a
b

c d

(d) (e) (f)

s

a
b

c
d

s

a
b

c d

s

a
b

c
d

p

p

Figure 5.45. Second iteration of SERT algorithm. (a–b) Two ways node b can connect to the
tree, (c–d) two ways node d can connect to the tree, (e–f) two ways node c can connect to the
tree. (e) is the tree with the minimum Elmore delay increase.

point is needed. It is obvious that the maximum Elmore delay node
is b, which is computed as follows:

t(b) = rd · Cs + r(s,a)(0.5c(s,a) + Ca) + r(a,b)(0.5c(a,b) + zb)
= 0.212(3000 · 0.083 + 7.1 + 6000 · 0.083 + 7.1)

+ 3 · 0.073(3000 · 0.083/2 + 7.1 + 6000 · 0.083 + 7.1)
+ 6 · 0.073(6000 · 0.083/2 + 7.1)

= 413.0ps

Edge (s, b): Figure 5.45(b) shows the case, where node b connects
to the source directly. It is obvious that the maximum Elmore delay
node is b. We obtain t(b) = 464.2ps.

Edge (p, d): From Figure 5.45(c) we see that the nearest point
between d and (s, a) is p, a new Steiner point. We obtain t(d) =
326.1ps

Edge (s, d): Figure 5.45(d) shows the case, where node d connects
to the source directly. We obtain t(d) = 331.0ps.

Steiner Routing 187

Edge (p, c): From Figure 5.45(e) we see that the nearest point
between c and (s, a) is p, a new Steiner point. We obtain t(c) =
268.6ps.

Edge (s, c): From Figure 5.45(f) we obtain t(c) = 273.5ps.

Thus, adding (p, c) results in the minimum Elmore delay increase.

(c) Third iteration: Figure 5.46 shows the seven candidate connections we
consider. Each node outside the tree can connect to either the nearest

(a) (b) (c)

(d) (e) (f)

s

a
b

c
d

s

a
b

c
d

s

a
b

c
d

p

s

a
b

c
d

p
s

a
b

c d

p

s

a
b

c d

p

(g)

s

a
b

c d

p

p p q

q

Figure 5.46. Third iteration of SERT algorithm. (a–d) Four ways node b can connect to the
tree, (e–g) three ways node d can connect to the tree. (f) is the tree with minimum Elmore delay
increase.

188 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

point on each edge in the tree via a Steiner point or the source
directly.

Edge (a, b): Figure 5.46(a) shows that the nearest point between b
and (p, a) is a. It is obvious that the maximum Elmore delay node
is b. We obtain t(b) = 533.3ps.

Edge (p, b): Figure 5.46(b) shows that the nearest point between b
and (s, p) is p. We obtain t(b) = 579.6ps.

Edge (q, b): Figure 5.46(c) shows that the nearest point between b
and (p, c) is q, a new Steiner point. We obtain t(b) = 569.6ps

Edge (s, b): Figure 5.46(d) shows the case, where node b con-
nects to the source directly. We obtain t(b) = 553.7ps and t(c) =
427.9ps. Thus, the maximum Elmore delay is t(b) = 553.7ps.

Edge (p, d): Figure 5.46(e) shows that node p is the nearest point
for both d-(p, a) pair and d-(s, p) pair. We obtain t(d) = 446.4ps

Edge (q, d): Figure 5.46(f) shows that the nearest point between d
and (p, c) is q, a new Steiner point. We obtain t(d) = 413.3ps

Edge (s, d): Figure 5.46(g) shows the case, where node d con-
nects to the source directly. We obtain t(d) = 420.5ps and t(c) =
393.3ps. Thus, the maximum Elmore delay is t(d) = 420.5ps.

Thus, adding (q, d) results in the minimum Elmore delay increase.

(d) Fourth iteration: Figure 5.47 shows the six candidate connections we
consider. Node b can connect to either the nearest point on each edge
in the tree via a Steiner point or the source directly.

Edge (a, b): Figure 5.47(a) shows that the nearest point between b
and (p, a) is a. We obtain t(b) = 606.3ps and t(d) = 557.3ps.
Thus, the maximum Elmore delay is t(b) = 606.3ps.

Edge (p, b): Figure 5.47(b) shows that the nearest point between
b and (s, p) is p. We obtain t(b) = 652.5ps and t(d) = 557.3ps.
Thus, the maximum Elmore delay is t(b) = 652.5ps.

Edge (r, b): Figure 5.47(c) shows that the nearest point between
b and (p, q) is r, a new Steiner point. We obtain t(b) = 680.0ps
and t(d) = 631.0ps. Thus, the maximum Elmore delay is t(b) =
680.0ps.

Edge (q, b): Figure 5.47(d) shows that the nearest point between b
and (q, c) is q. We obtain t(b) = 833.0ps.

Edge (r, b): Figure 5.47(e) shows that the nearest point between b
and (q, d) is r, a new Steiner point. We obtain t(b) = 762.5ps.

Steiner Routing 189

(a) (b) (c)

(d) (e) (f)

s

a
b

c
d

p

q
s

a
b

c
d

p

q
s

a
b

c
d

p

q

s

a
b

c
d

p

q
s

a
b

c
d

p

q
s

a
b

c
d

p

q

r

r

Figure 5.47. Fourth iteration of SERT algorithm. (a–f) Six ways node b can connect to the
tree. (s) is the tree with minimum Elmore delay increase.

s

a
b

c
d

p

q

Figure 5.48. Final tree obtained by SERT algorithm with the maximum Elmore delay t(b) =
606.3ps.

Edge (s, b): Figure 5.47(f) shows the case, where b connects to the
source directly. We obtain t(b) = 608.0ps and t(d) = 573.2ps.
Thus, the maximum Elmore delay is t(b) = 608.0ps.

Thus, adding (a, b) results in the minimum Elmore delay increase.

Figure 5.48 shows the final tree built by SERT algorithm, where the maxi-
mum Elmore delay is t(b) = 606.3ps.

190 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

6. More Practice Problems

1. Perform the L-RST algorithm [Ho et al., 1990] on the following point set:

{s(3, 5), a(2, 6), b(5, 4), c(10, 6), d(7, 2), e(7, 7), f(1, 9)}
Node s as the source. Show that the final L-RST is stable under re-routing.

2. Perform the 1-Steiner algorithm by Borah, Owens, and Irwin [Borah et al.,
1994] on the BR-MSTs shown in Figure 5.29. Can we run the L-RST
algorithm [Ho et al., 1990] on these MSTs? Why or Why not?

3. Complete the remaining steps of the 1-Steiner algorithm using the MST
shown in Figure 5.15(d). How does the final solution compare to the tree
shown in Figure 5.17?

4. Perform the remaining step of the Borah, Owens, and Irwin algorithm
[Borah et al., 1994] with the following pairs: {a, (b, c)}, {b, (a, c)},
{b, (c, e)}, {c, (e, f)}, {c, (b, d)}. (see Table 5.1)

5. Consider the following point set:

{s(2, 6), a(5, 4), b(7, 1), c(7, 2), d(6, 6), e(1, 2)}
Use s as the source node.

(a) Perform 1-Steiner point insertion using the “naive” method presented
in [Kahng and Robins, 1992].

(b) Perform a single pass of 1-Steiner point insertion using the Borah,
Owens, and Irwin algorithm [Borah et al., 1994]

(c) Compare the Steiner trees built by the two algorithms in terms of wire-
length.

6. Consider the point set given in problem #6.

(a) Construct BR-MSTs using the BPRIM algorithm under ε = 0, ε = 0.5,
and ε = ∞. Compare these trees in terms of radius and wirelength.

(b) Construct a BR-MST using the BRBC algorithm under ε = 0.5.

(c) Compare the BR-MSTs built by the BPRIM and BRBC algorithms
under ε = 0.5 in terms of radius and wirelength.

7. Perform the A-tree algorithm on the problem instance shown in Figure
5.37, where the safe moves are chosen based on the reverse alphabetical
order.

Steiner Routing 191

8. Perform the 1-Steiner algorithm by Kahng and Robins on the problem
instance shown in Figure 5.37. How does the final wirelength compare
to the one obtained by the A-tree algorithm shown in Figure 5.39(i)? What
about the source-sink path length?

9. Perform the A-tree algorithm on the following point set:

{s(0, 0), a(2, 6), b(5, 4), c(3, 5), d(2, 2), e(1, 3)}
where the origin is the source. Choose the safe moves based on alphabeti-
cal order.

10. Repeat the SERT algorithm practice problem shown on page 185 using the
65nm technology used in the ERT algorithm on page 182.

11. Consider the following point set: {(2,6), (5,4), (3,5), (7,2), (1,2)}. Use (5,4)
as the source node. Use the following parameters for 65nm technology:
unit-length resistance is r = 0.4Ω/μm, unit-length capacitance is c =
0.2fF/μm, driver output resistance is rd = 250Ω, and input capacitance
of the sinks is 50fF .

(a) Perform the ERT algorithm. Break ties based on alphabetical order.

(b) Perform the SERT algorithm.

192 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

7. Probing Further
Disclaimer: The list here is meant to be representative, not comprehensive.

A comprehensive survey on Steiner routing is provided in [Kahng and Robins,
1994] and in [Cong et al., 1996].

L-Shaped Steiner Routing Algorithm
The authors of [Robins and Salowe, 1994] solved the Bounded Degree Min-

imum Spanning Tree (BDMST) problem, where one seeks an MST with the
maximum node degree bounded by a constant D. When D = 2, the problem
becomes the well-known NP-hard Traveling Salesman Problem. D = 8 in rec-
tilinear plane is polynomial-time solvable as shown by [Ho et al., 1990]. The
authors of [Robins and Salowe, 1994] showed that in rectilinear plane D ≤ 3
is NP-hard and that D ≥ 4 is polynomial-time solvable.

The L-RST built by [Ho et al., 1990] is stable under re-routing, where any
alternate path between a sink and a Steiner point does not reduce the total wire-
length of the tree further. The authors of [Bozorgzadeh et al., 2001] presented
an optimal algorithm which takes a Steiner tree and outputs a more flexible
Steiner tree. The main idea is to identify the Steiner points that can be moved
without changing the stability of the tree as well as its topology. They showed
that a net with a flexible Steiner tree increases its routability.

1-Steiner Routing Algorithms
The authors of [Griffith et al., 1994] developed a straightforward, efficient

(O3) implementation of [Kahng and Robins, 1992], achieving a speedup factor
of three orders of magnitude over previous O(n4 log n) implementation. A key
observation is that once we have computed an MST over the point set P , the
addition of a single new point x into P can only induce a small constant number
of changes between MST (P) and MST (P ∪ {x}). They also give a parallel
implementation that achieves near-linear speedup on multiple processors.

The original 1-Steiner heuristic proposed by [Borah et al., 1994] is extended
by the same authors in [Borah et al., 1997] to build routing trees with near
optimal Elmore delay. The basic approach is the same in both works: replace
an existing edge in the tree for another costlier edge, possibly introducing a
Steiner point. However, the gain formulation used in [Borah et al., 1997] is
based on Elmore delay improvement instead of wirelength reduction as in
[Borah et al., 1994]. The O(n2) time complexity stays the same in the new
Elmore delay-oriented heuristic [Borah et al., 1997].

The authors of [Mandoiu et al., 2000] presented an approximation algo-
rithm for 1-Steiner problem, where a 3/2 approximation algorithm named RV
[Rajagopalan and Vazirani, 1999] is adopted. The RV algorithm is designed for
the metric Steiner tree problem on quasi-bipartite graphs that do not contain

Steiner Routing 193

edges connecting pairs of Steiner vertices. The RV algorithm is built around
the linear programming relaxation of an integer program formulation. Their
heuristic achieves a good running time by combining an efficient implementa-
tion of the RV algorithm with simple, but powerful geometric reductions.

The authors of [Zarkesh-Ha et al., 2000] presented a stochastic wirelength
distribution for global interconnects in a non-homogeneous System-On-Chip
(SOC), which is useful in system-level interconnect planning. The distribution
is derived using novel models for netlist, placement, and routing information,
where the routing model is constructed based on 1-Steiner algorithm of [Kahng
and Robins, 1992]. Through comparison with actual product data, it is shown
that the proposed stochastic model successfully predicts the global net-length
distribution of a heterogeneous system.

The author of [Zhou, 2004] presented on O(n log n) time and O(n) space
heuristic for 1-Steiner construction, which is the fastest known 1-Steiner heuris-
tic. They combined the edge replacement heuristic of [Borah et al., 1994] and
the concept of Spanning Graph in [Zhou et al., 2002]. The spanning graph is
an intermediate step for the MST construction, where it is defined as a graph
that contains at least one MST. This spanning graph helps reduce the number
of point-edge pairs examined for tree improvements.

Bounded Radius Routing Algorithms
Prim’s MST algorithm minimizes the wirelength while Dijkstra’s shortest

path algorithm minimizes the radius if used to construct rectilinear MST. The
authors of [Alpert et al., 1995] studied the tradeoff between these min-cost and
min-radius objectives and provided an algorithm named AHHK to balance the
objectives. The key idea is to use a combined cost function when choosing an
edge to be added to the growing tree.

The authors of [Cong and Madden, 1997b] studied the problem of routing
nets with multiple sources, such as those found in signal busses. When there
are multiple sources and sinks, path length minimization can be achieved by
minimizing the maximum distance between any pair of nodes, which leads to
diameter minimization. Their goal is to construct a minimum diameter routing
tree with minimum total tree cost, as measured by a combination of maximum
path length, average path length, and total tree length.

The authors of [Alpert et al., 2002] solved the buffered Steiner tree for “dif-
ficult instances”, which are characterized by a large number of sinks, large
variations in sink criticalities, etc. Their solution is C-tree, a two-level Steiner
router that first clusters sinks with common characteristics together, constructs
low-level Steiner trees for each cluster, then performs a timing-driven Steiner
construction on the top-level clustering. The authors used the AHHK heuristic
[Alpert et al., 1995] as the tree topology constructor.

194 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

Buffer block planning is a popular method for early stage interconnect plan-
ning. The authors of [Jiang et al., 2004] performed simultaneous floorplanning
and buffer block planning for more rigorous interconnect planning. In order
to accurately compute the size and location of buffer blocks, the authors per-
formed global routing for all nets using the AHHK heuristic [Alpert et al.,
1995]. This routing result is also used to satisfy timing constraints.

The Minimum Radius Minimum Cost (MRMC) routing problem seeks a
routing tree with the minimum radius and wirelength. The authors of [Ho
et al., 2005] proposed a fast multi-level routing considering crosstalk and per-
formance optimization. To handle crosstalk minimization, they incorporated
an intermediate stage of layer/track assignment into the multilevel routing
framework. For MRMC routing, they adopted the Bounded Radius Bounded
Cost (BRBC) algorithm [Cong et al., 1992] to construct performance-oriented
routing trees.

A-tree Algorithm
Given a signal net with a required arrival time associated with each sink,

the authors of [Okamoto and Cong, 1996] presented an efficient algorithm that
finds a Steiner tree with buffer insertion and wire sizing so that the required
arrival time (or timing slack) at the source is maximized. A unique contri-
bution of this algorithm is that it performs Steiner tree construction, buffer
insertion, and wire sizing simultaneously with consideration of both critical
delay and total capacitance minimization. The authors combined the A-tree
construction and dynamic programming based buffer insertion and wire sizing
to accomplish this goal.

The authors of [Alexander and Robins, 1996] presented two Steiner arbores-
cence based heuristics to perform performance-driven FPGA routing. Given
an arbitrary weighted routing graph, their arborescence algorithms produce
a Steiner tree, where all source-sink paths are the shortest possible and the
total wirelength is optimized as a secondary objective. Their first graph-based
Steiner arborescence heuristic named PFA is based on a path-folding strategy
that overlaps and merges shortest paths in order to reduce the overall wire-
length. The second arborescence heuristic named IDOM iteratively selects
Steiner nodes which improve the total wirelength with respect to an optimal
spanning arborescence algorithm.

The authors of [Cong et al., 1998] presented the following graph-based
heuristics and exact algorithms to construct Steiner arborescence: (1) RSA/G
algorithm is an efficient graph-based adaptation of the greedy RSA heuristic in
[Rao et al., 1992], (2) RSA/BnB/G algorithm is an optimal exponential-time
branch-and-bound variant of RSA/G, (3) RSA/DP/G algorithm is a fast imple-
mentation of RSA/BnB/G based on dynamic programming, (4) k-IDeA/G algo-
rithm is a “scaled-down” near optimal version of RSA/BnB/G, and (5) k-IA/G

Steiner Routing 195

algorithm is a natural dual of k-IDeA/G that implements the IDOM heuristic
[Alexander and Robins, 1996]. These heuristics are shown to generate near
optimal results and achieve speedups of orders of magnitude over existing
algorithms.

The Minimal Cover approach presented in [Ramnath, 2003] is an approxi-
mation algorithm for minimum Rectilinear Steiner Arborescence (RSA) con-
struction that runs in O(n log n) time. The minimal cover algorithm maintains
an expanding “diamond”, which initially consists of the origin. The arbores-
cence is constructed as the diamond expands. At any intermediate stage, the
arborescence contains several incomplete edges, all of which terminate at the
boundary of the diamond. The edges are extended as the diamond expands.
There are three kinds of events that take place as the diamond expands: (1) an
incomplete edge is extended, (2) a Steiner point is introduced, and (3) a sink is
encountered. This approach yields an RSA that has a wirelength no more than
twice the optimal RSA.

Elmore Routing Tree Algorithms
Permutation-constrained routing tree (P-tree) [Lillis et al., 1996] is an Elmore

delay-oriented Steiner tree that balances the area and delay objectives. A key
idea is that routing topologies are induced by a permutation on the sinks of a
net, which is quite different from the conventional “tree growth” scheme as in
[Boese et al., 1995]. Each topology is then mapped into a routing tree under the
area/deay tradeoff. They presented several ideas to obtain “high quality permu-
tations”, which translate to high quality routing trees. P-tree also incorporates
simultaneous wire-sizing for further delay improvement.

MVERT [Hou et al., 1999] (Maximum delay Violation Elmore Routing
Tree) is a timing-driven Steiner tree construction algorithm that is based on
non-Hanan grid. The algorithm works in two phases, where a minimum-delay
Steiner Elmore routing tree is first constructed using a minor variant of ERT
algorithm [Boese et al., 1995]. A difference is that they minimize the maximum
delay violation rather than the maximum delay. Then the tree is iteratively
modified, using an efficient search method, to reduce its wirelength. Non-
Hanan nodes are introduced during this refinement phase. The search method
exploits the piecewise concavity of the delay function to arrive at a solution
efficiently.

The RATS-tree algorithm [Cong et al., 2001] considers the inductance effect
as well as the RC parasitics during Steiner tree routing. The proposed RLC
model is more suitable than the RC-based Elmore delay model for Multi-
Chip Module (MCM) global routing. RATS-tree is capable of constructing
a large class of routing topologies, ranging from shortest path Steiner trees
[Cong et al., 1993] to bounded radius Steiner trees [Cong et al., 1992] and
Elmore Steiner trees [Boese et al., 1995]. By considering a large class of

196 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

routing topologies, they are able to produce a set of topologies, providing
smooth tradeoffs among signal delay, waveform, routing area, and congestion.

3D IC is a new system integration technology, where bare dies are stacked
on top of each other and are vertically connected with Through-Silicon-Vias
(TSVs). The authors of [Pathak and Lim, 2007] presented the first Steiner
routing algorithm for 3D ICs. Their algorithm is an extension of SERT [Boese
et al., 1995], where a two-variable optimization is performed to decide the con-
nection point and TSV location for Elmore delay minimization upon each edge
addition. Given a set of 3D Steiner trees, they also proposed an integer linear
programming formulation to reposition the TSVs for thermal optimization.

Chapter 6

MULTI-NET ROUTING

Given a graph G(V,E) that represents the routing resources such as chan-
nels and regions and a netlist NL that consists of multiple nets, where each
net is a subset of vertices in V , the goal of multi-net routing is to construct
routing trees of all nets in NL such that the capacity constraint specified in
each edge in E is satisfied. The objective is to minimize the total wirelength,
routing congestion, longest source-sink path length, etc. This chapter presents
sample problems related to the following works:

Steiner min-max tree algorithm [Chiang et al., 1990]

Multi-commodity flow routing algorithm [Shragowitz and Keel, 1987]

Iterative deletion algorithm [Cong and Preas, 1988]

Yoshimura and Kuh algorithm [Yoshimura and Kuh, 1982]

The first router is a sequential router, where the nets are routed one-by-one. The
others route all nets simultaneously. The first three routers are global routers,
whereas the last one is a detailed router.

S.K. Lim, Practical Problems in VLSI Physical Design Automation

c©Springer Science+Business Media B.V. 2008

198 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

1. Steiner Min-Max Tree Algorithm
Given an undirected, edge-weighted graph G(V,E) and a net n that con-

tains a subset of nodes D ⊆ V , the Steiner Min-Max Tree (SMMT) of n is
a Steiner tree of n, where the maximum weight among all edges in the tree
is minimized. The rationale behind minimizing the maximum edge weight
rather than the traditional wirelength or diameter objectives is that we try to
minimize congestion (and thus improve routability) in case of routing multi-
ple nets. If the edge weight indicates the routing usage (= congestion) of the
edge, minimizing the maximum edge weight in the Steiner tree means avoid-
ing congested spots. Unlike the NP-hard Steiner tree problem for wirelength
minimization, this SMMT problem can be solved optimally with a simple and
efficient algorithm named ALG-SMMT presented by Chiang, Sarrafzadeh, and
Wong [Chiang et al., 1990]. However, if we desire that the wirelength is also
minimized in SMMT, this problem so called MSMMT becomes NP-hard.

In case of the “sequential routing approach” for multiple-net routing, where
the nets are routed one-by-one, the quality of routing heavily depends on the
net order. This is because the nets that are routed earlier become obstacles for
the nets to be routed. The authors of [Chiang et al., 1990] first suggested var-
ious factors to consider to obtain good orderings such as half-perimeter of the
bounding box (HPBB) and the number of terminals of the net. Then they pro-
posed a heuristic algorithm to solve the MSMMT problem, which consists of
two phases, namely, SMMT and Shortest Path (SP) phase. The basic approach
is to build SMMTs of the nets first and then re-route them for further wire-
length minimization. The SMMT phase consists of multiple passes, where we
visit the nets one-by-one and route them using their ALG-SMMT algorithm
in each pass. If the wirelength of SMMT of a net is below the threshold, we
accept it; otherwise, we skip it and re-route it during the next pass or the SP
phase. The SP phase is also iterative, where each net is ripped-up and re-routed
using the ALG-SP algorithm, which resembles Prim’s MST algorithm [Prim,
1957], for wirelength minimization in each pass. The user specifies the total
number of passes used for the SMMT and SP phases.

Quick Overview
During the SMMT phase, we first order the nets in an increasing order of

their HPBB. Given a net n to be routed in a routing graph G, the ALG-SMMT
algorithm first builds T , a minimum spanning tree (MST) of G (not n). Then
we remove all “degree 1 Steiner nodes” and their incident edges from T one-
by-one. Any node in T that is not a terminal of n is a Steiner node, and a
degree 1 Steiner node has only one edge incident to it. Once all the degree 1
Steiner nodes are removed, T becomes an optimal SMMT. If the wirelength of
T is shorter than the threshold, we accept it; otherwise we reject the SMMT.

Multi-net Routing 199

Once we finish our SMMT routing effort for all nets, the current pass ends.
The entire SMMT pass is repeated if desired. Note that the nets that we failed
to route during the current pass may become routable during the next pass
because the underlying routing graph may have been updated.

During the SP phase, we visit the nets in the same order as in the SMMT
phase and try to re-route them for wirelength minimization. Given a net n to be
re-routed in a routing graph G, we first rip-up n from G and update the edge
weights in G. Let T denote the final SP-tree for n. The ALG-SP algorithm
selects a source terminal, which is the closest to the geometric center of the
bounding box of n, and adds it to T . We then find a terminal of n that is the
closest to T and add it to T via a shortest feasible path. A path is feasible if it
does not violate edge capacity constraints. We add the remaining terminals of
n one-by-one until T spans all terminals. Lastly, we accept T if the wirelength
or the maximum edge weight is reduced after the re-routing. Once we finish
our SP re-routing effort for all nets, the current pass ends. The entire SP pass
is repeated if desired. As in the case of SMMT phase, SP may give us different
routing trees for the same net in different passes because the underlying routing
graph may have been updated.

Practice Problem
Consider the following netlist, where the nets are sorted based on their

HPBB:

n1 = {(1, 0), (0, 3), (3, 2), (3, 4)}
n2 = {(0, 2), (3, 0), (4, 3)}
n3 = {(1, 1), (2, 2), (4, 0), (4, 4)}
n4 = {(0, 0), (2, 1), (1, 3), (4, 1), (2, 4)}
n5 = {(2, 0), (0, 4), (4, 2), (3, 3)}

These nets are to be routed in this order. Use a 5×5 mesh for the routing graph
G, where the weight of each edge in G corresponds to the demand, i.e., current
usage. The edge capacity is set to 3.

1. Perform a single pass of the SMMT-phase under cj = 2.0.

We visit the nets in the given order and apply the ALG-SMMT algorithm.

(a) Net n1: Figure 6.1(a) shows the 4 terminals of n1, where HPBB is 7.
The weight of edges in the routing graph is zero. Figure 6.1(b) shows a
MST of the routing graph. Note that there exist many other MSTs with
the same cost. Lastly, Figure 6.1(c) shows the final SMMT with the
maximum edge weight of 0 and wirelength of 9. We obtain this SMMT
after removing all degree-1 Steiner vertices from the initial MST. We

200 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

(a) (b) (c)

Figure 6.1. (a) Net n1 with HPBB of 7, where the weight of all edges in the underlying routing
graph G is initially set to zero, (b) a MST of G, (c) final SMMT with maximum edge weight of
0, and wirelength of 9. We accept this solution because 9 < 2.0 × 7.

(a) (b) (c)

1

1

1

1

1

1

11

1

Figure 6.2. (a) Net n2 with HPBB of 7, where the edge label in G denotes the current weight
(no label indicates zero weight), (b) a MST of G, (c) final SMMT with maximum edge weight
of 0, and wirelength of 10. We accept this solution because 10 < 2.0 × 7.

accept this SMMT because the wirelength is shorter than the threshold
(9 < 2.0 × 7).

(b) Net n2: Figure 6.2(a) shows the 3 terminals of n2. Note that the edge
weights in the routing graph are updated based on the routing result
of n1. Figure 6.2(b) shows a MST of the routing graph. Again this
MST is not unique. Lastly, Figure 6.2(c) shows the final SMMT with
the maximum edge weight of 0 and wirelength of 10. We accept this
SMMT because the wirelength is shorter than the threshold (10 < 2.0×
7).

(c) Net n3: Figure 6.3(a) shows the 4 terminals of n3. The routing graph
now contains the routing results of n1 and n2. Figure 6.3(b) shows a
MST of the routing graph. Lastly, Figure 6.3(c) shows the final SMMT
with the maximum edge weight of 1 and wirelength of 15. We reject
this SMMT because the wirelength is longer than the threshold (15 >
2.0 × 7).

Multi-net Routing 201

(a) (b) (c)

1

1

1

1

1

1

11

11

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 6.3. (a) Net n3 with HPBB of 7, (b) a MST of G, (c) final SMMT with maximum edge
weight of 1, and wirelength of 15. We reject this solution because 15 > 2.0 × 7.

(a) (b) (c)

1

1

1

1

1

1

11

11

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 6.4. (a) Net n4 with HPBB of 8, (b) a MST of G, (c) final SMMT with maximum edge
weight of 1, and wirelength of 15. We accept this solution because 15 < 2.0 × 8.

(d) Net n4: Figure 6.4(a) shows the 5 terminals of n4. Note that we use
the same routing graph as the one used for n3 because the routing of
n3 has failed. Figure 6.4(b) shows a MST of the routing graph. Lastly,
Figure 6.4(c) shows the final SMMT with the maximum edge weight of
1 and wirelength of 15. We accept this solution because the wirelength
is shorter than the threshold (15 < 2.0 × 8).

(e) Net n5: Figure 6.5(a) shows the 4 terminals of n5. The routing graph
now contains the routing results of n1, n2, and n4. Figure 6.5(b) shows
a MST of the routing graph. Lastly, Figure 6.5(c) shows the final SMMT
with the maximum edge weight of 1 and wirelength of 12. We accept
this SMMT because the wirelength is shorter than the threshold (12 <
2.0 × 8).

Figure 6.6(a) shows the final routing graph that contains the routing results
of n1, n2, n4, and n5. The maximum demand (= current usage) among all
edges is 2. Figure 6.6(b–e) show the SMMTs of the routed nets.

202 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

(a) (b) (c)

1

1

1

2

1

1

11

21

1

1 1

1

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 6.5. (a) Net n5 with HPBB of 8, (b) a MST of G, (c) final SMMT with maximum edge
weight of 1, and wirelength of 12. We accept this solution because 12 < 2.0 × 8.

(a) (b) (c)

1

1

1

2

1

1

21

21

1

1 1

2

2

1

1

2

1

1

1

2

1

1

1

1

2

1

1

2

1

1

1

1

1

1

1

1

1

1

2

1

1

21

21

1

1 1

2

2

1

1

2

1

1

1

2

1

1

1

1

2

1

1

2

1

1

1

1

1

1

1

1

1

1

2

1

1

21

21

1

1 1

2

2

1

1

2

1

1

1

2

1

1

1

1

2

1

1

2

1

1

1

1

1

1

1

(d) (e)

1

1

1

2

1

1

21

21

1

1 1

2

2

1

1

2

1

1

1

2

1

1

1

1

2

1

1

2

1

1

1

1

1

1

1

1

1

1

2

1

1

21

21

1

1 1

2

2

1

1

2

1

1

1

2

1

1

1

1

2

1

1

2

1

1

1

1

1

1

1

Figure 6.6. (a) Final routing graph, (b) SMMT of n1, (c) SMMT of n2, (d) SMMT of n4,
(e) SMMT of n5. Note that n3 routing has failed.

2. Perform a single pass of the SP-phase.

We visit the nets in the given order and attempt to re-route them using the
ALG-SP algorithm.

(a) Net n1: Figure 6.7(a) first shows the SMMT of n1 we obtained from the
SMMT phase. Our goal is to rip up SMMT of n1 and re-route it using
ALG-SP algorithm. Figure 6.7(b) shows the routing graph after remov-
ing SMMT of n1. The arrow points to the source terminal s = (3, 2)

Multi-net Routing 203

(a) (b) (c)

1

1

11

1

1 1

2

2

1

1

2

1

1

1

2

1

1

1

1

2

1

1

2

1

1

1

1

1

1

1

1

2

11

2

1 1

2

2

1

1

3

1

1

1

2

1

1

1

1

2

2

1

2

2

1

1

1

2

1

2

1

2

2

21

1

1 1

2

2

1

1

2

1

1

1

2

1

1

1

1

2

1

1

2

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 6.7. (a) SMMT of n1, (b) routing graph after ripping up SMMT of n1. The arrow
points to the source for SP computation, (c) SP of n1.

1

2

11

2

1 1

2

2

1

1

3

1

1

1

2

1

1

1

1

2

2

1

2

2

1

1

1

2

1

2

1

(a) (b) (c)

1

2

1

1

1

1

2

1

1

2

1

1

1

1

2

2

1

2

2

1

1

1

2

1

2

1

1

2

2

1

2

1

3

1

1

2

1

1

1

2

3

2

1

2

2

1

1

1

2

1

2

1 1

1

Figure 6.8. (a) SMMT of n2, (b) routing graph after ripping up SMMT of n2. The arrow
points to the source for SP computation, (c) SP of n2.

needed in ALG-SP. This terminal is chosen because it is the closest to
the geometric center of the bounding box of n1. The order of terminals
added to grow s is as follows: (3, 4), (0, 3), (1, 0). Figure 6.7(c) shows
the final SP of n1. The routing graph is updated to reflect the re-routing
of n1.

(b) Net n2: Figure 6.8(a) shows the SMMT of n2 we obtained from the
SMMT phase. The underlying routing graph is the same as the one
shown in Figure 6.7(c). Figure 6.8(b) shows the routing graph after rip-
ping up the SMMT of n2. We select s = (3, 0) as the source terminal.
The order of terminals added to grow s is as follows: (4, 3), (0, 2).
Figure 6.8(c) shows the final SP of n2. The routing graph is updated to
reflect the re-routing of n2.

(c) Net n3: SMMT of n3 does not exist due to the routing failure dur-
ing the SMMT phase. Figure 6.9(b) shows the routing graph for n3,
which is the same as Figure 6.8(c). The source terminal s = (2, 2). The
order of terminals added to grow s is as follows: (1, 1), (4, 0), (4, 4).

204 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

(a) (b) (c)

1

2

2

1

2

1

3

1

1

2

1

1

1

2

3

2

1

2

2

1

1

1

2

1

2

1 1

1

1

2

2

1

2

1

3

1

1

2

1

1

1

2

3

2

1

2

2

1

1

1

2

1

2

1 1

1

2

2

2

1

2

1

3

1

1

2

1

1

1

2

3

2

1

2

2

1

2

1

2

2

2

1 1

1

1

1

1

1

1

1

Figure 6.9. (a) SMMT of n3 does not exist due to the routing failure, (b) routing graph for n3.
The arrow points to the source for SP computation, (c) SP of n3.

(a) (b) (c)

2

2

2

1

2

1

3

1

1

2

1

1

1

2

3

2

1

2

2

1

2

1

2

2

2

1 1

1

1

1

1

1

1

1

1

2

1

1

2

3

1

1

2

1

1

1

1

2

1

2

2

2

1 1

1

1

1

1

1

1

1

2

3

1

1

2

3

1

1

2

1

1

1

1

2

1

2

2

2

1 1

1

1

2

2

2

1

111

1 1

Figure 6.10. (a) SMMT of n4, (b) routing graph after ripping up SMMT of n4. The arrow
points to the source for SP computation, (c) SP of n4.

Figure 6.9(c) shows the final SP of n3. The routing graph is updated to
reflect the routing of n3.

(d) Net n4: Figure 6.10(a) shows the SMMT of n4 we obtained from the
SMMT phase. The underlying routing graph is the same as the one
shown in Figure 6.9(c). Figure 6.10(b) shows the routing graph after
ripping up the SMMT of n4. We select s = (2, 1) as the source termi-
nal. The order of terminals added to grow s is as follows: (4, 1), (0, 0),
(1, 3), (2, 4). Figure 6.10(c) shows the final SP of n4. The routing graph
is updated to reflect the re-routing of n4.

(e) Net n5: Figure 6.11(a) shows the SMMT of n5 we obtained from the
SMMT phase. The underlying routing graph is the same as the one
shown in Figure 6.10(c). Figure 6.11(b) shows the routing graph after
ripping up the SMMT of n5. We select s = (2, 0) as the source termi-
nal. The order of terminals added to grow s is as follows: (4, 2), (3, 3),
(0, 4). Figure 6.11(c) shows the final SP of n5. The routing graph is
updated to reflect the re-routing of n5.

Multi-net Routing 205

(a) (b) (c)

2

3

1

1

2

3

1

1

2

1

1

1

1

2

1

2

2

2

1 1

1

1

2

2

2

1

111

1 1

2

2

1

1

1

2

1

1

1

1

1

1

1

1

1 1

1

1

2

2

2

1

111

1 1

3

2

2

1

1

2

1

1

1

1

1

2

1

1

1 1

1

1

3

3

3

1

111

1 1

1 1

1

Figure 6.11. (a) SMMT of n5, (b) routing graph after ripping up SMMT of n5. The arrow
points to the source for SP computation, (c) SP of n5.

(a) (b) (c)

(d) (e) (f)

3

2

2

1

1

2

1

1

1

1

1

2

1

1

1 1

1

1

3

3

3

1

111

1 1

1 1

1

3

2

2

1

1

2

1

1

1

1

1

2

1

1

1 1

1

1

3

3

3

1

111

1 1

1 1

1

3

2

2

1

1

2

1

1

1

1

1

2

1

1

1 1

1

1

3

3

3

1

111

1 1

1 1

1

3

2

2

1

1

2

1

1

1

1

1

2

1

1

1 1

1

1

3

3

3

1

111

1 1

1 1

1

3

2

2

1

1

2

1

1

1

1

1

2

1

1

1 1

1

1

3

3

3

1

111

1 1

1 1

1

3

2

2

1

1

2

1

1

1

1

1

2

1

1

1 1

1

1

3

3

3

1

111

1 1

1 1

1

Figure 6.12. SP routing results. (a) Final routing graph, (b–f) SP of nets n1 to n5.

Figure 6.12(a) shows the final routing graph, where the maximum demand
among all edges is 3. Figure 6.12(b–f) show the SPs of the nets n1 to n5.

3. Compare the results obtained by SMMT and SP phases.

Figure 6.13 shows the routing graphs after the SMMT and SP phases. We
observe that SMMT phase shows more uniform use of routing resource
compared with SP phase. Table 6.1 shows the summary of SMMT and SP
phases based on the results shown in Figure 6.6 and Figure 6.12. We observe

206 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

(a) (b)

3

2

2

1

1

2

1

1

1

1

1

2

1

1

1 1

1

1

3

3

3

1

111

1 1

1 1

1

1

1

1

2

1

1

21

21

1

1 1

2

2

1

1

2

1

1

1

2

1

1

1

1

2

1

1

2

1

1

1

1

1

1

1

Figure 6.13. (a) Routing graph after SMMT phase, (b) routing graph after ST phase. SMMT
shows more uniform use of routing resource. The edge capacity is set to 3.

Table 6.1. Summary of SMMT and SP phases based on Figures 6.6 and 6.12.

SMMT phase SP phase
Net max e-wgt wirelength max e-wgt wirelength

n1 2 9 2 8
n2 2 10 2 7
n3 Routing failed 3 9
n4 2 15 3 9
n5 2 12 3 9

that the maximum edge weights are higher in SP trees. The wirelengths,
however, are shorter in SP trees. This clearly demonstrates the congestion
vs wirelength tradeoff existing in multiple net routing.

Multi-net Routing 207

2. Multi-Commodity Flow Routing Algorithm
The multi-commodity flow problem is a generalization of the network flow

problem, where multiple commodities must be shipped from their own sources
to the sinks on a common network. The goal is to minimize the total shipping
cost. The global routing problem can be formulated as a multi-commodity flow
problem, where each net is treated as a commodity, and the routing resource
graph is treated as the flow network. It is well known that the multi-commodity
flow problem is NP-complete and can be formulated as a linear programming
(LP) problem. Thus, one can utilize an existing LP solver to solve the global
routing problem. One significant benefit of the multi-commodity flow based
global routing is that it routes all nets simultaneously, thereby overcoming the
net ordering problem. However, the runtime of LP solver increases quickly
with bigger size problems. Thus, the research on the multi-commodity flow
problem has mostly focused on heuristics and combinatorial approximation
algorithms.

It is generally believed that the work by Shragowitz and Keel [Shragowitz
and Keel, 1987] is the first reported work on global routing using the multi-
commodity flow model. They formulated the routing problem as integer linear
programming (ILP) and solved it using a heuristic named MM (minimax) algo-
rithm instead of using an off-the-shelf ILP solver. The objective is to minimize
the total wirelength under the capacity constraints. MM algorithm repeatedly
performs shortest path computation [Dijkstra, 1959] and rip-up-and-reroute
[Ting and Tien, 1983]. One disadvantage of this work is that it can only handle
2-pin nets so that a multi-pin net must be decomposed into a set of two-pin
connections and solved independently.

Quick Overview
Given an instance of routing problem that consists of a routing graph G(V,E)

and a netlist NL, we first construct the flow network F (V,A). F inherits
all nodes in G. For each edge e(x, y) ∈ E, we add a pair of directed arcs
(x, y) and (y, x) to A. The cost of each arc represents the cost of routing
using the corresponding edge in the routing graph, which is usually set to its
Manhattan distance. The ILP formulation of the multi-commodity flow based
routing problem consists of the objective function and three sets of constraints:
demand, capacity, and integer constraints.

Objective function: Let xk
a ∈ {0, 1} denote the integer variable for arc a

with respect to net (= commodity) k. xk
a = 1 means that net k uses arc a in

its route. Thus, the total number of these integer variables is |A| × |NL|.
The objective function is constructed in such a way that we visit each arc in
A and compute the weighted sum of its x-variables (see the sample problem
for details).

208 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

Demand constraint: Given a node v ∈ V and a net k ∈ NL, the demand
constraint basically states that given a node v, the total amount of flow for
net k entering and leaving v equals 1 if v is the source of net k; −1 if v is
the sink of net k; 0 otherwise. We set up this equation for all nets in NL for
all vertices in V (see the sample problem for details).

Capacity constraint: for each arc a ∈ A, the total usage, i.e., the sum of xk
a

for all k ∈ NL should not exceed the capacity of the corresponding edge
e ∈ E.

Integer constraint: the x variables can only take either 0 or 1.

The MM algorithm starts with shortest path computation [Dijkstra, 1959]
for all nets while ignoring capacity constraints. We call this result the solution
at iteration r = 0. We increment r and proceed with the rest of the steps as
follows:

Step 1: we compute Mr, the maximum overflow among all arcs in the
solution at iteration r − 1. If Mr ≤ 0, we terminate.

Step 2: we obtain Jr, the set of arcs with the maximum overflow in the solu-
tion at iteration r − 1. We also compute J0

r , the set of arcs with maximum
overflow and maximum minus 1 overflow.

Step 3: we assign ∞ as the cost of all arcs in J0
r .

Step 4: we compute Kr, the set of nets that use arcs in Jr in the solution at
iteration r − 1. We also compute K0

r , the set of nets that use arcs in J0
r .

Step 5: we compute shortest paths for all nets in Kr using the new cost
from step 3. We ignore capacity constraint in this case. If there is a net with
non-infinity cost, we go to step 6; otherwise we go to step 9.

Step 6: we choose k0 among the nets with non-infinity cost from step 5,
which is the net with the minimum cost increase between the old and the
new routes.

Step 7: we construct the routing solution for iteration r by using all of the
routes from iteration r − 1 except for k0, where we use the new route.

Step 8: we increment r and go back to step 1.

Step 9: given a net k ∈ K0
r , we check to see if xk

p × xk
q = 0 for a pair of

arcs p, q ∈ J0
r in the solution at iteration r − 1. If this is true for all such

pairs in J0
r for all nets in K0

r , we decide that the routing problem does not
have a solution; otherwise, we go to step 10.26

26The practice problem provided in this section does not require steps 9 and 10.

Multi-net Routing 209

Step 10 (escape procedure): we choose k′ ∈ K0
r , the net that uses the max-

imum number of arcs in J0
r in the solution at iteration r − 1. We rip up k′

and reroute it so that the original route is preserved as much as possible.
This new route for k′ together with old routes from iteration r− 1 for other
nets becomes the solution for iteration r. We go back to step 1.

Practice Problem
Consider the routing graph G shown in Figure 6.14(a), where the capacity

of all edges is 2. Figure 6.14(b) shows the flow network.27 Table 6.2 shows the
cost of the arcs in the flow network. The following six nets are to be routed:
n1 = {a, l}, n2 = {i, c}, n3 = {d, f}, n4 = {k, d}, n5 = {g, h}, n6 = {b, k}.
The first node in each net is the source.

1. Set up and solve the integer linear programming (ILP) formulation of the
multi-commodity flow based global routing.

ba c

g

d

e
f

h

i j k l

ba c

g

d

e
f

h

i j k l

(a) (b)

Figure 6.14. (a) Routing graph, where the capacity of all edges is 2, (b) its flow network.

Table 6.2. List of the arcs in the flow network.

Arc Cost Arc Cost Arc Cost Arc Cost

(a, b) 4 (b, a) 4 (b, c) 8 (c, b) 8
(d, h) 4 (h, d) 4 (e, f) 5 (f, e) 5
(f, g) 3 (g, f) 3 (i, j) 4 (j, i) 4
(j, k) 5 (k, j) 5 (k, l) 3 (l, k) 3
(a, d) 7 (d, a) 7 (d, i) 5 (i, d) 5
(b, e) 4 (e, b) 4 (e, h) 3 (h, e) 3
(h, j) 5 (j, h) 5 (f, k) 8 (k, f) 8
(c, g) 4 (g, c) 4 (g, l) 8 (l, g) 8

27This directed graph, where bi-directional edges are used for each channel, is preferred over an undi-
rected graph. The number of constraints is smaller with directed graphs because absolute functions are not
necessary in its ILP.

210 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

First, we compute the objective function as follows: Let xk
e denote the

integer variable for arc e with respect to net (= commodity) k. The total
number of these x-variables is 16× 2× 6 = 192. The objective function is
as follows:

4(x1
a,b + · · · + x6

a,b) + 4(x1
b,a + · · · + x6

b,a) + 8(x1
b,c + · · · + x6

b,c)

+ 8(x1
c,b + · · · + x6

c,b) + 4(x1
d,h + · · · + x6

d,h) + 4(x1
h,d + · · · + x6

h,d)

+ 5(x1
e,f + · · · + x6

e,f) + 5(x1
f,e + · · · + x6

f,e) + 3(x1
f,g + · · · + x6

f,g)

+ 3(x1
g,f + · · · + x6

g,f) + 4(x1
i,j + · · · + x6

i,j) + 4(x1
j,i + · · · + x6

j,i)

+ 5(x1
j,k + · · · + x6

j,k) + 5(x1
k,j + · · · + x6

k,j) + 3(x1
k,l + · · · + x6

k,l)

+ 3(x1
l,k + · · · + x6

l,k) + 7(x1
a,d + · · · + x6

a,d) + 7(x1
d,a + · · · + x6

d,a)

+ 5(x1
d,i + · · · + x6

d,i) + 5(x1
i,d + · · · + x6

i,d) + 4(x1
b,e + · · · + x6

b,e)

+ 4(x1
e,b + · · · + x6

e,b) + 3(x1
e,h + · · · + x6

e,h) + 3(x1
h,e + · · · + x6

h,e)

+ 5(x1
h,j + · · · + x6

h,j) + 5(x1
j,h + · · · + x6

j,h) + 8(x1
f,k + · · · + x6

f,k)

+ 8(x1
k,f + · · · + x6

k,f) + 4(x1
c,g + · · · + x6

c,g) + 4(x1
g,c + · · · + x6

g,c)

+ 8(x1
g,l + · · · + x6

g,l) + 8(x1
l,g + · · · + x6

l,g) (6.1)

Second, we compute the demand constraints as follows: Let zk
v denote the

demand variable for node v with respect to net (= commodity) k. The total
number of these z-variables is 12×6 = 72. All z-variables are initialized to
zero. We then obtain non-zero demand variables by examining the netlist.
From net n1 = {a, l}, we have z1

a = 1, z1
l = −1. From net n2 = {i, c},

we have z2
i = 1, z2

c = −1. From net n3 = {d, f}, we have z3
d = 1,

z3
f = −1. From net n4 = {k, d}, we have z4

k = 1, z4
d = −1. From net

n5 = {g, h}, we have z5
g = 1, z5

h = −1. From net n6 = {b, k}, we have
z6
b = 1, z6

k = −1. Next, we visit the nodes in the flow network and obtain
the demand constraints as follows:

Node a: node a is the source of net n1. Thus,

x1
a,b + x1

a,d − x1
b,a − x1

d,a = 1 (6.2)

x2
a,b + x2

a,d − x2
b,a − x2

d,a = 0 (6.3)

x3
a,b + x3

a,d − x3
b,a − x3

d,a = 0 (6.4)

x4
a,b + x4

a,d − x4
b,a − x4

d,a = 0 (6.5)

x5
a,b + x5

a,d − x5
b,a − x5

d,a = 0 (6.6)

x6
a,b + x6

a,d − x6
b,a − x6

d,a = 0 (6.7)

Multi-net Routing 211

Node b: node b is the source of net n6. Thus,

x1
b,a + x1

b,e + x1
b,c − x1

a,b − x1
e,b − x1

c,b = 0 (6.8)

x2
b,a + x2

b,e + x2
b,c − x2

a,b − x2
e,b − x2

c,b = 0 (6.9)

x3
b,a + x3

b,e + x3
b,c − x3

a,b − x3
e,b − x3

c,b = 0 (6.10)

x4
b,a + x4

b,e + x4
b,c − x4

a,b − x4
e,b − x4

c,b = 0 (6.11)

x5
b,a + x5

b,e + x5
b,c − x5

a,b − x5
e,b − x5

c,b = 0 (6.12)

x6
b,a + x6

b,e + x6
b,c − x6

a,b − x6
e,b − x6

c,b = 1 (6.13)

Node c: node c is the sink of net n2. Thus,

x1
c,b + x1

c,g − x1
b,c − x1

g,c = 0 (6.14)

x2
c,b + x2

c,g − x2
b,c − x2

g,c = −1 (6.15)

x3
c,b + x3

c,g − x3
b,c − x3

g,c = 0 (6.16)

x4
c,b + x4

c,g − x4
b,c − x4

g,c = 0 (6.17)

x5
c,b + x5

c,g − x5
b,c − x5

g,c = 0 (6.18)

x6
c,b + x6

c,g − x6
b,c − x6

g,c = 0 (6.19)

Node d: node d is the source of net n3 and the sink of net n4. Thus,

x1
d,a + x1

d,h + x1
d,i − x1

a,d − x1
h,d − x1

i,d = 0 (6.20)

x2
d,a + x2

d,h + x2
d,i − x2

a,d − x2
h,d − x2

i,d = 0 (6.21)

x3
d,a + x3

d,h + x3
d,i − x3

a,d − x3
h,d − x3

i,d = 1 (6.22)

x4
d,a + x4

d,h + x4
d,i − x4

a,d − x4
h,d − x4

i,d = −1 (6.23)

x5
d,a + x5

d,h + x5
d,i − x5

a,d − x5
h,d − x5

i,d = 0 (6.24)

x6
d,a + x6

d,h + x6
d,i − x6

a,d − x6
h,d − x6

i,d = 0 (6.25)

Node e: node e is not involved with any net. Thus,

x1
e,b + x1

e,f + x1
e,h − x1

b,e − x1
f,e − x1

h,e = 0 (6.26)

x2
e,b + x2

e,f + x2
e,h − x2

b,e − x2
f,e − x2

h,e = 0 (6.27)

x3
e,b + x3

e,f + x3
e,h − x3

b,e − x3
f,e − x3

h,e = 0 (6.28)

x4
e,b + x4

e,f + x4
e,h − x4

b,e − x4
f,e − x4

h,e = 0 (6.29)

x5
e,b + x5

e,f + x5
e,h − x5

b,e − x5
f,e − x5

h,e = 0 (6.30)

x6
e,b + x6

e,f + x6
e,h − x6

b,e − x6
f,e − x6

h,e = 0 (6.31)

212 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

Node f : node f is the sink of net n3. Thus,

x1
f,e + x1

f,k + x1
f,g − x1

e,f − x1
k,f − x1

g,f = 0 (6.32)

x2
f,e + x2

f,k + x2
f,g − x2

e,f − x2
k,f − x2

g,f = 0 (6.33)

x3
f,e + x3

f,k + x3
f,g − x3

e,f − x3
k,f − x3

g,f = −1 (6.34)

x4
f,e + x4

f,k + x4
f,g − x4

e,f − x4
k,f − x4

g,f = 0 (6.35)

x5
f,e + x5

f,k + x5
f,g − x5

e,f − x5
k,f − x5

g,f = 0 (6.36)

x6
f,e + x6

f,k + x6
f,g − x6

e,f − x6
k,f − x6

g,f = 0 (6.37)

Node g: node g is the source of net n5. Thus,

x1
g,c + x1

g,f + x1
g,l − x1

c,g − x1
f,g − x1

l,g = 0 (6.38)

x2
g,c + x2

g,f + x2
g,l − x2

c,g − x2
f,g − x2

l,g = 0 (6.39)

x3
g,c + x3

g,f + x3
g,l − x3

c,g − x3
f,g − x3

l,g = 0 (6.40)

x4
g,c + x4

g,f + x4
g,l − x4

c,g − x4
f,g − x4

l,g = 0 (6.41)

x5
g,c + x5

g,f + x5
g,l − x5

c,g − x5
f,g − x5

l,g = 1 (6.42)

x6
g,c + x6

g,f + x6
g,l − x6

c,g − x6
f,g − x6

l,g = 0 (6.43)

Node h: node h is the sink of net n5. Thus,

x1
h,e + x1

h,d + x1
h,j − x1

e,h − x1
d,h − x1

j,h = 0 (6.44)

x2
h,e + x2

h,d + x2
h,j − x2

e,h − x2
d,h − x2

j,h = 0 (6.45)

x3
h,e + x3

h,d + x3
h,j − x3

e,h − x3
d,h − x3

j,h = 0 (6.46)

x4
h,e + x4

h,d + x4
h,j − x4

e,h − x4
d,h − x4

j,h = 0 (6.47)

x5
h,e + x5

h,d + x5
h,j − x5

e,h − x5
d,h − x5

j,h = −1 (6.48)

x6
h,e + x6

h,d + x6
h,j − x6

e,h − x6
d,h − x6

j,h = 0 (6.49)

Node i: node i is the source of net n2. Thus,

x1
i,d + x1

i,j − x1
d,i − x1

j,i = 0 (6.50)

x2
i,d + x2

i,j − x2
d,i − x2

j,i = 1 (6.51)

x3
i,d + x3

i,j − x3
d,i − x3

j,i = 0 (6.52)

x4
i,d + x4

i,j − x4
d,i − x4

j,i = 0 (6.53)

x5
i,d + x5

i,j − x5
d,i − x5

j,i = 0 (6.54)

x6
i,d + x6

i,j − x6
d,i − x6

j,i = 0 (6.55)

Multi-net Routing 213

Node j: node j is not involved with any net. Thus,

x1
j,i + x1

j,h + x1
j,k − x1

i,j − x1
h,j − x1

k,j = 0 (6.56)

x2
j,i + x2

j,h + x2
j,k − x2

i,j − x2
h,j − x2

k,j = 0 (6.57)

x3
j,i + x3

j,h + x3
j,k − x3

i,j − x3
h,j − x3

k,j = 0 (6.58)

x4
j,i + x4

j,h + x4
j,k − x4

i,j − x4
h,j − x4

k,j = 0 (6.59)

x5
j,i + x5

j,h + x5
j,k − x5

i,j − x5
h,j − x5

k,j = 0 (6.60)

x6
j,i + x6

j,h + x6
j,k − x6

i,j − x6
h,j − x6

k,j = 0 (6.61)

Node k: node k is the source of net n4 and the sink of net n6. Thus,

x1
k,j + x1

k,f + x1
k,l − x1

j,k − x1
f,k − x1

l,k = 0 (6.62)

x2
k,j + x2

k,f + x2
k,l − x2

j,k − x2
f,k − x2

l,k = 0 (6.63)

x3
k,j + x3

k,f + x3
k,l − x3

j,k − x3
f,k − x3

l,k = 0 (6.64)

x4
k,j + x4

k,f + x4
k,l − x4

j,k − x4
f,k − x4

l,k = 1 (6.65)

x5
k,j + x5

k,f + x5
k,l − x5

j,k − x5
f,k − x5

l,k = 0 (6.66)

x6
k,j + x6

k,f + x6
k,l − x6

j,k − x6
f,k − x6

l,k = −1 (6.67)

Node l: node l is the sink of net n1. Thus,

x1
l,k + x1

l,g − x1
k,l − x1

g,l = −1 (6.68)

x2
l,k + x2

l,g − x2
k,l − x2

g,l = 0 (6.69)

x3
l,k + x3

l,g − x3
k,l − x3

g,l = 0 (6.70)

x4
l,k + x4

l,g − x4
k,l − x4

g,l = 0 (6.71)

x5
l,k + x5

l,g − x5
k,l − x5

g,l = 0 (6.72)

x6
l,k + x6

l,g − x6
k,l − x6

g,l = 0 (6.73)

Third, we compute the capacity constraints as follows:

x1
a,b + · · · x6

a,b + x1
b,a + · · · x6

b,a ≤ 2 (6.74)

x1
b,c + · · · + x6

b,c + x1
c,b + · · · + x6

c,b ≤ 2 (6.75)

x1
d,h + · · · + x6

d,h + x1
h,d + · · · + x6

h,d ≤ 2 (6.76)

x1
e,f + · · · + x6

e,f + x1
f,e + · · · + x6

f,e ≤ 2 (6.77)

x1
f,g + · · · + x6

f,g + x1
g,f + · · · + x6

g,f ≤ 2 (6.78)

x1
i,j + · · · + x6

i,j + x1
j,i + · · · + x6

j,i ≤ 2 (6.79)

214 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

x1
j,k + · · · + x6

j,k + x1
k,j + · · · + x6

k,j ≤ 2 (6.80)

x1
k,l + · · · + x6

k,l + x1
l,k + · · · + x6

l,k ≤ 2 (6.81)

x1
a,d + · · · + x6

a,d + x1
d,a + · · · + x6

d,a ≤ 2 (6.82)

x1
d,i + · · · + x6

d,i + x1
i,d + · · · + x6

i,d ≤ 2 (6.83)

x1
b,e + · · · + x6

b,e + x1
e,b + · · · + x6

e,b ≤ 2 (6.84)

x1
e,h + · · · + x6

e,h + x1
h,e + · · · + x6

h,e ≤ 2 (6.85)

x1
h,j + · · · + x6

h,j + x1
j,h + · · · + x6

j,h ≤ 2 (6.86)

x1
f,k + · · · + x6

f,k + x1
k,f + · · · + x6

k,f ≤ 2 (6.87)

x1
c,g + · · · + x6

c,g + x1
g,c + · · · + x6

g,c ≤ 2 (6.88)

x1
g,l + · · · + x6

g,l + x1
l,g + · · · + x6

l,g ≤ 2 (6.89)

Fourth, the integer constraints are as follows:

xk
e ∈ {0, 1}, ∀e, k (6.90)

Lastly, the ILP formulation is as follows:
Minimize (6.1)
Under constraints (6.2)–(6.73), (6.74)–(6.89), and (6.90).

We use GLPK package [FSF, 2006] to solve this ILP and obtain the fol-
lowing results (runtime was less than a second on a Linux machine with
2.5 GHz CPU)28:

Minimum cost: 108 (this is equal to the total wirelength of the six nets).

Non-zero x-variables: x1
d,h, x1

j,k, x1
k,l, x1

a,d, x1
h,j , x2

a,b, x2
b,c, x2

i,d, x2
d,a,

x3
d,h, x3

e,f , x3
h,e, x4

k,j, x4
i,d, x4

j,i, x5
f,e, x5

g,f , x5
e,h, x6

b,c, x6
g,f , x6

f,k, x6
c,g.

Path for n1 = {a, l}: we have x1
a,d, x1

d,h, x1
h,j , x1

j,k, x1
k,l as the non-zero

variables. Thus, the path is a → d → h → j → k → l. The wirelength
is 24.

Path for n2 = {i, c}: we have x2
i,d, x2

d,a, x2
a,b, x2

b,c as the non-zero
variables. Thus, the path is i → d → a → b → c. The wirelength is 24.

Path for n3 = {d, f}: we have x3
d,h, x3

h,e, x3
e,f as the non-zero variables.

Thus, the path is d → h → e → f . The wirelength is 12.

28The source file for this integer linear programming formulation is available for download at:
http://users.ece.gatech.edu/limsk/book

Multi-net Routing 215

Path for n4 = {k, d}: we have x4
k,j , x4

j,i, x4
i,d as the non-zero variables.

Thus, the path is k → j → i → d. The wirelength is 14.

Path for n5 = {g, h}: we have x5
g,f , x5

f,e, x5
e,h as the non-zero variables.

Thus, the path is g → f → e → h. The wirelength is 11.

Path for n6 = {b, k}: we have x6
b,c, x6

c,g, x6
g,f , x6

f,k as the non-zero
variables. Thus, the path is b → c → g → f → k. The wirelength
is 23.

Figure 6.15 shows the routing results for the six nets. Note that we obtained
optimal routing for all nets except for n6. Figure 6.15 also shows the corre-
sponding routing channel usage.

a

d h

j

(a) net 1 (b) net 2

ba c

d

i

d

e f

h

(c) net 3

d

i j k

(d) net 4 (e) net 5

g
e

f

h

b c

g

f

k

(f) net 6

k l

2

2

2
2 2

2

2

2

11

1

1

1

1

channel usage

Figure 6.15. Final result of ILP-based multi-commodity flow global routing.

216 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

2. Perform the shortest path based MM heuristic. Break ties so that the number
of turns (= vias) is minimized.

The initial step is to find shortest paths for all nets while ignoring capacity
constraints. Figure 6.16 shows the shortest paths and the channel usage.
Under the channel capacity of two, an overflow occurs on two channels:
c(d, i) and c(e, f). Note that we distinguish arcs and channels because we
represent a channel c(x, y) by a pair of arcs (x, y) and (y, x). The rest of
the steps of the algorithm proceeds as follows:

(a) Iteration 1: the following steps are performed for iteration r = 1:

Step 1: from Figure 6.16 the maximum level of overflow is M1 =
3 − 2 = 1. Since M1 > 0, we proceed.

a

d

j

(a) net 1 (b) net 2

ba c

d

i

d

e f

h

(c) net 3

d

i j k

(d) net 4 (e) net 5

g
e

f

h

b

f

k

(f) net 6

k li

2

3

2
3 1

1

1

2

12

1

1

1

e

channel usage

Figure 6.16. Initial step of MM algorithm: shortest paths for the nets. Note that some paths
are not unique. Two channels have overflow.

Multi-net Routing 217

Step 2: from Figure 6.16 we obtain the set of channels with over-
flow of M1, which is J1 = {c(d, i), c(e, f)}. Also, we obtain the
set of channels with overflow of M1 and M1 − 1, which is J0

1 =
{c(a, d), c(e, h), c(i, j), c(j, k), c(d, i), c(e, f)}.

Step 3: we assign ∞ as the cost of all channels in J0
1 .

Step 4: from Figure 6.16 we obtain the set of nets that use channels
in J1, which is K1 = {n1, n2, n3, n4, n5, n6}. Also, we obtain the
set of nets that use channels in J0

1 , which in this case is K0
1 = K1.

Step 5: we obtain shortest paths for all nets in K1 using the new
cost from step 3. Figure 6.17 shows the results. We see that the
cost of n2, n3, n4, and n5 are infinity, whereas n1 has the cost
of 24, and n6 has the cost of 23. Since there are two nets with
non-infinity cost, we move to step 6.

Step 6: the old (= Figure 6.16) and new (= Figure 6.17) cost of n1

are 24 and 24, respectively. The old and the new cost of n6 are 17
and 23. Thus, we choose k0 = n1 as the net with minimum cost
increase.

Step 7: we keep the new path (= Figure 6.17) for k0 = n1 and
retrieve old paths from Figure 6.16 for other nets. Figure 6.18 shows
this result.

(a) net 1 (b) net 2 (c) net 3

(d) net 4 (e) net 5 (f) net 6

Figure 6.17. Iteration 1 of MM algorithm: shortest paths for the nets under new cost. The cost
of n2, n3, n4, n5 are infinity, n1 is 24, and n6 is 23.

218 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

(a) net 1 (b) net 2 (c) net 3

(d) net 4 (e) net 5 (f) net 6

1

2

2
3 1

1

2

1
1

1

1

2

1

1

a

l

ba c

d

i

d

e f

h

d

i j k

g
e

f

h

b

f

k

b c

g

channel usage

Figure 6.18. Final result of iteration 1. Net 1 is rerouted compared with Figure 6.16.

(b) Iteration 2: the following steps are performed for iteration r = 2:

Step 1: from Figure 6.18, we compute M2 = 3 − 2 = 1. Since
M2 > 0, we proceed.

Step 2: Figure 6.18 we obtain the set of channels with overflow of
M2, which is J2 = {c(e, f)}. Also, we obtain the set of channels
with overflow of M2 and M2 − 1, which is

J0
2 = {c(a, b), c(b, c), c(e, h), c(d, i), c(e, f)}

Step 3: we assign ∞ as the cost of all channels in J0
2 .

Multi-net Routing 219

(a) net 3 (b) net 5 (c) net 6

Figure 6.19. Iteration 2 of MM algorithm: shortest paths for the nets under new cost. The cost
of n3 is 22, n5 is 21, and n6 is infinity.

Step 4: From figure 6.18 we obtain the set of nets that use channels
in J2, which is K2 = {n3, n5, n6}. Also, we obtain the set of nets
that use channels in J0

2 , which is K0
2 = {n1, n2, n3, n4, n5, n6}.

Step 5: we obtain shortest paths for all nets in K2 using the new
cost from step 3. Figure 6.19 shows the results. We see that the
cost of n6 is infinity, whereas n3 is 22, and n5 is 21. Since there
are two nets with non-infinity cost, we move to step 6.
Step 6: the old (= Figure 6.18) and new (= Figure 6.19) cost of
n3 are 12 and 22, respectively. The old and the new cost of n5 are
11 and 21. Both nets have the same cost increase, so we randomly
break the tie and choose k0 = n3.
Step 7: we keep the new path for k0 = n3 and retrieve old paths
from Figure 6.18 for other nets. Figure 6.20 shows this result. Since
there exists no overflow in this routing result, the algorithm termi-
nates.

The wirelength of the nets are wl(n1) = 24, wl(n2) = 24, wl(n3) = 22,
wl(n4) = 14, wl(n5) = 11, and wl(n6) = 17. Thus, the total wirelength
is 112.

3. Compare the results obtained by ILP and MM methods.

The wirelength cost is lower with ILP (108 vs 112). In case of ILP approach
shown in Figure 6.15, net n6 is sub-optimal. In case of MM algorithm
shown in Figure 6.20, net n3 is sub-optimal.

220 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

(a) net 1 (b) net 2 (c) net 3

(d) net 4 (e) net 5 (f) net 6

2

2

1
2 1

1

2

1
1

1

2

2

1

1

a

l

ba c

d

i

d

f

h

d

i j k

g
e

f

h

b

f

k

b c

g

kj

1

channel usage

Figure 6.20. Final result of iteration 2. Net 3 is rerouted compared with Figure 6.18. MM
algorithm terminates because there is no overflow.

Multi-net Routing 221

3. Iterative Deletion Algorithm
One of the well known routing algorithms that overcome the net ordering

problem of the sequential routing approach is iterative deletion [Cong and
Preas, 1988]. Originally proposed for standard cell global routing, iterative
deletion algorithm constructs routing trees for all nets simultaneously. The
algorithm consists of two phases, namely feedthrough insertion and net seg-
ment computation. During the feedthrough insertion phase, feedthroughs are
inserted for the nets that connect cells in non-adjacent rows. These feedthroughs
not only allow a net to cross a row but also help reduce the routing channel den-
sity. The way the algorithm builds the routing trees and inserts feedthroughs
for all nets simultaneously is by utilizing the so called net connection graph
G(V,E). This graph is the union of the complete graphs of all individual
nets. Each edge in E is given a weight based on its x-coordinate span and
its requirement for feedthroughs. The edge with the minimum weight, i.e., an
edge that is the shortest in x-direction and requires none or minimum number
of feedthroughs is chosen to be added to grow the routing trees. Since this edge
is chosen from a global list of edges, all routing trees have an equal chance to
grow. The width of rows keep increasing from feedthrough insertion, thereby
causing the x-span of the affected edges to change as well. Thus, the weight of
the affected edges are dynamically updated. Once we find the spanning forest
for all nets, the first phase terminates.

The iterative deletion phase is used to refine the routing result obtained from
the feedthrough insertion phase. A net segment is an edge that connects a pair
of pins in the same net. Determining the net segments for a net is, therefore,
constructing a routing tree for the net. Instead of adding edges in E to obtain
a spanning forest, however, the iterative deletion phase computes the spanning
forest by deleting the edges in E. Each edge is given a weight that is based on
the routing density so that deleting the edges with larger weights helps better
detect congested regions. Again all nets are given an equal chance to converge
to their final routing trees because the algorithm maintains the list of all candi-
date edges to be included in the spanning forest. Compared to the O(n) number
of edges to be added during the first phase, the number of edges to be deleted
during the second phase is O(n2). In order to cope with this higher complexity,
the authors of [Cong and Preas, 1988] proposed a way to simplify the initial
net connection graph.

Quick Overview
Given a standard cell placement along with the netlist, we first build the net

connection graph G(V,E) by merging the complete graphs for all individual
nets. We then compute the weight of each edge in E as follows:

222 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

w(e(i, j)) = |xi − xj | + K ·
∑

e∩Rk �=∅
width(Rk)

where xi is the x-location of pin i, K is the user-specified constant, Rk is the
row k, and width(Rk) is the current width of row Rk. Our goal is to obtain a set
of spanning trees for all nets, i.e., a spanning forest F for the entire netlist. This
is done by adding edges in E in an increasing order of their weight. Given an
edge e under consideration, we first see if adding e creates a cycle in the current
forest. If so, we discard it; otherwise, we add e to F and insert feedthroughs
if needed. If feedthroughs are inserted, we update the width of the rows that
accept the feedthroughs as well as the weight of all edges intersecting with
these rows. Once E is re-sorted based on the updated edge weights, we insert
the next edge.

Since all the necessary feedthroughs are inserted during the first phase, we
build the net connection graph for the iterative deletion phase by forming com-
plete graphs among the pins in the same channel. We then simplify this graph
further to obtain the simplified net connection graph G′(E′, V ′) by removing
edges that connect non-adjacent pins in the same channel. We compute the
weight of edges in E′ as follows:

w(e) = d(e)/d(Ce)

where d(e) is the maximum density over e, and d(Ce) is the density of the
channel that e belongs to. The density of a given column in a channel is the
number of edges that either pass through, begin at, or end at that column. We
compute d(e) by computing the maximum density among all columns that e
spans. d(Ce) is the maximum density over the entire channel that e belongs to.
We delete the edge with the maximum weight in E′ and update the weight of
all edges in the same channel. If this edge disconnects any pin from the net,
we do not delete it. The iterative deletion phase terminates once we obtain the
final spanning forest.

Practice Problem
Consider the standard placement shown in 6.21. We are to route the follow-

ing nets: n1 = {b, c, g, h, i, k}, n2 = {a, d, e, f, j}. Assume that the width is
2 and the height is 3 for the gates and feedthroughs. The gates are to be shifted
to the right upon feedthrough insertion. Assume that each cell has a built-in
feedthrough (= vertical edge within each cell).

1. Perform the feedthrough insertion phase with K = 0.5. Break ties in
lexicographical order. Place feedthroughs right below the top gate.

Multi-net Routing 223

5 10 15 20

20

15

10

5

a b c

h

ji k

fd

g

e

Row1

Channel 1

Row 2

Channel 2

Row 3

Channel 3

Row 4

Figure 6.21. A standard cell placement with four rows and three channels.

(a) (b)

a b c

h

ji k

fd

g

e

(c)

Figure 6.22. (a) Net connection graph for n1 = {b, c, g, h, i, k}, (b) net connection graph for
n2 = {a, d, e, f, j}, (c) net connection graph for the entire netlist.

The first step is to build the net connection graph for the netlist. Figure
6.22(a–b) show the net connection graphs for n1 and n2. These are merged
to form the net connection graph G for the netlist as shown in Figure

224 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

Table 6.3. A sorted list of the edges in the net connection graph shown in Figure 6.22(c).
We list the intersecting rows for each edge under the Ri column. Ties are broken based on
lexicographical order.

Edge |xi − xj | Ri w(e) Action

(a, d) 2 – 2 + 0.5(0) = 2 Added
(g, i) 2 – 2 + 0.5(0) = 2 Added
(d, e) 5 – 5 + 0.5(0) = 5 Added
(a, e) 7 – 7 + 0.5(0) = 7 Cycle
(h, i) 7 – 7 + 0.5(0) = 7 Added
(h, k) 8 – 8 + 0.5(0) = 8 Added
(b, c) 9 – 9 + 0.5(0) = 9 Added
(e, f) 9 – 9 + 0.5(0) = 9 Added
(g, h) 9 – 9 + 0.5(0) = 9 Cycle
(e, j) 0 R3 0 + 0.5(21) = 10.5
(b, h) 3 R2 3 + 0.5(21) = 13.5
(d, f) 14 – 14 + 0.5(0) = 14
(i, k) 15 – 15 + 0.5(0) = 15
(d, j) 5 R3 5 + 0.5(21) = 15.5
(a, f) 16 – 16 + 0.5(0) = 16
(b, g) 6 R2 6 + 0.5(21) = 16.5
(c, h) 6 R2 6 + 0.5(21) = 16.5
(g, k) 17 – 17 + 0.5(0) = 17
(f, j) 9 R3 9 + 0.5(21) = 19.5
(c, k) 2 R2, R3 2 + 0.5(21 + 21) = 23
(b, i) 4 R2, R3 4 + 0.5(21 + 21) = 25
(c, g) 15 R2 15 + 0.5(21) = 25.5
(a, j) 7 R2, R3 7 + 0.5(21 + 21) = 28
(b, k) 11 R2, R3 11 + 0.5(21 + 21) = 32
(c, i) 13 R2, R3 13 + 0.5(21 + 21) = 34

6.22(c). Table 6.3 shows a sorted list of the edges in G based on an increas-
ing order of their weights. Since n1 connects 6 gates, we need five edges
in its routing tree. Similarly, we need four edges for n2. We construct the
spanning forest F by adding the nine edges as follows:

(a) First seven edges: The first edge in the list is (a, d). Note that adding
this edge to F does not create a cycle. In addition, edge weight update
is not necessary because feedthrough is not inserted. Thus, we can add
the next edge (g, i) using the same sorted list. We skip (a, e) and (g, h)
because they create cycles. Figure 6.23(a) shows the spanning forest
after adding the first seven edges.

(b) Eighth edge: We see from Table 6.3 that the next edge to be inserted is
(e, j). This edge does not create a cycle but intersects with row 3, which
requires a feedthrough in row 3. Figure 6.23(b) shows the spanning

Multi-net Routing 225

a b c

h

ji k

fd

g

e

a b c

h

ji k

fd

g

e

x

a b c

h

ji k

fd

g

e

x

y

(a) (b)

(c)

Figure 6.23. (a) After adding the first seven edges, (b) after adding the eighth edge (e, j) and
its feedthrough x, (c) after adding the ninth edge (c, h) and its feedthrough y, which corresponds
to the final spanning forest.

forest after adding (e, j) and its feedthrough x. This causes an update
on all edges that intersect with row 3 plus the edges that are incident to
h, which is shifted during the feedthrough insertion. Table 6.4 shows
the edge list before and after adding (e, j). We note that there are nine
edges that are affected by the feedthrough insertion.

(c) Ninth edge: Table 6.5 shows the updated edge list. The first edge in
the sorted list (d, f) creates a cycle. Thus, we insert (c, h). This edge
requires a feedthrough in row 2. Figure 6.23(c) shows the final spanning
forest after adding (c, h) and its feedthrough y. No more edge weight
update is necessary because the final spanning forest is obtained.

Figure 6.24 shows the final routing trees for n1 and n2 after feedthrough
insertion.

2. Build the simplified net connection graph G′.

226 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

Table 6.4. Before and after adding the eighth edge (e, j) that creates a feedthrough in row 3.
Gate h is shifted during the feedthrough insertion. We update the weight of nine edges that are
affected by the feedthrough insertion.

Before After

Edge w(e) |xi − xj | Ri w(e) Action

(e, j) 10.5 Added
(b, h) 13.5 5 R2 5 + 0.5(21) = 15.5 Updated
(d, f) 14 14 – 14 + 0.5(0) = 14
(i, k) 15 15 – 15 + 0.5(0) = 15
(d, j) 15.5 5 R3 5 + 0.5(23) = 16.5 Updated
(a, f) 16 16 – 16 + 0.5(0) = 16
(b, g) 16.5 6 R2 6 + 0.5(21) = 16.5
(c, h) 16.5 4 R2 4 + 0.5(21) = 14.5 Updated
(g, k) 17 17 – 17 + 0.5(0) = 17
(f, j) 19.5 9 R3 9 + 0.5(23) = 20.5 Updated
(c, k) 23 2 R2, R3 2 + 0.5(21 + 23) = 24 Updated
(b, i) 25 4 R2, R3 4 + 0.5(21 + 23) = 26 Updated
(c, g) 25.5 15 R2 15 + 0.5(21) = 25.5
(a, j) 28 7 R2, R3 7 + 0.5(21 + 23) = 29 Updated
(b, k) 32 11 R2, R3 11 + 0.5(21 + 23) = 33 Updated
(c, i) 34 13 R2, R3 13 + 0.5(21 + 23) = 35 Updated

Table 6.5. Adding the ninth edge (c, h) that creates a feedthrough in row 2. Gate f is shifted
during the feedthrough insertion. No more update is necessary because the spanning forest is
completed.

Edge w(e) Action

(d, f) 14 Cycle
(c, h) 14.5 Added
(i, k) 15
(b, h) 15.5
(a, f) 16
(b, g) 16.5
(d, j) 16.5
(g, k) 17
(f, j) 20.5
(c, k) 24
(c, g) 25.5
(b, i) 26
(a, j) 29
(b, k) 33
(c, i) 35

Multi-net Routing 227

b c

h

i k

g

y

a

j

fd e

x

(a) (b)

Figure 6.24. Feedthrough insertion result. (a) Final routing tree for n1, (b) final routing tree
for n2.

Figure 6.25 shows the simplified net connection graphs, which are derived
based on the routing trees shown in Figure 6.24. We form cliques among the
pins in the same channel and remove the edges that connect non-adjacent
pins (shown in dotted lines). Figure 6.25(c) shows the simplified net con-
nection graph G′ of the entire netlist.

3. Compute the density of the channels in G′.
Recall that the density of a given column in a channel is the number of
edges that either pass through, begin at, or end at that column. From Figure
6.26, we see that the density of channel 1 is 4, channel 2 is 6, and channel
3 is 2.

4. Perform Iterative Deletion to determine the net segments. Break ties based
on the following factors in this order: (1) delete edges with longer x-span
(= |xi − xj |), (2) delete edges with higher edge density d(e), (3) delete
edges from the bottom-most channel, (4) delete edges with higher lexico-
graphical order.

We perform iterative deletion as follows until we obtain the final spanning
forest. We do not delete the edges that cause the pins that belong to the
same net to be disconnected.

(a) First edge: Table 6.6 shows the sorted list of the edges in G′. We delete
(x, f) from channel 2. The density of channel 2 reduces to 5, causing
the weight of all edges in channel 2 to be updated. Figure 6.27(a) shows
the net connection graph after deleting (x, f). Table 6.7 shows how the
edge weights are updated after the deletion.

(b) Second edge: Table 6.8 shows the updated list of the edges in G′. We
delete (g, h) from channel 2. The density of channel 2 reduces to 4,

228 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

b c

h

i k

g

y

a

j

fd e

x

(a) (b)

a b c

h

ji k

fd

g

e

x

y

(c)

Figure 6.25. (a) Simplified net connection graph for n1, where the edges to be removed are
shown in dotted lines, (b) simplified net connection graph for n2, (c) simplified net connection
graph for the netlist.

11211334333333411113333 41 3333333413
a b c

h

ji k

fd

g

e

x

y
11111111111111144443333333333333333333334443333333111111222211111 1111111111444333333333333333333344433333311111122211111111122111133334433333333333341111

11133333633433332222

112111112112111111

Figure 6.26. Density at each column in each channel. The density of channels 1, 2, and 3 are
4, 6, and 2, respectively.

Multi-net Routing 229

Table 6.6. Sorted list of the edges in the simplified net connection graph shown in Figure
6.25(c).

Edge x-span d(e) Ci w(e)

(x, f) 11 6 C2 6/6 = 1
(g, h) 11 6 C2 6/6 = 1
(e, f) 11 6 C2 6/6 = 1
(e, f) 11 4 C1 4/4 = 1
(b, y) 9 4 C1 4/4 = 1
(b, c) 9 4 C1 4/4 = 1
(h, i) 9 2 C3 2/2 = 1
(h, k) 6 2 C3 2/2 = 1
(d, x) 5 6 C2 6/6 = 1
(d, e) 5 6 C2 6/6 = 1
(d, e) 5 4 C1 4/4 = 1
(g, i) 2 2 C3 2/2 = 1
(e, x) 0 6 C2 6/6 = 1
(c, y) 0 4 C1 4/4 = 1
(x, j) 0 2 C3 2/2 = 1
(h, y) 4 4 C2 4/6 = 0.67
(a, d) 2 2 C1 2/4 = 0.5

causing the weight of all edges in channel 2 to be updated. Figure
6.27(b) shows the net connection graph after deleting (g, h). Table 6.8
shows how the edge weights are updated after the deletion.

(c) Third edge: Table 6.9 shows the updated list of the edges in G′. We
delete (e, f) from channel 2. The density of channel 2 reduces to 3,
causing the weight of all edges in channel 2 to be updated.
Figure 6.27(c) shows the net connection graph after deleting (e, f).
Table 6.9 shows how the edge weights are updated after the deletion.

(d) Fourth edge: Table 6.10 shows the updated list of the edges in G′. Note
that deleting (e, f) isolates node f . Thus, we skip it and delete (b, y)
instead. The density of channel 1 reduces to 3, causing the weight of all
edges in channel 1 to be updated. Figure 6.27(d) shows the net connec-
tion graph after deleting (b, y). Table 6.10 shows how the edge weights
are updated after the deletion.

(e) Fifth edge: Table 6.11 shows the updated list of the edges in G′. Note
that we skip the first three edges because deleting them will disconnect
the nodes that belong to the same net. Thus, we delete (d, x) instead.
The density of channel 2 reduces to 2, causing the weight of all edges
in channel 2 to be updated. Figure 6.27(e) shows the net connection
graph after deleting (d, x). Table 6.11 shows how the edge weights are
updated after the deletion.

230 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

a b c

h

ji k

fd

g

e

x

y

(a)

a b c

h

ji k

fd

g

e

x

y

(b)

a b c

h

ji k

fd

g

e

x

y

(c)

a b c

h

ji k

fd

g

e

x

y

(d)

a b c

h

ji k

fd

g

e

x

y

(e)

a b c

h

ji k

fd

g

e

x

y

(f)

Figure 6.27. Iterative deletion. (a) Deleting (x, f), (b) deleting (g, h), (c) deleting (e, f) (in
channel 2), (d) deleting (b, y), (e) deleting (d, x), (f) deleting (d, e) (in channel 1).

(f) Sixth edge: Table 6.12 shows the updated list of the edges in G′. We
delete (d, e) from channel 1 and obtain the final spanning forest.

Figure 6.28 shows the final routing trees for n1 and n2 after iterative dele-
tion.

Multi-net Routing 231

Table 6.7. Deleting the first edge (x, f). The density of channel 2 reduces to 5, causing the
weight of all edges in channel 2 to be updated.

Before After
Edge w(e) x-span d(e) Ci w(e) Action

(x, f) 1 11 6 C2 6/6 = 1 Deleted
(g, h) 1 11 5 C2 5/5 = 1 Updated
(e, f) 1 11 5 C2 5/5 = 1 Updated
(e, f) 1 11 4 C1 4/4 = 1
(b, y) 1 9 4 C1 4/4 = 1
(b, c) 1 9 4 C1 4/4 = 1
(h, i) 1 9 2 C3 2/2 = 1
(h, k) 1 6 2 C3 2/2 = 1
(d, x) 1 5 5 C2 5/5 = 1 Updated
(d, e) 1 5 5 C2 5/5 = 1 Updated
(d, e) 1 5 4 C1 4/4 = 1
(g, i) 1 2 2 C3 2/2 = 1
(e, x) 1 0 5 C2 5/5 = 1 Updated
(c, y) 1 0 4 C1 4/4 = 1
(x, j) 1 0 2 C3 2/2 = 1
(h, y) 0.67 4 3 C2 3/5 = 0.6 Updated
(a, d) 0.5 2 2 C1 2/4 = 0.5

Table 6.8. Deleting the second edge (g, h). The density of channel 2 reduces to 4, causing the
weight of all edges in channel 2 to be updated.

Before After
Edge w(e) x-span d(e) Ci w(e) Action

(g, h) 1 11 5 C2 5/5 = 1 Deleted
(e, f) 1 11 4 C2 4/4 = 1 Updated
(e, f) 1 11 4 C1 4/4 = 1
(b, y) 1 9 4 C1 4/4 = 1
(b, c) 1 9 4 C1 4/4 = 1
(h, i) 1 9 2 C3 2/2 = 1
(h, k) 1 6 2 C3 2/2 = 1
(d, x) 1 5 4 C2 4/4 = 1 Updated
(d, e) 1 5 4 C2 4/4 = 1 Updated
(d, e) 1 5 4 C1 4/4 = 1
(g, i) 1 2 2 C3 2/2 = 1
(e, x) 1 0 4 C2 4/4 = 1 Updated
(c, y) 1 0 4 C1 4/4 = 1
(x, j) 1 0 2 C3 2/2 = 1
(h, y) 0.6 4 2 C2 2/4 = 0.5 Updated
(a, d) 0.5 2 2 C1 2/4 = 0.5

232 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

Table 6.9. Deleting the third edge (e, f) in channel 2. The density of channel 2 reduces to 3,
causing the weight of all edges in channel 2 to be updated.

Before After
Edge w(e) x-span d(e) Ci w(e) Action

(e, f) 1 11 4 C2 4/4 = 1 Deleted
(e, f) 1 11 4 C1 4/4 = 1
(b, y) 1 9 4 C1 4/4 = 1
(b, c) 1 9 4 C1 4/4 = 1
(h, i) 1 9 2 C3 2/2 = 1
(h, k) 1 6 2 C3 2/2 = 1
(d, x) 1 5 3 C2 3/3 = 1 Updated
(d, e) 1 5 4 C1 4/4 = 1
(d, e) 1 5 3 C2 3/3 = 1 Updated
(g, i) 1 2 2 C3 2/2 = 1
(e, x) 1 0 3 C2 3/3 = 1 Updated
(c, y) 1 0 4 C1 4/4 = 1
(x, j) 1 0 2 C3 2/2 = 1
(h, y) 0.5 4 1 C2 1/3 = 0.33 Updated
(a, d) 0.5 2 2 C1 2/4 = 0.5

Table 6.10. Deleting the fourth edge (b, y). Note that deleting (e, f) results in isolation of
node f . The density of channel 1 reduces to 3, causing the weight of all edges in channel 1 to
be updated.

Before After
Edge w(e) x-span d(e) Ci w(e) Action

(e, f) 1 11 4 C1 4/4 = 1 Skip
(b, y) 1 9 4 C1 4/4 = 1 Deleted
(b, c) 1 9 3 C1 3/3 = 1 Updated
(h, i) 1 9 2 C3 2/2 = 1
(h, k) 1 6 2 C3 2/2 = 1
(d, x) 1 5 3 C2 3/3 = 1
(d, e) 1 5 3 C1 3/3 = 1 Updated
(d, e) 1 5 3 C2 3/3 = 1
(g, i) 1 2 2 C3 2/2 = 1
(c, y) 1 0 3 C1 3/3 = 1 Updated
(e, x) 1 0 3 C2 3/3 = 1
(x, j) 1 0 2 C3 2/2 = 1
(a, d) 0.5 2 2 C1 2/3 = 0.67 Updated
(h, y) 0.33 4 1 C2 1/3 = 0.33

Multi-net Routing 233

Table 6.11. Deleting the fifth edge (d, x). The density of channel 2 reduces to 2, causing the
weight of all edges in channel 2 to be updated.

Before After
Edge w(e) x-span d(e) Ci w(e) Action

(b, c) 1 9 3 C1 3/3 = 1 Skip
(h, i) 1 9 2 C3 2/2 = 1 Skip
(h, k) 1 6 2 C3 2/2 = 1 Skip
(d, x) 1 5 3 C2 3/3 = 1 Deleted
(d, e) 1 5 2 C2 2/2 = 1 Updated
(d, e) 1 5 3 C1 3/3 = 1
(g, i) 1 2 2 C3 2/2 = 1
(e, x) 1 0 2 C2 2/2 = 1 Updated
(c, y) 1 0 3 C1 3/3 = 1
(x, j) 1 0 2 C3 2/2 = 1
(a, d) 0.67 2 2 C1 2/3 = 0.67
(h, y) 0.33 4 1 C2 1/2 = 0.5 Updated

Table 6.12. Deleting the sixth edge (d, e) from channel 1. No more edge deletion is necessary.

Edge w(e) Action

(d, e) 1 Removed
(d, e) 1
(g, i) 1
(c, y) 1
(x, j) 1
(e, x) 1
(a, d) 0.67
(h, y) 0.5

5. Compare the routing results obtained by feedthrough insertion and iterative
deletion using their net connection graphs.

Figure 6.29 shows the comparison between the net connection graphs
obtained after feedthrough insertion and iterative deletion. The density of
channel 1 is lower in the case of iterative deletion.

234 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

b c

h

i k

g

y

a

j

fd e

x

(a) (b)

Figure 6.28. (a) Final routing tree for n1 after iterative deletion, (b) final routing tree for n2.

a b c

h

ji k

fd

g

e

x

y

(a)

a b c

h

ji k

fd

g

e

x

y

(b)

Figure 6.29. (a) Net connection graph after feedthrough insertion, (b) net connection graph
after iterative deletion. The density of channel 1 is lower in (b) (= 3 vs 2).

Multi-net Routing 235

4. Yoshimura and Kuh Algorithm
Channel routing is another important multi-net routing problem, where the

pins are arranged into two rows and connected using the space in between the
rows (= channel). The goal is to connect the pins from the same nets using rec-
tilinear lines within the channel so that the height of the channel is minimized.
Secondary goals include the minimization of via, wirelength, crosstalk noise,
etc. Two layers of metal are given usually, one for horizontal wires and the
other for vertical wires. The channel routing problem is used in standard cell
detail routing.

The first known algorithm for channel routing is named Left Edge (LE)
algorithm [Hashimoto and Stevens, 1971]. One important follow-up work is
the Constrained LE (CLE) algorithm by [Perskey et al., 1976], where the pins
under vertical constraints are handled efficiently (to be discussed later). The
“net merging” method proposed by Yoshimura and Kuh [Yoshimura and Kuh,
1982] is another significant improvement over the basic LE, where some sub-
sets of nets are merged before the routing starts. This pre-process of merging
nets is proved to be effective in reducing the channel height further compared
with the original/constraned LE. Once the merging step is done, any channel
routing algorithm such as CLE algorithm can be used to route the nets.

Quick Overview
Given a channel routing problem instance, we first construct the horizon-

tal constraint graph (HCG) and vertical constraint graph (VCG). Each net
becomes a node in HCG, and an undirected edge (x, y) exists if the horizonal
span of nets x and y overlap at some column(s). In case of VCG, each node
represents a net, and a directed edge (x, y) exists if net x is on the top row and
y is in the bottom row, and both x and y are located in the same column. If nets
x and y are connected in HCG, x and y cannot be assigned to the same track
(= intermediate row in the channel) due to the horizontal overlap. Likewise, if
net x is connected to net y in VCG, x needs to be assigned to a track above y
due to the vertical overlap at the column in which nets x and y are co-located.

The next step is to construct the zone representation, where each zone cor-
responds to a maximal clique in the HCG. The horizonal span of each net is
represented in terms of the zones it spans, e.g., net 1 spans zone 2 and 3. We
then visit a pair of neighboring zones from left to right. Given a pair of zones
z and z + 1, we obtain two sets of nets L and R, where L is the set of nets
ending at zone z or before z. R is the set of nets that begin at zone z + 1. We
then obtain a subset of nets P ⊆ L and another subset Q ⊆ R so that any net
in P and any net in Q are not on the same path in the VCG. This is done to
make sure cycles are not formed from net merging. If |P | < |Q|, we switch the
names of the subsets so that |P | ≥ |Q| always. Two heuristics are proposed in

236 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

[Yoshimura and Kuh, 1982] to choose a pair of nets for merging, one from P
and another from Q. We only utilize their “simple” heuristic in this book. The
goal of this heuristic is to find a pair of nets for merging so that the increase in
the longest path length in VCG is minimized after the merging. We first find
m∗ ∈ Q that maximizes

f(m) = K · {u(m) + d(m)} + max{u(m), d(m)}
where K is the user-specified constant. To compute u(x) and u(y), we add a
source and a sink to the VCG so that the source connects to all nodes with no
incoming edge, and all nodes with no outgoing edge connects to the sink. Then,
u(x) denotes the length of the longest source-to-x path, and d(x) denotes the
length of the longest x-to-sink path. Next, we find n∗ ∈ P that minimizes

g(n,m) = K · h(n,m) − {
√

u(m) · u(n) +
√

d(m) · d(n)}
where n ∈ P , m ∈ Q, and

h(n,m) = max{u(n), u(m)} + max{d(n), d(m)}
− max{u(n) + d(n), u(m) + d(m)}

We then merge n∗ and m∗ and remove them from P and Q. This selection
continues until Q is empty. Note that we do not update VCG until the net pair
selection is completed for a given pair of zones. The net merging algorithm
terminates if all zone pairs are processed.

Once the net merging step is completed, we update the VCG and zone repre-
sentation to reflect the merging. In the Constrained Left Edge (CLE) algorithm,
we assign nets from top to bottom tracks and left to right columns in the same
track. Starting with the top-most track, we first choose a subset of nets X so
that these nets do not have any incoming edges in the VCG. If there are multi-
ple nets in X, we choose the one, say x1, that begins at the left-most column.
We then remove x1 from X and assign it to the first track. If X is not empty,
we choose the next net, say x2, so that it does not cause horizontal overlap with
x1, i.e., edge (x1, x2) does not exist in the HCG. In addition, x2 should begin
at the left-most column among all nets in X. We then assign x2 to the same
track and remove it from X. Once all nets in X are examined, we remove the
nets that are assigned to the current track from VCG and go to the next track
and repeat the track assignment. The CLE algorithm terminates once we assign
all nets to the tracks.

Multi-net Routing 237

Practice Problem
Consider the following two-layer channel routing problem.

TOP = [1, 1, 4, 2, 3, 4, 3, 6, 5, 8, 5, 9]
BOT = [2, 3, 2, 0, 5, 6, 4, 7, 6, 9, 8, 7]

1. Construct the constraint graphs (HCG and VCG) and the zone representa-
tion.

Table 6.13 shows the horizontal span of the nets as well as the zones defined
by the spans. Figure 6.30 shows the horizontal and vertical constraint graphs.
Lastly, Figure 6.31 shows the zone representation. Note that each zone
corresponds to a maximal clique in the HCG. Also note that the VCG is
acyclic, requiring no dogleg to break the cycles. The size of maximum
clique in the HCG is 4, and the length of the longest path in the VCG is
6. Thus, the lower bound of track usage is 6, the maximum of these two
values.

Table 6.13. Horizonal span of the nets and their zones.

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5
Net c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12
1 1 1
2 2 2 2 2
3 3 3 3 3 3 3
4 4 4 4 4 4
5 5 5 5 5 5 5 5
6 6 6 6 6
7 7 7 7 7 7
8 8 8
9 9 9 9

1
5

2

3

4 6

7

9

8 1

2 3
4

6
5

7

8

9

HCG VCG

Figure 6.30. Constraint graphs.

238 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

1

2

3

1 2 3 4 5

4

5

6

7

8

9

Figure 6.31. Zone representation.

1

2 3
4

6
5

7

8

9

2 3
4

6
5

7

8

9

2
4

6
5

7

8

9

2

6
5

7

8

9

6

7

8

9 7 9

(a) (b) (c)

(d) (e) (f)

Figure 6.32. VCG after track assignment. (a) Initial VCG, (b) after assigning net 1, (c) after
assigning net 3, (d) after assigning net 4, (e) after assigning nets 2 and 5, (f) after assigning nets
6 and 8.

2. Perform the Constrained Left Edge (CLE) algorithm [Perskey et al., 1976].

We assign the nets to the tracks as follows:

Track 1: we can only assign net 1 because it is the only node with no
incoming edge in the VCG shown in Figure 6.32(a).

Track 2: we can only assign net 3 because it is the only node with no
incoming edge in the VCG shown in Figure 6.32(b).

Track 3: the VCG shown in Figure 6.32(c) shows two nets with no
incoming edge: nets 4 and 5. We assign net 4 to track 3 first because

Multi-net Routing 239

the starting column of net 4 is to the left of the starting column of net
5. Next, we decide that we cannot assign net 5 in the same track due to
the edge between nets 4 and 5 in the HCG shown in Figure 6.30, i.e.,
horizontal overlap will occur.

Track 4: the VCG shown in Figure 6.32(d) shows two nets with no
incoming edge: nets 2 and 5. We assign net 2 to track 4 first because
the starting column of net 2 is to the left of the starting column of net
5. Since there is no edge between nets 2 and 5 in the HCG, we assign
net 5 to track 4 as well.

Track 5: the VCG shown in Figure 6.32(e) shows two nets with no
incoming edge: nets 6 and 8. We assign net 6 to track 5 first. There is
no edge between nets 6 and 8 in the HCG, so we assign net 8 to track 5
as well.

Track 6: we can only assign net 9 because it is the only node with no
incoming edge in the VCG shown in Figure 6.32(f).

Track 7: we assign net 7, the last node remaining in the VCG.

The final track usage is 7. Figure 6.33 shows the final channel routing result.

3. Perform net merging using the “simple method” given in [Yoshimura and
Kuh, 1982]. Assume K = 100.

We visit the zones shown in Figure 6.31 from the left-most position:

(a) Zones 1 and 2: From Figure 6.31, we see that net 1 ends at zone 1, so
L = {1}. In addition, net 4 begins at zone 2, so R = {4}. Since 1 and
4 are on the same path in the VCG shown in Figure 6.30, no merging
is possible between nets 1 and 4.

1 1 4 2 3 4 3 6 5 8 5 9

2 3 2 0 5 6 4 7 6 9 8 7

Figure 6.33. Final routing after constrained LE algorithm is applied on the original routing
problem.

240 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

6
5

7

8

9

1

3
4

S

T

(a)

2 2
4

6

1

3

7

8

9

T

(b)

5

S

2

5
8

9

1

3
4

7

T

(c)

6

S

Figure 6.34. Computation of u(x) and d(x) for nets 2, 5, and 6. (a) u(2) = 4, d(2) = 1, (b)
u(5) = 3, d(5) = 4, (c) u(6) = 4, d(6) = 2.

(b) Zones 2 and 3: we start with L = {1} from the previous iteration.
We note from Figure 6.31 that net 2 ends at zone 2, so L = {1, 2}.
In addition, nets 5 and 6 begin at zone 3, so R = {5, 6}. The net pairs
(1, 5) and (1, 6) are on the same path in the VCG shown in Figure 6.30.
Thus, only the pairs (2, 5) and (2, 6) can be merged. We perform net
pair selection as follows:

(i) We form P = {5, 6} and Q = {2}.

(ii) We compute u(x) and d(x) values for nets 2, 5, and 6 as shown
in Figure 6.34. We get u(2) = 4, d(2) = 1, u(5) = 3, d(5) = 4,
u(6) = 4, and d(6) = 2.

(iii) Since there is only one net in Q, it is trivial to see that m∗ = 2.

(iv) We compute h(n, 2) and g(n, 2) for each n ∈ P as follows:

h(5, 2) = max{u(5), u(2)} + max{d(5), d(2)}
−max{u(5) + d(5), u(2) + d(2)} = 1

h(6, 2) = max{u(6), u(2)} + max{d(6), d(2)}
−max{u(6) + d(6), u(2) + d(2)} = 0

Thus,

g(5, 2) = 100 · h(5, 2) − {
√

u(2) · u(5) +
√

d(2) · d(5)}
= 94.5

g(6, 2) = 100 · h(6, 2) − {
√

u(2) · u(6) +
√

d(2) · d(6)}
= −5.4

Multi-net Routing 241

1

3
4

5

7

8
9

26

1

3

1 2 3 4 5

4

5

7

8

9
26

(a) (b)

Figure 6.35. Result after merging net (2, 6). (a) Zone representation, (b) VCG.

Since g(5, 2) > g(6, 2), we see that n∗ = 6. Thus, we merge net
n∗ = 6 and m∗ = 2.

(v) We remove net 2 from Q and 6 from P . Since Q is empty, we are
done.

We remove net 2 from L because it is merged. Thus, L = {1}. Figure
6.35 shows the updated zone representation and VCG after merging net
2 and 6.

(c) Zones 3 and 4: we start with L = {1} from the previous iteration. From
the new zone representation shown in Figure 6.35(a), we note that nets
3 and 4 end at zone 3, so L = {1, 3, 4}. In addition, net 7 begin at zone
4, so R = {7}. From the new VCG shown in Figure 6.35(b), we see
that all nets in L and R are on the same path. Thus, no net merging is
possible.

(d) Zones 4 and 5: we start with L = {1, 3, 4} from the previous iteration.
From the zone representation shown in Figure 6.35(a), we note that net
26 ends at zone 4, so L = {1, 3, 4, 26}. In addition, nets 8 and 9 begin
at zone 5, so R = {8, 9}. From the VCG shown in Figure 6.35(b),
we see that the pairs (4, 8), (4, 9), (26, 8), and (26, 9) can be merged
because the nets in each pair are not on the same path. We perform net
pair selection as follows:

(i) We form P = {4, 26} and Q = {8, 9}.
(ii) We compute u(x) and d(x) values for nets 4, 26, 8, and 9 as shown

in Figure 6.36. We get u(4) = 3, d(4) = 3, u(26) = 4, d(26) = 2,
u(8) = 4, d(8) = 3, u(9) = 5, and d(9) = 2.

(iii) We compute f(m) for each m ∈ Q as follows:

f(8) = 100{u(8) + d(8)} + max{u(8), d(8)} = 704
f(9) = 100{u(9) + d(9)} + max{u(9), d(9)} = 705

Thus, we choose m∗ = 9.

242 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

5
8

9

1

3
4

5

7

8

9

1

3
4

5

7 9

26

1

3
4

5

7

8

26

1

3
4

7

26

S

T

(a)

26

S

T

(b)

8

S

T

(c)
9

S

T

(d)

Figure 6.36. Computation of u(x) and d(x) for nets 4, 26, 8, and 9. (a) u(4) = 3, d(4) = 3,
(b) u(26) = 4, d(26) = 2, (c) u(8) = 4, d(8) = 3, (d) u(9) = 5, d(9) = 2.

(iv) We compute h(n, 9) and g(n, 9) for each n ∈ P as follows:

h(4, 9) = max{u(4), u(9)} + max{d(4), d(9)}
− max{u(4) + d(4), u(9) + d(9)} = 1

h(26, 9) = max{u(26), u(9)} + max{d(26), d(9)}
− max{u(26) + d(26), u(9) + d(9)} = 0

Thus,

g(4, 9) = 100 · h(4, 9) − {
√

u(9) · u(4) +
√

d(9) · d(4)}
= 93.7

g(26, 9) = 100 · h(26, 9) − {
√

u(9) · u(26) +
√

d(9) · d(26)}
= −6.5

Since g(4, 9) > g(26, 9), we see that n∗ = 26. Thus, we merge net
n∗ = 26 and m∗ = 9.

(v) We remove net 26 from P and 9 from Q. Since Q is not empty, we
repeat the whole process. At this point, P = {4} and Q = {8}.

Multi-net Routing 243

1

3

1 2 3 4 5

48

5

7

269

(a) (b)

1

3
48

5

7

269

Figure 6.37. Result after merging nets (26, 9) and (8, 4). (a) Zone representation, (b) VCG.

Thus, it is trivial to see that m∗ = 8, and n∗ = 4. This means we
merge nets 8 and 4 and remove them from P and Q. Since there is
no more element left in P and Q, we are done.

Figure 6.37 shows the updated zone representation and VCG after merg-
ing nets (26, 9) and (8, 4).

4. Perform the Constrained Left Edge (CLE) algorithm [Perskey et al., 1976]
on the net merging result and draw the channel routing result. Assign tracks
from top to bottom and left to right.

We assign the nets to the tracks as follows:

Track 1: we can only assign net 1 because it is the only node with no
incoming edge in the VCG shown in Figure 6.38(a).

Track 2: we can only assign net 3 because it is the only node with no
incoming edge in the VCG shown in Figure 6.38(b).

Track 3: we can only assign net 5 because it is the only node with no
incoming edge in the VCG shown in Figure 6.38(c).

Track 4: we can only assign net 48 because it is the only node with no
incoming edge in the VCG shown in Figure 6.38(d).

Track 5: we can only assign net 269 because it is the only node with no
incoming edge in the VCG shown in Figure 6.38(e).

Track 6: we assign net 7, the last node remaining in the VCG.

From the initial VCG in Figure 6.38(a), we see that the longest path length
is 6, which is the lower bound of track usage. We obtain the same track
usage as this lower bound. Figure 6.39 shows the final routing result. Note
that this result is better than the result shown in Figure 6.33.

244 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

1

3
48

5

7

269

3
48

5

7

269
48

5

7

269

48

7

269

7

269

(a) (b) (c)

(d) (e) (f)

7

Figure 6.38. VCGs after track assignment. (a) Initial VCG, (b) after assigning net 1, (c) after
assigning net 3, (d) after assigning net 5, (e) after assigning net 48, (f) after assigning net 269.

1 1 4 2 3 4 3 6 5 8 5 9

2 3 2 0 5 6 4 7 6 9 8 7

Figure 6.39. Final routing after performing constrained LE algorithm on top of net merging
result.

Multi-net Routing 245

5. More Practice Problems

1. Consider the following netlist:

n1 = {(1, 0), (0, 3), (3, 2), (3, 3)}
n2 = {(0, 0), (2, 1), (1, 3), (3, 1), (2, 3)}
n3 = {(0, 2), (3, 1), (2, 2)}
n4 = {(1, 1), (2, 2), (3, 0), (3, 3)}

Use a 4 × 4 mesh for the routing graph, where the weight of each edge
corresponds to the current usage. The edge capacity is set to 3.

(a) Perform a single pass of the SMMT-phase of [Chiang et al., 1990]
under cj = 2.0.

(b) Perform a single pass of the SP-phase of [Chiang et al., 1990].

(c) Compare the results obtained by the SMMT and SP phases.

2. Consider the following routing graph G shown in Figure 6.40, where the
capacity of all edges is 2. The following six nets are to be routed: n1 =
{a, i}, n2 = {a, h}, n3 = {d, c}, n4 = {c, h}, n5 = {g, b}, n6 = {i, d}.
The first node in each net is the source.

(a) Set up and solve the integer linear programming (ILP) formulation of
the multi-commodity flow based global routing.

(b) Perform the shortest path based MM heuristic. Break ties so that the
number of turns (= vias) is minimized.

(c) Compare the results obtained by ILP and MM methods.

3. Consider the standard placement shown in 6.41. We are to route the fol-
lowing nets: n1 = {a, c, d, e, h}, n2 = {b, e, f, g}. Assume that the width
is 2 and the height is 3 for the gates and feedthroughs. The gates are to be

ba c

fd

g h i

e

Figure 6.40. Routing graph for multi-commodity flow based routing.

246 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

5 10 15

15

10

5
e

gf h

ca

d

b Row 1

Channel 1

Row 2

Channel 2

Row 3

Figure 6.41. A standard cell placement with three rows.

shifted to the right upon feedthrough insertion. Assume that each cell has a
built-in feedthrough (= vertical edge within each cell).

(a) Perform the feedthrough insertion phase of [Cong and Preas, 1988]
with K = 0.5. Break ties in lexicographical order. Place feedthroughs
right below the top gate.

(b) Build the simplified net connection graph G′, and compute the density
of the channels in G′.

(c) Perform Iterative Deletion [Cong and Preas, 1988] to determine the
net segments. Break ties based on the following factors in this order:
(1) delete edges with longer x-span (= |xi − xj|), (2) delete edges
with higher edge density d(e), (3) delete edges from the bottom-most
channel, (4) delete edges with higher lexicographical order.

(d) Compare the routing results obtained by feedthrough insertion and iter-
ative deletion using their net connection graphs.

4. Consider the following two-layer channel routing problem.

TOP = [1, 2, 1, 4, 2, 5, 4, 8, 8, 6]
BOT = [3, 4, 3, 5, 2, 6, 6, 7, 5, 7]

(a) Construct the constraint graphs (HCG and VCG) and the zone repre-
sentation.

(b) Perform the Constrained Left Edge (CLE) algorithm [Perskey et al.,
1976] on the original routing problem and draw the channel routing
result.

(c) Perform net merging using the “simple” heuristic given in [Yoshimura
and Kuh, 1982]. Assume K = 100.

(d) Perform the Constrained Left Edge (CLE) algorithm [Perskey et al.,
1976] on the net merging result and draw the channel routing result.

Multi-net Routing 247

6. Probing Further
Disclaimer: The list here is meant to be representative, not comprehensive.

A comprehensive survey on multi-net routing algorithms is provided in [Hu
and Sapatnekar, 2001].

Steiner Min-Max Tree Algorithm
The Steiner Min-Max Tree formulation [Chiang et al., 1990] is extended to

Weighted Rectilinear Steiner Tree (WRST) problem in [Chiang et al., 1994].
WRST problem seeks Steiner trees with minimum weighted wirelength. The
goal is to simultaneously minimize congestion and wirelength. The routing of
each net is done on a routing graph that is the union of the Hanan grid and the
grid formed by extending the boundaries of each routing region. The weight
of the routing graph represents the congestion of the corresponding routing
regions. The weights for all regions are updated after each net is routed.

The authors of [Changfan et al., 2000] presented a methodology for tim-
ing optimization at the post-routing stage. A post-routing logic optimization is
performed based on incremental placement and routing characterization tech-
niques. With incremental placement during logic optimization, timing can be
evaluated using the accurate parasitics from placement. The authors performed
global routing using WRST algorithm [Chiang et al., 1994] to predict the
routing region usage and congestion.

The authors of [Alpert et al., 2003a] presented a method to pre-plan buffers
and interconnects in the early stage of layout generation. Both buffers and
wires are considered simultaneously because wire routes determine buffer
requirements and buffer locations constrain the wire routes. Their four-stage
heuristic consists of initial tree construction, congestion reduction, buffer
assignment, and final post-processing. The congestion reduction is accom-
plished by rip-up-and-reroute using SMMT approach [Chiang et al., 1990].

The authors of [Su et al., 2004] presented an early-stage interconnect plan-
ning methodology that simultaneously considers signal wires and power grid
wires under the congestion constraints. The authors start with initial Steiner
trees and improve the routing congestion with SMMT-based rip-up-and-reroute
[Chiang et al., 1990]. This is followed by power-grid optimization that includes
wire removal in non-critical regions and wire-sizing that considers the voltage-
drop and current-density constraints.

Multi-Commodity Flow Routing Algorithm
The authors of [Carden et al., 1996] developed the first multi-commodity

flow based global router with a theoretical bound from the optimal solution.
They applied the two-terminal multi-commodity fractional flow algorithm by
[Shahrokhi and Matula, 1990], followed by randomized rounding to obtain

248 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

integer solutions to the multi-terminal multi-commodity problem. Instead of
the min-cost multi-commodity flow formulation used in [Shragowitz and Keel,
1987], the authors adopted the concurrent multi-commodity flow formulation.
The goal is to maximize routability by minimizing edge congestion as opposed
to the conventional techniques which usually seek to minimize wirelength.

TIGER [Hong et al., 1997] is a multi-commodity flow based timing-driven
global router for gate array and standard cell layout designs. The timing-driven
global routing problem is formulated as a multi-terminal, multi-commodity
network flow problem with integer flows under the timing constraints. In order
to handle multi-terminal nets, a primal and dual approach is adopted to obtain
a fractional routing solution, and a heuristic process is used to integerize the
fractional solution. A critical path based timing analysis is used to guarantee
the satisfaction of timing constraints.

The authors of [Albrecht, 2001] showed how the approximation algorithms
by [Garg and Konemann, 1998] with extensions due to [Fleischer, 2000] for
the multi-commodity flow problem can be used to solve the linear program-
ming relaxation of the global routing problem. This approach is shown to be
effective in minimizing the maximum congestion, and evenly distributing rout-
ing resource usage. Their approach is also shown to improve signal integrity
from the extra spacing between wires.

Buffer block planning [Cong et al., 1999a] is an early interconnect planning
method that reserves a set of regions in the layout for buffer insertion. The
authors of [Dragan et al., 2000] formulated a multi-commodity flow based rout-
ing problem that makes use of the given buffer block planning solution. Their
method routes nets using the available buffer blocks such that the required
upper and lower bounds on buffer intervals—as well as wirelength upper
bounds per net—are satisfied. The authors used the approximation method
of [Fleischer, 2000] to overcome the runtime limit of multi-commodity flow
computation.

UTACO [Jing et al., 2004] is a timing and congestion-driven standard cell
global router based on multi-commodity flow. The authors adopt a shadow
price mechanism to incorporate timing and congestion objectives into one uni-
fied objective function. The multi-commodity flow is expressed by a linear
programming formulation as a primal problem. They convert the primal prob-
lem into a dual formulation using the shadow price as the variables, where the
shadow price of a net represents the sum of its congestion price and timing
price.

Iterative Deletion Algorithm
The author of [Cong, 1991] presented an algorithm that combines pin assign-

ment global routing. The algorithm is based on two key theorems: the chan-
nel pin assignment theorem and the block boundary decomposition theorem.

Multi-net Routing 249

According to these two theorems, one only needs to generate a coarse pin
assignment and global routing solution. Iterative deletion [Cong and Preas,
1988] is used to assign the pins of all nets to block boundaries and deter-
mine the global routes of the nets. The exact pin locations and global routing
topology can be determined optimally later by a linear time algorithm.

DECIMATE [Cong and Madden, 1997a] is a performance-driven standard
cell global router that is based on iterative deletion. The authors use A-tree
[Cong et al., 1993] and 1-Steiner tree [Kahng and Robins, 1992; Borah et al.,
1994] to construct performance-driven routing tree topologies. Iterative dele-
tion is then applied to non-timing critical nets to minimize channel density and
congestion. DECIMATE constructs simplified net connection graph for each
non-timing critical net and removes all redundant edges based on a weight
function that represents routing congestion.

The concept of iterative deletion is used for circuit partitioning in [Mad-
den, 1999]. As with the routing problems, they begin with a redundant initial
partitioning solution. Unlike most move-based algorithms such as [Fiduccia
and Mattheyses, 1982], in which a vertex is assigned to a single random par-
tition, they assign each vertex to multiple random partitions. These redundant
assignments in the initial partitioning solution are then iteratively removed in
a greedy manner, until a final non-redundant solution is produced. Iterative
improvement algorithms pursue moves that appear the “best,” while iterative
deletion algorithms eliminate moves that appear the “worst.”

Global routing determines the set of routing regions used in a routing tree.
Pseudo-pin assignment (PPA) is a step that determines the location of wire
crossings on the routing region boundaries. The authors of [Chang and Cong,
2001] presented a PPA algorithm with crosstalk noise control in multi-layer
grid-less general area routing. The entire step is divided into coarse PPA and
detailed PPA. Iterative deletion is used during the coarse PPA step, where
the pins are assigned to “intervals” on the region boundaries. Crosstalk and
wirelength minimization is considered during this step.

Simultaneous shield insertion and net ordering (SINO) is an effective way
to mitigate RLC crosstalk noise in routing solution. The authors of [Xiong and
He, 2005] presented a global router that considers SINO for RLC crosstalk
minimization. The key algorithm phase is the global routing synthesis with
shield reservation and minimization based on pre-routing shield estimation.
Iterative deletion is performed to reduce congestion, which in turn mitigates
crosstalk noise among the routed nets. Shield insertion is also considered dur-
ing the iterative deletion process.

Yoshimura and Kuh Algorithm
A hierarchical channel routing algorithm is presented in [Burstein and

Pelavin, 1983], where the formulation is based on the reduction of the original

250 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

two-layer m×n grid routing to a set of 2×n grid routings. The routing region
is recursively bisected in horizontal direction into smaller super cells, and the
channel routing is performed in terms of the super cells at each level. A key
part of this algorithm is to refine the routing solution from one hierarchical
level to a lower level after each bisection. The goal is to minimize congestion
and wirelength during this process.

The authors of [Cong et al., 1988] extended two-layer channel routing prob-
lem to three and four layers. Instead of building a three- or four-layer solu-
tions directly, they take advantage of existing two-layer routers and develop a
method to transform a two-layer routing solution systematically into a three-
or four-layer solution. The basic idea is to distribute the tracks evenly on the
two horizontal layers: net 1 is assigned to track 1 on H-layer 1, net 2 to track 1
on H-layer 2, net 3 to track 2 on H-layer 1, net 4 to track 2 on H-layer 2, etc.

In order to further reduce the track usage, channel routing is often done
“over the cell”, the area above the top boundary and below the bottom bound-
ary of the channel. A common approach to the over-the-cell channel routing
problem is to divide the problem into three steps: (1) routing over the cells,
(2) choosing net segments, and (3) routing within the channel. The authors of
[Cong and Liu, 1990] provided an optimal algorithm for step (1), and an effi-
cient heuristic for step (2). Step (3) can be carried out using a conventional
channel router.

The authors of [Gao and Liu, 1996] considered crosstalk minimization in
channel routing. They proposed an algorithm that utilizes existing channel
routing algorithms and improves upon the routing results by permuting the rout-
ing tracks. Permutation of the tracks changes the relative positions of the hor-
izontal wire segments and the lengths of the vertical wire segments in the
routing solution, which in turn change the values of the crosstalk in the nets.
A mixed integer linear programming (ILP) formulation and effective proce-
dures for reducing the number of variables and constraints in the mixed ILP
formulation are presented.

The author of [Sapatnekar, 2000] studied the impact of crosstalk on delay
and presented a crosstalk-aware channel router. The router takes an initial
channel routing solution that minimizes the number of tracks, and modifies
it to reduce the crosstalk-induced delay, while leaving the number of tracks
in the channel unchanged. A O(n log n) algorithm is developed to determine
the effect of crosstalk on delay, which is fast enough to be used in optimization
process. Compared with [Gao and Liu, 1996], this approach incorporates delay
in the objective function. It also performs permutation of track “segments”
instead of full tracks, thereby increasing the flexibility of routing solutions.

References

Ababei, C. and Bazargan, K. (2003). Timing minimization by statistical timing hMetis-based
partitioning. Int. Conf. on VLSI Design, pages 58–63.

Adya, S., Chaturvedi, S., Roy, J. A., Papa, D. A., and Markov, I. (2004). Unification of partition-
ing, placement and floorplanning. Proc. IEEE Int. Conf. on Computer-Aided Design, pages
12–17.

Adya, S. and Markov, I. (2003). Fixed-outline floorplanning: enabling hierarchical design. IEEE
Trans. on VLSI Systems, 11(6):1120–1135.

Albrecht, C. (2001). Global routing by new approximation algorithms for multicommodity flow.
IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 20(5):622–632.

Alexander, M. and Robins, G. (1996). New performance-driven FPGA routing algorithms. IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems, 15(12):1505–1517.

Alpert, C., Gandham, G., M. Hrkic, J. Hu, Kahng, A. B., Lillis, J., Liu, B., Quay, S., Sapatnekar,
S., and Sullivan, A. (2002). Buffered steiner trees for difficult instances. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, 21(1):3–14.

Alpert, C., Hu, J., Sapatnekar, S., and Villarrubia, P. (2003a). A practical methodology for early
buffer and wire resource allocation. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 22(5):573–583.

Alpert, C., Hu, T. C., Huang, J., Kahng, A. B., and Karger, D. (1995). Prim-dijkstra tradeoffs for
improved performance-driven routing tree design. IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, 14(7):890–896.

Alpert, C., Huang, J. H., and Kahng, A. B. (1998). Multilevel circuit partitioning. IEEE Trans.
on Computer-Aided Design of Integrated Circuits and Systems, 17(8):655–667.

Alpert, C. and Kahng, A. B. (1995a). Multiway partitioning via geometric embeddings, order-
ings, and dynamic programming. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 14(11):1342–1358.

Alpert, C. and Kahng, A. B. (1995b). Recent directions in netlist partitioning: a survey. Integra-
tion, the VLSI Journal, 19(1–2):1–81.

Alpert, C., Nam, Gi-Joon, and Villarrubia, P. G. (2003b). Effective free space management for
cut-based placement via analytical constraint generation. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 22(10):1343–1353.

Alpert, C. and Yao, S. (1995). Spectral partitioning: the more eigenvectors, the better. Proc.
ACM Design Automation Conf., pages 195–200.

252 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

Awerbuch, B., Baratz, A., and Peleg, D. (1990). Cost-sensitive analysis of communication
protocols. In Proc. ACM Symp. Principles of Distributed Computing, pages 177–187.

Bazargan, K., Kim, S., and Sarrafzadeh, M. (1999). Nostradamus: a floorplanner of uncer-
tain designs. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
18(4):389–397.

Boese, K., Kahng, A. B., McCoy, B., and Robins, G. (1995). Near-optimal critical sink rout-
ing tree constructions. IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, 14(12):1417–1436.

Borah, M., Owens, R., and Irwin, M. (1994). An edge-based heuristic for Steiner Routing. IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems, 13(12):1563–1568.

Borah, M., Owens, R., and Irwin, M. (1997). A fast algorithm for minimizing the elmore delay
to identified critical sinks. IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems, 16(7):753–759.

Bozorgzadeh, E., Kastner, R., and Sarrafzadeh, M. (2001). Creating and exploiting flexibility in
steiner trees. Proc. ACM Design Automation Conf., pages 195–198.

Breuer, M. A. (1977). A Class of Min-cut Placement Algorithms. In Proc. ACM Design Automa-
tion Conf., pages 284–290.

Burstein, M. and Pelavin, R. (1983). Hierarchical channel router. Proc. ACM Design Automation
Conf., pages 591–597.

Caldwell, A., Kahng, A. B., and Markov, I. (2000a). Can recursive bisection alone produce
routable placements? Proc. ACM Design Automation Conf., pages 477–482.

Caldwell, A., Kahng, A. B., and Markov, I. (2000b). Iterative partitioning with varying node
weights. VLSI Design, 11(3):249–258.

Caldwell, A., Kahng, A. B., and Markov, I. (2000c). Optimal partitioners and end-case placers
for standard-cell layout. IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, 19(11):1304–1313.

Carden, R., Li, J., and Cheng, C.-K. (1996). A global router with a theoretical bound on the opti-
mal solution. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
15(2):208–216.

Chan, P. K., Schlag, M., and Zien, J. (1994). Spectral K-way ratio-cut partitioning and cluster-
ing. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 13(9):1088–
1096.

Chan, T., Cong, J., Kong, T., Shinnerl, J., and Sze, K. (2003). An enhanced multilevel algorithm
for circuit placement. Proc. IEEE Int. Conf. on Computer-Aided Design, pages 299–306.

Chandy, J., Kim, S., Ramkumar, B., Parkes, S., and Banerjee, P. (1997). An evaluation of parallel
simulated annealing strategies with application to standard cell placement. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, 16(4):398–410.

Chang, C.-C. and Cong, J. (2001). Pseudopin assignment with crosstalk noise control. IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems, 20(5):598–611.

Chang, C.-C., Cong, J., Pan, Z., and Yuan, X. (2003). Multilevel global placement with con-
gestion control. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
22(4):395–409.

Changfan, C., Hsu, Y.-C., and Tsai, F.-S. (2000). Timing optimization on routed designs with
incremental placement and routing characterization. IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, 19(2):188–196.

Chen, D. and Cong, J. (2004). DAOmap: a depth-optimal area optimization mapping algorithm
for FPGA designs. In Proc. IEEE Int. Conf. on Computer-Aided Design, pages 752–759.

Chen, P. and Kuh, E. S. (2000). Floorplan sizing by linear programming approximation. Proc.
ACM Design Automation Conf.

REFERENCES 253

Chen, T. and Fan, M. (1998). On convex formulation of the floorplan area minimization problem.
Proc. Int. Symp. on Physical Design, pages 124–128.

Chen, T.-C. and Chang, Y.-W. (2007). Packing Floorplan Representation. Physical Design
Handbook, CRC Press. Edited by C. Alpert, S. Sapatnekar, and D. Mehta, Boca Raton, FL.

Chiang, C., Sarrafzadeh, M., and Wong, C. K. (1990). Global routing based on Steiner min-
max trees. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
9(12):1318–1325.

Chiang, C., Wong, C. K., and Sarrafzadeh, M. (1994). A weighted steiner tree-based global
router with simultaneous length and density minimization. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 13(12):1461–1469.

Cong, J. (1991). Pin assignment with global routing for general cell designs. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, 10(11):1401–1412.

Cong, J. and Ding, Y. (1992). An Optimal Technology Mapping Algorithm for Delay Optimiza-
tion in Lookup-Table Based FPGA Designs. In Proc. IEEE Int. Conf. on Computer-Aided
Design, pages 48–53.

Cong, J. and Ding, Y. (1994). On area/depth trade-off in LUT-based FPGA technology mapping.
IEEE Trans. on VLSI Systems, 2(2):137–148.

Cong, J. and Ding, Y. (1996). Combinational logic synthesis for LUT based field programmable
gate arrays. ACM Trans. on Design Automation of Electronics Systems, 1(2):145–204.

Cong, J., He, L., Koh, C.-K., and Madden, P. (1996). Performance optimization of VLSI inter-
connect layout. Integration, the VLSI Journal, 21(1–2):1–94.

Cong, J. and Hwang, Y. (1995). Simultaneous depth and area minimization in LUT-based FPGA
mapping. In Proc. Int. Symp. on Field Programmable Gate Arrays, pages 68–74.

Cong, J., Kahng, A. B., and Leung, K.-S. (1998). Efficient algorithms for the minimum shortest
path Steiner arborescence problem with applications to VLSI physical design. IEEE Trans.
on Computer-Aided Design of Integrated Circuits and Systems, 17(1):24–39.

Cong, J., Kahng, A. B., Robins, G., Sarrafzadeh, M., and Wong, C. K. (1992). Provably good
performance-driven global routing. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 11(6):739–752.

Cong, J., Koh, C.-K., and Madden, P. (2001). Interconnect layout optimization under higher
order RLC model for MCM designs. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 20(12):1455–1463.

Cong, J., Kong, T., and Pan, D. (1999a). Buffer block planning for interconnect-driven floor-
planning. Proc. IEEE Int. Conf. on Computer-Aided Design, pages 358–363.

Cong, J., Leung, K., and Zhou, D. (1993). Performance-driven interconnect design based on
distributed RC delay model. In Proc. ACM Design Automation Conf., pages 14–18.

Cong, J., Li, H., and Wu, C. (1999b). Simultaneous circuit partitioning/clustering with retiming
for performance optimization. In Proc. ACM Design Automation Conf., pages 460–465.

Cong, J. and Lim, S. K. (1998). Multiway partitioning with pairwise movement. In Proc. IEEE
Int. Conf. on Computer-Aided Design, pages 512–516.

Cong, J. and Lim, S. K. (2004). Edge separability based circuit clustering with application
to multi-level circuit partitioning. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 23(3):346–357.

Cong, J., Lim, S. K., and Wu, C. (2000). Performance driven multi-level and multiway parti-
tioning with retiming. Proc. ACM Design Automation Conf., pages 274–279.

Cong, J. and Liu, C. L. (1990). Over-the-cell channel routing. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 9(4):408–418.

Cong, J. and Madden, P. (1997a). Performance driven global routing for standard cell design.
In Proc. Int. Symp. on Physical Design, pages 73–80.

254 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

Cong, J. and Madden, P. (1997b). Performance-driven routing with multiple sources. IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems, 16(4):410–419.

Cong, J., Nataneli, G., Romesis, M., and Shinnerl, J. (2004a). An area-optimality study of
floorplanning. In Proc. Int. Symp. on Physical Design, pages 78–83.

Cong, J. and Preas, B. (1988). A new algorithm for standard cell global routing. Proc. IEEE Int.
Conf. on Computer-Aided Design, pages 80–83.

Cong, J. and Romesis, M. (2001). Performance-driven multi-level Clustering with application
to hierarchical FPGA mapping. Proc. ACM Design Automation Conf., 1:58113–297.

Cong, J., Romesis, M., and Shinnerl, J. R. (2006). Fast floorplanning by look-ahead enabled
recursive bipartitioning. IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, 25(9):1719–1732.

Cong, J., Shinnerl, J., Xie, M., Kong, T., and Yuan, X. (2005). Large-scale circuit placement.
ACM Trans. on Design Automation of Electronics Systems, 10(2):389–430.

Cong, J., Wei, Jie, and Zhang, Yan (2004b). A thermal-driven floorplanning algorithm for 3D
ICs. In Proc. IEEE Int. Conf. on Computer-Aided Design, pages 306–313.

Cong, J., Wong, D. F., and Liu, C. L. (1988). A new approach to three- or four-layer chan-
nel routing. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
7(10):1094–1104.

Dijkstra, E. (1959). A note on two problems in connexion with graphs. Numerische Mathematik,
1(1):269–271.

Doll, K., Johannes, F., and Antreich, K. (1994). Iterative placement improvement by network
flow methods. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
pages 1190–1200.

Dragan, F., Kahng, A. B., Mandoiu, I., Muddu, S., and Zelikovsky, A. (2000). Provably good
global buffering using an available buffer block plan. Proc. IEEE Int. Conf. on Computer-
Aided Design, pages 104–109.

Dunlop, A. and Kernighan, B. (1985). A procedure for placement of standard-cell VLSI circuits.
IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 4(1):92–98.

Dutt, S. and Deng, W. (1996a). VLSI circuit partitioning by cluster-removal using iterative
improvement techniques. In Proc. IEEE Int. Conf. on Computer-Aided Design, pages
194–200.

Dutt, S. and Deng, W. (1996b). VLSI circuit partitioning by cluster-removal using iterative
improvement techniques. Proc. IEEE Int. Conf. on Computer-Aided Design, pages 194–200.

Eisenmann, H. and Johannes, F. (1998). Generic global placement and floorplanning. Proc.
ACM Design Automation Conf., pages 269–274.

Ekpanyapong, M., Minz, J., Watewai, T., Lee, H. S., and Lim, S. K. (2004). Profile-guided
microarchitectural floorplanning for deep submicron processor design. Proc. ACM Design
Automation Conf., pages 634–639.

Elmore, W. (1948). The transient response of damped linear networks with particular regard to
wideband amplifiers. Journal of Applied Physics, pages 55–63.

Fiduccia, C. and Mattheyses, R. (1982). A linear time heuristic for improving network partitions.
In Proc. ACM Design Automation Conf., pages 175–181.

Fleischer, L. (2000). Approximating fractional multicommodity flow independent of the number
of commodities. SIAM Journal of Discrete Math., 13(4):505–520.

Ford, L. and Fulkerson, D. (1962). Flows in Networks. Princeton University Press, Princeton,
NJ.

FSF, Free Software Foundation (2006). GLPK (GNU Linear Programming Kit).
Gao, T. and Liu, C. L. (1996). Minimum crosstalk channel routing. IEEE Trans. on Computer-

Aided Design of Integrated Circuits and Systems, 15(5):465–474.

REFERENCES 255

Garg, N. and Konemann, J. (1998). Faster and simpler algorithms for multicommodity flow and
other fractional packing problems. Proc. Annual Symposium on Foundations of Computer
Science, pages 300–309.

Georgakopoulos, G. and Papadimitriou, C. (1987). The 1-Steiner tree problem. Journal of
Algorithms, 8:122–130.

Griffith, J., Robins, G., Salowe, J., and Zhang, T. (1994). Closing the gap: near-optimal steiner
trees in polynomial time. IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, 13(11):1351–1365.

Hagen, L., Huang, D., and Kahng, A. B. (1997). On implementation choices for iterative
improvement partitioning algorithms. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 16(10):1199–1205.

Hagen, L. and Kahng, A. B. (1992). Fast spectral methods for ratio cut partitioning and cluster-
ing. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 11(9):1074–
1085.

Hall, K. (1970). An r-dimensional quadratic placement algorithm. Management Science,
17:219–229.

Hanan, M. (1966). On Steiner’s problem with rectilinear distance. SIAM Journal on Applied
Math, 14(2):255–265.

Hashimoto, A. and Stevens, S. (1971). Wire routing by optimizing channel assignment within
large aperatures. In Proc. ACM Design Automation Conf., pages 155–169.

Hauck, S. and Borriello, G. (1997). An evaluation of bipartitioning techniques. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, 16(8):849–866.

Ho, J.-M., Vijayan, G., and Wong, C. K. (1989). A new approach to the rectilinear Steiner tree
problem. In Proc. ACM Design Automation Conf., pages 161–166.

Ho, J.-M., Vijayan, G., and Wong, C. K. (1990). New algorithms for the rectilinear Steiner
tree problem. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
9(2):185–193.

Ho, T.-Y., Chang, Y.-W., Chen, S.-J., and Lee, D.-T. (2005). Crosstalk- and performance-driven
multilevel full-chip routing. IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems, 24(6):869–878.

Hong, X., Xue, T., Huang, J., Cheng, C.-K., and Kuh, E. (1997). TIGER: an efficient timing-
driven global router for gate array and standard cell layout design. IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, 16(11):1323–1331.

Hou, H., Hu, J., and Sapatnekar, S. (1999). Non-hanan routing. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 18(4):436–444.

Hu, Bo and Marek-Sadowska, M. (2005). Multilevel fixed-point-addition-based VLSI place-
ment. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
24(8):1188–1203.

Hu, J. and Sapatnekar, S. (2001). A survey on multi-net global routing for integrated circuits.
Integration, the VLSI Journal, 31(1):1–49.

Hur, S.-W. and Lillis, J. (2000). Mongrel: hybrid techniques for standard cell placement. Proc.
IEEE Int. Conf. on Computer-Aided Design, pages 165–170.

Hwang, C. and Pedram, M. (2005). PMP: performance-driven multilevel partitioning by aggre-
gating the preferred signal directions of I/O conduits. Proc. Asia and South Pacific Design
Automation Conf., pages 428–431.

Hwang, F. (1976). On Steiner minimal trees with rectilinear distance. SIAM Journal of Applied
Math, 30(1):104–114.

Hwang, F., Richards, D., and Winter, P. (1992). The Steiner Tree Problem (Annals of Discrete
Mathematics). North-Holland, The Netherlands.

256 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

Hwang, L. and El Gamal, A. (1995). Min-cut replication in partitioned networks. IEEE Trans.
on Computer-Aided Design of Integrated Circuits and Systems, 14(1):96–106.

Ihler, E., Wagner, D., and Wager, F. (1993). Modeling hypergraph by graphs with the same
min-cut properties. Info. Proc. Letter, 45:171–175.

Jiang, I., Chang, Y.-W., Jou, J.-Y., and Chao, K.-Y. (2004). Simultaneous floor plan and buffer-
block optimization. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Sys-
tems, 23(5):694–703.

Jing, T., Hong, X.-L., Xu, J.-Y., Bao, H.-Y., Cheng, C.-K., and Gu, J. (2004). UTACO: a unified
timing and congestion optimization algorithm for standard cell global routing. IEEE Trans.
on Computer-Aided Design of Integrated Circuits and Systems, 23(3):358–365.

Kahng, A. B. (2000). Classical floorplanning harmful? In Proc. Int. Symp. on Physical Design,
pages 207–213.

Kahng, A. B. and Reda, S. (2006). Wirelength minimization for min-cut placements via place-
ment feedback. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
25(7):1301–1312.

Kahng, A. B. and Robins, G. (1992). A new class of iterative Steiner tree heuristics with good
performance. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
11(7):893–902.

Kahng, A. B. and Robins, G. (1994). On Optimal Interconnections for VLSI. Kluwer, Boston,
MA.

Kahng, A. B. and Wang, Q. (2005). Implementation and extensibility of an analytic placer. IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems, 24(5):734–747.

Karypis, G., Aggarwal, R., Kumar, V., and Shekhar, S. (1997). Multilevel hypergraph partition-
ing: application in VLSI domain. In Proc. ACM Design Automation Conf., pages 526–529.

Karypis, G. and Kumar, V. (1999). Multilevel k-way hypergraph partitioning. Proc. ACM Design
Automation Conf., pages 343–348.

Kernighan, B. and Lin, S. (1970). An efficient heuristic procedure for partitioning of electrical
circuits. Bell System Technical Journal, pages 291–307.

Kirkpatrick, S., Gelatt, C., and Vecchi, M. (1983). Optimization by simulated annealing. Science,
220(4598):671–680.

Kleinhans, J., Sigl, G., Johannes, F., and Antreich, K. (1991). GORDIAN: VLSI placement by
quadratic programming and slicing optimization. IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, 10(3):356–365.

Krishnamurthy, B. (1984). An improved min-cut algorithm for partitioning VLSI networks.
IEEE Trans. on Computers, 33(5):438–446.

Kruskal, J. (1956). On the shortest spanning subtree of a graph and the traveling salesman
problem. Proc. of the American Mathematical Society, 7(1):48–50.

Kukimoto, Y., Brayton, R. K., and Sawkar, P. (1998). Delay-optimal technology mapping by
DAG covering. In Proc. ACM Design Automation Conf., pages 348–351.

Lai, M. and Wong, D. F. (2001). Slicing tree is a complete floorplan representation. Proc.
Design, Automation and Test in Europe, pages 228–232.

Li, J., Lillis, J., Liu, L.-T., and Cheng, C.-K. (1996). New spectral linear placement and cluster-
ing approach. Proc. ACM Design Automation Conf., pages 88–93.

Lillis, J., Cheng, C.-K., Lin, T.-T. Y., and Ho, C.-Y. (1996). New performance driven routing
techniques with explicit area/delay tradeoff and simultaneous wire sizing. Proc. ACM Design
Automation Conf., pages 395–400.

Lin, J.-M. and Chang, Y.-W. (2001). TCG: A transitive closure graph-based representation for
nonslicing floorplans. In Proc. ACM Design Automation Conf., pages 764–769.

REFERENCES 257

Lin, J.-M. and Chang, Y.-W. (2004). TCG-S: orthogonal coupling of P*-admissible representa-
tions for general floorplans. IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems, 23(6):968–980.

Liu, H. and Wong, D. F. (1998). Network-flow-based multiway partitioning with area and pin
constraints. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
17(1):50–59.

Liu, L. T., Kuo, M. T., Cheng, C. K., and Hu, T. C. (1995). A replication cut for two-way
partitioning. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
14(5):623–630.

Madden, P. (1999). Partitioning by iterative deletion. In Proc. Int. Symp. on Physical Design,
pages 83–89.

Mak, W. K. and Young, E. (2003). Temporal logic replication for dynamically reconfigurable
FPGA partitioning. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Sys-
tems, 22(7):952–959.

Mandoiu, I., Vazirani, V., and Ganley, J. (2000). A new heuristic for rectilinear steiner trees.
IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 19(10):1129–
1139.

Mishchenko, Alan, Cho, Sungmin, Chatterjee, Satrajit, and Brayton, Robert (2007). Combina-
tional and sequential mapping with priority cuts. In Proc. IEEE Int. Conf. on Computer-
Aided Design, pages 354–361.

Moh, T.-S., Chang, T.-S., and Hakimi, S. (1996). Globally optimal floorplanning for a layout
problem. IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications,
43(9):713–720.

Murata, H., Fujiyoshi, K., Nakatake, S., and Kajitani, Y. (1995). Rectangle packing based
module placement. In Proc. IEEE Int. Conf. on Computer-Aided Design, pages 472–479.

Murata, H. and Kuh, E. S. (1998). Sequence-pair based placement method for hard/soft/pre-
placed modules. In Proc. Int. Symp. on Physical Design, pages 167–172.

Nam, Gi-Joon and Cong, Jason (2007). Modern Circuit Placement: Best Practices and Results.
Springer, New York.

Okamoto, T. and Cong, J. (1996). Buffered steiner tree construction with wire sizing for inter-
connect layout optimization. Proc. IEEE Int. Conf. on Computer-Aided Design, pages 44–49.

Ou, S.-L. and Pedram, M. (2000). Timing-driven placement based on partitioning with dynamic
cut-net control. Proc. ACM Design Automation Conf., pages 472–476.

Pan, P., Karandikar, A., and Liu, C. L. (1998). Optimal clock period clustering for sequential
circuits with retiming. IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, 17(6):489–498.

Pan, P. and Liu, C. L. (1992). Area minimization for general floorplans. Proc. IEEE Int. Conf.
on Computer-Aided Design, pages 606–609.

Pathak, M. and Lim, S. K. (2007). Thermal-aware steiner routing for 3D stacked ICs. Proc.
IEEE Int. Conf. on Computer-Aided Design, pages 205–211.

Perskey, A., Deutch, D., and Schweikert, D. (1976). LTX - a system for the directed automatic
design of LSI circuits. In Proc. ACM Design Automation Conf., pages 399–407.

Prim, R. (1957). Shortest connection networks and some generalizations. Bell Systems Technical
Journal, 36:1389–1401.

Rafiq, F., Chrzanowska-Jeske, M., Yang, H. H., Jeske, M., and Sherwani, N. (2003). Inte-
grated floorplanning with buffer/channel insertion for bus-based designs. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, 22(6):730–741.

Rajagopalan, S. and Vazirani, V. (1999). On the bidirected cut relaxation for the metric steiner
tree problem. Proc. ACM-SIAM Symposium on Discrete Algorithms, pages 742–751.

258 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

Rajaraman, R. and Wong, D.F. (1995). Optimal clustering for delay minimization. IEEE Trans.
on Computer-Aided Design of Integrated Circuits and Systems, 14(12):1490–1495.

Ramnath, S. (2003). New approximations for the rectilinear steiner arborescence problem. IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems, 22(7):859–869.

Ranjan, A., Bazargan, K., Ogrenci, S., and Sarrafzadeh, M. (2001). Fast floorplanning for
effective prediction and construction. IEEE Trans. on VLSI Systems, 9(2):341–351.

Rao, S. K., Sadayappan, P., Hwang, F. K., and Shor, P. W. (1992). The rectilinear steiner
arborescence problem. Algorithmica, 7:277–288.

Ren, H., Pan, D., Alpert, C., Villarrubia, P., and Nam, G.-J. (2007). Diffusion-based place-
ment migration with application on legalization. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, 26(12):2158–2172.

Riess, B., Doll, K., and Johannes, F. (1994). Partitioning very large circuits using analytical
placement techniques. Proc. ACM Design Automation Conf., pages 646–651.

Robins, G. and Salowe, J. (1994). On the maximum degree of minimum spanning trees. In Proc.
of the Annual Symposium on Computational Geometry, pages 250–258.

Sanchis, L. (1989). Multiple-way network partitioning. IEEE Trans. on Computers, 38(1):62–
81.

Sapatnekar, S. (2000). A timing model incorporating the effect of crosstalk on delay and its
application to optimal channel routing. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 19(5):550–559.

Sassone, P. and Lim, S. K. (2006). Traffic: A novel geometric algorithm for fast wire-optimized
floorplanning. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
25(6):1075–1086.

Sechen, C. and Sangiovanni-Vincentelli, A. (1985). The TimberWolf placement and routing
package. IEEE Journal of Solid-State Circuits, 20(2):510–522.

Shahookar, K. and Mazumder, P. (1991). VLSI cell placement techniques. ACM Computing
Survey, 23(2):143–220.

Shahrokhi, F. and Matula, D. W. (1990). The maximum concurrent flow problem. Journal of
ACM, 37(2):318–334.

Shi, W. (1995). An optimal algorithm for area minimization of slicing floorplans. Proc. IEEE
Int. Conf. on Computer-Aided Design, pages 480–484.

Shi, W. and Su, C. (2000). The rectilinear Steiner arborescence problem is NP-complete. Proc.
ACM-SIAM Symposium on Discrete Algorithms, pages 780–787.

Shragowitz, E. and Keel, S. (1987). A global router based on a multicommodity flow model.
Integration, the VLSI Journal, 5(1):3–16.

Sigl, G., Doll, K., and Johannes, F. (1991a). Analytical placement: a linear or a quadratic
objective function? In Proc. ACM Design Automation Conf., pages 427–432.

Sigl, G., Doll, K., and Johannes, F. (1991b). Analytical placement: a linear or a quadratic
objective function? Proc. ACM Design Automation Conf., pages 427–432.

Stockmeyer, L. (1983). Optimal orientation of cells in slicing floorplan designs. Information
and Control, 57(2–3):91–101.

Su, H., Hu, J., Sapatnekar, S., and Nassif, S. (2004). A methodology for the simultaneous
design of supply and signal networks. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 23(12):1614–1624.

Suaris, P. and Kedem, G. (1989). A quadrisection-based combined place and route scheme for
standard cells. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
8(3):234–244.

Sun, W.-J. and Sechen, C. (1995). Efficient and effective placement for very large circuits. IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems, 14(3):349–359.

REFERENCES 259

Sun, W.-J. and Sechen, C. (1997). A parallel standard cell placement algorithm. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, 16(11):1342–1357.

Sutanthavibul, S., Shragowitz, E., and Rosen, J. (1991). An analytical approach to floorplan
design and optimization. IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, 10(6):761–769.

Swartz, W. and Sechen, C. (1990). New algorithms for the placement and routing of macro cells.
In Proc. IEEE Int. Conf. on Computer-Aided Design, pages 336–339.

Tang, X., Tian, R., and Wong, D. F. (2001). Fast evaluation of sequence pair in block placement
by longest common subsequence computation. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, 20(12):1406–1413.

Teslenko, M. and Dubrova, E. (2004). Hermes: LUT FPGA technology mapping algorithm for
area minimization with optimum depth. Proc. IEEE Int. Conf. on Computer-Aided Design,
pages 748–751.

Ting, B. and Tien, B. (1983). Routing techniques for gate array. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 2(4):301–312.

Tsay, Y.-W. and Lin, Y.-L. (1995). A row-based cell placement method that utilizes circuit
structural properties. IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, 14(3):393–397.

Vaishnav, H. and Pedram, M. (1995). Delay optimal partitioning targeting low power VLSI
circuits. Proc. IEEE Int. Conf. on Computer-Aided Design, pages 638–643.

Viswanathan, N. and Chu, C. (2005). Fastplace: efficient analytical placement using cell shift-
ing, iterative local refinement, and a hybrid net model. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 24(5):722–733.

Vygen, J. (1997). Algorithms for large-scale flat placement. In Proc. ACM Design Automation
Conf., pages 746–751.

W. Swartz, C. Sechen (1995). Timing driven placement for large standard cell circuits. Proc.
ACM Design Automation Conf., pages 211–215.

Wang, M., Yang, X., and Sarrafzadeh, M. (2000). Dragon2000: standard-cell placement tool for
large industry circuits. Proc. IEEE Int. Conf. on Computer-Aided Design, pages 260–263.

Wei, Y.-C. and Cheng, C.-K. (1989). Towards efficient hierarchical designs by ratio cut parti-
tioning. In Proc. IEEE Int. Conf. on Computer-Aided Design, pages 298–301.

Wong, D. F. and Liu, C. L. (1986). A new algorithm for floorplan design. In Proc. ACM Design
Automation Conf., pages 101–107.

Xiong, J. and He, L. (2005). Extended global routing with RLC crosstalk constraints. IEEE
Trans. on VLSI Systems, 13(3):319–329.

Xiu, Z., Ma, J., Fowler, S., and Rutenbar, R. (2004). Large-scale placement by grid-warping. In
Proc. ACM Design Automation Conf., pages 351–356.

Yang, H. and Wong, D. F. (1994). Edge-map: optimal performance driven technology mapping
for iterative LUT based Fpga designs. Proc. IEEE Int. Conf. on Computer-Aided Design,
pages 150–155.

Yang, H. and Wong, D. F. (1995). New algorithms for min-cut replication in partitioned circuits.
Proc. IEEE Int. Conf. on Computer-Aided Design, pages 216–222.

Yang, H. and Wong, D. F. (1996). Efficient network flow based min-cut balanced partitioning.
IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 15(12):1533–
1540.

Yang, H. and Wong, D. F. (1997). Circuit clustering for delay minimization under area and
pinconstraints. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
16(9):976–986.

260 PRACTICAL PROBLEMS IN VLSI PHYSICAL DESIGN AUTOMATION

Yang, H. and Wong, D. F. (1998). Optimal min-area min-cut replication in partitioned circuits.
IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 17(11):1175–
1183.

Yao, B., Chen, H., Cheng, C. K., and Graham, R. (2001). Revisiting floorplan representations.
In Proc. Int. Symp. on Physical Design, pages 138–143.

Yildiz, M. and Madden, P. (2001). Improved cut sequences for partitioning based placement.
Proc. ACM Design Automation Conf., pages 776–779.

Yoshimura, T. and Kuh, E. (1982). Efficient algorithms for channel routing. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, 1(1):25–35.

Young, F.Y. and Wong, D.F. (1998). Slicing floorplans with pre-placed modules. Proc. IEEE
Int. Conf. on Computer-Aided Design, pages 252–258.

Zarkesh-Ha, P., Davis, J., and Meindl, J. (2000). Prediction of net-length distribution for global
interconnects in a heterogeneous system-on-a-chip. IEEE Trans. on VLSI Systems, 8(6):649–
659.

Zhong, K. and Dutt, S. (2000). Effective partition-driven placement with simultaneous level
processing and global net views. Proc. IEEE Int. Conf. on Computer-Aided Design, pages
254–259.

Zhou, H. (2004). Efficient steiner tree construction based on spanning graphs. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, 23(5):704–710.

Zhou, H., Shenoy, N., and Nicholls, W. (2002). Efficient spanning tree construction without
delaney triangulation. Information Processsing Letter, 81(5):271–276.

About the Author

Dr. Sung Kyu Lim received the B.S., M.S., and Ph.D. degrees from the Com-
puter Science Department, University of California, Los Angeles (UCLA),
in 1994, 1997, and 2000, respectively. From 2000 to 2001, he was a Post-
Doctoral Scholar at UCLA, and a Senior Engineer at Aplus Design Technolo-
gies, Inc. He joined the School of Electrical and Computer Engineering at the
Georgia Institute of Technology in 2001, where he is currently an Associate
Professor. His research focus is on the physical design automation for 3-D
circuits, 3-D system-on-packages, microarchitectural physical planning, and
field-programmable analog arrays.

Dr. Lim received the Design Automation Conference (DAC) Graduate
Scholarship in 2003 and the National Science Foundation Faculty Early Career
Development (NSF CAREER) Award in 2006. He was on the Advisory Board
of the ACM Special Interest Group on Design Automation (SIGDA) dur-
ing 2003–2008. He is an Associate Editor of the IEEE Transactions on Very
Large Scale Integration Systems (TVLSI) and served as a Guest Editor for the
ACM Transactions on Design Automation of Electronic Systems (TODAES).
He has served the Technical Program Committee of several ACM and IEEE
conferences on electronic design automation. He is a senior member of the
IEEE.

	Cover
	Practical Problems in VLSI Physical Design Automation
	ISBN 978-1-4020-6626-9
	Contents
	List of Figures
	List of Tables
	Foreword
	Preface

	Chapter 1 CLUSTERING
	Chapter 2 PARTITIONING
	Chapter 3 FLOORPLANNING
	Chapter 4 PLACEMENT
	Chapter 5 STEINER ROUTING
	Chapter 6 MULTI-NET ROUTING
	References
	About the Author

