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Preface

This book presents the fundamentals of sparse matrix algorithms, from theory
to algorithms and data structures to working code. The focus is on direct methods
for solving systems of linear equations; iterative methods and solvers for eigenvalue
problems are beyond the scope of this book.

The goal is to impart a working knowledge of the underlying theory and prac-
tice of sparse matrix algorithms, so that you will have the foundation to understand
more complex (but faster) algorithms. Methods that operate on dense submatrices
of a larger sparse matrix (multifrontal and supernodal methods) are much faster, but
a complete sparse matrix package based on these methods can be tens of thousands
of lines long. The sparse LU, Cholesky, and QR factorization codes in MATLAB®,
for example, total about 100,000 lines of code. Trying to understand the sparse
matrix technique by starting with such huge codes is a daunting task. To overcome
this obstacle, a sparse matrix package, CSparse,1 has been written specifically for
this book.2 It can solve Ax = b when A is unsymmetric, symmetric positive defi-
nite, or rectangular, using about 2,200 lines of code. Although simple and concise,
it is based on recently developed methods and theory. All of CSparse is printed in
this book. Take your time to read and understand these codes; do not gloss over
them. You will find them much easier to comprehend and learn from than their
larger (yet faster) cousins. The larger packages you may use in practice are based
on much of the theory and some of the algorithms presented more concisely and
simply in CSparse. For example, the MATLAB statement x = A b relies on the the-
ory and algorithms from almost every section of this book. Parallel sparse matrix
algorithms are excluded, yet they too rely on the theory discussed here.

For the computational scientist with a problem to solve using sparse matrix
methods, these larger packages may be faster, but you need to understand how
they work to use them effectively. They might not have every function needed to
interface them into your application. You may need to write some code of your own
to manipulate your matrix prior to or after using a large sparse matrix package.
One of the goals of this book is to equip you for these tasks. The same question
applies to MATLAB. You might ask, "What is the most efficient way of solving
my sparse matrix problem in MATLAB?" The short answer is to always operate on
whole matrices, large submatrices, or column vectors in MATLAB and to not rely

1 CSparse: a Concise Sparse matrix package.
2 The index gives page numbers in bold that contain CSparse and related software.
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heavily on accessing the rows or individual entries of a sparse matrix. The long
answer to this question is to read this book. MATLAB and the C programming
language are a strong emphasis of this book. In particular, one goal of the book is
to explain how MATLAB performs its sparse matrix computations.

Algorithms are presented in a mixture of pseudocode, MATLAB, and C, so
knowledge of these is assumed. Also required is a basic knowledge of linear algebra,
graph theory, algorithms, and data structures. A short review of these topics is
provided. Each chapter includes a set of exercises to reinforce the topic.3

CSparse is written in C, using a spartan coding style. Using C instead of
(say) Java or C++ allows for concise exposition, full disclosure of time and memory
complexity, efficiency, and portability. CSparse can be downloaded from SIAM at
www.siam.org/books/fa02. MATLAB 7.2 (R2006a) was used for this book. CSparse
handles only real matrices and int integers. CXSparse is an extended version that
includes support for real and complex matrices and int and long integers and can
also be downloaded from www.siam.org/books/fa02.

The genesis of this book was a collection of lecture notes for a course on sparse
matrix algorithms I taught at Stanford in 2003. I would like to thank Gene Golub,
Esmond Ng, and Horst Simon for enabling me to spend a sabbatical at Stanford and
Lawrence Berkeley National Laboratory for the 2002-2003 academic year. Several
extended visits to Sandia National Laboratory at Mike Heroux's invitation enabled
me to develop my versions of the left-looking sparse LU factorization algorithm
and the Dulmage-Mendelsohn decomposition for use in Sandia's circuit simulation
efforts. The algorithms presented here were developed with support from various
sources, including Sandia National Laboratory, the National Science Foundation
(ASC-9111263, DMS-9223088, DMS-9504974, DMS-9803599, and CCR-0203720),
The MathWorks, Inc., and the University of Florida. I would like to thank David
Bateman for adding support for complex matrices and long integers to CXSparse.

Nick Higham, Cleve Moler, and the other members of the Editorial Board
of the SIAM Fundamentals of Algorithms book series encouraged me to turn these
lecture notes and codes into the printed page before you by inviting me to write this
book for the series. Finally, I would like to thank David Day, John Gilbert, Chen
Greif, Nick Higham, Sara Murphy, Pat Quillen, David Riegelhaupt, Ken Stanley,
Linda Thiel, and my Spring 2006 sparse matrix class (Suranjit Adhikari, Pawan
Aurora, Okiemute Brume, Yanqing "Morris" Chen, Eric Dattoli, Bing Jian, Nick
Lord, Siva Rajamanickam, and Ozlem Subakan), who provided helpful feedback on
the content and presentation of the book.

Tim Davis
University of Florida, Gainesville, Florida
www.cise.ufl.edu/~davis
April 2006

3Instructors: please do not post solutions on the web where they are publicly readable. Use a
password-protected web page instead.
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Chapter 1

Introduction

This book presents the fundamentals of sparse matrix algorithms for the direct
solution of sparse linear systems, from theory to algorithms and data structures to
working code. The algorithms presented here have been chosen with these goals
in mind: they must embody much of the theory behind sparse matrix algorithms;
they must be either asymptotically optimal in their run time and memory usage or
be fast in practice; they must be concise so as to be easy to understand and short
enough to print in their entirety in this book; they must cover a wide spectrum of
matrix operations; and they must be accurate and robust.

Algorithms are presented in a mixture of pseudocode, MATLAB, and C, so
knowledge of these is assumed. Also required is a basic knowledge of linear algebra,
graph theory, algorithms, and data structures. This background is reviewed below
and in an appendix on the C programming language.

Chapter 2 presents basic data structures and algorithms, including matrix
multiplication, addition, transpose, and data structure manipulations. Chapter 3
considers the solution of triangular systems of equations. Chapters 4 through 6
present the three most commonly used decompositions: Cholesky, QR, and LU.
Factorization methods specifically for symmetric indefinite matrices are not dis-
cussed. Section 4.10 presents a method for updating and downdating a sparse
Cholesky factorization after a low-rank change. Chapter 7 discusses ordering meth-
ods that reduce work and memory requirements. Chapter 8 draws on the theory
and algorithms presented in Chapters 1 through 7 to solve a sparse linear system
Ax — b, where A can be symmetric positive definite, unsymmetric, or rectangu-
lar, just like the backslash operator in MATLAB, x=A\b, when A is sparse and b
is a dense column vector. Chapter 9 is a summary of the CSparse sparse matrix
package. Finally, Chapter 10 explains how to use sparse matrices in MATLAB.

To avoid breaking the flow of discussion, few citations appear in the body of
each chapter. They are discussed at the end of each chapter instead in a "Further
reading" section, which gives an overview of software, books, and papers related to
that chapter. Notable exceptions to this rule are the theorems stated in the book.
The final section in each chapter is a set of exercises for that chapter.
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Chapter 1. Introduction

1.1 Linear algebra
Definitions and notation for linear algebra are briefly described below. An m-by-n
matrix is denoted with a capital letter, A € Rm X n , where Rmxn denotes the set of

m-by-n matrices with real elements. An ij subscript on the corresponding lower
case letter aij denotes an entry in row i and column j of the matrix A. It can also
denote a row vector, column vector, or block submatrix of A (described below), but
in this case i and j are typically small constants (a12, for example). L is a lower
triangular matrix, U and R are upper triangular, and / denotes the identity matrix
(which is zero except for ( I ) i i = 1). A matrix A is lower triangular if aij = 0 when
i < j, and upper triangular if aij = 0 when i > j. Lower case letters denote vectors
(b, x, y, z), except for letters i through n, which always denote integer scalars. Row
vectors are shown with a superscript, XT. With a subscript, xi can denote either
a scalar or a vector, depending on the context. Lower case Greek letters (a ,ß)
represent scalars. The jth column of the matrix A is denoted A*j, or A(: , j) in
MATLAB. Likewise, Ai* denotes row i of A, or A( i , : ) in MATLAB.

The transpose AT of the real matrix A is defined by (AT)ij = aji. The matrix
addition C = A + B is defined by cij = aij+ bij. A scalar can be multiplied by a
matrix; C = a A is defined by Cij = aaij. Matrix multiplication, C — AB, is

2

where C <E Rmxn, A € Emxs, and B € Rsxn. Matrix multiplication requires the
number of columns of A to be equal to the number of rows of B. The dot product of
two vectors x and y is the scalar xTy. The outer product of two vectors x and y is
the matrix xyT \ the computation of A = A + axyT is called a rank-1 update. If X
and Y are matrices with k columns, XYT is referred to as a rank-k outer product
(this nomenclature is commonly used even if X and Y do not have a numerical rank
of k). The computation A = A + aXYT is called a rank-fc update.

A block matrix is a matrix where each entry can be a matrix, vector, or scalar.
Suppose the rows of an ra-by-n matrix A are partitioned into r subsets, and the
columns are partitioned into c subsets; A can be written as a block r-by-c matrix

where Aij is raj-by-n^, if rrii is the size of the ith row subset and nj is the size of
the jih column subset. Two block matrices can be added if they are partitioned
identically. Two block matrices can be multiplied, C = AB, if the columns of A
are partitioned identically to the rows of B; the rows of C and A are partitioned
identically, as are the columns of C and B. If c is the number of partitions of the
columns of A and rows of B, (1.1) becomes



1.1. Linear algebra

A set of vectors a1, a2, • • •, an is linearly independent if >3 ajaj = 0 implies Q.J
is zero for all j. The span of a set of vectors is the set of vectors that can be written
as a linear combination of vectors in the set; span (a i, a?,..., an) = {̂  a^a^}. The
range of a matrix A is the span of its column vectors. The rank of a matrix A is
the maximal size of the subsets of the columns of A that are linearly independent.
An n-by-n matrix is singular if its rank is less than n. An ra-by-n matrix is rank
deficient if its rank is less than min(m, n); it has full rank otherwise.

The 1-norm of a column vector x or row vector x1 is ||o;||i = ]P \Xi\, its 2-norm
is ||a;||2 = VTT^F' and its co-norm is ||a;||oo = max \Xi\. The 1-norm of a matrix is
the largest 1-norm of its column vectors. The co-norm of a matrix is the largest
1-norm of its row vectors.

The inverse of a matrix A is A"1, where A A"1 = A"1 A = I. It exists only
if A is square and nonsingular. Two vectors x and y are orthogonal if xTy = 0. A
matrix Q is orthonormal if QTQ = /. A real square orthonormal Q matrix is called
orthogonal, in which case QJ Q = QQT = / (that is, QT = Q~l if Q is orthogonal).
The 2-norm of a vector x and the product Qx are identical if Q is orthogonal.

The fcth diagonal of an ra-by-n matrix A is a vector d consisting of the set
of entries {a^-}, where j — i = k. The term diagonal, by itself, refers to the Oth
diagonal, or main diagonal, of a matrix. The kih diagonal entry of A is a^fc •

The number of nonzero entries (nonzeros for short) in a matrix or vector is
|-A|, and |a| denotes the absolute value of a scalar.

A permutation matrix P is a row or column permutation of the identity matrix.
Any given row or column of P contains a single nonzero entry, equal to 1. The
L U factorization of a square nonsingular matrix A has the form LU = A, where
L is lower triangular and U is upper triangular. With partial pivoting and row
interchanges, the factorization is LU = PA. A matrix A is positive definite if and
only if xTAx > 0 for all nonzero vectors x. It is positive semidefinite if xTAx > 0.
The Cholesky factorization of a square symmetric positive definite matrix A has the
form LLT = A, where L is lower triangular with positive diagonal entries. Pivoting
is not required for stability. A square matrix A is diagonally dominant by rows
if |flti| > ^j^i \aij\ f°r an< *• Jt *s strictly diagonally dominant by rows if (0^) >
£),--£i \aij\ f°r a^ *• ^ is (strictly) diagonally dominant by columns if A1 is (strictly)
diagonally dominant by rows. A square strictly diagonally dominant matrix is
nonsingular. Gaussian elimination without pivoting (a form of LU factorization) is
stable for any diagonally dominant matrix (by rows or by columns).

A QR factorization of a rectangular matrix A is QR = A, where Q is or-
thogonal and R is upper triangular. For a square matrix A, Ax = \x holds for an
eigenvalue A and its eigenvector x.

Sets are denoted in calligraphic letters A, B, C, £, 7?., V, W, X, and y. These
typically arise from the nonzero pattern of the corresponding matrix or vector. For
example, A*j = {i\&ij ^ 0}, and X = {i\Xi ^ 0}. The * in the subscript is
dropped when the context is clear.

The terms dense and sparse refer to the data structure used to store a matrix.
A matrix A e Rmxn is dense if it is stored as a full array of ra rows and n columns
with ran entries. This is called a full matrix in MATLAB. All entries are stored,

3



Chapter 1. Introduction

even if some of them are zero. A sparse matrix is stored in a data structure that can
exploit sparsity by not storing numerically zero entries. Numerically zero entries
may be stored in a sparse matrix, typically as a result of numerical cancellation.

1.2 Graph theory, algorithms, and data structures
A graph G = (V,E) is a set of nodes V = {!,...,n} and a set of edges E =
{(i,j) I *> J € V} connecting those nodes. In an undirected graph, ( i , j ] and ( j , i ) are
the same edge; they are different edges in a directed graph. In a directed graph, there
can be an edge ( i , j ) but no edge ( j , i ) . The neighbors of a node i, or equivalently
the adjacency set of i, is Adj(f) = {j \ (i,j) e E}. For a directed graph, this is the
out-adjacency of node i. The in-adjacency of node i is InAdj(i) = {j \ (j,i) € E}.
The out-adjacency and in-adjacency of a node in an undirected graph are identical.
The adjacency matrix A of a, graph G is a binary n-by-n matrix with a^ = 1 if
(i,j) € E, and a^ = 0 otherwise. It is symmetric if G is undirected, and may be
unsymmetric otherwise. A graph can also be represented as a set of n adjacency lists,
Ai* = {j | aij ^ 0} or A*J — {i | aij 7^ 0}. This relates the sparsity pattern of an n-
by-n matrix A to its corresponding undirected or directed graph GA • The diagonal
afcfc is the self-edge (k, fc); it is typically excluded from GA- The degree of a node in
an undirected graph is the size of its adjacency list, \A*i\ = |A*| = |Adj(«)|. Two
graphs are isomorphic if they can be made identical by renumbering their nodes.

A node i is incident on the edge (a, 6) if a = i or 6 = i- the edge (a, 6) is also
said to be incident on node i. A node-induced subgraph G = (V, E) of G is defined
by a subset of the nodes_F C V, where E = {(i, j) \(i,j)eE/\i£V/\j£ V}. An
edge-induced subgraph G = (V, E) is defined by a set of edges E C E, where the
nodes V are all the nodes incident on any edge in E.

A graph is completely connected if E = V x V; it has an edge between every
pair of nodes. A clique is a completely connected subgraph.

A path VQ ~» Vk of length k is a sequence of nodes (VQ, ..., Vk) where an edge
(vi-i,Vi) exists between each pair of adjacent nodes in the sequence. The path is
simple if no node appears more than once. Node j is reachable from node i if a path
i -^ j exists in the graph. The set of all nodes reachable from i in the graph G is
Reached). A graph is strongly connected if there exists a path from any node to
any other node. That is, Reachc?(«) is the entire graph for any node i. A graph is
connected if its underlying undirected graph is strongly connected. The underlying
undirected graph of G is the same as G but with all the edge directions ignored.

A cycle is a path i ~» i where the first and last nodes are the same. It is a
simple cycle if no edge or node appears more than once, except for i itself. A graph
with no cycles is acyclic. A directed acyclic graph is often called a DAG, for short.
An undirected acyclic graph is a forest. A tree is a connected forest. There is a
unique simple path between every pair of nodes in a tree. One node of a rooted tree
is designated as the root r. The unique node following i in the path i -^ r is called
the parent p of z; the root itself has no parent. Node i is a child of p; a node has at
most one parent but can have more than one child. A node with no children is a
leaf. The path i ~» r is the set of ancestors of i. Node i is a descendant of all nodes

4



1.2. Graph theory, algorithms, and data structures

in the path i ~» r. The set of proper ancestors or descendants of node i excludes
node i itself. The subtree rooted at node i consists of the subgraph induced by the
nodes i and its descendants. In a postordered tree, the d proper descendants of any
node k are nodes k — d through k — 1.

A bipartite graph is an undirected graph whose nodes are partitioned into two
subsets, and every edge connects two nodes in different subsets. A node separator
is a subset S C V of the nodes of G = (V, E) such that the graph induced by the
nodes V \ S is unconnected. An edge separator is a subset S C E of the edges of
G = (V,E) such that the graph G = (V,E\S) is unconnected. A node cover is a
set of nodes 5 C V such that all edges E are incident on at least one node in S.

Informally, asymptotic notation describes the gist of a function f(x): how fast
it grows as a function of x. Scalar factors and lower order terms are ignored. For
example, all quadratic polynomials ax2 + bx + 1 are O(x2), unless a = 0. More
formally, a function /(#) is O(g(x)} if there exist positive constants c and XQ such
that 0 < /(#) < cg(x) for all x > XQ. This provides an asymptotic upper bound.
The asymptotic lower bound is defined similarly. A function f(x) is £l(g(x}) if there
exist positive constants c and XQ such that 0 < cg(x) < f(x) for all x > XQ. If f(x)
is both O(g(x}} and £l(g(x)), then it has a tight asymptotic bound, Q(g(x}).

Algorithm analysis refers to methods for determining asymptotic bounds on
the run time, memory usage, and other aspects of an algorithm. The run time
and other statistics are typically expressed as functions of the size of the input.
Worst-case analysis finds an upper bound (O(...)) that always holds, regardless of
the input. Average-case analysis looks at the typical case. These are often the same
but not always. The time complexity of an algorithm is the asymptotic bound on
its run time.

An amortized analysis considers the total run time of a sequence of related
operations. If the time for n operations is T(n), the amortized time for one operation
is T(n)/n. For example, if a function is called n times and takes one unit of time
n — 1 times but n + 1 units of time just once, the worst-case time complexity is
O(n) for any one usage of this function. However, if the cost of all n operations
are added together and amortized across all operations, the amortized cost per
operation becomes just two, which is O(l). The latter is a more useful picture of
the time complexity of one operation in a sequence.

An example of where amortized time complexity is useful is the dynamic table
algorithm. Consider a table of size k that starts out with k = 1 and an operation
that inserts an item at the end of the table. If the size k of the table is insufficient,
it is doubled in size, taking O(k) time to make the larger copy. With n insertions,
it may appear that total time would be O(n2), but this is not the case. Even with
this extra work of copying the table, the amortized cost of a single insertion is 0(1),
because only the iih insertions when i is a power of two plus one require a complete
copy of the table. For n insertions, the time is

5
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Chapter 1. Introduction

is less than or equal to 3n. The amortized time for any one insertion is at most 3.
A common class of graph algorithms consists of methods for traversing the

nodes and edges of a graph. The depth-first search of a graph starts at a node j and
finds all nodes reachable from node .;'. It explores recursively by always examining
the outgoing edges of the latest node i just seen. When all edges of i have been
explored, it backtracks to the node from which i was first discovered. Nodes are
marked so that they are not searched twice. The time taken by a depth-first search
is O(s + e), where s = |Reach(i)| and e is the number of edges in the subgraph
induced by s. This subgraph is connected by the way it is constructed. Traversing
the entire graph in a depth-first manner requires the traversal to be repeated until
all nodes are visited. A depth-first search produces a list of nodes of a DAG in
topological order, i appears before j if i ̂  j is a path in G.

The breadth-first search traverses a graph in a different order. Starting at
node i, it first examines all nodes adjacent to i. Next, it examines all nodes j whose
shortest path i ̂  j is of length 2, then length 3, and so on. Like the depth-first
search, it too traverses all nodes in Reach^). Unlike the depth-first search, it
traverses these nodes in order of the shortest path from i, not in topological order.

A graph is denoted as G or Q, and T denotes a tree or forest. S denotes the
element lists in the minimum degree ordering algorithm, discussed in Chapter 7.

1.3 Further reading
Golub and Van Loan [114] provide an in-depth coverage of numerical linear algebra
and matrix computations for dense and structured matrices; Strang [193] gives an
introduction to linear algebra. Moler [157] provides an introduction to numerical
computing with a strong MATLAB focus. Stewart presents an in-depth look at
matrix decompositions [190] and eigenvalue problems [191]. Higham [135] discusses
the behavior of numerical algorithms in finite precision arithmetic.

Gormen, Leiserson, and Rivest [23] discuss algorithms and data structures
and their analysis, including graph algorithms. Kernighan and Ritchie [141] give
a concise coverage of the C programming language. Higham and Higham [133],
Davis and Sigmon [38], or the online documentation for MATLAB are good places
to learn more about MATLAB.

The books by Duff, Erisman, and Reid [53] and George and Liu [89] both deal
with direct methods for sparse matrices; the latter focuses on symmetric positive
definite matrices. Gilbert [101] and Liu [150] provide an overview of much of the
graph theory related to sparse direct methods. Stewart [192] provides a tutorial-
level description of sparse Cholesky. Gould, Hu, and Scott [116] survey a wide range
of software packages for the factorization of sparse symmetric matrices. Iterative
methods for sparse linear systems and the incomplete factorization methods they
rely on are discussed by Saad [178], Greenbaum [117], and Barrett et al. [15]. Bjorck
[17] presents direct and iterative methods for sparse least squares problems. Parlett
[164] provides an in-depth look at the symmetric eigenvalue problem for sparse
matrices. Demmel [39] interleaves a discussion of numerical linear algebra with a
description of related software for sparse and dense problems.
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Chapter 2

Basic algorithms

A sparse matrix is one whose entries are mostly zero. There are many ways of storing
a sparse matrix. Whichever method is chosen, some form of compact data structure
is required that avoids storing the numerically zero entries in the matrix. It needs
to be simple and flexible so that it can be used in a wide range of matrix operations.
This need is met by the primary data structure in CSparse, a compressed-column
matrix. Basic matrix operations that operate on this data structure are presented
below, including matrix-vector multiplication, matrix-matrix multiplication, matrix
addition, and transpose.

2.1 Sparse matrix data structures
The simplest sparse matrix data structure is a list of the nonzero entries in arbitrary
order. The list consists of two integer arrays i and j and one real array x of length
equal to the number of entries in the matrix. For example, the matrix

is represented in zero-based triplet form below. A zero-based data structure for
an mrby-n matrix contains row and column indices in the range 0 to m-1 and n-1,
respectively. A one-based data structure has row and column indices that start
with one. The one-based convention is used in linear algebra and is presented to
the MATLAB user. Internally in MATLAB and also in CSparse, all algorithms
and data structures are zero-based. Thus, both conventions are used in this book,
depending on the context. In particular, all C code is zero-based. All MATLAB
expressions, and all linear algebraic expressions, are one-based. All pseudocode
is zero-based, since it closely relates to a corresponding C code. Graph examples
are one-based, since they usually relate to an example matrix (which are also one-
based).

7
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int i [ ] = { 2, 1, 3, 0, 1, 3, 3, 1, 0, 2 > ;
int j [ ] - { 2, 0, 3, 2, 1, 0, 1, 3, 0, 1 } ;
double x [ ] = {. 3.0, 3.1, 1.0, 3.2, 2.9, 3.5, 0.4, 0 .9 , 4.5, 1.7 } ;

The triplet form is simple to create but difficult to use in most sparse matrix
algorithms. The compressed-column form is more useful and is used in almost all
functions in CSparse. An m-by-n sparse matrix that can contain up to nzmax entries
is represented with an integer array p of length n+1, an integer array i of length
nzmax, and a real array x of length nzmax. Row indices of entries in column j are
stored in i[p[j]] through i[p[j+l]-l], and the corresponding numerical values
are stored in the same locations in x. The first entry p [0] is always zero, and p [n]
< nzmax is the number of actual entries in the matrix. The example matrix (2.1)
is represented as

int p [ ] = { 0, 3, 6, 8, 10 } ;
int i [ ] = { 0, 1, 3, 1, 2, 3, 0, 2, 1, 3 } ;
double x [ ] = { 4.5, 3.1, 3.5, 2.9, 1.7, 0.4, 3.2, 3.0, 0.9, 1.0 } ;

MATLAB uses a compressed-column data structure much like cs for its sparse
matrices. It requires the row indices in each column to appear in ascending order,
and no zero entries may be present. Those two restrictions are relaxed in CSparse.
The triplet form and the compressed-column data structures are both encapsulated
in the cs structure:

typedef struct cs_sparse /* matrix in compressed-column or triplet form */

i
int nzmax ; /* maximum number of entries */

int m ; /* number of rows */
int n ; /* number of columns */

int *p ; /* column pointers (size n+1) or col indices (size nzmax) */
int *i ; /* row indices, size nzmax */
double *x ; /* numerical values, size nzmax */
int nz ; /* # of entries in triplet matrix, -1 for compressed-col */

} cs ;

The array p contains the column pointers for the compressed-column form (of
size n+1) or the column indices for the triplet form (of size nzmax). The matrix is
in compressed-column form if nz is negative. Any given CSparse function expects
its sparse matrix input in one form or the other, except for cs_print, cs.spalloc,
cs_spf ree, and cs_sprealloc, which can operate on either form.

Within a mexFunction written in C or Fortran (but callable from MATLAB),
several functions are available that extract the parts of a MATLAB sparse matrix;
mxGet Jc returns a pointer to the equivalent of the A->p column pointer array of th
cs matrix A. The functions mxGetlr, mxGetPr, mxGetM, mxGetN, and mxGetNzmax
return A->i, A->x, A->m, A->n, and A->nzmax, respectively. These mx functions ar
not available to a MATLAB statement typed in the MATLAB command window
or in a MATLAB M-file but only in a compiled C or Fortran mexFunction. The
compressed-column data structures used in MATLAB and CSparse are identical,
except that MATLAB can handle complex matrices as well. MATLAB 7.2 forbids
explicit zero entries and requires row indices to be in order in each column.

8
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Allowing the result to overwrite the input vector y, the jih iteration computes
y — y + A+jXj. The pseudocode for computing y = Ax + y is given below.

for j = 0 to n — I do
for each i for which a^ ^ 0 do

9

2.2 Matrix-vector multiplication
One of the simplest sparse matrix algorithms is matrix-vector multiplication, z =
Ax + y, where y and x are dense vectors and A is sparse. If A is split into n column
vectors, the result z = Ax + y is

Access to a column of A is simple, equivalent to c=A(: , j) in MATLAB, where
j is a scalar. This assignment takes O(|c|) time in MATLAB, which is optimal.
Accessing the rows of a sparse matrix in cs form, or in MATLAB, is difficult. The
MATLAB statement r=A(i, :) for a scalar i accesses a row of A. To implement
this, MATLAB must examine every column of A, looking for row index i in each
column. This is costly compared with accessing a column. Transposing a sparse
matrix and accessing its columns is better than repeatedly accessing its rows.

The cs data structure can contain numerically zero entries, which brings
up the important practical and theoretical issue of numerical cancellation. Ex-
act numerical cancellation is rare, and most algorithms ignore it. An entry in the
data structure that is computed but found to be numerically zero is still called a
"nonzero" in this book. Leaving these entries in the matrix leads to much simpler
algorithms and more elegant graph theoretical statements about the algorithms, in
particular matrix-matrix multiplication, factorization, and the solution of Lx = b
when b is sparse. Zero entries can always be dropped afterward (see Section 2.7);
this is what MATLAB does. Modifying the nonzero pattern of a compressed-column
matrix is not trivial. Deleting or adding single entries can take O(|^4|) time, since
no gaps can appear between columns. For example, to delete the first entry in a
matrix requires that all other entries be shifted up by one position. The MAT-
LAB statements A(l , l )=0 ; A(l , l )=l are very costly because MATLAB always
removes zero entries whenever they occur.

A numerically rank-deficient matrix is rank deficient in the usual sense. The
structural rank of a matrix is the largest rank that can be obtained by reassigning
the numerical values of the entries in its data structure. An ra-by-n matrix is struc-
turally rank deficient if its structural rank is less than min(m, n). For example, A is
numerically rank deficient but has structural full rank, while C is both numerically
and structurally rank deficient:



10 Chapter 2. Basic algorithms

Most algorithms are presented here directly in C, since the pseudocode directly
translates into C with little modification. Below is the complete C version of the
algorithm. Note how the for (p = . . .) loop in the cs_gaxpy function takes the
place of the for each i loop in the pseudocode (the name is short for generalized A
times x plus y). The MATLAB equivalent of cs_gaxpy(A,x,y) isy=A*x+y. Detailed
descriptions of the inputs, outputs, and return values of all CSparse functions are
given in Chapter 9.

int cs_gaxpy (const cs *A, const double *x, double *y)

{
int p, j, n, *Ap, *Ai ;

double *Ax ;

if OCS.CSC (A) || !x || !y) return (0) ; /* check inputs */

n = A->n ; Ap - A->p ; Ai = A->i ; Ax = A->x ;

for (j = 0 ; j < n ; j++)

{
for (p = Ap [j] ; p < Ap [j+1] ; p++)
{

y [Ai [p]] += Ax [p] * x [j] ;
}

}
return (1) ;

}

#define CS_CSC(A) (A fe& (A->nz — -1))

#define CSJTRIPLET(A) (A && (A->nz >= 0))

The function first checks its inputs to ensure they exist, and returns false (zero)
if they do not. This protects against a caller that ran out of memory. CS_CSC(A) is
true for a compressed-column matrix; CS_TRIPLET(A) is true for a matrix in triplet
form. The next line (n=A->n ; . . .) extracts the contents of the matrix A—its
dimension, column pointers, row indices, and numerical values.

2.3 Utilities
A sparse matrix algorithm such as cs_gaxpy requires a sparse matrix in cs form
as input. A few utility functions are required to create this data structure. The
cs_malloc, cs_calloc, cs_realloc, and cs_free functions are simple wrappers
around the equivalent ANSI C or MATLAB memory management functions.
void *cs_malloc (int n, size_t size)

{
return (malloc (CS_MAX (n,l) * size)) ;

}

void *cs_calloc (int n, size_t size)

{
return (calloc (CS_MAX (n,l), size)) ;

}

void *cs_free (void *p)

{
if (p) free (p) ; /* free p if it is not already NULL */

return (NULL) ; /* return NULL to simplify the use of cs_free */

}
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cs_realloc changes the size of a block of memory. If successful, it returns a pointer
to a block of memory of size equal to n*size, and sets ok to true. If it fails, it returns
the original pointer p and sets ok to false.

void *cs_realloc (void *p, int n, size_t size, int *ok)

{
void *pnew ;

pnew - realloc (p, CS_MAX (n,l) * size) ; /* realloc the block */

*ok - (pnew != NULL) ; /* realloc fails if pnew is NULL */

return ((*ok) ? pnew : p) ; /* return original p if failure */

}

The cs_spalloc function creates an m-by-n sparse matrix that can hold up to
nzmax entries. Numerical values are allocated if values is true. A triplet or
compressed-column matrix is allocated depending on whether triplet is true or
false. cs_spf ree frees a sparse matrix, and cs_sprealloc changes the maximum
number of entries that a cs sparse matrix can contain (either triplet or compressed-
column) .

cs *cs_spalloc (int m, int n, int nzmax, int values, int triplet)

{
cs *A = cs_calloc (1, sizeof (cs)) ; /* allocate the cs struct */

if (!A) return (NULL) ; /* out of memory */

A->m » m ; /* define dimensions and nzmax */

A->n = n ;

A->nzmax = nzmax = CS_MAX (nzmax, 1) ;

A->nz = triplet ? 0 : -1 ; /* allocate triplet or comp.col */

A->p = cs_malloc (triplet ? nzmax : n+1, sizeof (int)) ;

A->i = cs_malloc (nzmax, sizeof (int)) ;

A->x = values ? cs_malloc (nzmax, sizeof (double)) : NULL ;

return ((!A->p I I !A->i I I (values && !A->x)) ? cs_spfree (A) : A) ;

}

cs *cs_spfree (cs *A)

{
if (!A) return (NULL) ; /* do nothing if A already NULL */

cs_free (A->p) ;

cs_free (A->i) ;
cs_free (A->x) ;

return (cs_free (A)) ; /* free the cs struct and return NULL */

}

int cs_sprealloc (cs *A, int nzmax)

{
int ok, oki, okj * 1, okx = 1 ;
if (!A) return (0) ;
if (nzmax <= 0) nzmax = (CS_CSC (A)) ? (A->p [A->n]) : A->nz ;

A->i = cs_realloc (A->i, nzmax, sizeof (int), ftoki) ;

if (CS.TRIPLET (A)) A->p » cs_realloc (A->p, nzmax, sizeof (int), ftokj) ;

if (A->x) A->x " cs_realloc (A->x, nzmax, sizeof (double), ftokx) ;

ok - (oki ftft okj &ft okx) ;

if (ok) A->nzmax = nzmax ;

return (ok) ;

}

MATLAB provides similar utilities. cs_spalloc (m, n, nzmax ,1,0) is identical to the
MATLAB spalloc(m,n,nzmax), and cs_spfree(A) is the same as clear A. The
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number of nonzeros in a compressed-column cs matrix A is given by A->p [A->n],
the last column pointer value; this is identical to nnz(A) in MATLAB if the cs
matrix A has no explicit zeros. The MATLAB statement nzmax(A) is the same as
A->nzmax.

2.4 Triplet form
The utility functions can allocate space for a sparse matrix, but they do not define
its contents. The simplest way to construct a cs matrix is to first allocate a matrix
in triplet form. Applications would normally create a matrix in this way, rather
than statically defining them as done in Section 2.1. For example,

cs *T ;

int *Ti, *Tj ;
double *Tx ;
T = cs_spalloc (m, n, nz, 1, 1) ;
Ti = T->i ; Tj = T->p ; Tx = T->x ;

Next, place each entry of the sparse matrix in the Ti, Tj, and Tx arrays. The
kth entry has row index i = Ti [k], column index j = Tj [k], and numerical value
dij = Tx [k]. The entries can appear in arbitrary order. Set T->nz to be the number
of entries in the matrix. Section 2.1 gives an example of a matrix in triplet form.
If multiple entries with identical row and column indices exist, the corresponding
numerical value is the sum of all such duplicate entries.

The cs.entry function is useful if the number of entries in the matrix is not
known when the matrix is first allocated. If space is not sufficient for the next entry,
the size of the T->i, T->j, and T->x arrays is doubled. The dimensions of T are
increased as needed.

int cs_entry (cs *T, int i, int j, double x)
{

if (!CS_TRIPLET (T) I I i < 0 I I j < 0) return (0) ; /* check inputs */
if (T->nz >= T->nzmax && !cs_sprealloc (T,2*(T->nzmax))) return (0) ;
if (T->x) T->x [T->nz] = x ;
T->i [T->nz] = i ;
T->p [T->nz++] = j ;
T->m = CS.MAX (T->m, i+1) ;
T->n = CS_MAX (T->n, j+1) ;
return (1) ;

}

The cs_compress function converts this triplet-form T into a compressed-
column matrix C. First, C and a size-n workspace are allocated. Next, the number
of entries in each column of C is computed, and the column pointer array Cp is
constructed as the cumulative sum of the column counts. The counts in w are
also replaced with a copy of Cp. cs_compress iterates through each entry in the
triplet matrix. The column pointer w [Tj [k] ] is found and postincremented. This
determines the location p where the row index Ti [k] and numerical value Tx [k]
are placed in C. Finally, the workspace is freed and the result C is returned.
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cs *cs_compress (const cs *T)
{

int m, n, nz, p, k, *Cp, *Ci, *w, *Ti, *Tj ;
double *Cx, *Tx ;
cs *C ;
if (!CS_TRIPLET (T)) return (NULL) ; /* check inputs */
m = T->m ; n = T->n ; Ti - T->i ; Tj = T->p ; Tx = T->x ; nz = T->nz ;
C = cs_spalloc (m, n, nz, Tx != NULL, 0) ; /* allocate result */
w = cs_calloc (n, sizeof (int)) ; /* get workspace */
if (!C II !w) return (cs_done (C, w, NULL, 0)) ; /* out of memory */
Cp - C->p ; Ci - C->i ; Cx = C->x ;
for (k = 0 ; k < nz ; k++) w [Tj [k]]++ ; /* column counts */
cs_cumsum (Cp, w, n) ; /* column pointers */
for (k = 0 ; k < nz ; k++)
{

Ci [p = w [Tj [k]]++] = Ti [k] ; /* A(i , j ) is the pth entry in C */
if (Cx) Cx [p] = Tx [k] ;

}
return (cs_done (C, w, NULL, 1)) ; /* success; free w and return C */

}

The cs_done function returns a cs sparse matrix and frees any workspace.

cs *cs_done (cs *C, void *w, void *x, int ok)
{

cs_free (w) ; /* free workspace */
cs_free (x) ;
return (ok ? C : cs_spfree (C)) ; /* return result if OK, else free it */

}

Computing the cumulative sum will be useful in other CSparse functions, so it
appears as its own function, cs.cumsum. It sets p[i] equal to the sum of c[0]
through c[i-l]. It returns the sum of c[0. . .n-1]. On output, c[0. . .n-1] is
overwritten with p [0. . . n-1] .

double cs_cumsum (int *p, int *c, int n)
{

int i, nz = 0 ;
double nz2 = 0 ;
if (!p || !c) return (-1) ; /* check inputs */
for (i = 0 ; i < n ; i++)
{

p [i] = nz ;
nz += c [i] ;
nz2 += c [i] ; /* also in double to avoid int overflow */
c [i] = p [i] ; /* also copy p[0..n-l] back into c[0..n-l]*/

}
p [n] - nz ;
return (nz2) ; /* return sum (c [O..n-l]) */

The MATLAB statement C=sparse(i, j ,x,m,n) performs the same function
as cs_compress, except that it returns a matrix with sorted columns, and sums up
duplicate entries (see Sections 2.5 and 2.6).

{
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2.5 Transpose
The algorithm for transposing a sparse matrix (C — AT) is very similar to the
cs.compress function because it can be viewed not just as a linear algebraic func-
tion but as a method for converting a compressed-column sparse matrix into a
compressed-row sparse matrix as well. The algorithm computes the row counts of
A, computes the cumulative sum to obtain the row pointers, and then iterates over
each nonzero entry in A, placing the entry in its appropriate row vector. If the
resulting sparse matrix C is interpreted as a matrix in compressed-row form, then
C is equal to A, just in a different format. If C is viewed as a compressed-column
matrix, then C contains AT. It is simpler to describe cs.transpose with C as a
row-oriented matrix.

cs *cs_transpose (const cs *A, int values)

{
int p, q, j, *Cp, *Ci, n, m, *Ap, *Ai, *w ;

double *Cx, *Ax ;

cs *C ;

if (!CS_CSC (A)) return (NULL) ; /* check inputs */

m = A->m ; n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ;

C = cs_spalloc (n, m, Ap [n], values && Ax, 0) ; /* allocate result */

w = cs_calloc (m, sizeof (int)) ; /* get workspace */

if (!C || !w) return (cs_done (C, w, NULL, 0)) ; /* out of memory */

Cp - C->p ; Ci = C->i ; Cx - C->x ;

for (p * 0 ; p < Ap [n] ; p++) w [Ai [p]]++ ; /* row counts */
cs_cumsum (Cp, w, m) ; /* row pointers */
for (j - 0 ; j < n ; j++)
{

for (p = Ap [j] ; p < Ap [j+1] ; p++)
{

Ci [q = w [Ai [p]]++] = j ; /* place A ( i , j ) as entry C(j , i ) */
if (Cx) Cx [q] = Ax [p] ;

>
}
return (cs_done (C, w, NULL, 1)) ; /* success; free w and return C */

}

First, the output matrix C and workspace w are allocated. Next, the row
counts and their cumulative sum are computed. The cumulative sum defines the
row pointer array Cp. Finally, cs_transpose traverses each column j of A, placing
column index j into each row i of C for which a^- is nonzero. The position q of this
entry in C is given by q = w[i], which is then postincremented to prepare for the
next entry to be inserted into row i. Compare cs_transpose and cs.compress.
Their only significant difference is what kind of data structure their inputs are in.
The statement C=cs_transpose(A) is identical to the MATLAB statement C=A',
except that the latter can also compute the complex conjugate transpose. For
real matrices the MATLAB statements C=A' and C=A.' are identical. The values
parameter is true (nonzero) to signify that the numerical values of C are to be
computed or false (zero) otherwise.

Sorting the columns of a sparse matrix is particularly simple. The statement
C=cs_transpose(A) computes the transpose of A. Each row of C is constructed
one column index at a time, from column 0 to C->n-l. Thus, it is a sorted matrix;
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cs_transpose is a linear-time bucket sort algorithm. A can be sorted by transposing
it twice. A cs_sort function is left as an exercise. The total time required is
O(m + n + \A\). Rather than transposing a matrix twice, it is sometimes possible
to create the transpose first and then sort it with a single call to cs_transpose.

MATLAB has no explicit function to sort its sparse matrices. Each function or
operator that returns a sparse matrix is required to return it with sorted columns.

2.6 Summing up duplicate entries
Finite-element methods generate a matrix as a collection of elements or dense sub-
matrices. The complete matrix is a summation of the elements. If two elements
contribute to the same entry, their values should be summed. The cs.compress
function leaves these duplicate entries in its output matrix. They can be summed
with the cs_dupl function.

int cs_dupl (cs *A)

{
int i, j, p, q, nz=0, n, m, *Ap, *Ai, *w ;
double *Ax ;

if (!CS_CSC (A)) return (0) ;
m = A->m ; n = A->n ; Ap = A->p ; Ai = A->i

w = cs_malloc (m, sizeof (int)) ;

if (!w) return (0) ;

for (i = 0 ; i < m ; i++) w [i] = -1 ;

for (j = 0 ; j < n ; J-M-)

{
q = nz ;

for (p = Ap [j] ; p < Ap [J+l] ; p++)
{

i - Ai [p] ;
if (w [i] >= q)
{

Ax [w [i]] += Ax [p] ;
>
else
{

w [i] = nz ;
Ai [nz] = i ;
Ax [nz++] = Ax [p] ;

}
}
AP [j] = q 5

}
Ap [n] = nz ;
cs_free (w) ;
return (cs_sprealloc (A, 0)) ;

}

/* check inputs */
; Ax = A->x ;

/* get workspace */

/* out of memory */
/* row i not yet seen */

/* column j will start at q */

/* A(i,j) is nonzero */

/* A(i,j) is a duplicate */

/* record where row i occurs */
/* keep A(i,j) */

/* record start of column j */

/* finalize A */
/* free workspace */

/* remove extra space from A */

The function uses a size-m integer workspace; w[i] records the location in Ai
and Ax of the most recent entry with row index i. If this position is within the
current column j, then it is a duplicate entry and must be summed. Otherwise, the
entry is kept and w[i] is updated to reflect the position of this entry.
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MATLAB does not have an explicit function to sum duplicate entries of a
sparse matrix. It is combined with the MATLAB sparse function that converts a
triplet matrix to a compressed sparse matrix.

2.7 Removing entries from a matrix
CSparse does not require its sparse matrices to be free of numerically zero entries,
but its MATLAB interface does. Rather than writing a special-purpose function to
drop zeros from a matrix, the cs_f keep function is used. It takes as an argument
a pointer to a function fkeepd, j ,aij,other) which is evaluated for each entry
dij in the matrix. An entry is kept if f keep is true for that entry. Dropping
entries from A requires each column to be shifted; Ap[j] must be decremented
by the number of entries dropped from columns 0 to j-1. When a cs matrix
A is returned to MATLAB, cs_dropzeros(A) is normally performed first. The
cs_chol mexFunction optionally keeps zero entries in L, so that cs_updown can
work properly.

int cs_fkeep (cs *A, int (*fkeep) (int, int, double, void *) , void *other)

{
int j, p, nz = 0, n, *Ap, *Ai ;

double *Ax ;

if (!CS_CSC (A) || Ifkeep) return (-1) ; /* check inputs */

n - A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ;

for (j = 0 ; j < n ; j++)

{
p = Ap [j] ; /* get current location of col j */

Ap [j] = nz ; /* record new location of col j */

for ( ; p < Ap [j+1] ; p++)

{
if (fkeep (Ai [p], j, Ax ? Ax [p] : 1, other))

{
if (Ax) Ax [nz] = Ax [p] ; /* keep A(i,j) */
Ai [nz++] - Ai [p] ;

>
}

>
Ap [n] = nz ; /* finalize A */

cs_sprealloc (A, 0) ; /* remove extra space from A */
return (nz) ;

}

static int cs_nonzero (int i, int j, double aij, void *other)

{
return (aij != 0) ;

}
int cs_dropzeros (cs *A)

{
return (cs_fkeep (A, &cs_nonzero, NULL)) ; /* keep all nonzero entries */

}

Additional arguments can be passed to fkeep via the void * other parameter to
cs_f keep. This is demonstrated by cs_droptol, which removes entries whose mag-
nitude is less than or equal to tol.
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The MATLAB equivalent for cs_droptol(A,tol) is A = A.*(abs(A)>tol).

static int cs_tol (int i, int j, double aij, void *tol)

{
return (fabs (aij) > *((double *) tol)) ;

}
int cs_droptol (cs *A, double tol)

{
return (cs_fkeep (A, ftcs_tol, fetol)) ; /* keep all large entries */

>

2.8 Matrix multiplication
Since matrices are stored in compressed-column form in CSparse, the matrix multi-
plication C = AB, where C is ra-by-n, A is m-by-k, and B is fc-by-n, should access
A and B by column and create C one column at a time. If C*j and B*j denote
column j of C and 5, then C*j = AB*j. Splitting A into its k columns and B*j
into its k individual entries,

The nonzero pattern of C is given by the following theorem.

Theorem 2.1 (Gilbert [101]). The nonzero pattern of C*j is the set union of the
nonzero pattern of A*i for all i for which bij is nonzero. IfCj, Ai, and 13j denote
the set of row indices of nonzero entries in C*j, A*i, and B*j, then

A matrix multiplication algorithm must compute both C*j and Cj. Note that
(2.3) is correct only if numerical cancellation is ignored. It is implemented with
cs_scatter and csjnultiply below. A dense vector x is used to construct C#j.
The set Cj is stored directly in C, but another work vector w is needed to determine
if a given row index i is in the set already. The vector w starts out cleared. When
computing column j, w[i]<j+l will denote a row index i that is not yet in Cj.
When i is inserted in Cj, w[i] is set to j+1. The cs_scatter function computes one
iteration of (2.2) and (2.3) for a single value of i, using a scatter operation to copy
a sparse vector into a dense one. The matrix multiplication function cs_multiply
first allocates the w and x workspace and the output matrix C. Next, it iterates over
each column j of the result C. After a series of scatter operations, the dense vector
x is gathered into a sparse vector (a column of C). Since the number of nonzeros in
C is not known at the beginning, it is increased in size as needed.

Computing nnz (A*B) is actually much harder than computing nnz (chol (A) ).
The latter is discussed in Chapter 4. An alternate approach that computes nnz(A*B)
in an initial pass and then C=A*B in a second pass is left as an exercise (Prob-
lem 2.20).



18 Chapter 2. Basic algorithms

cs *cs_multiply (const cs *A, const cs *B)

{
int p, j, nz = 0, anz, *Cp, *Ci, *Bp, m, n, bnz, *w, values, *Bi ;
double *x, *Bx, *Cx ;

cs *C ;

if (!CS_CSC (A) || !CS_CSC (B)) return (NULL) ; /* check inputs */

m = A->m ; anz = A->p [A->n] ;
n = B->n ; Bp = B->p ; Bi = B->i ; Bx = B->x ; bnz = Bp [n] ;
w = cs_calloc (m, sizeof (int)) ; /* get workspace */

values = (A->x != NULL) && (Bx != NULL) ;

x = values ? cs_malloc (m, sizeof (double)) : NULL ; /* get workspace */

C = cs_spalloc (m, n, anz + bnz, values, 0) ; /* allocate result */

if (!C II !w I I (values && !x)) return (cs_done (C, w, x, 0)) ;

Cp = C->p ;

for (j = 0 ; j < n ; j++)

{
if (nz + m > C->nzmax && !cs_sprealloc (C, 2*(C->nzmax)+m))

{
return (cs_done (C, w, x, 0)) ; /* out of memory */

}
Ci = C->i ; Cx = C->x ; /* C->i and C->x may be reallocated */

Cp [j] = nz ; /* column j of C starts here */

for (p = Bp [j] ; p < Bp [j+1] ; p++)

{
nz = cs_scatter (A, Bi [p], Bx ? Bx [p] : 1, w, x, j+1, C, nz) ;

}
if (values) for (p = Cp [j] ; p < nz ; p++) Cx [p] = x [Ci [p]] ;

>
Cp [n] = nz ; /* finalize the last column of C */

cs_sprealloc (C, 0) ; /* remove extra space from C */

return (cs_done (C, w, x, 1)) ; /* success; free workspace, return C */

}

int cs_scatter (const cs *A, int j, double beta, int *w, double *x, int mark,
cs *C, int nz)

{
int i, p, *Ap, *Ai, *Ci ;

double *Ax ;

if (!CS_CSC (A) I I !w || !CS_CSC (C)) return (-1) ; /* check inputs */

Ap = A->p ; Ai = A->i ; Ax = A->x ; Ci = C->i ;
for (p = Ap [j] ; p < Ap [j+1] ; p++)
{

i = Ai [p] ; /* A(i,j) is nonzero */

if (w [i] < mark)

{
w [i] = mark ; /* i is new entry in column j */

Ci [nz++] = i ; /* add i to pattern of C(:,j) */

if (x) x [i] = beta * Ax [p] ; /* x(i) = beta*A(i,j) */

}
else if (x) x [i] += beta * Ax [p] ; /* i exists in C(:,j) already */

}
return (nz) ;

}

When cs_multiply is finished, the matrix C is resized to the actual number of
entries it contains, and the workspace is freed. The cs_scatter function computes
x=x+beta*A(: , j ) , and accumulates the nonzero pattern of x in C->i, starting at
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position nz. The new value of nz is returned. Row index i is in the pattern of x if
w[i] is equal to mark.

The time taken by csjnultiply is O(n + / -f \B\), where / is the number of
floating-point operations performed (/ dominates the run time unless A has one or
more columns with no entries, in which case either n or \B\ can be greater than /).
If the columns of C need to be sorted, either C = ((AB)T}T or C = (BTAT)T can
be computed. The latter is better if C has many more entries than A or B. The
MATLAB equivalent C=A*B uses a similar algorithm to the one presented here.

where / is an identity matrix of the appropriate size. Although it is not implemented
this way, the function cs_add looks very much like csjnultiply because of (2.4).
The innermost loop differs slightly; no reallocation is needed, and the f or p loop
is replaced with two calls to cs_scatter. Like csjnultiply, it does not return C
with sorted columns. The MATLAB equivalent is C=alpha*A+beta*B.

cs *cs_add (const cs *A, const cs *B, double alpha, double beta)

{
int p, j, nz = 0, anz, *Cp, *Ci, *Bp, m, n, bnz, *w, values ;

double *x, *Bx, *Cx ;

cs *C ;

if (!CS_CSC (A) || !CS_CSC (B)) return (NULL) ; /* check inputs */
m = A->m ; anz = A->p [A->n] ;
n = B->n ; Bp = B->p ; Bx = B->x ; bnz = Bp [n] ;
w = cs_calloc (m, sizeof (int)) ; /* get workspace */
values = (A->x != NULL) && (Bx != NULL) ;
x = values ? cs_malloc (m, sizeof (double)) : NULL ; /* get workspace */

C = cs_spalloc (m, n, anz + bnz, values, 0) ; /* allocate result*/
if (!C || !w || (values && !x)) return (cs_done (C, w, x, 0)) ;
Cp = C->p ; Ci = C->i ; Cx = C->x ;

for (j = 0 ; j < n ; j++)

{
Cp [j] = nz ; /* column j of C starts here */
nz - cs_scatter (A, j, alpha, w, x, j+1, C, nz) ; /* alpha*A(:,j)*/
nz » cs_scatter (B, j, beta, w, x, j+1, C, nz) ; /* beta*B(:,j) */
if (values) for (p = Cp [j] ; p < nz ; p++) Cx [p] = x [Ci [p]3 ;

}
Cp [n] = nz ; /* finalize the last column of C */
cs_sprealloc (C, 0) ; /* remove extra space from C */

return (cs_done (C, w, x, 1)) ; /* success; free workspace, return C */

}

2.9 Matrix addition
The cs_add function performs matrix addition, C = aA + /3B. Matrix addition can
be written as a multiplication of two matrices,
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2.10 Vector permutation
An n-by-n permutation matrix P can be represented by a sparse matrix P with a
one in each row and column, or by a length-n integer vector p called a permutation
vector, where p[k]=i means that p^i = 1. A permutation matrix P is orthogonal,
so its inverse is simply P~l — PJ. The inverse permutation vector is given by
pinv[i]=k if Pki = 1, since this implies (PT)ik = 1.

Some MATLAB functions return permutation vectors; others return permuta-
tion matrices. If p and q are MATLAB permutation vectors of length n, converting
between these forms is done as follows:

[p j x] = find(P') convert row permutation P*A to A (p,:)
Cq j x] = find(Q) convert column permutation A*Q to A(: ,q)
P=sparse(l:n, p, 1) convert row permutation A (p, : ) to P*A
Q=sparse(q, l:n, 1) convert column permutation A ( : ,q) to A*Q

If x = P6, row k of x is row p[k] of 6. The function cs.pvec computes
x = Pb, or x=b(p) in MATLAB, where x and b are vectors of length n. The
function cs_ipvec computes x = PTb, or x(p)=b in MATLAB.

int cs_pvec (const int *p, const double *b, double *x, int n)
{

int k ;
if (!x || !b) return (0) ; /* check inputs */
f or (k = 0 ; k < n ; k++) x [k] = b [p ? p [k] : k] ;
return (1) ;

>

int cs_ipvec (const int *p, const double *b, double *x, int n)
{

int k ;
if (!x || !b) return (0) ; /* check inputs */
for (k = 0 ; k < n ; k++) x [p ? p [k] : k] = b [k] ;
return (1) ;

}

The inverse, or transpose, of a permutation vector p [k] =i is the vector pinv,
where pinv[i]=k. This is computed by cs_pinv. In MATLAB, pinv(p) = l:n
computes the inverse pinv of a permutation vector p of length n (this assumes that
pinv is initially not defined or a vector of length n or less).

int *cs_pinv (int const *p, int n)
{

int k, *pinv ;
if (!p) return (NULL) ; /* p = NULL denotes identity */
pinv = cs_malloc (n, sizeof (int)) ; /* allocate result */
if (Ipinv) return (NULL) ; /* out of memory */
for (k = 0 ; k < n ; k++) pinv [p [k]] = k ;/* invert the permutation */
return (pinv) ; /* return result */

}
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2.11 Matrix permutation
The cs_permute function permutes a sparse matrix, C = PAQ (C=A(p,q) in MAT-
LAB). It takes as input a column permutation vector q of length n and an inverse
row permutation pinv (not p) of length m, where A is m-by-n. Row i of A becomes
row k of C if pinv [i] =k. The algorithm traverses the columns of j of A in permuted
order via q. Each row index in A is mapped to its permuted row in C.

cs *cs_permute (const cs *A, const int *pinv, const int *q, int values)

{
int t, j, k, nz = 0, m, n, *Ap, *Ai, *Cp, *Ci ;

double *Cx, *Ax ;

cs *C ;

if (!CS_CSC (A)) return (NULL) ; /* check inputs */

m = A->m ; n » A->n ; Ap = A->p ; Ai « A->i ; Ax = A->x ;

C - cs_spalloc (m, n, Ap [n], values && Ax != NULL, 0) ; /* alloc result */

if (!C) return (cs.done (C, NULL, NULL, 0)) ; /* out of memory */

Cp = C->p ; Ci * C->i ; Cx = C->x ;

for (k = 0 ; k < n ; k++)

{
Cp [k] = nz ; /* column k of C is column q[k] of A */

j = q ? (q [k]) : k ;
for (t = Ap [j] ; t < Ap [j+1] ; t++)
{

if (Cx) Cx [nz] = Ax [t] ; /* row i of A is row pinv[i] of C */

Ci [nz++] = pinv ? (pinv [Ai [t]]) : Ai [t] ;

}

}
Cp [n] • nz ; /* finalize the last column of C */

return (cs_done (C, NULL, NULL, 1)) ;

}

CSparse functions that operate on symmetric matrices use just the upper
triangular part, just like chol in MATLAB. If A is symmetric with only the upper
triangular part stored, C=A(p,p) is not upper triangular. The cs_symperm function
computes C=A(p,p) for a symmetric matrix A whose upper triangular part is stored,
returning C in the same format. Entries below the diagonal are ignored.

The first f or j loop counts how many entries are in each column of C. Suppose
i < J 5 and A(i , j) is permuted to become entry C(i2, j2). If 12 < j2, this entry
is in the upper triangular part of C. Otherwise, C(i2, j2) is in the lower triangular
part of C, and the entry must be placed in C as C(j2,12) instead. After the column
counts of C are computed (in w), the cumulative sum is computed to obtain the
column pointers Cp. The second for loop constructs C, much like cs.permute.

cs *cs_symperm (const cs *A, const int *pinv, int values)

i
int i, j, p, q, ±2, j2, n, *Ap, *Ai, *Cp, *Ci, *w ;

double *Cx, *Ax ;

cs *C ;

if (!CS_CSC (A)) return (NULL) ; /* check inputs */
n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ;

C = cs_spalloc (n, n, Ap [n], values &ft (Ax != NULL), 0) ; /* alloc result*/

w » cs_calloc (n, sizeof (int)) ; /* get workspace */

if (!C II !w) return (cs_done (C, w, NULL, 0)) ; /* out of memory */
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Cp = C->p ; Ci = C->i ; Cx = C->x ;

for (j = 0 ; j < n ; j++) /* count entries in each column of C */

{
J2 = pinv ? pinv [j] : j ; /* column j of A is column j2 of C */
for (p = Ap [j] ; p < Ap [J+l] ; p++)
{

i = Ai [p] ;
if (i > j) continue ; /* skip lower triangular part of A */

i2 = pinv ? pinv [i] : i ; /* row i of A is row i2 of C */

w [CS_MAX (i2, j2)]++ ; /* column count of C */

}

}
cs.cumsum (Cp, w, n) ; /* compute column pointers of C */

for (j = 0 ; j < n ; J-M-)

{
j2 = pinv ? pinv [j] : j ; /* column j of A is column j2 of C */

for (p = Ap [j] ; p < Ap [j+1] ; p++)

{
i = Ai [p] ;

if (i > j) continue ; /* skip lower triangular part of A*/

i2 = pinv ? pinv [i] : i ; /* row i of A is row i2 of C */

Ci [q = w [CS_MAX (i2, j2)]•»-•«•] = CS_MIN (i2, J2) ;

if (Cx) Cx [q] - Ax [p] ;

}

}
return (cs_done (C, w, NULL, 1)) ; /* success; free workspace, return C */

}

2.12 Matrix norm
Computing the 2-norm of a sparse matrix (||-A||2) is not trivial, since it is the largest
singular value of A. MATLAB does not provide a function for computing the 2-norm
of a sparse matrix, although it can compute a good estimate using normest. The
co-norm is the maximum row-sum, the computation of which requires a workspace
of size n if A is accessed by column. The simplest norm to use for a sparse matrix
stored in compressed-column form is the 1-norm, \\A\\i — max^ X^ZLi l a ul> which
is computed by the cs_norm function below. Note that it does not make use of
the A->i row index array. The MATLAB norm function can compute the 1-norm,
co-norm, or Frobenius norm of a sparse matrix.

/* check inputs */

double cs_norm (const cs *A)

{
int p, j, n, *Ap ;

double *Ax, norm = 0, s ;

if (!CS_CSC (A) I I !A->x) return (-1) ;

n = A->n ; Ap = A->p ; Ax = A->x ;

for (j = 0 ; j < n ; j++)

{
for (s = 0, p = Ap [j] ; p < Ap [j+1] ; p++) s += fabs (Ax [p]) ;

norm = CS_MAX (norm, s) ;

}
return (norm) ;

}
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2.13 Reading a matrix from a file
The csJLoad function reads in a triplet matrix from a file. The matrix T is initially
allocated as a O-by-0 triplet matrix with space for just one entry. The dimensions
of T are determined by the maximum row and column index read from the file.

cs *cs_load (FILE *f)
{

int i, j ;
double x ;
cs *T ;
if (!f) return (NULL) ; /* check inputs */
T = cs_spalloc (0, 0, 1, 1, 1) ; /* allocate result */
while (fscanf (f, '7,d 7.d y.lg\n", &i, & j, &x) == 3)
{

if (!cs_entry (T, i, j, x)) return (cs_spfree (T)) ;
}
return (T) ;

}

2.14 Printing a matrix
cs_print prints the contents of a cs matrix in triplet form or compressed-column
form. Only the first few entries are printed if brief is true.
int cs_print (const cs *A, int brief)
{

int p, j, m, n, nzmax, nz, *Ap, *Ai ;
double *Ax ;
if (!A) { printf ("(null)\n") ; return (0) ; }
m = A->m ; n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ;
nzmax = A->nzmax ; nz = A->nz ;
printf ("CSparse Version 7,d.7,d.7.d, 7,s. y,s\n", CS_VER, CS.SUBVER,

CS_SUBSUB, CS.DATE, CS_COPYRIGHT) ;
if (nz < 0)
{

printf ("*/,d-by-7,d, nzmax: */.d nnz: %d, 1-norm: */.g\n", m, n, nzmax,
Ap [n] , cs_norm (A)) ;

for (j = 0 ; j < n ; j++)
{

printf (" col 7.d : locations '/.d to 7,d\n", j , Ap [j] , Ap [j-H]-!);
for (p = Ap [j] ; p < Ap [j+1] ; p++)
{

printf (" 7.d : 7,g\n", Ai [p] , Ax ? Ax [p] : 1) ;
if (brief && p > 20) { printf (" ..An") ; return (1) ; }

>
}

}
else
{

printf ("triplet: 7.d-by-7.d, nzmax: 7td nnz: 7.d\n", m, n, nzmax, nz) ;
for (p = 0 ; p < nz ; p++)
{

printf (" %d 7,d : 7.g\n", Ai [p] , Ap [p] , Ax ? Ax [p] : 1) ;
if (brief && p > 20) { printf (" ...\n") ; return (1) ; }

}
>
return (1) ;

}
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2.15 Sparse matrix collections
Arbitrary random matrices are easy to generate; random sparse matrices with spe-
cific properties are not simple to generate (type the command type sprand in
MATLAB and compare the 3-input versus 4-input usage of the function). Both
can give misleading performance results. Sparse matrices from real applications are
better, such as those from the Rutherford-Boeing collection4 [55], the NIST Matrix
Market,5 and the UF Sparse Matrix Collection.6 The UFget package distributed
with CSparse provides a simple MATLAB interface to the UF Sparse Matrix Collec-
tion. For example, UFget ( 'HB/arclSO') downloads the arclSO matrix and loads it
into MATLAB. UFwebC'HB/arclSO') brings up a web browser with the web page
for the same matrix. Matrix properties are listed in an index, which makes it simple
to write a MATLAB program that uses a selected subset of matrices (for example,
all symmetric positive definite matrices in order of increasing number of nonzeros).
As of April 2006, the UF Sparse Matrix Collection contains 1,377 matrices, with
order 5 to 5 million, and as few as 15 and as many as 99 million nonzeros. The
submission of new matrices not represented by the collection is always welcome.

2.16 Further reading
The CHOLMOD [30] package provides some of the sparse matrix operators in MAT-
LAB. Other sparse matrix packages have similar functions; see the HSL7 and
the BCSLIB-EXT8 packages in particular. Gilbert, Moler, and Schreiber present
the early development of sparse matrices in MATLAB [105]. Gustavson discusses
sparse matrix permutation, transpose, and multiplication [121]. The Sparse BLAS
[43, 44, 56, 70] includes many of these operations.

Exercises
2.1. Write a cs_gatxpy function that computes y = ATx + y without forming AT.
2.2. Write a function cs_f ind that converts a cs matrix into a triplet-form matrix,

like the find function in MATLAB.
2.3. Write a variant of cs_gaxpy that computes y — Ax+y, where A is a symmetric

matrix with only the upper triangular part present. Ignore entries in the lower
triangular part.

2.4. Write a function with prototype void cs_scale(cs *A, double *r, double
*c) that overwrites A with RAC, where R and C are diagonal matrices; r [k]
and c [k] are the kth diagonal entries of R and C, respectively.

2.5. Write a function similar to cs_entry that adds a dense submatrix to a triplet

4www.cse.clrc.ac.uk/nag/hb
5 math.nist.gov/MatrixMarket
6www.cise.ufl.edu/research/sparse/matrices; see also www.siam.org/books/fa02
7www.cse.clrc.ac.uk/nag/hsl
8www.boeing.com/phantom/bcslib-ext

www.cse.clrc.ac.uk/nag/hb
www.cise.ufl.edu/research/sparse/matrices
www.siam.org/books/fa02
www.cse.clrc.ac.uk/nag/hsl
www.boeing.com/phantom/bcslib-ext
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matrix, i and j should be integer arrays of length k, and x should be a k-by-k
dense matrix.

2.6. Show how to transpose a cs matrix in triplet form in 0(1) time.
2.7. Write a function cs_sort that sorts a cs matrix. Its prototype should be cs

*cs_sort (cs *A). Use two calls to cs_transpose. Why is C=cs_transpose
(cs_transpose (A)) incorrect?

2.8. Write a function that sorts a matrix one column at a time, using the ANSI
C quicksort function, qsort. Compare its performance (time and memory
usage) with the solution to Problem 2.7.

2.9. Write a function that creates a compressed-column matrix from a triplet
matrix with sorted columns, no duplicates, and no numerically zero entries.

2.10. Show how to multiply a matrix in triplet form times a dense vector.
2.11. Sorting a matrix with a double transpose does extra work that is not required.

The second transpose counts the entries in each row, but these are equal to
the original column counts. Write a cs_sort function that avoids extra work.

2.12. Write a function cs_ok that checks a matrix to see if it is valid and op-
tionally prints the matrix with prototype int cs_ok (cs *A, int sorted,
int values, int print). If values is negative, A->x is ignored and may
be NULL; otherwise, it must be non-NULL. If sorted is true, then the columns
must be sorted. If values is positive, then there can be no numerically zero
entries in A. The time and workspace are O(m + n + \A\) and 0(ra).

2.13. Write a function that determines if a sparse matrix is symmetric.
2.14. Write a function cs *cs_copy (cs *A) that returns a copy of A.
2.15. Write a function cs_band(A,kl,k2) that removes all entries from A except

for those in diagonals kl to k2 of A. Entries outside the band should be
dropped. Hint: use csJrkeep.

2.16. Write a function that creates a sparse matrix copy of a dense matrix stored
in column-major form.

2.17. How much time does it take to transpose a column vector? How much space
does a sparse row vector take if stored in compressed-column form?

2.18. How much time and space does it take to compute xTy for two sparse column
vectors x and y, using cs_transpose and cs_multiply? Write a more efficient
routine with prototype double cs_dot (cs *x, cs *y), which assumes x
and y are column vectors. Consider two cases: (1) The row indices of x and y
are not sorted. A double workspace w of size x->m will need to be allocated.
(2) The row indices of x and y are sorted. No workspace is required. Both
cases take O(\x\ + \y\) time.

2.19. The first call to cs_scatter in each iteration of the j loop in both cs jnultiply
and cs_add does more work than is necessary, since w[i] <mark is always true
in this case. Write a more efficient version.

2.20. Consider an alternative algorithm for cs jnultiply that uses two passes. The
first pass computes the number of entries in each column of C (or just the total
number of entries), and the second pass performs the matrix multiplication.
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No cs_sprealloc is needed. Compare with the original csjmultiply.
2.21. How efficient is cs_add when A and B are sparse column vectors? Hint: how

much time does calloc take? Write faster function cs_saxpy that takes an
initialized workspace (w and x) as input, computes the result, and returns
the workspace ready to use in a subsequent call to cs_saxpy.

2.22. Write two functions csjicat and cs_vcat that perform the horizontal and
vertical concatenation of A and B, respectively, just like the MATLAB state-
ments C = [A B] and C = [A ; B].

2.23. Write a function that implements the MATLAB st atement C=A (il : i2,jl : j2),
This is much simpler than the next two problems.

2.24. The MATLAB statement C=A (i, j ), where i and j are integer vectors, creates
a submatrix C of A of dimension length(i)-by-length(j). Write a function
that performs this operation. Either assume that i and j do not contain
duplicate indices or that they may contain duplicates (MATLAB allows for
duplicates).

2.25. The MATLAB statement A(i , j)=C, where i and j are integer vectors, re-
places the entries in the A(i , j ) submatrix with the length(i)-by-length(j)
matrix C. Write a function that performs this operation. Either assume that
i and j do not contain duplicate indices or that they may contain duplicates
(MATLAB allows for duplicates).

2.26. Write a function combining cs_permute and cs_transpose that computes the
permuted transpose, just as in the MATLAB statement C=A(p,q)', where
p and q are permutation vectors. It should use one pass over the matrix to
count the number of entries in C and another to copy entries from A to C.

2.27. Create three versions of cs_gaxpy that operate on dense matrices X and Y (A
is still sparse). The first should assume X and Y are in column-major form.
The second should use row-major form. The third should use column-major
form but operate on blocks of (say) 32 columns of X at a time. Compare their
performance.

2.28. Repeat Problem 2.27 but for cs_gatxpy instead (described in Problem 2.1).
2.29. Write four functions that modify a sparse matrix A, adding k empty rows or

columns (an empty row or column has no entries in it). Adding empty rows
takes O(|^4|) if added to the top or 0(1) if added to the bottom. Adding
empty columns takes O(n + k) time.

2.30. Experiment with the time taken by the MATLAB statement r=A(i , : ) for
an m-by-n matrix and a scalar i. Does MATLAB use a binary search (taking
0QC 1°6 IA( :> j ) l ) time)? Or does it use a linear search of each column? Does
it exploit special cases, such as r=A(l , : ) and r=A(m,:)?

2.31. Which CSparse functions work properly if duplicate entries are present?
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Solving triangular systems

Solving a triangular system, Lx = 6, where L is square and lower triangular, is a
key mathematical kernel. It will be used in Chapter 4 as part of a sparse Cholesky
factorization algorithm and in Chapter 6 as part of a sparse LU factorization algo-
rithm. The nonzero pattern of x will be used to construct the nonzero pattern of
a column of R for the QR factorization presented in Chapter 5. Solving Lx = b is
also essential for solving Ax = b after either a Cholesky or LU factorization of A.

3.1 A dense right-hand side
There are many ways of solving Lx = b (a forward solve), but if L is stored as
a compressed-column sparse matrix, accessing L by columns is the most natural.
Consider the 2-by-2 block decomposition,

where £22 is the lower right (n — l)-by-(n — 1) submatrix of L; /2i, x%, and 62 are
column vectors of length n — 1; and /n, xi, and b\ are scalars. This leads to two
equations, l\\x\ — b\ and l?.\x\ -f LZZXI = ^2- To solve Lx = 6, the first can be
solved (#1 = 6i//n) to obtain the first entry in x. The second equation is a lower
triangular system of the form £22^2 = &2 — fai^i that can be solved recursively for
X2- Unwinding the tail recursion leads naturally to an algorithm that iterates over
the columns of L. Note that 61 and 62 are used just once; this allows x to overwrite
b in the implementation:

If x is a dense vector but L is sparse, the algorithm and code are very similar to the
matrix-vector multiplication, cs_gaxpy. On input, x contains the right-hand side

27
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6; on output it contains the solution to Lx = b. The cs_lsolve function assumes
that the diagonal entry of L is always present and is the first entry in each column.
Otherwise, the row indices in each column of L can appear in any order.

int cs_lsolve (const cs *L, double *x)
{

int p, j, n, *Lp, *Li ;
double *Lx ;
if (!CS_CSC (L) I I !x) return (0) ; /* check inputs */
n = L->n ; Lp = L->p ; Li = L->i ; Lx = L->x ;
for (j = 0 ; j < n ; j++)
{

x [j] /= Lx [Lp [j]] ;
for (p = Lp [j]+l ; p < Lp [j+1] ; p++)
{

x [Li [p]] -= Lx [p] * x [j] ;
}

}
return (1) ;

}

Solving LTx = b (a backsolve) is best done by accessing LT by rows, since L
is stored by column. The 2-by-2 block decomposition becomes

where each entry in L has the same size as in (3.1).

int cs_ltsolve (const cs *L, double *x)
{

int p, j, n, *Lp, *Li ;
double *Lx ;
if (!CS_CSC (L) I I !x) return (0) ; /* check inputs */
n = L->n ; Lp = L->p ; Li = L->i ; Lx = L->x ;
for (j = n-1 ; j >= 0 ; j—)
{

for (p = Lp [j]+l ; p < Lp [j+1] ; p++)
{

x [j] -= Lx [p] * x [Li [p]] ;
}
x [j] /= Lx [Lp [j]] ;

>
return (1) ;

}

To solve Ux = b, where U is stored by column, yet another 2-by-2 decompo-
sition is used:

where U\\ is (n— l)-by-(n — 1). This results in the two equations t/nXi +Wi2#2 = 61
and U-22X-2 = b?. The second equation can be solved for x<2 = 62/^22 > and the first
becomes Ui\x\ = b\ — u\-2X2- These equations are encapsulated in the function
cs_usolve. It assumes the diagonal entry is always present and appears as the last
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entry in each column. Row indices in the columns of U can otherwise be in any
order.

int cs_usolve (const cs *U, double *x)

{
int p, j, n, *Up, *Ui ;

double *Ux ;

if (!CS_CSC (U) I I !x) return (0) ; /* check inputs */
n = U->n ; Up = U->p ; Ui - U->i ; Ux = U->x ;

for (J - n-1 ; J >- 0 ; j—)

{
x [j] /= Ux [Up [j+l]-l] ;
for (p = Up [j] ; p < Up [j+l]-l ; p++)

{
x [Ui [p]] — Ux [p] * x [j] ;

}
}
return (1) ;

}

The cs_utsolve function solves UTx — b, where U is upper triangular. Its
derivation is left as an exercise.

int cs_utsolve (const cs *U, double *x)

{
int p, j, n, *Up, *Ui ;

double *Ux ;

if (!CS_CSC (U) I I !x) return (0) ; /* check inputs */

n = U->n ; Up = U->p ; Ui = U->i ; Ux = U->x ;

for (j - 0 ; j < n ; j++)
{

for (p = Up [j] ; p < Up [j+l]-l ; p++)
{

x [j] -= Ux [p] * x [Ui [p]] ;
>
x [j] /= Ux [Up [J+ll-1] ;

}
return (1) ;

}

cs_lsolve(L,x), cs_ltsolve(L,x), cs_usolve(U,x), and cs_utsolve(U,x)
correspond to x=L\x, x=L'\x, x=U\x, and x=U'\x in MATLAB, except that the
transposed solvers csJLtsolve and cs_ltsolve do not transpose their inputs.

3.2 A sparse right-hand side
The Cholesky and LU factorization algorithms presented in Chapters 4 and 6 rely
on the solution to Lx = b to compute one row or column of the factors, where L, x,
and b are all sparse. The QR factorization algorithm presented in Chapter 5 uses
the nonzero pattern of x to construct one column of R. This small change, from a
dense right-hand side in cs_lsolve to a sparse right-hand side, has a large impact
on the algorithm and its underlying theory.

To simplify the discussion, assume that L has a unit diagonal (this will be the
case for its use in LU factorization). The algorithm for solving Lx — b becomes



The sparse vector x can be temporarily stored in a dense vector of size n, assumed
to be initially zero. Thus, the two statements x — b and Xi = Xi — lijXj can be done
efficiently. If this algorithm is implemented as in the above pseudocode, the time
taken would be O(n + \b\ + /), where / is the number of floating-point operation
performed and |6| is the number of nonzeros in b. Normally, |6| < /, so the time
is O(n + /). This looks efficient, but it is not. The floating-point operation count
can easily be dominated by n. If b is all zero except for bn, /is 0(1), but the total
work is 0(ra). Basing an LU factorization algorithm on this method for solving
Lx = b would lead to an Q(n2)-time factorization, which is clearly unacceptable.
Factorizing a tridiagonal matrix should take O(n) time, not 0(n2) time.

The problem is the for j loop. A better method would assume that the algo-
rithm starts with a list of indices j for which Xj will be nonzero, X = {j \ Xj ^ 0},
sorted in ascending order. The algorithm would then be

x = b
for each j; E X do

for each i > j for which lij ^ 0 do

Assuming X is already given, the run time drops to O(\b\ + /), which is essentially
0(/), an ideal target.

The problem now becomes how to determine X and how to sort it. Entries in
x become nonzero in two places, the first and last lines of the above pseudocode.
If numerical cancellation is neglected, these two statements can be written as two
logical implications:
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These two rules can be expressed as a graph traversal problem. Consider a directed
graph GL = (V,E], where V = { I . . .n} and E = {(j,i) \ l^ ^ 0} (note that this is
actually the graph of LT). The graph is acyclic. If marked nodes in GL correspond
to nonzero entries in x, rule one translates into marking all those nodes i € B, where
B — {i | bi ̂  0}. Rule two states that if node j is marked, and there is an edge from
node j to node i, then node i must be marked. The set X becomes the set of all
nodes in GL that can be reached via a path from one or more nodes in B. These
rules are illustrated in Figure 3.1. In graph terminology, X — Reaches (B), or more
simply X = Reach£,(#), to avoid double subscripts. This gives a formal proof of
the following theorem.

Theorem 3.1 (Gilbert and Peierls [109]). Define the directed graph GL = (V,E)
with nodes V = {l...n} and edges E = { ( j , i ) \ l i j 7^0}. Let Reach/,(i) denote

x+b
for j + 0 to n-do

if xj +0
for each j>jfor which jj+0do
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Figure 3.1. Sparse triangular solve

the set of nodes reachable from node i via paths in GL, and let Reach(H), for a
set B, be the set of all nodes reachable from any node in B. The nonzero pattern
X = {j | Xj / 0} of the solution x to the sparse linear system Lx = b is given by
X — Reacli£,(5), where B — {i \ 6j ^ 0}, assuming no numerical cancellation.

The set X can be computed by a depth-first search of the directed graph GL,
starting at nodes in B. The time taken by a depth-first search is proportional to
the number of edges traversed, plus the number of initial nodes in B. Each edge
reflects exactly two floating-point operations in the numerical solution to Lx = 6,
so the total time is thus O(\b\ + /). A depth-first search does not sort the set A",
however. Fortunately, the update Xi = Xi — lijXj can be computed as soon as Xj
is known. This update translates into two nodes j and i in X with an edge from
j to i in the directed graph GL- An ordering of X that preserves this precedence
is called a topological order, and a depth-first search can compute X in topological
order (a breadth-first search cannot).

A depth-first search is most easily written as a recursive algorithm, stated
in pseudocode below. The reach function computes X = Reachi,(#) by starting a
depth-first search at each node i € B.

function X = reach (L, B)
assume all nodes are unmarked
for each i for which bi ^ 0 do

if node i is unmarked
dfs ({)

function dfs (j)
mark node j
for each i for which /^ / 0 do

if node i is unmarked
dfs (i}

push j onto stack for X

These two pseudocodes can be implemented with reachr and df sr below.
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int reachr (const cs *L, const cs *B, int *xi, int *w)

{
int p, n = L->n ;

int top = n ; /* stack is empty */

for (p = B->p [0] ; p < B->p [1] ; p++) /* for each i in pattern of b */

{
if (w [B->i [p]] != 1) /* if i is unmarked */
{

dfsr (B->i [p], L, fttop, xi, w) ; /* start a dfs at i */
}

>
return (top) ; /* return top of stack */

}

void dfsr (int j, const cs *L, int *top, int *xi, int *w)
{

int p ;
w [j] = 1 ; /* mark node j */
for (p = L->p [j] ; p < L->p [j+1] ; p++) /* for each i in L ( : , j ) */
{

if (w [L->i [p]] != 1) /* if i is unmarked */
{

dfsr (L->i [p], L, top, xi, w) ; /* start a dfs at i */
}

>
xi [—(*top)] = j ; /* push j onto the stack */

}

The reachr function computes X = ReacliL(£?), where B is the nonzero pattern
of the n-by-1 sparse column vector b. The function returns X in the xi array, in
locations top to n-1, in topological order. The array w is of size n and must be all
zero on input. In reachr, a depth-first search is started at each node in B, unless
that node is already marked. The dfsr function starts a depth-first search at node
j. It simply marks node j and then starts a depth-first search at any unmarked
neighbors. When it finishes, it pushes j onto a stack containing X on output,
topologically sorted.

Recursive algorithms are easy to understand, but they can cause stack overflow
if the recursion goes too deep. The stack depth is up to n, which limits the algorithm
to solving matrices of modest size. Thus, CSparse does not rely on df rs and reachr
(they are included but only for reference). The cs_df s function below uses its own
recursion stack xi [0] to xi [head] that does not overlap with the output stack in
xi[top] to xi[n-l], since no node can be in both stacks at the same time. The
input matrix is called G, because it need not be lower triangular. Two parameters
are added in anticipation of Chapter 6 (pinv and k). The parameter k specifies
which column of B contains the right-hand side b. For now, assume pinv is NULL.

Initializing the workspace w of size n takes O(n) time. This can be avoided
by marking nodes using the matrix G itself. To denote a marked node j, Gp[j] is
set to CS_PLIP(Gp[j]), which exploits the fact that Gp[j] > 0 in an unmodified
matrix G. A marked node j will have Gp[j] < 0. To unmark a node or to obtain
the original value of Gp[j], CS_FLIP can be applied again, since the function is its
own inverse. The name "flip" is used because the function "flips" its input about
the integer -1. CSJJNFLIP(i) "flips" i if it is negative or returns i otherwise.
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#define CS_FLIP(i) (-(i)-2)
#define CS_UNFLIP(i) (((i) < 0) ? CS_FLIP(i) : (i))
#define CS.MARKED(w,j) (w [j] < 0)
#define CS_MARK(w,j) { w [j] = CS.FLIP (w [j]) ; >

int cs_reach (cs *G, const cs *B, int k, int *xi, const int *pinv)
{

int p, n, top, *Bp, *Bi, *Gp ;
if (!CS_CSC (G) I I !CS_CSC (B) II !xi) return (-1) ; /* check inputs */
n = G->n ; Bp = B->p ; Bi = B->i ; Gp - G->p ;
top = n ;
for (p = Bp [k] ; p < Bp [k+1] ; p++)
{

if (!CS_MARKED (Gp, Bi [p])) /* start a dfs at unmarked node i */
{

top = cs_dfs (Bi [p], G, top, xi, xi+n, pinv) ;
}

}
for (p - top ; p < n ; p++) CS_MARK (Gp, xi [p]) ; /* restore G */
return (top) ;

}

int cs_dfs (int j, cs *G, int top, int *xi, int *pstack, const int *pinv)
{

int i, p, p2, done, jnew, head = 0, *Gp, *Gi ;
if (!CS_CSC (G) I I !xi I I Ipstack) return (-1) ; /* check inputs */
Gp = G->p ; Gi - G->i ;
xi [0] - j ; /* initialize the recursion stack */
while (head >= 0)
{

j = xi [head] ; /* get j from the top of the recursion stack */
jnew = pinv ? (pinv [j]) : j ;
if (!CS_HARKED (Gp, j))
{

CS_MARK (Gp, j) ; /* mark node j as visited */
pstack [head] = (jnew < 0) ? 0 : CS.UNFLIP (Gp [jnew]) ;

}
done = 1 ; /* node j done if no unvisited neighbors */
p2 = (jnew < 0) ? 0 : CSJJNFLIP (Gp [jnew+1]) ;
for (p = pstack [head] ; p < p2 ; p++) /* examine all neighbors of j */
{

i = Gi [p] ; /* consider neighbor node i */
if (CS_MARKED (Gp, i)) continue ; /* skip visited node i */
pstack [head] - p ; /* pause depth-first search of node j */
xi [-M-head] = i ; /* start dfs at node i */
done = 0 ; /* node j is not done */
break ; /* break, to start dfs (i) */

}
if (done) /* depth-first search at node j is done */
{

head— ; /* remove j from the recursion stack */
xi [—top] « j ; /* and place in the output stack */

}
}
return (top) ;

}

The cs_df s function starts by placing j in the recursion stack at xi [0] . Each
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iteration of the while loop starts, or continues, the jth instance of cs_df s. If j
is on the recursion stack and it is not marked, then this is the first time it has
been visited. In this case, the node is marked, and pstack [head] is set to point to
the first outgoing edge of node j. If an unmarked node i is found, it is placed on
the recursion stack, and the iteration for node j is paused. The next while loop
iteration will then start the depth-first search for node i. When the depth-first
search for node j eventually finishes, it is removed from the recursion stack and
placed in the output stack.

The cs_reach function is nearly identical to reachr. It computes X =
Reach<3(#fc)> where Bk is the nonzero pattern of column k of B.

With cs_reach defined, solving Lx — 6, where L, x, and 6 are all sparse,
becomes a straightforward translation of the pseudocode. The cs.spsolve function
computes the solution to Lx = bk (if lo is nonzero), where bk is the kth column of
B. When lo is nonzero, the function assumes G = L is lower triangular with the
diagonal entry as the first entry in each column. It takes an optimal O(\b\ + /) time.
Solving an upper triangular system Ux = b is almost identical to solving Lx = b.
Its derivation is left as an exercise. With lo equal to zero, the cs_spsolve function
assumes G = U is upper triangular with the diagonal entry as the last entry in each
column.

int cs_spsolve (cs *G, const cs *B, int k, int *xi, double *x, const int *pinv,

int lo)

{
int j, J, p, q, px, top, n, *Gp, *Gi, *Bp, *Bi ;

double *Gx, *Bx ;

if (!CS_CSC (G) || !CS_CSC (B) I I !xi I I !x) return (-1) ;

Gp = G->p ; Gi = G->i ; Gx = G->x ; n = G->n ;

Bp = B->p ; Bi = B->i ; Bx = B->x ;

top = cs_reach (G, B, k, xi, pinv) ; /* xi[top..n-l]=Reach(B(:,k)) */
for (p = top ; p < n ; p++) x [xi [p]] = 0 ; /* clear x */
for (p = Bp [k] ; p < Bp [k+1] ; p++) x [Bi [p]] = Bx [p] ; /* scatter B */
for (px = top ; px < n ; px++)

{
j = xi [px] ; /* x(j) is nonzero */
J = pinv ? (pinv [j]) : j ; /* j maps to col J of G */
if (J < 0) continue ; /* column J is empty */
x [j] /= Gx [lo ? (Gp [J]) : (Gp [J+l]-!)] ;/* x(j) /= G(j,j) */
p = lo ? (Gp [J]+l) : (Gp [J]) ; /* lo: L(j,j) 1st entry */
q = lo ? (Gp [J+l]) : (Gp [J+l]-l) ; /* up: U(j,j) last entry */
for ( ; p < q ; p++)

{
x [Gi [p]] -= Gx [p] * x [j] ; /* x(i) -= G(i , j ) * x(j) */

}
}
return (top) ; /* return top of stack */

}

The function returns the nonzero pattern X in xi [top] through xi [n-1], an array
of size 2*n. The first n entries of xi holds the output stack and the recursion stack
for j. The second n entries holds the stack for p in cs_dfs. The numerical values
are in the dense vector x, which need not be initialized on input. To solve Lx = 6,
a NULL pointer must be passed for pinv, and lo must be nonzero.
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Figure 3.2. Solving Lx — b where L, x, and b are sparse

An example is shown in Figure 3.2. Suppose B = {4,6}. The depth-first
search can start at either node 4 or node 6, and the neighbors of any node can be
searched in any order. If node 4 is searched first and the row indices in each column
of L are sorted, Reach(4) = {4,9,12,13,14} in order. This list of 5 nodes is placed
on the stack xi, and node 6 is searched next; Reach(6) = {6,9,10,11,12,13,14},
but some of these nodes are already marked. The stack xi will contain the list
{6,10,11,4,9,12,13,14} in topological order. The forward solve will access the
columns of L in this order. The work done at columns 6, 10, and 11 is not affected
by the work done at columns 4 and 9.

MATLAB does not have an exact equivalent to cs_reach or cs_spsolve, ex-
cept as used internally in [L,U,P]=lu(A). The MATLAB expression x=L\b takes
O(n -f- \L\) time to compute a sparse x if L is sparse and b is a sparse vector.

3.3 Further reading
The sparse triangular solve forms the basis of the GPLU algorithm in MATLAB
[105, 109]. All sparse matrix packages with direct methods include forward solvers
and backsolvers. Not all provide transposed solvers such as cs_ltsolve or sparse
solvers such as cs_spsolve. Gormen, Leiserson, and Rivest [23] present algorithms
for the depth-first search and topological sort of a graph.

Exercises
3.1. Derive the algorithm used by cs_utsolve.
3.2. Try to describe an algorithm for solving Lx — b, where L is stored in triplet

form, and x and b are dense vectors. What goes wrong?
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3.3. The MATLAB statement [L,U]=lu(A) finds a permuted lower triangular
matrix L and an upper triangular matrix U so that L*U=A. The rows of L
have been permuted via partial pivoting, but the permutation itself is not
available. Write a permuted triangular solver that computes x=L\b without
modifying L and with only O(n) extra workspace. Two passes of the matrix L
are required, each taking O(|Z/|) time. The first pass finds the diagonal entry
in each column. Start at the last column and work backwards, flagging rows
as they are seen. There will be exactly one nonzero entry in an unflagged
row in each column. This is the diagonal entry of the unpermuted lower
triangular matrix. In any given column, if there are no entries in unflagged
rows, or more than one, then the matrix is not a permuted lower triangular
matrix. The second pass then performs the permuted forward solve.

3.4. Repeat Problem 3.3 for a matrix U that is an upper triangular matrix whose
rows have been permuted. The algorithm is almost identical to Problem 3.3.

3.5. Repeat Problem 3.3 for a matrix L that is a lower triangular matrix whose
columns have been permuted. Assume the first entry in each column has the
smallest row index. This problem is simpler than Problem 3.3. Two passes
of L are still required, but the first takes only O(n) time.

3.6. Repeat Problem 3.5 for a matrix U that is an upper triangular matrix whose
columns have been permuted. The solution will be similar to Problem 3.5.

3.7. This problem is a generalization of Problems 3.3 through 3.6 and is the
method used in MATLAB (due to Gilbert). Consider a matrix A that may
be a permuted upper or lower triangular matrix with both rows and columns
permuted by unknown permutations P and Q. Write an algorithm that de-
termines if the matrix is in this form and, if so, solves Ax = 6. A single integer
s can represent a set of integers of arbitrary size that supports the following
operations: s=0 clears the set; s=s"j (the exclusive-or) removes j from the
set if j is not in the set or adds it to the set otherwise; j=s gets the member
of the set if the set has size one. Let r [i] be the count of nonzeros in row i
of A. Let z [i] represent the ith set; it starts as the exclusive-or of all column
indices of nonzeros in row i. Create a linked list of all row singletons (rows
with only one entry). For n iterations where A has dimension n, select a row
i from the list. If the list is empty, the matrix is not a permuted triangular
matrix. Otherwise, the corresponding column is j=z[i]. Append i and j
to the permutations p and q. Remove j from the sets z [t] for all t € A*j
and decrement their row counts by one. Add any new row singletons to the
linked list. If successful, follow this by a permuted triangular solve using the
newly discovered permutations p and q. The permuted matrix A(p,q) need
not be formed explicitly.

3.8. The cs_lsolve and cs_usolve functions assume that b contains no zero
entries. The time can be reduced if it does. Note that the inner for loop in
the two functions can be skipped if x [ j ] is zero. Add this test and compare
the run times of the modified and original functions. The modified functions
take O(n -f /) time; the original ones take O(|L|) and O(|?7|) time.

3.9. Prove that the cs.spsolve function solves Ux = b when lo is zero.
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Cholesky factorization

The Cholesky factorization of a sparse symmetric positive definite matrix A is the
product A = LLT, where L is a lower triangular matrix with positive entries on its
diagonal. Entries in L that do not appear in A are called fill-in. Let GL+LT De

the undirected graph of L + LT; it is called the filled graph of A. The structure of
GL+LT is given by the following theorem.

Theorem 4.1 (Rose, Tarjan, and Lueker [175]). The edge ( i , j ] is in the undirected
graph GI+^T of L-\-LT if and only if there exists a path i ~~* j in the undirected graph
of A where all nodes in the path except i and j are numbered less than n\m(i,j).

Numeric Cholesky factorization is typically preceded by a symbolic analysis
step that determines either GL+LT or some of its key properties. The goal is to keep
the numeric factorization as simple as possible in terms of time complexity, memory
usage, and clarity of code. The analysis step presented here finds the elimination
tree, computes its postordering, and then computes the column counts, which are
the number of nonzeros in each column of L. Some numeric Cholesky factorization
algorithms also need the nonzero pattern of L.

There are many ways to compute the Cholesky factorization A = LLT and
the graph G^+LT. The sparse triangular solve, Lx = 6, forms a common thread
throughout this book; it is used as the basis of an up-looking sparse Cholesky fac-
torization described here. Consider a 2-by-2 block decomposition LLT = A,

where L\\ and A\\ are (n — l)-by-(n — 1). The three equations that lead to the
up-looking Cholesky factorization algorithm are LuL^ — AH, LI 1/12 = aj.2, and
^12^12 + ^22 = °22- The first equation can be solved recursively to obtain L\\,
followed by a sparse triangular solve using the second equation to compute l\2-
Finally, a sparse dot product and scalar square root, /22 = \/a22 ~ ^12^12? result in
/22- If the matrix is positive definite, then 022 > ^12^12 holds, and the Cholesky

37
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Figure 4.1. Pruning the directed graph GL yields the elimination tree T

factorization exists. The nonrecursive version of this algorithm is demonstrated by
chol_up below. It is called up-looking because it looks up (accessing LH or rows 1
to k — 1 of L) to construct the fcth row of L.

function L = chol_up (A)

n = size (A) ;

L » zeros (n) ;

for k = l:n

L (k,l:k-l) = (L (l:k-l,l:k-l) \ A (l:k-l,k))» ;

L (k,k) = sqrt (A (k,k) - L (k,l:k-l) * L (k,l:k-l)') ;

end

4.1 Elimination tree
The elimination tree is even more important to sparse matrix algorithms than the
sparse triangular solve. It appears in many algorithms and many theorems, both in
this book and elsewhere. One motivation for deriving the tree is to reduce the time
required to compute the graph reachability (Theorem 3.1) for the sparse triangular
solve presented in Section 3.2. This triangular solve is required by the up-looking
sparse Cholesky factorization algorithm just described in the previous section.

Consider (4.1). The vector /i2 is computed with a sparse triangular solve,
Luli2 = «i2> and its transpose becomes the fcth row of L. Its nonzero pattern is
thus £fc = Reach^._1(Ak), where Gk-i is the directed graph of LH, Ck denotes
the nonzero pattern of the fcth row of L, and Ak denotes the nonzero pattern of the
upper triangular part of the fcth column of A.

The depth-first search of G^-\ is sufficient for computing £&, but a simpler
method exists, taking only O(|£fc|) time. Consider any i < j < fc, where Iji ^ 0
and aik 7^ 0, as shown in Figure 4.1. A graph traversal of Gk-i will start at node
i. Thus, i G £fc, the nonzero pattern of the solution to the triangular system. This
becomes the fcth row of L, and thus Iki ^ 0. The traversal will visit node j because
of the edge (^,.7) (corresponding to the nonzero Iji}. Thus, j € £fc, and l^j ^ 0;
two nonzeros in column i (Iji and IM) imply that l^j is nonzero also. In terms of
the directed graph GL (not just the graph of LH), edges ( i , j ) and (i, k) imply edge
(j, k). These facts are summarized in the following theorems that completely define
the nonzero pattern of the Cholesky factor L.



Figure 4.2. Example matrix A, factor L, and elimination tree

Theorem 4.2. For a Cholesky factorization LLT = A, and neglecting numerical
cancellation, a^- 7^ 0 =^ lij =^0. That is, if a,ij is nonzero, then lij will be nonzero
as well.

Theorem 4.3 (Parter [165]). For a Cholesky factorization LLT = A, and neglect-
ing numerical cancellation, i < j < k A Iji ^ 0 A /^ 7^ 0 =>• Ikj 7^ 0. That is, if both
Iji and Iki are nonzero where i < j < k, then l^j will be nonzero as well.

Since there is a path from i to k via j that does not traverse the edge (i, fc),
the edge (i, k} is not needed to compute Reach(t). The set Reach(t) for any other
node t < i with a path t -^ i is also not affected if (i, k) is removed from the directed
graph GL . This removal of edges leaves at most one outgoing edge from node i in
the pruned graph, all the while not affecting Reach(i). If j > i is the least numbered
node for which Iji ^ 0, all other nonzeros Iki where k > j are redundant.

The result is the elimination tree. The parent of node i in the tree is j, where
the first off-diagonal nonzero in column i has row index j (the smallest j > i for
which Iji 7^ 0). Node i is a root of the tree if column i has no off-diagonal nonzero
entries; it has no parent. The tree may actually be a forest, with multiple roots, if
the graph of A consists of multiple connected components (there will be one tree
per component of A). By convention, it is still called a tree. Assume the edges of
the tree are directed, from a child to its parent. Let T denote the elimination tree
of L, and let Tk denote the elimination tree of submatrix Li...fc,i...fc, the first k rows
and columns of L. An example matrix A, its Cholesky factor L, and its elimination
tree T are shown in Figure 4.2. In the factor L, fill-in (entries that appear in L but
not in A) are shown as circled x's. Diagonal entries are numbered for easy reference.

The existence of the elimination tree has been shown; it is now necessary to
compute it. A few more theorems are required.

Theorem 4.4 (Schreiber [181]). For a Cholesky factorization LLT — A, and
neglecting numerical cancellation, l^i ^ 0 and k > i imply that i is a descendant of
k in the elimination tree T; equivalently, i ~» k is a path in T.
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Figure 4.3. Illustration of Theorem 4.4

Figure 4.4. Row subtrees of the example in Figure 4.2

Proof. Refer to Figure 4.3. The proof is by induction on i for a fixed k. Let
j — min {j | Iji 7^ 0 A j > i] be the parent of i. The parent j > i must exist because
Iki ^ 0. For the base case, if k = j, then k is the parent of i and thus i ~-> fc is a
path in T. For the inductive step, k > j > i must hold, and there are thus two
nonzero entries Iki and 1^. From Theorem 4.3, Ikj 7^ 0. By induction, Ikj implies
the path j ~~* k exists in T. Combined with the edge (i, j), this means there is a
path i ~-> k in T.

Removing edges from the directed graph GL to obtain the elimination tree T
does not affect the Reach(t) of any node. The result is the following theorem.

Theorem 4.5 (Liu [148]). The nonzero pattern Ck of the kth row of L is given by

Theorem 4.5 defines Ck- The kth row subtree, denoted Tfc, is the subtree of T
induced by the nodes in Ck- The 11 row subtrees T1,..., T11 of the matrix shown
in Figure 4.2 are shown in Figure 4.4. Each row subtree is characterized by its
leaves, which correspond to entries in A. This fact is summarized by the following
theorem.
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Theorem 4.6 (Liu [148]). Node j is a leaf ofTk if and only if both djk ^ 0 and
&ik = 0 for every descendant i of j in the elimination tree T.

A corollary to Theorem 4.4 fully characterizes the elimination tree T.

Corollary 4.7 (Liu [148]). For a Cholesky factorization LLT — A, and neglecting
numerical cancellation, a^i ^ 0 and k > i imply that i is a descendant of k in the
elimination tree T; equivalently, i ~» k is a path in T.

Theorem 4.4 and Corollary 4.7 lead to an algorithm that computes the elimi-
nation tree T in almost O(|^4|) time. Suppose T^-i is known. This tree is a subset
of Tk- To compute 7^ from 7fc_i, the children of k (which are root nodes in Tk-\]
must be found. Since a^i / 0 implies the path i ~> k exists in T, this path can be
traversed in T^-\ until reaching a root node. This node must be a child of fc, since
the path i ~» k must exist.

To speed up the traversal of the partially constructed elimination tree 7fc_i,
a set of ancestors is kept. The ancestor of z, ideally, would simply be the root r
of the partially constructed tree Tk-\ that contains i. Traversing the path i ~> r
would take O(l) time, simply by finding the ancestor r of i. This goal can nearly be
met by a disjoint-set-union data structure. An optimal one would result in a total
time complexity of O(|^4|o;(|yl|, n)) for the \A\ path traversals that need to be made,
where a(|A|,n) is the inverse Ackermann function, a very slowly growing function.
However, a simpler method is used that leads to an O(\A\ logn) time algorithm. The
log n upper bound is never reached in practice, however, and the resulting algorithm
takes practically O(|A|) time and is faster (in practice, not asymptotically) than the
O(|^4|o;(|j4|, n))-time disjoint-set-union algorithm. The time complexity of cs_etree
is called nearly O(\A\) time.

The cs.etree function computes the elimination tree of the Cholesky factor-
ization of A (assuming at a is false), using just A and returning the int array parent
of size n. It iterates over each column k and considers every entry a^ in the upper
triangular part of A. It updates the tree, following the path from i to the root of
the tree. Rather than following the path via the parent array, an array ancestor
is kept, where ancestor [i] is the highest known ancestor of i, not necessarily the
root of the tree in Tk-\ containing i. If r is a root, it has no ancestor (ancestor [r]
is -1). Since the path is guaranteed to lead to node k in 7fc, the ancestors of all
nodes along this path are set to k (path compression). If a root node is reached in
7fc_i that is not k, it must be a child of k in 7^; parent is updated to reflect this.

If the input parameter ata is true, cs_etree computes the elimination tree
of ATA without forming A1 A. This is the column elimination tree. It will be
used in the QR and LU factorization algorithms in Chapters 5 and 6. Row i of A
creates a dense submatrix, or clique, in the graph of ATA. Rather than using the
graph of ATA (with one node corresponding to each column of A), a new graph
is constructed dynamically (also with one node per column of A). If the nonzero
pattern of row i contains column indices j i , J 2 , J 3 , J 4 , — -> the new graph is given
edges (ji, J2)> C?2> js)5 (J3> J4)> and so on. Each row i creates a path in this new
graph. In the tree, these edges ensure j\ -^ J2 ~» js ~» J4 . . . is a path in T.
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The clique in ATA has edges between all nodes ji, j2, j's,,74,... and will have the
same ancestor/descendant relationship. Thus, the elimination tree of A1 A and this
new graph will be the same. The path is constructed dynamically as the algorithm
progresses, using the prev array. prev[i] starts out equal to -1 for all i. Let
Ak be the nonzero pattern of A ( : , k). When column k is considered, the edge
(prev[i] ,k) is created for each i 6 Ak- This edge is used to update the elimination
tree, traversing from prev[i] up to k in the tree. After this traversal, prev[i] is
set to k, to prepare for the next edge in this row i, for a subsequent column in the
outer for k loop.

int *cs_etree (const cs *A, int ata)
-(

int i, k, p, m, n, inext, *Ap, *Ai, *w, *parent, *ancestor, *prev ;
if (!CS_CSC (A)) return (NULL) ; /* check inputs */
m = A->m ; n = A->n ; Ap = A->p ; Ai = A->i ;
parent = cs_malloc (n, sizeof (int)) ; /* allocate result */
w = cs_malloc (n + (ata ? m : 0), sizeof (int)) ; /* get workspace */
if (!w || (parent) return (cs_idone (parent, NULL, w, 0)) ;
ancestor = w ; prev = w + n ;
if (ata) for (i = 0 ; i < m ; i++) prev [i] = -1 ;
for (k = 0 ; k < n ; k++)
{

parent [k] = -1 ; /* node k has no parent yet */
ancestor [k] = -1 ; /* nor does k have an ancestor */
for (p = Ap [k] ; p < Ap [k+1] ; p++)
{

i = ata ? (prev [Ai [p]]) : (Ai [p]) ;
for ( ; i ! = - l f t & i < k ; i = inext) /* traverse from i to k */
{

inext = ancestor [i] ; /* inext = ancestor of i */
ancestor [i] = k ; /* path compression */
if (inext == -1) parent [i] = k ; /* no anc., parent is k */

>
if (ata) prev [Ai [p]] = k ;

}
}
return (cs_idone (parent, NULL, w, 1)) ;

>

The cs_idone function used by cs_etree returns an int array and frees any
workspace.

int *cs_idone (int *p, cs *C, void *w, int ok)
{

cs_spfree (C) ; /* free temporary matrix */
cs_free (w) ; /* free workspace */
return (ok ? p : cs_free (p)) ; /* return result if OK, else free it */

>

The MATLAB statement parent=etree(A) computes the elimination tree
of a symmetric matrix A, represented as a size-n array; parent(i)=k if k is the
parent of i. To compute the column elimination tree, a second parameter is added:
parent=etree(A, 'col'). Both algorithms in MATLAB use the same method as
in cs_etree (using cholmod_etree).
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4.2 Sparse triangular solve
Solving Lx — b when L, x, and b are sparse has already been discussed in the general
case in Section 3.2. Here, L is a more specific lower triangular matrix, arising from a
Cholesky factorization. The set Reach^ (i) for a Cholesky factor L can be computed
in time proportional to the size of the set via a simple tree traversal that starts at
node i and traverses the path to the root of the elimination tree. This is much less
than the time to compute Reach(z) in the general case.

The cs_ereach function computes the nonzero pattern of the kih row of L,
£fc = Reachfc_i(.4fc), where Reachfc-i denotes the graph of L(l:k-l,l:k-l). It
uses the elimination tree T of L to traverse the kih row subtree, Tk. The set Ak
denotes the nonzero pattern of the kih column of the upper triangular part of A.
This is the same as the kih row of the lower triangular part of A, which is how
the kih row subtree Tk is traversed. The first part of the code iterates for each
i in this set Ak- Next, the path from i towards the root of the tree is traversed.
The traversal marks the nodes and stops if it encounters a marked node. Nodes are
marked using the w array of size n; all entries in w must be greater than or equal
to zero on input, and the contents of w are restored on output. This subpath is
then pushed onto the output stack. On output, the set £^ is contained in s [top]
through s[n-l] (except for the diagonal entry). It is created in topological order.

int cs_ereach (const cs *A, int k, const int *parent, int *s, int *w)

{
int i, p, n, len, top, *Ap, *Ai ;

if (!CS_CSC (A) I I Iparent I t !s I I !w) return (-1) ; /* check inputs */

top = n - A->n ; Ap = A->p ; Ai = A->i ;

CS_MARK (w, k) ; /* mark node k as visited */

for (p = Ap [k] ; p < Ap [k-H] ; p++)
{

i = Ai [p] ; /* A(i,k) is nonzero */

if (i > k) continue ; /* only use upper triangular part of A */

for (len = 0 ; !CS_MARKED (w,i) ; i = parent [i]) /* traverse up etree*/

{
s [len-n-] = i ; /* L(k,i) is nonzero */
CS.MARK (w, i) ; /* mark i as visited */

>
while (len > 0) s [—top] = s [—len] ; /* push path onto stack */

}
for (p = top ; p < n ; p++) CS_MARK (w, s [p]) ; /* unmark all nodes */

CS_MARK (w, k) ; /* unmark node k */
return (top) ; /* s [top..n-1] contains pattern of L(k,:)*/

>

The total time taken by the algorithm is 0(|£fc|), the number of nonzeros in
row k of L. This is much faster in general than the cs_reach function that computes
Reaches) for an arbitrary lower triangular L. Solving Lx = b is an integrated part
of the up-looking Cholesky factorization; a stand-alone Lx = b solver when L is a
Cholesky factor is left as an exercise.

The cs_ereach function can be used to construct the elimination tree itself
by extending the tree one node at a time. The time taken would be O(|L|). As a
by-product, the entries in L are created one at a time. They can be kept to obtain
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the nonzero pattern of L, or they can be counted and discarded to obtain a count of
nonzeros in each row and column of L. The latter function is done more efficiently
with cs.post and cs.counts, discussed in the next three sections.

MATLAB uses a code similar to cs_ereach in its sparse Cholesky factoriza-
tion methods (an up-looking sparse Cholesky cholmocLrowf ac and a supernodal
symbolic factorization, cholmocLsuper.symbolic). However, it cannot use the tree
when computing x=L\b, for several reasons. The elimination tree is discarded after
L is computed. MATLAB does not keep track of how L was computed, and L may
be modified prior to using it in x=L\b. It may be an arbitrary sparse lower trian-
gular system, whose nonzero pattern is not governed by the tree. Numerically zero
entries are dropped from L, so even if L is not modified by the application, the tree
cannot be determined from the first off-diagonal entry in each column of L. For
these reasons, the MATLAB statement x=L\b determines only that L is sparse and
lower triangular (see Section 8.5) and uses an algorithm much like cs_lsolve.

4.3 Postordering a tree
Once the elimination tree is found, its postordering can be found. A postorder of
the tree is required for computing the number of nonzeros in each column of L in
the algorithm presented in the next section. It is also useful in its own right. If
A is permuted according to the postordering P (C=A(p,p) in MATLAB notation),
then the number of nonzeros in LLT = C is unchanged, but the nonzero pattern of
L will be more structured and the numerical factorization will often be faster as a
result, even with no change to the factorization code.

Theorem 4.8 (Liu [150]). The filled graphs of A and PAPT are isomorphic if P
is a postordering of the elimination tree of A. Likewise, the elimination trees of A
and PAP^ are isomorphic.

In a postordered tree, the d proper descendants of any node k are numbered
k — d through k — 1. If post represents the postordering permutation, post [k]=i
means node i of the original tree is node k of the postordered tree. The most natural
postordering preserves the relative ordering of the children of each node; if nodes
c\ < €2 < • • • < ct are the t children of node k, then post[ci] < post[02] < • • • <
post[c<]. A recursive depth-first search of the tree can compute the postordering:

function postorder (T)
k = 0
for each root node j of T do

dfstree (j)

function dfstree (j)
for each child i of j do

dfstree (i)
post[fc] = j
k = k+l
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However, the depth of the elimination tree can easily be O(n), causing stack overflow
for large matrices. A nonrecursive implementation is better, as shown in the cs_post
function below.

int *cs_post (const int *parent, int n)

{
int j, k = 0, *post, *w, *head, *next, *stack ;

if ('parent) return (NULL) ; /* check inputs */

post = cs_malloc (n, sizeof (int)) ; /* allocate result */

w = cs_malloc (3*n, sizeof (int)) ; /* get workspace */

if (!w || Ipost) return (cs_idone (post, NULL, w, 0)) ;

head = w ; next = w + n ; stack = w + 2*n ;

for (j = 0 ; j < n ; j++) head [j] = -1 ; /* empty linked lists */

for (j = n-1 ; j >= 0 ; j—) /* traverse nodes in reverse order*/

{
if (parent [j] »» -1) continue

next [j] = head [parent [j]] ;

head [parent [j]] = j ;

/* j is a root */

/* add j to list of its parent */

for (j - 0 ; j < n ; j++)

{
if (parent [j] !» -1) continue ; /* skip j if it is not a root */

k = cs_tdfs (j, k, head, next, post, stack) ;

}
return (cs_idone (post, NULL, w, 1)) ; /* success; free w, return post */

int cs_tdfs (int j, int k, int *head, const int *next, int *post, int *stack)

{
int i, p, top = 0 ;

if (Ihead I I Jnext I I fpost I I 'stack) return (-1) ; /* check inputs */

stack [0] = j ;

while (top >= 0)

{
p = stack [top] ;

i = head [p] ;

if (i — -1)

{
top— ;
post [k-n-] = p ;

}
else

{
head [p] = next [i] ;

stack [++top] = i ;

>

}
return (k) ;

/* place j on the stack */

/* while (stack is not empty) */

/* p = top of stack */

/* i = youngest child of p */

/* p has no unordered children left */
/* node p is the kth postordered node */

/* remove i from children of p */

/* start dfs on child node i */

First, workspace is allocated, and a set of n linked lists is initialized. The jth linked
list contains a list of all the children of node j in ascending order. Next, nodes j
from 0 to n-1 are traversed, corresponding to the for j loop in the postorder pseudo-
code. If j is a root, a depth-first search of the tree is performed, using cs_tdf s.
The cs_tdf s function places the root j on a stack. Each iteration of the while
loop considers the node p at the top of the stack. If it has no unordered children

}

>
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Figure 4.5. After elimination tree postordering

left, it is removed from the stack and ordered as the kth node in the postordering.
Otherwise, its youngest unordered child i is removed from the head of the pth linked
list and placed on the stack. The next iteration of the while loop will commence
the depth-first search at this node i.

The cs.post function takes as input the elimination tree T represented as the
parent array of size n. The parent array is not modified. The function returns
a pointer to an integer vector post, of size n, that contains the postordering. The
total time taken by the postordering is O(n).

Figure 4.5 illustrates the matrix PAPT, its Cholesky factor, and its elimina-
tion tree, where P is the postordering of the elimination tree in Figure 4.2.

The MATLAB statement [parent,post] = etree(A) computes the elimi-
nation tree and its postordering, using the same algorithms (cholmocLetree and
cholmocLpostorder). Node i is the kth node in the postordered tree if post (k)=i.
A matrix can be permuted with this postordering via C=A(post,post); the number
of nonzeros in chol(A) and chol(C) will be the same. Looking ahead, Chap-
ter 7 discusses how to find a fill-reducing ordering, p, where the permuted matrix
is A(p,p). This permutation vector p can be combined with the postordering of
A(p,p), using the following MATLAB code:

[parent, post] = etree (A (p,p)) ;
p = p (post) ;

4.4 Row counts
The row counts of a Cholesky factorization are the numbers of nonzeros in each
row of L. The numeric factorization presented in Section 4.7 requires the column
counts (the number of nonzeros in each column of L), not the row counts. However,
the row count algorithm is simpler, and many of the ideas and theorems needed to
understand the simpler row count algorithm are used in the column count algorithm.

A simple (yet nonoptimal) method of computing both the row and column
counts is to traverse each row subtree. For each row 2, consider each nonzero a^j.
Traverse up the tree from node j marking each node and stop if node i or a marked
node is found (the marks must be cleared for each row i). The row count for
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row i is the number of nodes in the row subtree Tl, and the column counts can
be accumulated while traversing each node of the ith row subtree. The number
of nonzeros in column j of L is the number of row subtrees that contain node
j. However, this method requires O(|L|) time. The goal of this section and the
following one is to show how to compute the row and column counts in nearly
O(\A\) time.

To reduce the time complexity to nearly O(|^4|), five concepts must be intro-
duced: (1) the least common ancestor of two nodes, (2) path decomposition, (3) the
first descendant of each node, (4) the level of a node in the elimination tree, and (5)
the skeleton matrix. The basic idea is to decompose each row subtree into a set of
disjoint paths, each starting with a leaf node and terminating at the least common
ancestor of the current leaf and the prior leaf node. The paths are not traversed
one node at a time. Instead, the length of these paths are found via the difference
in the levels of their starting and ending nodes, where the level of a node is its
distance from the root. The row count algorithm exploits the fact that all subtrees
are related to each other; they are all subtrees of the elimination tree.

The first step in the row count algorithm is to find the level and first descendant
of each node of the elimination tree. The first descendant of a node j is the smallest
postordering of any descendant of j. The first descendant and level of each node of
the tree can be easily computed in O(n} time by the f irstdesc function below.

void firstdesc (int n, int *parent, int *post, int *first, int *level)

{
int len, i, k, r, s ;

for (i = 0 ; i < n ; i++) first [i] = -1 ;

for (k = 0 ; k < n ; k++)

{
i = post [k] ; /* node i of etree is kth postordered node */

len = 0 ; /* traverse from i towards the root */

for (r - i ; r !=-!&& first [r] == -1 ; r = parent [r], len++)

first [r] = k ;

len += (r == -1) ? (-1) : level [r] ; /* root node or end of path */
for ( s = i ; s !=r ; s= parent [s]) level [s] = len— ;

}
}

A node i whose first descendant has not yet been computed has first[i]
equal to -1. The function starts at the first node (k=0) in the postordered elimina-
tion tree and traverses up towards the root. All nodes r along this path from node
zero to the root have a first descendant of zero, and first [r]=k is set accordingly.
For k>0, the traversal can also terminate at a node r whose first [r] and level [r]
have already been determined. Once the path has been found, it is retraversed to
set the levels of each node along this path.

Once the first descendant and level of each node are found, the row subtree
is decomposed into disjoint paths. To do this, the leaves of the row subtrees must
be found. The entries corresponding to these leaves form the skeleton matrix A; an
entry aij is defined to be in the skeleton matrix A of A if node j is a leaf of the
ith row subtree. The nonzero patterns of the Cholesky factorization of the skeleton
matrix of A and the original matrix A are identical. If node j is a leaf of the ith row
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Figure 4.6. Descendants in a postordered tree

subtree, a^ must be nonzero, but the converse is not true. For example, consider
row 11 of the matrix A in Figure 4.2 and its corresponding row subtree T11 in
Figure 4.4. The nonzero entries in row 11 of A are in columns 3, 5, 7, 8, 10, and
11, but only the first three are leaves of the llth row subtree.

Suppose the matrix and the elimination tree are postordered. The first de-
scendant of each node determines the leaves of the row subtrees, using the following
skeleton function.

function skeleton
maxf irst[0... n — 1] = —1
for j — 0 to n — 1 do

for each i > j for which a^ ^ 0
if first [j] > maxfirst[z]

node j is a leaf in the ith subtree
maxf irst [z] = f irst[j]

The algorithm considers node j in all row subtrees i that contain node j, where j it-
erates from 0 to n—1. Let f irst [j] be the first descendant of node j in the elimina-
tion tree. Let maxf irst [i] be the largest first [j] seen so far for any nonzero o^ in
the ith subtree. If first [j] is less than or equal to maxf irst [i], then node j must
have a descendant d < j in the zth row subtree, for which first [d]=maxf irst [i]
will equal or exceed first[j]. Node j is thus not a leaf of the ith row subtree.
If first[j] exceeds maxfirst[i], then node j has no descendant in the ith row
subtree, and node j is a leaf. The correctness of skeleton depends on Corollary 4.11
below.

Lemma 4.9. Let fj < j denote the first descendant of j in a postordered tree. The
descendants of j are all nodes fj, fj + 1, • • • , j; — 1, j -

Theorem 4.10. Consider two nodes t < j in a postordered tree. Then either (1)
ft < t < fj < j and t is not a descendant of j, or (2) f j < f t < t < j and t is a
descendant of j.

Proof. The two cases of Theorem 4.10 are illustrated in Figure 4.6. A triangle
represents the subtree rooted at a node j, and a small circle represents fj. Case
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Figure 4.8. Postordered row subtrees

(1): Node t is not a descendant of j if and only if t < /j, because of Lemma 4.9.
Case (2): If t is a descendant of j, then ft is also a descendant of j, and thus fj < ft-
If fj < ft-, then all nodes ft through t must be descendants of j (Lemma 4.9). D

Corollary 4.11. Consider a node j in a postordered tree and any set of nodes S
where all nodes s e S are numbered less than j. Let t be the node in S with the
largest first descendant ft- Node j has a descendant in S if and only if ft > fj.

Figure 4.7 shows the postordered skeleton matrix of A, denoted A, its factor L,
and its elimination tree (compare with Figure 4.5). Figure 4.8 shows the postordered
row subtrees (compare with Figure 4.4). Entry a^ (where i > j) is present in the
skeleton matrix if and only if j is a leaf of the (postordered) iih subtree; they are
shown as dark circles (the entry o,i is also shown in the upper triangular part of
A). A. white circle denotes an entry in A that is not in the skeleton matrix A.

The leaves of the row subtree can be used to decompose the row subtree into
a set of disjoint paths in a process called path decomposition. Consider the first
(least numbered) leaf of a row subtree. The first disjoint path starts at this node
and leads all the way to the root. Consider two consecutive leaves of a row subtree,
Jprev < j - The next disjoint path starts at j and ends at the child of the least
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Figure 4.9. Path decomposition ofT11 from Figure 4.4

common ancestor of jprev and j. The least common ancestor of two nodes a and b
is the least numbered node that is an ancestor of both a and b and is denoted as
q = /ca(a, b). In Tu, shown in Figure 4.9, the first path is from node 3 (the 2nd
node in the postordered tree) to the root node 11. The next path starts at node
5 (the 3rd node in the postordered tree) and terminates at node 5 (node 8 is the
least common ancestor of the two leaves 3 and 5). The third and last path starts at
node 7 and terminates at the child node 9 of the least common ancestor (node 10)
of nodes 5 and 7. Figure 4.9 shows the path decomposition of T11 into these three
disjoint paths. Each node is labeled with its corresponding column index in A and
its postordering (node 8 is the 4th node in the postordered tree, for example).

Once the fcth row subtree is decomposed into its disjoint paths, the fcth row
count is computed as the sum of the lengths of these paths. An efficient method
for finding the least common ancestors of consecutive leaves jprev and j of the row
subtree is needed. Given the least common ancestor q of these two leaves, the length
of the path from j to q can be added to the row count (excluding q itself). The
lengths of the paths can be found by taking the difference of the starting and ending
nodes of each path.

Theorem 4.12. Assume that the elimination tree T is postordered. The least
common ancestor of two nodes a and b, where a < b, can be found by traversing the
path from a towards the root. The first node q > b found along this path is the least
common ancestor of a and b.

The rowcnt function takes as input the matrix A, its elimination tree, and a
postordering of the elimination tree. It uses a disjoint-set-union data structure to
efficiently compute the least common ancestors of successive pairs of leaves of the
row subtrees. Since it is not actually part of CSparse, it does not check any out-of-
memory error conditions. Unlike cs_etree, the function uses the lower triangular
part of A only and omits an option for computing the row counts of the Cholesky
factor of ATA. The cs_leaf function determines if j is a leaf of the iih row subtree,
Tl. If it is, it computes the lea of jprev (the previous leaf found in Tl) and node j.

To compute q = /ca(jprev, j) efficiently in csJLeaf, an ancestor of each node
is maintained, using a disjoint-set-union data structure. Initially, each node is in



its own set, and ancestor[z] = i for all nodes i. If a node i is the root of a set, it is
its own ancestor. For all other nodes i, traversing the ancestor tree and hitting a
root q determines the representative (q) of the set containing node i.

int *rowcnt (cs *A, int *parent, int *post) /* return rowcount [O..n-l] */
{

int i, j, k, len, s, p, jprev, q, n, sparent, jleaf, *Ap, *Ai, *maxfirst,
*ancestor, *prevleaf, *w, *first, *level, *rowcount ;

n - A->n ; Ap = A->p ; Ai - A->i ; /* get A */
w = cs_malloc (5*n, sizeof (int)) ; /* get workspace */
ancestor - w ; maxfirst = w+n ; prevleaf = w+2*n ; first = w+3*n ;
level = w+4*n ;
rowcount = cs_malloc (n, sizeof (int)) ; /* allocate result */
firstdesc (n, parent, post, first, level) ; /* find first and level */
for (i = 0 ; i < n ; i++)
{

rowcount [i] ™ 1 ; /* count the diagonal of L */
prevleaf [i] = -1 ; /* no previous leaf of the ith row subtree */
maxfirst [i] = -1 ; /* max first [j] for node j in ith subtree */
ancestor [i] = i ; /* every node is in its own set, by itself */

}
for (k = 0 ; k < n ; k++)
{

j = post [k] ; /* j is the kth node in the postordered etree */
for (p = Ap [j] ; p < Ap [j+1] ; p++)
{

i = Ai [p] ;
q = cs_leaf (i, j, first, maxfirst, prevleaf, ancestor, ftjleaf) ;
if (jleaf) rowcount [i] += (level [j] - level [q]) ;

}
if (parent [j] != -1) ancestor [j] = parent [j] ;

}
cs_free (w) ;
return (rowcount) ;

}

int cs_leaf (int i, int j, const int *first, int *maxfirst, int *prevleaf,
int *ancestor, int *jleaf)

{
int q, s, sparent, jprev ;
if (Jfirst II Imaxfirst II (prevleaf II 'ancestor II !jleaf) return (-1) ;
*jleaf = 0 ;
if (i <= j I| first [j] <= maxfirst [i]) return (-1) ; /* j not a leaf */
maxfirst [i] » first [j] ; /* update max first [j] seen so far */
jprev • prevleaf [i] ; /* jprev » previous leaf of ith subtree */
prevleaf [i] - j ;
*jleaf = (jprev ~ -1) ? 1: 2 ; /* j is first or subsequent leaf */
if (*jleaf — 1) return (i) ; /* if 1st leaf, q - root of ith subtree */
for (q = jprev ; q !• ancestor [q] ; q = ancestor [q]) ;
for (s = jprev ; s != q ; s = sparent)
{

sparent = ancestor [s] ; /* path compression */
ancestor [s] = q ;

}
return (q) ; /* q = least common ancestor (jprev,j) */

}

Assuming the matrix is already postordered, rowcnt considers each node j
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one at a time, where j iterates from 0 to n — 1. For each node j, all row subtrees i
that contain it are considered (all row indices i corresponding to nonzero entries aij,
where i > j ) . Since jprev and j are leaves of the same row subtree, they will have a
least common ancestor q that is greater than j and which will be the representative
of the set containing jprev. Traversing from node jprev towards the root determines
node q. After this path is traversed, it is compressed to speed up any remaining path
traversals. After all row subtrees containing node j are considered, it is merged into
the set corresponding to its parent. Assuming the elimination tree is connected, no
nodes 0 to j are now root nodes of any set. This ensures that traversing a path in
the ancestor tree will find the least common ancestor for subsequent nodes j (see
Theorem 4.12).

4.5 Column counts
Computing the number of nonzeros in each column of L can be done in nearly
0(|.A|) time, similar to the row counts. A characterization of the nonzero pattern of
each column of L is required. Let Aj denote the nonzero pattern of the jth column
of the strictly lower triangular part of A, and let Aj denote entries in the same part
of the skeleton matrix A. Let Cj denote the nonzero pattern of column j of L, and
let Cj = \Cj\ denote the number of entries in that column (including the diagonal).

Theorem 4.13 and its corollary show how to compute the nonzero pattern of L
in a left-looking manner. It states that the nonzero pattern of L ( : , j) is the union
of the nonzero patterns of the children of j in the elimination tree and the nonzero
pattern of A ( : , j).

Theorem 4.13 (George and Liu [89]). If Cj denotes the nonzero pattern of the
jth column of L, and Aj denotes the nonzero pattern of the strictly lower triangular
part of the jth column of A, then

Proof. Refer to Figure 4.10. Consider any descendant d of j and any row i 6 Cd-
That is, li(i 7^ 0 and the path d ~»- j exists in T. Theorem 4.5 states that the nonzero
pattern of row i is given by the ith row subtree, Tl. Thus, the path d -^ s —> j
exists in Tl for some s, and row index i is present in Cj and in Cs of the child s of
j (also true if d = 5). To construct the nonzero pattern of column j (Cj}, only Cs

of the children s of j need to be considered. Likewise, there can be no i € Cj not
accounted for by (4.3). If i 6 Cj, then j must be in Tl. Either j is a leaf (and thus
i 6 Aj; C Aj}, or it is not a leaf (and thus j has a child s in Tl, and i € Cs). 

Corollary 4.14 (Schreiber [181]). The nonzero pattern of the jth column of L is
a subset of the path j ̂  r from j to the root of the elimination tree T.
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Figure 4.10. The nonzero pattern o/L(: ,j) is the union of its children

Computing the column counts c, = \Cj\ can be done in O(|L|) time by using
Theorem 4.13 or by traversing each row subtree explicitly and keeping track of how
many times j appears in any row subtree. Using the least common ancestors of
successive pairs of leaves of the row subtree reduces the time to nearly O(|A|).

Consider the case where j is a leaf of the elimination tree T. The column
count Cj is simply Cj — \Aj\ + 1 = \Aj\ + 1, since j has no children and each entry
in column j of A is also in the skeleton matrix A. Consider the case where j is not
a leaf of the elimination tree. Theorem 4.13 states that Cj is the union of Aj U {j}
and the nonzero patterns of its children, Cs \ {s}. Since Aj is disjoint from each
child £s, and since s e £s,

where BJ is the number of children of j in the elimination tree T. Suppose there
was an efficient method for computing the overlap between the nonzero patterns of
the children of j. That is, let Oj be the term required so that

As an example, consider column j = 4 of Figure 4.7. Its two children are £2 =
{2,4,10,11} and £3 = {3,4,11}. The skeleton matrix is empty in this column, so

The overlap 04 = 2, because rows 4 and 11 each appear twice in the children. The
number of children is 64 = 2. Thus, 04 = 0 — 2 — 2 + 4 + 3 = 3. If the overlap
and the skeleton matrix are known for each column j, (4.4) can be used to compute
the column counts. Note that the diagonal entry j = 4 does not appear in A±.
Instead, 4 € £4 appears in each child, and the overlap accounts for all but one of
these entries.

The overlap can be computed by considering the row subtrees. There are
three cases to consider. Recall that the zth row subtree T1 determines the nonzero
pattern of the ith row of L. Node j is present in the ith subtree if and only if i e Cj.



for both cases. The term Aj is initialized as 1 if j is a leaf or 0 otherwise. It
is incremented once for each entry a^- in the skeleton matrix, decremented once
for each child of j, and decremented once each time j becomes the least common
ancestor of a successive pair of leaves in a row subtree. Once Aj is computed, (4.5)
can be used to compute the column counts.

The column count algorithm cs_counts is given below. It takes as input the
matrix A, the elimination tree (parent), and its postordering (post). It also takes
a parameter ata that determines whether the Cholesky factor of A or AT A is to
be computed. If ata is nonzero, the column counts of the Cholesky factor of ATA
are computed. To compute the column counts for the Cholesky factorization of A,
ata is zero, the init_ata function is not used, and the for J loop iterates just once
with J = j.

Unlike rowcnt, the cs_counts function uses the upper triangular part of A
to compute the column counts; it transposes A internally. None of the inputs are
modified. The function returns an array of size n of the column counts or NULL on
error. Compare cs_counts with rowcnt. It is quite simple to combine these two
functions into a single function that computes both the row and column counts.
They are split into two functions here, to introduce the concepts more gradually
and because CSparse does not require the row counts.

#define HEAD(k.j) (ata ? head [k] : j)
#define NEXT(J) (ata ? next [J] : -1)
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1. If j £ T*, then i ^ Cj and row i does not contribute to the overlap QJ .

2. If j is a leaf of Tl, then by definition a^ is in the skeleton matrix. Row i does
not contribute to the overlap QJ , because it appears in none of the children of
j. Row i contributes exactly one to Cj, since i G Aj.

3. If j is not a leaf of T*, let dij denote the number of children of j that are in
Tl. These children are a subset of the children of j in the elimination tree
T. Row i is present in the nonzero patterns of each of these d^ children.
Thus, row i contributes d^ — 1 to the overlap Oj. If j has just one child, row
i appears only in that one child and there is no overlap.

Case 3, above, is the only place where the overlap needs to be considered:
nodes in the row subtrees with more than one child. Refer to Figure 4.8, and
consider column 4. Node 4 has two children in subtrees T4 and T11.

The key observation is to see that if j has d children in a row subtree, then
it will be the least common ancestor of exactly d — I successive pairs of leaves in
that row subtree. For example, node 4 is the least common ancestor of leaves 1 and
3 in T4 and the least common ancestor of leaves 2 and 3 in T11. Thus, each time
column j becomes a least common ancestor of any successive pair of leaves in the
row count algorithm, the overlap Oj can be incremented.

These modifications can be folded into a single correction term, Aj. If j is a
leaf of the elimination tree, Cj = Aj; = \Aj\ -f 1. Otherwise, Aj = \Aj\ — €j — Oj.
Equation (4.4) becomes
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static void init_ata (cs *AT, const int *post, int *w, int **head, int **next)
{

int i, k, p, m = AT->n, n = AT->m, *ATp = AT->p, *ATi = AT->i ;
*head = w+4*n, *next = w+5*n+l ;
for (k = 0 ; k < n ; k++) w [post [k]] = k ; /* invert post */
for (i = 0 ; i < m ; i++)
{

for (k = n, p - ATp[i] ; p < ATp[i+l] ; p++) k - CS.MIN (k, w [ATi[p]]);
(*next) [i] = (*head) [k] ; /* place row i in linked list k */
(*head) [k] = i ;

}
}
int *cs_counts (const cs *A, const int *parent, const int *post, int ata)
{

int i, j, k, n, m, J, s, p, q, jleaf, *ATp, *ATi, *maxfirst, *prevleaf,
*ancestor, *head = NULL, *next = NULL, *colcount, *w, *first, *delta ;

cs *AT ;
if (!CS_CSC (A) I I Iparent I I !post) return (NULL) ; /* check inputs */
m = A->m ; n = A->n ;
s = 4*n + (ata ? (n+m-H) : 0) ;
delta = colcount = cs_malloc (n, sizeof (int)) ; /* allocate result */
w = cs_malloc (s, sizeof (int)) ; /* get workspace */
AT = cs_transpose (A, 0) ; /* AT - A' */
if OAT || Icolcount II !w) return (cs_idone (colcount, AT, w, 0)) ;
ancestor = w ; maxfirst = w+n ; prevleaf = w+2*n ; first = w+3*n ;
for (k = 0 ; k < s ; k++) w [k] = -1 ; /* clear workspace w [O..S-1] */
for (k = 0 ; k < n ; k++) /* find first [j] */
{

j = post [k] ;
delta [j] - (first [j] — -1) ? 1 : 0 ; /* delta[j]=l if j is a leaf */
for ( ; j != -1 && first [j] ==• -1 ; j = parent [j]) first [j] = k ;

}
ATp = AT->p ; ATi = AT->i ;
if (ata) init_ata (AT, post, w, fthead, ftnext) ;
for (i - 0 ; i < n ; i++) ancestor [i] = i ; /* each node in its own set */
for (k - 0 ; k < n ; k++)
{

j « post [k] ; /* j is the kth node in postordered etree */
if (parent [j] != -1) delta [parent [j]]— ; /* j is not a root */
for (J = HEAD (k,j) ; J != -1 ; J = NEXT (J)) /* J=j for LL'=A case */
-C

for (p = ATp [J] ; p < ATp [J+l] ; p++)
{

i = ATi [p] ;
q= cs_leaf (i, j, first, maxfirst, prevleaf, ancestor, ftjleaf);
if (jleaf >= 1) delta [j]++ ; /* A(i,j) is in skeleton */
if (jleaf == 2) delta [q]— ; /* account for overlap in q */

>
}
if (parent [j] != -1) ancestor [j] - parent [j] ;

}
for (j = 0 ; j < n ; j++) /* sum up delta's of each child */
{

if (parent [j] != -1) colcount [parent [j]] += colcount [j] ;
}
return (cs_idone (colcount, AT, w, 1)) ; /* success: free workspace */

>



The column count algorithm presented here can also be used for the QR and
LU factorization of a square or rectangular matrix A. For QR factorization, the
nonzero pattern of R is identical to LT in the Cholesky factorization LLT = ATA
(assuming no numerical cancellation and mild assumptions discussed in Chapter 5).
This same matrix R provides an upper bound on the nonzero pattern of U for an
LU factorization of A. Details are presented in Chapters 5 and 6.

One method for finding the row counts of R is to compute ATA explicitly and
then find the column counts of its Cholesky factorization. This can be expensive
both in time and memory. A better method taking nearly O(|v4| + n + m) time is to
find a symmetric matrix with fewer nonzeros than ATA but whose Cholesky factor
has the same nonzero pattern as AT A. One matrix that satisfies this property is the
star matrix. It has O(|yl|) entries and can be found in O(|.4| + n + m) time. Each
row of A defines a clique in the graph of ATA. Let Ai denote the nonzero pattern
of the ith row of A. Consider the lowest numbered column index k of nonzeros
in row i of A; that is, k = min*4j. The clique in ATA corresponding to row i of
A is the set of entries Ai x Ai. Consider an entry (ATA)ab, where a & Ai and
b €. Ai. If both a > k and b > k, then this entry is not needed. It can be removed
without changing the nonzero pattern of the Cholesky factor of ATA. Without
loss of generality, assume a > b. The entries (ATA)bis and (ATA)ak will both be
nonzero. Theorems 4.2 and 4.3 imply that lab is nonzero, regardless of whether or
not (ATA)ab is nonzero.

The nonzero pattern of the kih row and column of the star matrix is thus
the union of all Ai, where k = min.4;. Fortunately, this union need not be formed
explicitly, since the row and column count algorithms (and specifically the skele-
ton function) implicitly ignore duplicate entries. To traverse all entries in the kth
column of the star matrix, all rows Ai, where k = min.Aj, are considered. In
cs.counts, this is implemented by placing each row in a linked list corresponding
to its least numbered nonzero column index (using a head array of size n+1 and a
next array of size n).

In MATLAB, c = symbfact(A) uses the same algorithms given here, return-
ing the column counts of the Cholesky factorization of A. The column counts of the
Cholesky factorization of ATA are given by c = symbfact(A, 'col'). Both forms
use the CHOLMOD function cholmod_rowcolcounts.

4.6 Symbolic analysis
The symbolic analysis of a matrix is a precursor to its numerical factorization.
It includes computations that typically depend only on the nonzero pattern, not
the numerical values. This allows the numerical factorization to be repeated for a
sequence of matrices with identical nonzero pattern (a situation that often arises
when solving nonlinear equations). Symbolic factorization includes the computation
of an explicit representation of the nonzero pattern of the factorization; some sparse
Cholesky algorithms require this. Permuting a matrix has a large impact on the
amount of fill-in. Typically a fill-reducing permutation P is found so that the
factorization of PAPT is sparser than that of A. The cs_schol function performs
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the symbolic analysis for the up-looking sparse Cholesky factorization presented in
the next section.

typedef struct cs

{
int *pinv ;

int *q ;

int *parent ;

int *cp ;

int *leftmost

int m2 ;

double Inz ;

double unz ;

> ess ;

.symbolic /* symbolic Cholesky, LU, or QR analysis */

/* inverse row perm, for QR, fill red. perm for Choi */

/* fill-reducing column permutation for LU and QR */
/* elimination tree for Cholesky and QR */
/* column pointers for Cholesky, row counts for QR */

/* leftmost[i] - min(f ind(A(i , : ) ) ) , for QR */
/* # of rows for QR, after adding fictitious rows */

/* # entries in L for LU or Cholesky; in V for QR */

/* # entries in U for LU; in R for QR */

ess *cs_schol (int order, const cs *A)

{
int n, *c, *post, *P ;

cs *C ;

ess *S ;

if (!CS_CSC (A)) return (NULL) ;

n = A->n ;
S = cs_calloc (1, sizeof (ess)) ;

if OS) return (NULL) ;
P = cs_amd (order, A) ;
S->pinv = cs_pinv (P, n) ;

cs_free (P) ;
if (order && !S->pinv) return (cs_sfree

C - cs_symperm (A, S->pinv, 0) ;

S->parent » cs_etree (C, 0) ;
post = cs_post (S->parent, n) ;

c = cs_counts (C, S->parent, post, 0) ;

cs_free (post) ;

cs_spfree (C) ;
S->cp » cs_malloc (n+1, sizeof (int)) ;
S->unz » S->lnz = cs_cumsum (S->cp, c, n)

cs_free (c) ;
return ((S->lnz >= 0) ? S : cs_sfree (S)) ;

}

/* check inputs */

/* allocate result S */

/* out of memory */

/* P = amd(A+A'), or natural */
/* find inverse permutation */

(S)) ;

/* C - spones(triu(A(P,P))) */

/* find etree of C */

/* postorder the etree */

/* find column counts of chol(C) */

/* allocate result S->cp */
n) ; /* find column pointers for L */

ess *cs_sfree (ess *S)

{
if (!S) return (NULL) ;
cs_free (S->pinv) ;

cs_free (S->q) ;
cs_free (S->parent) ;
cs_free (S->cp) ;
cs_free (S->leftmost) ;

return (cs_free (S)) ;

}

/* do nothing if S already NULL */

/* free the ess struct and return NULL */

cs_schol does not compute the nonzero pattern of L. First, a ess structure S
is allocated. For a sparse Cholesky factorization, S->pinv is the fill-reducing permu-
tation (stored as an inverse permutation vector), S->parent is the elimination tree,
S->cp is the column pointer of L, and S->lnz = \L\. This symbolic structure will
also be used for sparse LU and QR factorizations. Next, p is found via a minimum



degree ordering of A + AT (see Chapter 7) if order is 1. No permutation is used if
order is 0 (p is NULL to denote the identity permutation). This vector is inverted
to obtain pinv. The upper triangular part of A is permuted to obtain C (C=A(p,p)
in MATLAB notation). The elimination tree of C is found and postordered, and
the column counts of L are found. A cumulative sum of the column counts gives
both S->cp, the column pointers of L, and S->lnz= \L\. cs_free frees a symbolic
analysis.

4.7 Up-looking Cholesky
A great deal of theory and algorithms have been covered to reach this point: a
simple, concise sparse Cholesky factorization algorithm. The cs_chol function pre-
sented below implements the up-looking algorithm described in the preface to this
chapter. To clarify the discussion, the bold paragraph headings are tied to com-
ments in the code starting with . This style is also used elsewhere in this book.

cs.chol computes the Cholesky factorization of C=A (p, p). The input matrix A
is assumed to be symmetric; only the upper triangular part is accessed. The function
requires the symbolic analysis from cs_schol. It returns a numeric factorization,
consisting of just the N->L matrix. First, workspace is allocated, the contents of
the symbolic analysis are retrieved, L is allocated, and A is permuted (E is A(p,p)
if A is permuted, or NULL otherwise, so that A(p,p) can be freed by cs_ndone).

Nonzero pattern of L (k , : ) : The kth iteration of the for loop computes
the kth row of L. It starts by computing the nonzero pattern of this kth row, placing
the result in s [top] through s [n-1] in topological order. The entry x[k] is cleared
to ensure that x[0] through x[k] are all zero. The kth column of C is scattered
into the dense vector x. The diagonal entry of C is retrieved from x, and x [k] is
cleared to prepare for iteration k+1 of the outer loop.

Triangular solve: The numerical solution to Lo...fc-i,o...fc-i^ = Co...fc-i,fc is
found, which defines the numerical values in the row k of L. As each entry l^ is
computed, the workspace x[i] is cleared, the numerical value l^i and row index k
are placed in column i of L, and the dot product 1/^,0...fe-i-^^o fc-i *s added to d.

Compute L(k,k): The kth diagonal entry of L is computed. The function
frees N and returns if the matrix A is not positive definite. When the factorization
finishes successfully, the workspace is freed and N is returned.

The time taken by cs.chol to compute the Cholesky factorization of a sym-
metric positive definite matrix is O(f], the number of floating-point operations per-
formed; / = ̂  |L(:,k)|2. To perform a complete sparse Cholesky factorization, in-
cluding a fill-reducing preordering and symbolic analysis, use S=cs_schol (order, A)
followed by N=cs_chol(A,S), where order is 0 to use the natural ordering or 1 to
use a fill-reducing minimum degree ordering of A + AT.

In MATLAB, the sparse Cholesky factorization R=chol (A) returns R=L'. If A is
very sparse, it uses an up-looking algorithm (cholmod_rowf ac, much like [29]). Oth-
erwise, it uses a left-looking supernodal factorization (cholmod.super .numeric),
discussed in the next section.

csn *cs_chol (const cs *A, const ess *S)
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double d, Iki, *Lx, *x, *Cx ;
int top, i, p, k, n, *Li, *Lp, *cp, *pinv, *s, *c, *parent, *Cp, *Ci ;
cs *L, *C, *E ;
csn *N ;
if (!CS_CSC (A) || !S I I !S->cp |I !S->parent) return (NULL) ;
n = A->n ;
N = cs_calloc (1, sizeof (csn)) ; /* allocate result */
c = cs_malloc (2*n, sizeof (int)) ; /* get int workspace */
x = cs_malloc (n, sizeof (double)) ; /* get double workspace */
cp = S->cp ; pinv = S->pinv ; parent = S->parent ;
C = pinv ? cs_symperm (A, pinv, 1) : ((cs *) A) ;
E = pinv ? C : NULL ; /* E is alias for A, or a copy E=A(p,p) */
if (!N || !c || !x || !C) return (cs.ndone (N, E, c, x, 0)) ;
s = c + n ;
Cp = C->p ; Ci - C->i ; Cx = C->x ;
N->L = L = cs_spalloc (n, n, cp [n], 1, 0) ; /* allocate result */
if (!L) return (cs_ndone (N, E, c, x, 0)) ;
Lp = L->p ; Li = L->i ; Lx = L->x ;
for (k = 0 ; k < n ; k++) Lp [k] - c [k] = cp [k] ;
for (k = 0 ; k < n ; k++) /* compute L(:,k) for L*L' = C */
{

/* Nonzero pattern of L(k,:) */
top = cs_ereach (C, k, parent, s, c) ; /* find pattern of L(k, : ) */
x [k] = 0 ; /* x (0:k) is now zero */
for (p = Cp [k] ; p < Cp [k+1] ; p++) /* x = full(triu(C(:,k))) */
{

if (Ci [p] <= k) x tCi [p]] = Cx [p] ;
}
d = x [k] ; /* d - C(k,k) */
x [k] = 0 ; /* clear x for k-Ust iteration */
/* Triangular solve */
for ( ; top < n ; top++) /* solve L(0:k-l,0:k-l) * x = C(:,k) */
{

i = s [top] ; /* s [top..n-l] is pattern of L(k,:) */
Iki - x [i] / Lx [Lp [i]] ; /* L(k,i) = x (i) / L(i,i) */
x [i] = 0 ; /* clear x for k+lst iteration */
for (p = Lp [i] + 1 ; p < c [i] ; p++)
{

x [Li [p]] -= Lx [p] * Iki ;
>
d -= Iki * Iki ; /* d = d - L(k,i)*L(k,i) */
p = c [i]++ ;
Li [p] = k ; /* store L(k,i) in column i */
Lx [p] = Iki ;

}
/* Compute L(k,k) */
if (d <= 0) return (cs_ndone (N, E, c, x, 0)) ; /* not pos def */
p = c [k]++ ;
Li [p] * k ; /* store L(k,k) = sqrt (d) in column k */
Lx [p] = sqrt (d) ;

}
Lp [n] = cp [n] ; /* finalize L */
return (cs_ndone (N, E, c, x, 1)) ; /* success: free E,s,x; return N */

The csn structure contains a numeric Cholesky, LU, or QR factorization.

}

{
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For a sparse Cholesky factorization, only N->L is used. cs_nf ree frees a numeric
factorization. cs_ndone frees any workspace and returns a numeric factorization.

typedef struct cs_numeric /* numeric Cholesky, LU, or QR factorization */

{
cs *L ; /* L for LU and Cholesky, V for QR */

cs *U ; /* U for LU, R for QR, not used for Cholesky */

int *pinv ; /* partial pivoting for LU */

double *B ; /* beta [O..n-l] for QR */

} csn ;

csn *cs_nfree (csn *N)

{
if (!N) return (NULL) ;

cs_spfree (N->L) ;

cs_spfree (N->U) ;

cs_free (N->pinv) ;

cs_free (N->B) ;

return (cs_free (N)) ;

>

/* do nothing if N already NULL */

/* free the csn struct and return NULL */

csn *cs_ndone (csn *N, cs *C, void *w, void *x, int ok)

{
cs_spfree (C) ; /* free temporary matrix */

cs_free (w) ; /* free workspace */
cs_free (x) ;

return (ok ? N : cs_nfree (N)) ; /* return result if OK, else free it */

}

4.8 Left-looking and supernodal Cholesky
The left-looking Cholesky factorization algorithm is more commonly used than the
up-looking algorithm. The MATLAB function chol_left implements this algo-
rithm.

function L = chol_left (A)
n = size (A,l) ;

L = zeros (n) ;

for k = l:n

L (k,k) - sqrt (A (k,k) - L (k,l:k-l) * L (k,l:k-l)') ;

L (k+l:n,k) = (A (k+l:n,k) - L (k+l:n,l:k-l) * L (k,l:k-l)') / L (k,k) ;
end

It computes L one column at a time and can be derived from the expression

where the middle row and column of each matrix are the kth row and column
of L, LT, and A, respectively. If the first k — I columns of L are known, /22 =
\Ja,2i — Ifyi2 can be computed first, followed by 1^2 = («32 — ̂ 3i^i2)/^22- For the
sparse case, an amplified version is given below.
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function L = chol.left (A)
n = size (A,l) ;
L « sparse (n,n) ;
a = sparse (n,l) ;
for k = l:n

a (k:n) = A (k:n,k) ;
for j - find (L (k,:))

a (k:n) = a (k:n) - L (k:n,j) * L (k,j) ;
end
L (k,k) - sqrt (a (k)) ;
L (k+l:n,k) = a (k+l:n) / L (k,k) ;

end

This method requires the nonzero pattern of the columns of L to be com-
puted (in sorted order) prior to numerical factorization. In contrast, the up-looking
method requires only the cumulative sum of the column counts (Lp) prior to numer-
ical factorization and computes both the pattern (in sorted order) and numerical
values in a single pass. Computing the pattern of L can be done in O(|L|) time,
using cs_ereach (see Problem 4.10).

The left-looking numerical factorization needs access to row k of L. The nonzero
pattern of L(k, : ) is given by the fcth row subtree (4.2), Tk. This is enough infor-
mation for the up-looking method, but the left-looking method also needs access to
the numerical values of L(k , : ) and the submatrix L(k:n,l:k-l). To access the
numerical values of the kth row, an array c of size n is maintained in the same way
as the c array in the up-looking algorithm cs_chol. The row indices and numeri-
cal values in L(k:n,j) are given by Li[c[j] .. . Lp[j+l]-l] and Lx[c[j] . . .
Lp[j+!]-!], respectively. A left-looking sparse Cholesky factorization is left as an
exercise (see Problem 4.11).

The left-looking algorithm forms the basis for the supernodal method. The
chol.super function is a working prototype for a supernodal left-looking Cholesky
factorization.

function L = chol_super (A,s)
n = size (A) ;
L = zeros (n) ;
ss = cumsum ([Is]) ;
for j = 1:length (s)

kl - ss (j) ;
k2 = ss (j+1) ;
k = kl:(k2-l) ;
L (k,k) = chol (A (k,k) - L (k,l:kl-l) * L (k,l:kl-l)')' ;
L (k2:n,k) = (A (k2:n,k) - L (k2:n,l:kl-l) * L (k,l:kl-l)') / L (k,k)' ;

end

Consider (4.6), and let the middle row and column of the three matrices
represent a block of Sj > I rows and columns. This block of columns is selected
so that the nonzero patterns of these Sj columns are all identical, except for the
diagonal block L22> which is dense. In MATLAB notation, s is an integer vector
where all(s>0) is true, and sum(s)=n. The jth supernode consists of s(j) columns
of L which can be stored as a dense matrix of dimension |£/| by Sj, where / is the
column of L represented as the leftmost column in the jth supernode. chol_super
relies on four key operations, all of which can exploit dense matrix kernels:



1. A symmetric update, A(k,k)-L(k,l:kl-l)*L(k,l:kl-l) '. In the sparse
case, A(k,k) is a dense matrix. L(k,l:kl-l) represents the rows in a subset
of the descendants of the jth supernode. The update from each descendant
can be done with a single dense matrix multiplication.

2. A dense Cholesky factorization, chol.

3. A sparse matrix product, A(k2:n,k)-L(k2:n,l:kl-l)*L(k,l:kl-l) ', where
the two L terms come from the descendants of the jth supernode.

4. A dense triangular solve (. . . ) /L(k,k) ' using the kth diagonal block of L.

A supernodal Cholesky factorization based on dense matrix kernels (the BLAS)
can achieve a substantial fraction of a computer's theoretical peak performance.
MATLAB uses this method (cholmod_super_numeric) for a sparse symmetric pos-
itive definite A, except when A is very sparse, in which case it uses the up-looking
algorithm described in Section 4.7.

4.9 Right-looking and multifrontal Cholesky
The right-looking Cholesky factorization is based on the following matrix expression,
where /n is a scalar:

The first equation, /^ = an, is solved for /n, followed by /2i = «2i/^ii- Next,
the Cholesky factorization 1/22^22 = ^22 — ̂ 21^21 is computed. The chol_right
function is the MATLAB expression of this algorithm.

function L = chol_right (A)
n = size (A) ;
L = zeros (n) ;
for k = l:n

L (k,k) = sqrt (A (k,k)) ;
L (k+l:n,k) = A (k-H:n,k) / L (k,k) ;
A (k+l:n,k+l:n) = A (k+l:n,k+l:n) - L (k+l:n,k) * L (k+l:n,k)' ;

end

It forms the basis for the multifrontal method, which is similar to chol_right,
except that the summation of the outer product /2i/|i is postponed. Only a brief
overview of the multifrontal method is given here. See Section 6.3 for more details.
Just as in the supernodal method, the columns of L are grouped together; each
group is represented by a dense frontal matrix. Let £/ be the nonzero pattern of
the first column in a frontal matrix. The frontal matrix has dimension |£/|-by-|£/|.
Within this frontal matrix, k > I steps of factorization are computed, and a rank-fc
outer product is computed. These steps can use the dense matrix BLAS, and thus
they too can obtain very high performance.
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Unlike chol_right, the outer product computed in the frontal matrix is not
immediately added into the sparse matrix A. Let column e be the last pivot column
of L represented by a frontal matrix (e = k2-l in chol_super). Its contribution is
held in the frontal matrix until its parent is factorized. Its parent is that frontal
matrix whose first column is the parent of e in the elimination tree of L. When a
frontal matrix is factorized, the contribution blocks of its children are first added
together.

MATLAB does not use a multifrontal sparse Cholesky method. It does use
the multifrontal method for its sparse LU factorization (see Section 6.3).

4.10 Modifying a Cholesky factorization
Given the sparse Cholesky factorization LLT — A, some applications require the
factorization of A after a low-rank change, A ± T^H77, where W is n-by-k with

rp

k <C n. Computing the factorization LL — A + WW is a rank-fc update, and
JI.-U- T1

computing LL = A — WWT is a rank-fc downdate. If A is positive definite,
A + WWT is always positive definite, but A — WWT may not be.

Only the rank-1 case is considered here. There are many methods for comput-
ing L from L and w. The chol_update function below performs a rank-1 update
and is used as the basis for the sparse rank-1 update. For details of its derivation,
see the references discussed in Section 4.11. The function returns a modified L that
is the Cholesky factor of the matrix L*L' +w*w'. It also computes one additional
result, w=L\w, which reveals a key feature exploited in the sparse case.

function [L, w] = chol_update (L, w)

beta = 1 ;

n = size (L,l) ;

for j = l:n

alpha = w (j) / L (j,j) ;

beta2 = sqrt (beta~2 + alpha~2) ;

gamma = alpha / (beta2 * beta) ;

delta = beta / beta2 ;
L (J>j) = delta * L (j,j) + gamma * w (j) ;
w (j) = alpha ;

beta = beta2 ;
if (j == n) return, end

wl = w (j+l:n) ;
w (j+l:n) = w (j+l:n) - alpha * L (j+l:n,j) ;

L (j+l:n,j) = delta * L (j+l:n,j) + gamma * wl ;

end

Consider the sparse case. A key observation is to note that the columns of L
that are modified correspond to the nonzero pattern of the solution to the triangular
system Lx = w. At the jth step, the variable alpha is equal to Xj. This can be
seen by removing everything from the algorithm except the modifications to w; all
that is left is just a lower triangular solve. If alpha is zero, beta2 and beta are
identical, gamma is zero, and delta is one. No change is made to the jth column of
L in this case. Thus, the jth step can be skipped if Xj — 0.
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Figure 4.11. Rank-1 update

Let X be the nonzero pattern of the solution to Lx = w. Let / = min W,
where W = {i |, w» ^ 0} is the set of row indices of nonzero entries in w. Applying
Theorem 4.5 to the system Lx = w reveals that X = ReachT-(W). That is, X is
a set of paths in the elimination tree, starting at nodes i € W and walking up the
tree to the root.

Assume that numerical cancellation is ignored. If the nonzero pattern of L
changes as a result of an update or downdate, the set X becomes a single path in
the elimination tree T of L. This is because the first nontrivial step / = minW
adds the nonzero pattern of W to the nonzero pattern of column / of L, and thus
W C Cj. Corollary 4.14 states that £/ is a subset of the path from / to the root r
in the elimination tree of L. Thus, W is a subset of this path / ~> r, and computing
a rank-1 update requires the traversal of a single path / -^» r in the elimination tree
T of £. An example rank-1 update is shown in Figure 4.11, where W = {4,6,8}.
Entries in A = A -f- WWT that differ from A are circled x's or circled numbers on
the diagonal, as are entries in L. The columns that are modified in L correspond
to the path {4,6, 7,8}; these nodes are highlighted in both elimination trees.

Modifying the nonzero pattern of L is not trivial, since adding entries to
individual columns of the cs data structure requires all subsequent columns to
be shifted. Modifying both the pattern and the values of L can be done in time
proportional to the number of entries in L that change, but the full algorithm is
beyond the concise scope of this book. The simpler case assumes the pattern of
L does not change. This case occurs if and only if W C Cf, in which case the
elimination tree of L and L are the same, and a rank-1 update traverses the path
/ -^ r in T.

The MATLAB chol_downdate function below performs the rank-1 downdate,
returning a new L that is the Cholesky factor of L*L'-w*w'.



function [L, w] = chol_downdate (L, w)
beta = 1 ;
n - size (L,l) ;
for j = l:n

alpha = w (j) / L (j,j) ;
beta2 = sqrt (beta~2 - alpha*2) ;
if ("isreal (beta2)) error ('not positive definite') , end
gamma = alpha / (beta2 * beta) ;
delta = beta2 / beta ;
L (j,j) = delta * L (j,j) ;
w (j) = alpha ;
beta = beta2 ;
if (j — n) return, end
w (j+l:n) - w (j+l:n) - alpha * L (j+l:n,j) ;
L (j+l:n,j) = delta * L (j+l:n,j) - gamma * w (j+l:n) ;

end

The cs_updown function computes a rank-1 update if sigma=l or a rank-1
downdate if sigma=-l. It assumes that W is a subset of the first column to be
modified, £/; it does not modify the nonzero pattern of L. The sparse column w is
passed in as the first column of the C matrix. The elimination tree, parent, is also
required on input.

int cs_updown (cs *L, int sigma, const cs *C, const int *parent)
{

int p, f, j, *Lp, *Li, *Cp, *Ci ;
double *Lx, *Cx, alpha, beta » 1, delta, gamma, wl, w2, *w, n, beta2 » 1 ;
if (!CS_CSC (L) I I !CS_CSC (C) I I Iparent) return (0) ; /* check inputs */
Lp = L->p ; Li « L->i ; Lx = L->x ; n = L->n ;
Cp = C->p ; Ci - C->i ; Cx = C->x ;
if ((p = Cp [0]) >= Cp [1]) return (1) ; /* return if C empty */
w = cs_malloc (n, sizeof (double)) ; /* get workspace */
if (!w) return (0) ; /* out of memory */
f = Ci [p] ;
for ( ; p < Cp [1] ; p++) f = CS.MIN (f, Ci [p]) ; /* f = min (find (C)) */
for (j = f ; j != -1 ; j - parent [j]) w [j] - 0 ; /* clear workspace w */
for (p - Cp [0] ; p < Cp [1] ; p++) w [Ci [p]] = Cx [p] ; /* w = C */
for (j = f ; j != -1 ; j = parent [j]) /* walk path f up to root */
{

P - Lp [j] ;
alpha - w [j] / Lx [p] ; /* alpha = w( j ) / L ( j , j ) */
beta2 = beta*beta + sigma*alpha*alpha ;
if (beta2 <= 0) break ; /* not positive definite */
beta2 = sqrt (beta2) ;
delta = (sigma > 0) ? (beta / beta2) : (beta2 / beta) ;
gamma = sigma * alpha / (beta2 * beta) ;
Lx Cp] = delta * Lx [p] + ((sigma > 0) ? (gamma * w [j]) : 0) ;
beta » beta2 ;
for (p++ ; p < Lp [j+1] ; p++)
{

wl = w [Li [p]] ;
w [Li [p]] = w2 = wl - alpha * Lx [p] ;
Lx [p] = delta * Lx [p] + gamma * ((sigma > 0) ? wl : w2) ;

}
}
cs_free (w) ;
return (beta2 > 0) ;

}
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cs_updown returns 0 if it runs out of memory or if the downdated matrix is not
positive definite, and 1 otherwise. To keep the user interface as simple as possible,
the function allocates its own workspace w of size n. Not all of this will be used, and
care is taken to initialize only the part of the workspace w that will be needed. The
time taken by the function is proportional to the number of entries in L that change;
this can be much less than n (consider the case where f =n, for example). Since all
columns along the path / ~» r are a subset of this path, only those entries w[i]
where i G {/ -^ r} will be used. An alternative approach (used by CHOLMOD) is
to allocate and initialize w only once and to set it to zero as the path is traversed.
In this case, the traversal of the path to clear w can be skipped.

The update/downdate algorithms in CHOLMOD can modify the nonzero pat-
tern of L, but this requires a more complex data structure than the cs sparse matrix.
CHOLMOD can also perform a multiple-rank update/downdate of a supernodal
Cholesky factorization and can add or delete rows and columns from L.

The MATLAB interface for cs_updown adds a substantial amount of overhead,
since a MATLAB mexFunction should not modify its inputs. The interface makes
a copy of L (taking O(n + \L\) time) and then modifies it with a call to cs_updown
(taking time proportional to the number of entries in L that change). The latter
can be as small as Q(l) and as high as O(|L|), so the time to make the copy can be
substantially larger than the time to update L. The cs_updown function also requires
a matrix L for which no entries have been dropped due to numerical cancellation.
The MATLAB statement L=chol (A) ' drops zeros due to numerical cancellation, but
L=cs_chol(A,0) leaves them in the matrix. The MATLAB function cholupdate
computes a rank-1 update or downdate for full matrices only.

4.11 Further reading
George and Liu [88, 89] cover sparse Cholesky factorization in depth, prior to the de-
velopment of elimination trees, supernodal factorization, or many of the algorithms
in this chapter. They include a full description of SPARSPAK, which includes the
left-looking method described in Section 4.8. SPARSPAK uses linked lists, first used
in YSMP (Eisenstat et al.[73] and Eisenstat, Schultz, and Sherman [76]), rather than
the Tk traversal. Gilbert [101] catalogs methods for computing nonzero patterns
in sparse matrix computations. Schreiber [181] provides the first formal definition
of the elimination tree and also introduces the row subtree Tk. Liu describes the
many uses of the elimination tree and how to compute it [148, 150], discusses the
row-oriented sparse Cholesky factorization [151], and gives an overview of the multi-
frontal method [152]. Gilbert et al. [102] and Gilbert, Ng, and Peyton [107] discuss
how to compute the row and column counts for Cholesky, QR, and LU factorization
and how to compute the elimination tree of AT A. Davis [29] presents an up-looking
LDLT factorization algorithm with an O(|L|)-time column count algorithm that
traverses each row subtree explicitly.

The row and column count algorithms rowcnt and cs_counts are due to
Gilbert, Ng, and Peyton [107], except for a few minor modifications. The algo-
rithms described here use a slightly different method for determining the skeleton

66 Chapter 4. Cholesky factorization



matrix. Tarjan [195] discusses how the disjoint-set-union data structure can be used
efficiently to compute a sequence of least common ancestors.

Many software packages are available for factorizing sparse symmetric positive
definite or symmetric indefinite matrices. Details of these packages are summarized
in Section 8.6, including references to papers that discuss the supernodal and mul-
tifrontal methods. Gould, Hu, and Scott [116] compare many of these packages.

The BLAS (Dongarra et al. [46]) and LAPACK (Anderson et al. [8]) are two of
the many software packages that provide dense matrix operations and factorization
methods. Optimized BLAS can obtain near-peak performance on many computers
(Goto and van de Geijn [115]).9

Applications that require the update or downdate of a sparse Cholesky fac-
torization include optimization algorithms, least squares problems in statistics, the
analysis of electrical circuits and power systems, structural mechanics, boundary
condition changes in partial differential equations, domain decomposition meth-
ods, and boundary element methods, as discussed by Hager [124]. Gill et al. [110]
and Stewart [190] provide an extensive summary of update/downdate methods.
Stewart [189] introduced the term downdating and analyzed its error properties.
LINPACK includes a rank-1 dense update/downdate [45]; it is used in the MAT-
LAB cholupdate function. The chol_update function above is Carlson's algo-
rithm [20], and chol-downdate is from Pan [163]. The cs.updown function is
based on Bischof, Pan, and Tang's combination of Carlson's update and Pan's
downdate [16]. Davis and Hager developed an optimal sparse multiple-rank super-
nodal update/downdate method, including a method to add and delete rows from
A (CHOLMOD [35, 36, 37]).

Exercises
4.1. Use cs.ereach to implement an O(|L|)-time algorithm for computing the

elimination tree and the number of entries in each row and column of L. It
should operate using only the matrix A and O(n) additional workspace. The
matrix A should not be modified.

4.2. Compare and contrast cs_chol with the LDL package [29] and with
cholmod_rowf ac. Both can be downloaded from www.siam.org/books/fa02.

4.3. Write a function that solves Lx — b when L, x, and b are sparse and L
comes from a Cholesky factorization, using the elimination tree. Assume the
elimination tree is already available; it can be passed in a parent array, or it
can be found by examining L directly, since L has sorted columns.

4.4. Repeat Problem 4.3, but solve LTx = b instead.
4.5. The cs_ereach function can be simplified if A is known to be permuted ac-

cording to a postordering of its elimination tree and if the row indices in each
column of A are known to be sorted. Consider two successive row indices i\_
and i-2 in a column of A. When traversing up the elimination tree from node

9 www.tacc.utexas.edu/resources/software
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iiy the least common ancestor of «i and i% is the first node a > 1-2- Let p be
the next-to-the-last node along the path ii ̂  a (where p < i2 < a). Include
the path i\ -^ p in an output queue (not a stack). Continue traversing the
tree, starting at node i^. The resulting queue will be in perfectly sorted order.
The while (len>0) loop in cs_ereach can then be removed.

4.6. Compute the height of the elimination tree, which is the length of the longest
path from a root to any leaf. The time taken should be O(n). The result
should be the same as the second output of the MATLAB symbf act function.

4.7. Why is head of size n+1 in cs_counts?
4.8. How does the skeleton function implicitly ignore duplicate entries?
4.9. The cs_schol function computes a postordering, but does not combine it

with the fill-reducing ordering, because the ordering from cs.amd includes an
approximate postordering of the elimination tree. However, cs_amd might
not be called. Add an option to cs_schol to combine the fill-reducing order
(or the natural ordering) with the postordering.

4.10. Write a function that computes the symbolic Cholesky factorization of A (the
nonzero pattern of L). Hint: start with cs_chol and remove any numerical
computations. The algorithm should compute the pattern of L mO(\L\) time
and return a matrix L with sorted columns. The s array can be removed,
since the row indices can be stored immediately into L in any order. It should
allocate both N->L->i and N->L->x for use in Problem 4.11. Allocating
N->L->x can be postponed, but allocating it here makes it simpler to write
a MATLAB mexFunction interface for this problem.

4.11. Write a sparse left-looking Cholesky factorization algorithm with prototype
int cs_leftchol(cs *A, ess *S, csn *N). It should assume the nonzero
pattern of L has already been computed (see Problem 4.10). Compare its
performance with cs_chol and cs_rechol in Problem 4.12. The algorithm is
very similar to cs_chol. The initializations are identical, except that x should
be created with cs_calloc, not cs_malloc. The N structure should be passed
in with all of N->L preallocated. The s array is not needed if cs_ereach is
merged with cs_lef tchol (the topological order is not required).

4.12. Write a function with prototype int cs_rechol(cs *A, ess *S, csn *N)
that computes the Cholesky factorization of A using the up-looking method.
It should assume that the nonzero pattern of L has already been computed
in a prior call to cs_chol (or by Problem 4.10). The nonzero pattern of A
should be the same as in the prior call to cs_chol.

4.13. An incomplete Cholesky factorization computes an approximation to L with
fewer nonzeros. It is useful as a preconditioner for iterative methods, as
discussed in detail by Saad [178]. One method for computing it is to drop
small entries from L as they are computed. Another is to use a fixed nonzero
pattern (typically the nonzero entries in A) and keep only entries in L within
that pattern. Write an incomplete Cholesky factorization based on cs_chol
or cs_leftchol (Problem 4.11). See Problem 6.13 for more details. See also
the MATLAB cholinc function.
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Orthogonal methods

The most reliable methods for solving least squares problems use orthogonal trans-
formations. This chapter considers QR factorization based on Householder reflec-
tions and Givens rotations.

5.1 Householder reflections
A Householder reflection is an orthogonal matrix of the form H = I—f3vvT, where (3
is a scalar and v is a column vector. The vector v and scalar (3 can be chosen based
on a vector x so that Hx is zero except for the first entry (Hx]\ = ±||o;||2. The
MATLAB function [v,beta,s]=gallery('house',x,2) computes v, beta, and s
= (Hx)i. Applying H to a, vector x of length n takes only about 4n floating-point
operations (Hx = x — v(/3(vTx))). The matrix H is symmetric and orthogonal
(HHT = H1 H — /), as a consequence of how (3 and v are chosen. The cs_house
function ensures s = ||:r||2- It computes (3 and s and overwrites x with v.

double cs_house (double *x, double *beta, int n)

•C
double s, sigma = 0 ;
int i ;

if (!x || !beta) return (-1) ; /* check inputs */
for (i = 1 ; i < n ; i++) sigma += x [i] * x [i] ;
if (sigma == 0)
-C

s = fabs (x [0]) ; /* s = |x(0)| */
(*beta) = (x [0] <= 0) ? 2 : 0 ;
x [0] = 1 ;

}
else

{
s - sqrt (x [0] * x [0] + sigma) ; /* s = norm (x) */
x [0] - (x [0] <- 0) ? (x [0] - s) : (-sigma / (x [0] + s)) ;
(*beta) = -1. / (s * x [0]) ;

}
return (s) ;

}
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Let V and X be the nonzero pattern of v and x, respectively. If x\ 7^ 0,
then V = X. The theorems and algorithms for the sparse QR factorization are
simplified if this condition always holds, and thus this discussion assumes that x\
is a structural entry in x. That is, x\ will always be an entry in the sparse vector
x, but it might be numerically zero. Then, ignoring numerical cancellation, V = X
is always true. Normally, a Householder reflection H is applied not only to the
vector x it was created from but also to other vectors or matrices as well. If applied
to a vector y (y = Hy), and assuming x\ ^ 0, the nonzero pattern of y becomes
y = y\JV = y(JXifyr}Xisnot empty, and y = y otherwise.

The function csJiapply applies a Householder reflection to a dense vector
x, where v is sparse. It overwrites x with x-v*(beta*(v'*x)). The vector v is
obtained from the ith column of the matrix V.

int cs_happly (const cs *V, int i, double beta, double *x)

{
int p, *Vp, *Vi ;

double *Vx, tau = 0 ;

if (!CS_CSC (V) I I !x) return (0) ; /* check inputs */

Vp = V->p ; Vi = V->i ; Vx = V->x ;

for (p = Vp [i] ; p < Vp [i+1] ; p++) /* tau = v'*x */
{

tau += Vx [p] * x [Vi [p]] ;
}
tau *= beta ; /* tau = beta*(v'*x) */
for (p = Vp [i] ; p < Vp [i+1] ; p++) /* x = x - v*tau */
{

x [Vi [p]] -= Vx [p] * tau ;
}
return (1) ;

>

5.2 Left- and right-looking QR factorization
In this section, two Householder-based QR factorization algorithms are described
that factorize the m-by-n matrix A into the product QR, where Q is orthogonal
and R is upper triangular (or upper trapezoidal if m < n): a left-looking algorithm
and a right-looking algorithm.

Suppose A is m-by-n with m > n. A sequence of n Householder reflections
HI, ... ,Hn is chosen to reduce A to upper triangular form. Let A^ denote the
product HkHk-i... HI A. The first Householder reflection, HI, is constructed from
the first column of ^4; thus, the first column of HI A is all zero except for the
diagonal entry, an = ||A*i||2- The fcth Householder reflection is chosen based on
x = A\, ~J fc, a vector of length m — k +1, resulting in /3k (a scalar) and Uk (a vector
of length m — k + 1). Let v^ be a column vector of length m that is zero in rows 1
to k - I and (vk)k...m = Vk- Then Hk - I - fefcvf.

Theorem 5.1 (Golub [113]). The QR factorization QR = A, where A e Emxn

and
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not



The sequence of Householder reflections can be applied in a left-looking or
right-looking manner. The right-looking algorithm qr_right simply applies each
Householder reflection to all of A as soon as it is constructed. The qr-right function
is difficult to implement in a concise sparse matrix algorithm, although it forms the
basis of the multifrontal sparse QR method.

function [V.Beta.R] = qr_right (A)
[m n] = size (A) ;

V = zeros (m,n) ;
Beta = zeros (l,n) ;
for k = l:n

[v,beta,s] = gallery ('house', A (k:m,k) , 2) ;
V (k:m,k) = v ;
Beta (k) = beta ;
A (k:m,k:n) = A (k:m,k:n) - v * (beta * (v' * A (k:m,k:n))) ;

end
R = A ;

The left-looking algorithm qr_lef t applies the Householder reflections only to the
current column k, one column at a time, and is simpler to implement for the sparse
case.

function [V,Beta,R] = qr_left (A)
[m n] = size (A) ;
V = zeros (m,n) ;
Beta = zeros (l,n) ;
R = zeros (m,n) ;
for k = l:n

x - A (:,k) ;
for i = l:k-l

v » V (i:m,i) ;
beta = Beta (i) ;
x (i:m) = x (i:m) - v * (beta * (v' * x (i:m))) ;

end
[v,beta,s] = gallery ('house', x (k:m), 2) ;

V (k:m,k) = v ;
Beta (k) = beta ;
R (l:(k-l),k) = x (l:(k-D) ;
R (k,k) = s ;

end

Note that qr_right and qrJLeft do not compute an explicit representation of Q;
this is also true of the sparse left-looking QR factorization described next.

5.3 Householder-based sparse QR factorization
The left-looking QR factorization algorithm (qr_left) forms the basis of the sparse
QR factorization algorithm presented below.

Let Hi* and 7£*j be the nonzero pattern of row i and column j of R, respec-
tively. Let A\} and A[J denote the nonzero pattern of row i and column j of A^,
respectively. Let V^ be the nonzero pattern of v^. Let T be the column elimination
tree of A (the elimination tree of ATA).
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That is, in HA, the nonzero pattern of any modified row i € V is replaced with the
set union of all rows that are modified by the Householder reflection H.

Proof. From Theorem 2.1, the nonzero pattern of vTA = (ATv}T is given by
(5.1). The entry (v(vTA})ij (/? can be ignored) is nonzero if and only if i 6 V
and j € Ujgy^i*- The matrix v(vTA) is then subtracted from A to obtain HA,
modifying all rows i e V. Each of the corresponding rows of A was used to construct
the set union (5.1), so all of them now have the same nonzero pattern, given by
(5.1).

Theorem 5.3 (Golub and Van Loan [114]). If ATA is positive definite, and its
Cholesky factorization is LLT = ATA, then 

Proof.

Theorem 5.4 (George and Ng [97]). If A\.^ ' is structurally nonzero for all
then

Theorem 5.5 (Coleman, Edenbrandt, and Gilbert [22], George and Heath [83]).
Assuming the matrix A has the strong Hall property, 7£*fc = C^*, where £&* denotes
the nonzero pattern of the kth row of the symbolic Cholesky factor of ATA. If A
does not have the strong Hall property,

Corollary 5.6. 11,+k = Reachrk(Ck), where Ck is the nonzero pattern of the upper
triangular part of column k of ATA (assuming A has the strong Hall property).

A more concise method for computing 7£*fc is based on the following theorem.

Theorem 5.7. 7£*fc = Reach<rk({mmAi* \i € A*k}} (assuming A has the strong

Some of the theorems stated here require A\.k ' to be structurally nonzero
(that is, it is an entry in the data structure even if numerically zero). If this is
not the case, then the rows of A can be permuted, or the sparse matrix A can be
modified by adding explicit zero entries, to ensure that this condition holds. All
of the theorems ignore numerical cancellation. Some theorems require the matrix
to have the strong Hall property; they provide loose upper bounds on the nonzero
pattern otherwise. Because of space constraints, the proofs are brief or omitted.
The definition of strong Hall is given in Section 7.3.

Theorem 5.2 (George, Liu, and Ng [95]). Consider HA = A- v(/3(vTA)). Then
(HA)i*, where i £ V is equal to row i of A. For any row i € V, the nonzero pattern
of(HA}i* is
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Hall property).

Proof. Consider column k of A and the nonzero pattern of C — ATA. The
matrix C can be written as a summation of outer products, one for each row,
C = ][3£Li Aj+Ai*. Consider the entry a^ ^ 0 in column k. The nonzero pattern
of A^Ai* is a dense submatrix of C; every Cfc^ is nonzero for any pair of column
indices k\ and k-2 in Ai*. From Theorem 4.13, ki < k% implies k\ ~» fc2 in Tfc.
Thus, &2 is redundant for computing Reach^C/-). Only j = min,4i*, the smallest
column index of nonzero entries in row i, needs to be considered for any entry a^
in column k of A. This j corresponds to the leftmost entry o^ in row i of A. Thus

By definition, Vk = A\,,~ \{I.. .k — 1}. It can be computed using either of
the next two theorems.

Theorem 5.8.

where A has the strong Hall property. Otherwise, (5.3) is an upper bound.

These theorems are illustrated with an example matrix, its QR factorization
in Figure 5.1, and its column elimination tree. The upper triangular matrix R and
lower triangular matrix V containing the Householder vectors are shown as a single
matrix. Fill-in entries that appear in R or V but not in A are shown as circled x's.

With these theorems, a left-looking sparse QR factorization algorithm can
be stated in the following pseudocode, sparse_qr_lef t. It assumes Askk ' is struc-

where each set in the above expression is disjoint from all other sets, and A has the
strona Hall vrovertv. That is.

If A does not have the strong Hall property, this is an upper bound on V.

The left-looking sparse QR algorithm cs_qr uses a less concise theorem to
compute Vfc to avoid the need for finding the set \{i \ k — min.4i*}|.

Theorem 5.9.
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Figure 5.1. QR factorization

turally nonzero or, equivalently, k € Vk. Compare the following pseudocode function
with the MATLAB function qr_lef t.

function [V,/?i...n,.R] = sparse_qr_left(A)
T = elimination tree o
compute \R\ using cs_counts of
compute |Vi...n| using (5.2)
for k = 0 to n — I do

for each i 6 7£*fc do

if parent (i) = k then

The cs_vcount function evaluates (5.2). It also computes a row permutation P
(represented by pinv) that ensures the diagonal entries (PAy^ J are all structurally
nonzero and finds leftmost [i] = min^* for all rows i. It finds |Vi...n| by creating
and updating a set of n linked lists. At step k of the algorithm, list A: will contain
the set Vfc. The lists are initialized by placing each row i in the list min^*. The
primary for k loop computes the row permutation and nonzero counts of V. In
this loop, the first entry in the kih linked list is selected as the "pivot row"; this row
becomes the kih row of PA to ensure that (PA)\.^~ ' is structurally nonzero. If no
such row exists, then the matrix A is structurally rank deficient and a fictitious row
is created. Next, all rows in the kih linked list except this first row are removed from
list k and placed in the linked list of the parent of k. After |Vi...n| is computed, any
unordered rows are assigned. It computes S->lnz, which is the number of entries
in V, and S->m2, which is the number of rows in A after fictitious rows are added.
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static int cs_vcount (const cs *A, ess *S)

{
int i, k, p, pa, n = A->n, m = A->m, *Ap = A->p, *Ai = A->i, *next, *head,

*tail, *nque, *pinv, *leftmost, *w, *parent = S->parent ;
S->pinv = pinv = cs_malloc (m+n, sizeof (int)) ; /* allocate pinv, */
S->leftmost = leftmost = cs_malloc (m, sizeof (int)) ; /* and leftmost */
w = cs_malloc (m+3*n, sizeof (int)) ; /* get workspace */
if (Ipinv || !w || lleftmost)

{
cs_free (w) ; /* pinv and leftmost freed later */
return (0) ; /* out of memory */

}
next = w ; head = w + m ; tail = w + m + n ; nque = w + m + 2*n ;
for (k = 0 ; k < n ; k++) head [k] = -1 ; /* queue k is empty */
for (k = 0 ; k < n ; k++) tail [k] = -1 ;
for (k = 0 ; k < n ; k++) nque [k] = 0 ;
for (i - 0 ; i < m ; i++) leftmost [i] - -1 ;
for (k = n-1 ; k >= 0 ; k—)
{

for (p = Ap [k] ; p < Ap [k+1] ; p++)
{

leftmost [Ai [p]] = k ; /* leftmost[i] = min(find(A(i , : )))*/
>

}
for (i = m-1 ; i >= 0 ; i—) /* scan rows in reverse order */
{

pinv [i] = -1 ; /* row i is not yet ordered */
k = leftmost [i] ;
if (k == -1) continue ; /* row i is empty */
if (nque [k]++ == 0) tail [k] = i ; /* first row in queue k */
next [i] = head [k] ; /* put i at head of queue k */
head [k] = i ;

}
S->lnz = 0 ;
S->m2 = m ;
for (k = 0 ; k < n ; k++) /* find row permutation and nnz(V)*/

{
i = head [k] ; /* remove row i from queue k */
S->lnz++ ; /* count V(k,k) as nonzero */
if (i < 0) i = S->m2++ ; /* add a fictitious row */
pinv [i] = k ; /* associate row i with V(: ,k) */
if (—nque [k] <= 0) continue ; /* skip if V(k+l:m,k) is empty */
S->lnz += nque [k] ; /* nque [k] is nnz (V(k+l:m,k)) */
if ((pa = parent [k]) != -1) /* move all rows to parent of k */
{

if (nque [pa] == 0) tail [pa] = tail [k] ;
next [tail [k]] = head [pa] ;
head [pa] = next [i] ;
nque [pa] += nque [k] ;

}
}
for (i = 0 ; i < m ; i++) if (pinv [i] < 0) pinv [i] = k++ ;
cs_free (w) ;
return (1) ;

}

The cs_sqr function does the ordering and analysis for a sparse QR factor-
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ization. Two parameters determine behavior of cs_sqr: order and qr. The order
parameter specifies the ordering to use; the natural ordering (order=0) or a min-
imum degree ordering of ATA (order=3) are good choices for a QR factorization.
The qr parameter must be true (nonzero) for a sparse QR factorization. cs_sqr
first finds a fill-reducing column permutation S->q. The function then finds the
permuted matrix C — AQ (where Q is the column permutation, not the orthogonal
factor Q), determines the elimination tree of CTC and postorders it, and finds the
column counts of L (equivalently, the row counts of R). It then calls cs_vcount to
find the column counts |Vi...n| of the V matrix that holds the Householder vectors.
The cs_qr function performs the numerical QR factorization.

ess *cs_sqr (int order, const cs *A, int qr)

{
int n, k, ok = 1, *post ;

ess *S ;

if (!CS_CSC (A)) return (NULL) ; /* check inputs */

n = A->n ;

S = cs_calloc (1, sizeof (ess)) ; /* allocate result S */

if OS) return (NULL) ; /* out of memory */

S->q = cs_amd (order, A) ; /* fill-reducing ordering */

if (order && !S->q) return (cs_sfree (S)) ;

if (qr) /* QR symbolic analysis */

{
cs *C = order ? cs_permute (A, NULL, S->q, 0) : ((cs *) A) ;

S->parent = cs_etree (C, 1) ; /* etree of C'*C, where C=A(:,q) */

post = cs_post (S->parent, n) ;

S->cp = cs_counts (C, S->parent, post, 1) ; /* col counts chol(C'*C) */

cs_free (post) ;

ok = C && S->parent && S->cp && cs_vcount (C, S) ;

if (ok) for (S->unz = 0 , k = 0 ; k < n ; k++) S->unz += S->cp [k] ;

ok = ok && S->lnz >= 0 && S->unz >= 0 ; /* int overflow guard */
if (order) cs_spfree (C) ;

}
else

{
S->unz = 4*(A->p [n]) + n ; /* for LU factorization only, */

S->lnz = S->unz ; /* guess nnz(L) and nnz(U) */

}
return (ok ? S : cs_sfree (S)) ; /* return result S */

}

csn *cs_qr (const cs *A, const ess *S)

{
double *Rx, *Vx, *Ax, *Beta, *x ;

int i, k, p, m, n, vnz, pi, top, m2, len, col, rnz, *s, *leftmost, *Ap, *Ai,

*parent, *Rp, *Ri, *Vp, *Vi, *w, *pinv, *q ;

cs *R, *V ;

csn *N ;

if (!CS_CSC (A) || !S) return (NULL) ;

m = A->m ; n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ;

q = S->q ; parent » S->parent ; pinv = S->pinv ; m2 = S->m2 ;

vnz = S->lnz ; rnz = S->unz ; leftmost = S->leftmost ;

w <• cs_malloc (m2+n, sizeof (int)) ; /* get int workspace */

x «• cs_malloc (m2, sizeof (double)) ; /* get double workspace */

N = cs.calloc (1, sizeof (csn)) ; /* allocate result */
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if (!w || !x || !N) return (cs_ndone (N, NULL, w, x, 0)) ;
s = w + m2 ; /* s is size n */
for (k = 0 ; k < m2 ; k++) x [k] = 0 ; /* clear workspace x */
N->L = V = cs.spalloc (m2, n, vnz, 1, 0) ; /* allocate result V */
N->U = R - cs_spalloc (m2, n, rnz, 1,0); /* allocate result R */
N->B = Beta = cs_malloc (n, sizeof (double)) ; /* allocate result Beta */
if (!R || !V I I IBeta) return (cs.ndone (N, NULL, w, x, 0)) ;
Rp = R->p ; Ri - R->i ; Rx = R->x ;
Vp = V->p ; Vi = V->i ; Vx = V->x ;
for (i = 0 ; i < m2 ; i++) w [i] =-!;/* clear w, to mark nodes */
rnz = 0 ; vnz » 0 ;
for (k = 0 ; k < n ; k++) /* compute V and R */
{

Rp [k] = rnz ; /* R(:,k) starts here */
Vp [k] = pi = vnz ; /* V(:,k) starts here */
w [k] = k ; /* add V(k,k) to pattern of V */
Vi [vnz++] = k ;
top » n ;
col = q ? q [k] : k ;
for (p = Ap [col] ; p < Ap [col+1] ; p++) /* find R(:,k) pattern */
{

i = leftmost [Ai [p]] ; /* i = min(find(A(i,q))) */
for (len = 0 ; w [i] != k ; i = parent [i]) /* traverse up to k */
{

s [len++] = i ;
w [i] = k ;

}
while (len > 0) s [—top] = s [—len] ; /* push path on stack */
i = pinv [Ai [p]] ; /* i = permuted row of A(:,col) */
x [i] = Ax [p] ; /* x (i) = A(:,col) */
if (i > k && w [i] < k) /* pattern of V(:,k) = x (k+l:m) */
{

Vi [vnz++] = i ; /* add i to pattern of V(:,k) */
w [i] = k ;

}
}
for (p = top ; p < n ; p++) /* for each i in pattern of R(:,k) */
{

i = s [p] ; /* R(i,k) is nonzero */
cs_happly (V, i, Beta [i], x) ; /* apply (V(i),Beta(i)) to x */
Ri [rnz] = i ; /* R(i,k) = x(i) */
Rx [rnz-n-] = x [i] ;
x [i] = 0 ;
if (parent [i] == k) vnz = cs_scatter (V, i, 0, w, NULL, k, V, vnz);

>
for (p = pi ; p < vnz ; p++) /* gather V ( : , k ) - x */
{

Vx [p] = x [Vi [p]] ;
x [Vi [p]] - 0 ;

}
Ri [rnz] - k ; /* R(k,k) = norm (x) */
Rx [rnz-M-] * cs_house (Vx+pl, Beta+k, vnz-pl) ; /* [v,beta]=house(x) */

}
Rp W = rnz ; /* finalize R */
Vp [n] - vnz ; /* finalize V */
return (cs_ndone (N, NULL, w, x, 1)) ; /* success */

}
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The cs_qr function uses the symbolic analysis computed by cs_sqr: the
column elimination tree S->parent, column preordering S->q, row permutation
S->pinv, the S->lef tmost array, the number of nonzeros in R and V (S->unz and
S->lnz, respectively), and the number of rows S->m2 after adding fictitious rows if
A is structurally rank deficient.

The function first extracts the contents of S, allocates the result N, and allo-
cates and initializes some workspace. Next, each column k of V and R is computed.
The body of the for k loop first determines where V(: ,k) and R( : ,k) start, and
finds the column A ( : , col) corresponding to C(: ,k). The nonzero pattern 7£*fc of
the kth column of R is found using a symbolic sparse triangular solve (Theorem
5.7). Prior Householder reflections are applied to column k, one for each nonzero
entry in |7£fc|, and V/t is computed (5.3). The modified column x = Hk-i • • • H\C*k
is gathered from its dense vector representation x as the kth column of V, and over-
written with the kth Householder vector. A complete symbolic and numeric QR
factorization, including a fill-reducing column preordering, can be computed with
S=cs_sqr(3,A,l) followed by N=cs_qr(A,S).

In MATLAB, [Q,R]=qr(A) computes the QR factorization of A. The fill-
reducing column permutation must be applied to A prior to calling qr. The MAT-
LAB qr function is based on Givens rotations, not Householder reflections. It
returns the orthogonal matrix Q, not the more compact representation of V, Beta,
and pinv that cs_qr uses.

The cs_qright and cs_qleft M-files apply the Householder reflections (V,
Beta, and p as computed by cs_qr) to the left or right of a matrix. cs_qlef t is
similar to csjiapply, except that it applies all of the Householder vectors.

function X = cs_qright (V, Beta, p, Y)

7tCS_QRIGHT apply Householder vectors on the right.

7. X = cs_qright(V,Beta,p,Y) computes X = Y*P'*H1*H2*...*Hn = Y*Q where Q is

'/. represented by the Householder vectors V, coefficients Beta, and
'/, permutation p. p can be [] , which denotes the identity permutation.

7. To obtain Q itself, use Q = cs_qright(V,Beta,p,speye(size(V,l))) .

7,
7, See also CS_QR, CS_QLEFT.

[m n] - size (V) ;

X = Y ;
if ("isempty (p)) X = X (:,p) ; end

for k = l:n

X = X - (X * (Beta (k) * V (:,k))) * V (:,k)' ;
end

function X = cs_qleft (V, Beta, p, Y)

7,CS_QLEFT apply Householder vectors on the left.

7, X = cs_qleft(V,Beta,p,Y) computes X = Hn*...*H2*H1*P*Y = Q'*Y where Q is

7. represented by the Householder vectors V, coefficients Beta, and

7. permutation p. p can be [] , which denotes the identity permutation.

7.
7. See also CS_QR, CS_QRIGHT.

[m2 n] = size (V) ;
[m ny] = size (Y) ;
X = Y :
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if (m2 > m)

if (issparse (Y))
X = [X ; sparse(m2-m,ny)] ;

else
X = [X ; zeros(m2-m,ny)] ;

end

end

if ("isempty (p)) X = X (p,:) ; end
for k = l:n

X = X - V (:,k) * (Beta (k) * (V (:,k)' * X)) ;

end

The Householder vectors stored in V are typically much sparser than the ex-
plicit representation of Q. Try this short experiment in MATLAB, which compares
Q (with 38,070 nonzeros) and V (with only 3,906 nonzeros):

load west0479

q = colamd (west0479) ;

[Q,R] = qr (west0479 ( : ,q) ) ;

[V,beta,p,R2] = cs_qr (west0479 (:,q)) ;

Q2 = cs_qright (V, beta, p, speye(size(V,l))) ;

5.4 Givens rotations
A Givens rotation is a 2-by-2 orthogonal matrix that can be applied to a 2-by-l
vector to zero out a selected entry. If a and b are scalars, c and s are selected so
that

where r = ±||o;||2. The coefficients c and s are computed using the following givens2
MATLAB function.

function g = givens2(a,b)

if (b == 0)
c = 1 ; s = 0 ;

elseif (abs (b) > abs (a))
tau = -a/b ; s = 1 / sqrt (l+tau~2) ; c = s*tau ;

else
tau » -b/a ; c • 1 / sqrt (l+tau~2) ; s = c*tau ;

end
g = [c -s ; s c] ;

If applied to a 2-by-n sparse matrix X (equivalently, to two rows selected from
a larger matrix), the nonzero patterns of the rows of GX are both equal to the union
of the nonzero pattern of the rows of X, except that any one entry in GX can be
selected to become zero.

5.5 Row-merge sparse QR factorization
A Givens-rotation-based QR factorization requires 50% more floating-point opera-
tions than a Householder-based QR factorization for a full matrix, but it has some
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advantages in the sparse case. Rows can be ordered to reduce the work below that
of the Householder-based sparse QR. The disadvantage of using Givens rotations
is that the resulting QR factorization is less suitable for multifrontal techniques.

MATLAB uses Givens rotations for its sparse QR factorization. It operates on
the rows of R and A. The matrix R starts out equal to zero but with enough space
allocated to hold the final R. Each step of the factorization brings in a new row of
A and eliminates its entries with the existing R until it is either all zero or it can be
placed as a new row of R. The qr_givens_f ull algorithm for full matrices is shown
below. It assumes the diagonal of A is nonzero. The innermost loop annihilates the
ttik entry via a Givens rotation of the incoming ith row of A and the kth row of R.

function R = qr_givens_full (A)
[m n] = size (A) ;
for i = 2:m

for k = l:min(i-l,n)
A ([k i],k:n) = givens2 (A(k,k), A(i,k)) * A ([k i],k:n) ;
A (i,k) = 0 ;

end
end
R = A ;

For the sparse case, the rotation to zero out a^ must be skipped if it is already
zero. The entries k that must be annihilated correspond to the nonzero pattern V;*
of the ith row of the Householder matrix V, discussed in the previous section.

Theorem 5.10 (George, Liu, and Ng [95]). Assume A has a zero-free diagonal.
The nonzero pattern V;* of the ith row of the Householder matrix V is given by the
path f ~» min(i, r) in the elimination tree T of ATA, where f = min Ai* is the
leftmost nonzero entry in the ith row, and r is the root of the tree.

This method is illustrated in the qr_givens M-file below.

function R = qr_givens (A)
[m n] = size (A) ;
parent = cs_etree (sparse (A), 'col') ;
A = full (A) ;
for i = 2:m

k = min (find (A (i,:))) ;
if (isempty (k))

continue ;
end
while (k > 0 && k <= min (i-l,n))

A ([k i],k:n) = givens2 (A(k,k), A(i,k)) * A ([k i],k:n) ;
A (i,k) = 0 ;
k = parent (k) ;

end
end
R = sparse (A) ;

The M-file is not meant as an efficient implementation. Since operating on the
rows of a sparse matrix is very slow, the matrix is converted into a full matrix first.
In an efficient implementation, only the ith row of A is held in a working array of



5.6. Further reading 81

size n. The matrix R is allocated with enough space for each final row, but it starts
out empty. The ith row of A is annihilated with rows k in the path / ~» min(z, r)
until encountering an empty row k of R, at which point the elimination stops and
the partially eliminated row of A becomes the kih row of R. If A has a zero-
free diagonal, this happens when i — k. This method is called the row-merge QR
factorization algorithm; it could also be called an up-looking sparse QR, since at
the iih step it accesses only row i of A and rows 1 to min(i, n) of R. The qr_givens
function assumes A has a zero-free diagonal.

5.6 Further reading
George and Heath [83] present the Givens-rotation row-merge algorithm; the qr
function in MATLAB is Gilbert's implementation of this method. The row-merge
scheme of Liu [149] is a generalization of the George-Heath method. George and
Liu [90] compare Householder reflections and Givens rotations for sparse QR fac-
torization. Heath [128] surveys a range of methods for solving sparse linear least
squares problems. Givens [112] and Householder [138] discuss the transformations
later named after them. Householder reflections, Givens rotations, QR factoriza-
tion, and the Gram-Schmidt method are all discussed at length by Golub and Van
Loan [114], Higham [135], and Stewart [190].

Many papers have considered the sparsity pattern of Q, R, and the House-
holder matrix V and data structures to represent them. Coleman, Edenbrandt,
and Gilbert [22] showed that a sequence of symbolic Givens rotations gives a tight
upper bound on the structure of R when A is strong Hall. George, Liu, and Ng
[95] describe an efficient data structure for storing the Householder matrix V, using
paths in the elimination tree. The Gram-Schmidt method is not typically used in
the sparse case, since it computes Q explicitly, and an explicit sparse Q has many
more nonzeros than the Householder matrix V. Ng and Peyton [158] describe an
efficient data structure for an explicit sparse Q.

Gilbert, Ng, and Peyton [108] discuss the use of separators for predicting
structure in sparse QR factorization. Hare et al. [127] show how to compute the
nonzero pattern of Q and R. Pothen [168] extended these results by showing that
there exist matrices that reach these bounds. Ng and Peyton [160] determine a
bound on the nonzero pattern of Q based on the Householder matrix V. Gilbert
et al. [102] and Gilbert, Ng, and Peyton [107] discuss how to compute the row and
column counts for Cholesky, QR, and LU factorization and how to compute the
elimination tree of ATA. Oliveira [162] discusses how to predict the pattern of QR
factorization without computing the Dulmage-Mendelsohn decomposition (see also
Section 7.4). Many of these methods for determining the sparsity patterns for both
QR and LU factorization are surveyed by Gilbert and Ng [106].

Row orderings have a large impact on the intermediate fill-in and total work
required for the row-merge sparse QR, as shown by George and Ng [96], who present
a nested dissection approach for determining a good row permutation. See also
George, Liu, and Ng's three-part series [92, 93, 94] and Gillespie and Olesky [111].

Sparse multifrontal QR factorization is typically based on Householder reflec-
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tions; see Lu and Barlow [154], Matstoms [156], Amestoy, Duff, and Puglisi [6], and
Pierce and Lewis [167] (who also present an approximate rank-revealing multifrontal
QR algorithm).

Underdetermined systems can be solved with QR factorization applied to AT',
as discussed by George, Heath, and Ng [84].

Exercises
5.1. Write a function that computes the nonzero pattern of V and R.
5.2. Modify cs_qr so that it can handle m-by-n matrices where m < n. One simple

solution is to append empty rows onto A, but this will not be efficient if m is
much smaller than n.

5.3. Write a function csjreqr (cs *A, ess *S, csn *N) that computes a QR
factorization. It should assume that the nonzero patterns of V and R are
already computed.

5.4. Add column pivoting to cs_qr. If a column has a norm less than or equal
to a given tolerance, permute it to the end of the matrix. The matrices V
and R will need to be dynamically reallocated (see cs_lu in Chapter 6), since
permuting the columns breaks the symbolic preanalysis.

5.5. Combine the postordering with the fill-reducing ordering in cs_sqr (see Prob-
lem 4.9 for details).



LU factorization

Of the three factorization methods (Cholesky, QR, and LU) presented here, LU
factorization is the oldest. As a factorization method, it factors a matrix A into the
product LU, where L is lower triangular and U is upper triangular. The historical
method for dense matrices is a right-looking one (Gaussian elimination); both it
and a left-looking method are presented here. The latter is used in CSparse, since
it leads to a much simpler implementation for the sparse case.

6.1 Upper bound on fill-in
Theorem 4.1, which describes the filled graph of the Cholesky factor, also holds for
the directed graph of L + U if no pivoting occurs and A is assumed to be square.
However, a more useful analysis accounts for partial pivoting with row interchanges,
based on an important relationship between the LU and QR factorizations of a
matrix. Consider both LU — PA and QR — A, where P is determined by partial
pivoting.

Theorem 6.1 (George and Ng [97], Gilbert [101], and Gilbert and Ng [106]). //
the matrix A is strong Hall, R is an upper bound on the nonzero pattern ofU. More
precisely, Uij can be nonzero if and only ifrij ^ 0.

This upper bound is tight in a one-at-a-time sense; for any r^ ^ 0, there
exists an assignment of numerical values to entries in the pattern of A that makes
u^ ^ 0. The outline of the proof can be seen by comparing Gaussian elimination
with Householder reflections. Both eliminate entries below the diagonal. For a
Householder reflection, the nonzero pattern of all rows affected by the transforma-
tion takes on a nonzero pattern that is the union of all of these rows (Theorem 5.2).
With partial pivoting and row interchanges, these rows are candidate pivot rows
(all the rows i for which a\k~ * ̂  0 or i £ A\.^~ ). Only one of them is selected as
the pivot row. Every other candidate pivot row is modified by adding to it a scaled
copy of the pivot row. An upper bound on the pivot row pattern is the union of
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all candidate pivot rows. This proof also establishes a bound on I/, namely, the
nonzero pattern of V.

Theorem 6.2 (Gilbert [101] and Gilbert and Ng [106]). // the matrix A is strong
Hall, and assuming a^ ' ^ 0 for all k, the Householder matrix V is an upper
bound on the nonzero pattern of L obtained with partial pivoting. More precisely,
lij can be nonzero if and only if Vij ^ 0.

With this relationship, a symbolic QR ordering and analysis becomes one
possible method for ordering a matrix for LU factorization. It is also possible to
statically preallocate space for L and U. The bound can be loose, however. In
particular, if the matrix is diagonally dominant, then no pivoting is needed to
maintain numerical accuracy.10 If it also has a symmetric nonzero pattern (or if all
entries in the pattern of A + AT are considered to be "nonzero"), then the nonzero
patterns of L and U are identical to the patterns of the Cholesky factors L and
LT, respectively, of a symmetric positive definite matrix with the same nonzero
pattern as A + AT. In this case, a symmetric fill-reducing ordering of A + AT is
appropriate. Alternatively, the permutation matrix Q can be selected to reduce the
worst case fill-in for PAQ — LU for any P, and then the permutation P can be
selected solely on the basis of partial pivoting with no regard for sparsity. Thus, the
cs_sqr function provides four basic strategies for finding a fill-reducing permutation
Q-

• order=0: No column permutation is used; LU — PA. This is useful if A is
already known to have a good column ordering.

• order =1: The column permutation Q is found from a fill-reducing ordering
of A + AT. During factorization, an attempt is made to ensure P = QT

(preference for selecting the pivot is given to the diagonal entry of QTAQ).
This strategy is well suited to the many unsymmetric matrices arising in
practice that have a roughly symmetric nonzero structure and reasonably
large entries on the diagonal.

• order=2: Q is obtained from a fill-reducing ordering of STS, where S — A
except that all entries in "dense" rows of S are removed. A row in A with more
entries than a heuristic threshold is considered dense. With partial pivoting,
the (optimistic) hope is that these rows will not be selected as pivot rows until
very late in the factorization.

• order=3: Q is obtained from the ordering of AT A with no dense rows dropped.
In this case, the ordering tries to reduce the QR upper bounds on L and U
given in Theorems 6.1 and 6.2.

10This is called static pivoting; it can be used even if the matrix is not quite diagonally dominant,
if iterative refinement is used after the solution has been found.
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If the qr parameter of cs_sqr is true, the QR upper bound is found for the
permuted matrix AQ (here, Q is the column permutation, not the orthogonal factor
Q). In this case, LU factorization can proceed using a statically allocated memory
space. This bound can be quite high, however (a comparison between the upper
bound and the actual \L\ and \U\ is left as an exercise). It is sometimes better just
to make a guess at the final \L\ and \U\ or to guess that no partial pivoting will
be needed and to use a symbolic Cholesky analysis to determine a guess for \L\
and |U| (this is left as an exercise). Sometimes a good guess is available from the
LU factorization of a similar matrix in the same application. If qr is false, cs_sqr
makes an optimistic guess that |L| = |t/"| = 4|.4| + n. This guess is suitable for some
matrices but too low for others. After calling cs_sqr, the guess S->lnz and S->unz
can be easily modified as desired. The only penalty for making a wrong guess is
that the memory space for \L\ or \U\ must be reallocated if the guess is too low, or
memory may run out if the guess is too high.

6.2 Left-looking LU
The left-looking LU factorization algorithm computes L and U one column at a
time. At the kih step, it accesses columns 1 to k — 1 of L and column k of A. If
partial pivoting is ignored, it can be derived from the following 3-by-3 block matrix
expression, which is very similar to (4.6) for the left-looking Cholesky factorization
algorithm. The matrix L is assumed to have a unit diagonal.

The middle row and column of each matrix is the kih row and column of L, C7, and
>1, respectively. If the first k — 1 columns of L and U are known, three equations
can be used to derive the kih columns of L and U: L\\u\i = a\2 is a triangular
system that can be solved for u\i (the kih column of U), /2i«i2 + ^22 = «22 can be
solved for the pivot entry ^22, and £31^12 + £32^22 = °32 can then be solved for £32
(the kih column of L). However, these three equations can be rearranged so that
nearly all of them are given by the solution to a single triangular system:

The solution to this system gives u^ = X i , «22 = £2, and £32 = £3/^22- The algo-
rithm is expressed in the MATLAB function luJLef t, except that partial pivoting
with row interchanges has been added. It returns L, U, and P so that L*U = P*A. I
does not exploit sparsity.
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function [L,U,P] = lu.left (A)

n = size (A,l) ;

P = eye (n) ;

L = zeros (n) ;

U = zeros (n) ;

for k = l:n

x = [ L(:,l:k-l) [ zeros(k-l,n-k+l) ; eye(n-k-H) ]] \ (P * A (:,k)) ;

U (l:k-l,k) = x (l:k-l) ; 7. the column of U

[a i] = max (abs (x (k:n))) ; 7. find the pivot row i

i = i + k - 1 ;
L ([i k] ,:) = L ( [k i] , :) ; '/. swap rows i and k of L, P, and x

P ([i k],:) = P ([k i], :) ;

x ([i k]) = x ([k i]) ;

U (k,k) = x (k) ;

L (k,k) = 1 ;

L (k+l:n,k) = x (k+l:n) / x (k) ; 7, divide the pivot column by U(k,k)

end

The derivation of how partial pivoting works in a left-looking algorithm is not
included. A proof of the correctness of applying the row permutations to the rows
of L is given in the next section in a right-looking context.

A direct implementation of a sparse version of lu_left would be difficult,
since it swaps rows i and k of L at the kth step. Access to the rows of L is not
trivial. Rather than swapping rows of L, the cs_lu function leaves the row indices
in L in their original order. That is, a row index i in L corresponds to the same
row in the original unpermuted matrix A. The sparse triangular solve cs_spsolve
is used to solve (6.2) at each step. It uses the inverse row permutation, pinv, to
perform a permuted triangular solve (the columns of L are in their final ordering,
but the rows of L are unpermuted). Then, when the factorization is complete, all
row indices of L can be updated to reflect the final row permutation.

Given a fill-reducing column ordering q, cs_lu computes L, U, and pinv so
that L*U = A(p,q) (where p is the inverse of pinv). The identity matrix in (6.2)
is implicitly maintained. For a nonpivotal row index i, jnew=pinv[i]=-l, and this
column jnew is skipped when performing the sparse triangular solve.

csn *cs_lu (const cs *A, const ess *S, double tol)

{
cs *L, *U ;

csn *N ;

double pivot, *Lx, *Ux, *x, a, t ;

int *Lp, *Li, *Up, *Ui, *pinv, *xi, *q, n, ipiv, k, top, p, i, col, lnz,unz;

if (!CS_CSC (A) || !S) return (NULL) ; /* check inputs */

n = A->n ;

q = S->q ; Inz = S->lnz ; unz = S->unz ;

x = cs_malloc (n, sizeof (double)) ; /* get double workspace */

xi = cs_malloc (2*n, sizeof (int)) ; /* get int workspace */

N = cs_calloc (1, sizeof (csn)) ; /* allocate result */

if (!x || !xi || !N) return (cs_ndone (N, NULL, xi, x, 0)) ;

N->L = L = cs_spalloc (n, n, Inz, 1, 0) ; /* allocate result L */

N->U = U = cs_spalloc (n, n, unz, 1, 0) ; /* allocate result U */

N->pinv = pinv = cs_malloc (n, sizeof (int)) ; /* allocate result pinv */

if (!L || !U I I Ipinv) return (cs_ndone (N, NULL, xi, x, 0)) ;

Lp = L->p ; Up = U->p ;

for (i = 0 ; i < n ; i++) x [i] = 0 ; /* clear workspace */



6.2. Left-looking LU 87

for (i - 0 ; i < n ; i++) pinv [i] = -1 ; /* no rows pivotal yet */
for (k = 0 ; k <= n ; k++) Lp [k] = 0 ; /* no cols of L yet */
Inz = unz - 0 ;
for (k = 0 ; k < n ; k++) /* compute L(:,k) and U(:,k) */
{

/* Triangular solve */
Lp [k] = Inz ; /* L(:,k) starts here */
Up [k] = unz ; /* U(:,k) starts here */
if ((Inz + n > L->nzmax && !cs_sprealloc (L, 2*L->nzmax + n)) I I

(unz + n > U->nzmax && !cs_sprealloc (U, 2*U->nzmax + n)))
{

return (cs_ndone (N, NULL, xi, x, 0)) ;
}
Li - L->i ; Lx = L->x ; Ui = U->i ; Ux = U->x ;
col - q ? (q DO) : k ;
top = cs_spsolve (L, A, col, xi, x, pinv, 1) ; /* x = L\A(:,col) */
/* Find pivot */
ipiv = -1 ;
a = -1 ;
for (p = top ; p < n ; p++)
{

i = xi [p] ; /* x(i) is nonzero */
if (pinv [i] < 0) /* row i is not yet pivotal */
{

if ((t = fabs (x [i])) > a)
{

a = t ; /* largest pivot candidate so far */
ipiv = i ;

>
}
else /* x(i) is the entry U(pinv[i],k) */
{

Ui [unz] = pinv [i] ;
Ux [unz++] = x [i] ;

}
}
if (ipiv == -1 I I a <= 0) return (cs_ndone (N, NULL, xi, x, 0)) ;
if (pinv [col] < 0 && fabs (x [col]) >= a*tol) ipiv = col ;
/* Divide by pivot */
pivot = x [ipiv] ; /* the chosen pivot */
Ui [unz] = k ; /* last entry in U(:,k) is U(k,k) */
Ux [unz++] = pivot ;
pinv [ipiv] = k ; /* ipiv is the kth pivot row */
Li [Inz] = ipiv ; /* first entry in L(:,k) is L(k,k) = 1 */
Lx [lnz++] = 1 ;
for (p = top ; p < n ; p++) /* L(k+l:n,k) = x / pivot */
{

i = xi [p] ;
if (pinv [i] < 0) /* x(i) is an entry in L(:,k) */
{

Li [Inz] = i ; /* save unpermuted row in L */
Lx [lnz++] = x [i] / pivot ; /* scale pivot column */

}
x [i] = 0 ; /* x [O..n-l] = 0 for next k */

}

/* Finalize L and U */
}
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Lp [n] = Inz ;

Up [n] = unz ;

Li = L->i ; /* fix row indices of L for final pinv */

for (p = 0 ; p < Inz ; p++) Li [p] = pinv [Li [p]] ;

cs_sprealloc (L, 0) ; /* remove extra space from L and U */

cs_sprealloc (U, 0) ;

return (cs_ndone (N, NULL, xi, x, 1)) ; /* success */

}

The first part of the cs_lu function allocates workspace and obtains the in-
formation from the symbolic ordering and analysis. The number of nonzeros in L
and U is not known; S->lnz and S->unz are either upper bounds computed from a
symbolic QR factorization or simply a guess.

Triangular solve: The kth iteration of the f or k loop first records the start
of the kth columns of L and U and then reallocates these two matrices if space
might not be sufficient. Next, the triangular system (6.2) is solved for x. No post-
permutation is required for U, since pinv[i] is well defined.

Find pivot: The largest nonpivotal entry in the pivot column is found. An
entry x [i] corresponding to a row i that is already pivotal is copied directly into U.
If no nonpivotal row index i is found (ipiv is -1), the matrix is structurally rank
deficient. If the largest entry in nonpivotal rows is numerically zero (a is zero), the
matrix is numerically rank deficient. The diagonal entry (x[col], where col is the
kth column of AQ and Q is the fill-reducing column ordering), is selected if it is
large enough compared with the partial pivoting choice (x[ipiv]).

Divide by pivot: The pivot entry is saved as U(k,k) , the last entry in
U(: ,k), as required by cs_usolve. A unit diagonal entry is stored as the first entry
in L(: ,k), as required by cs_lsolve. Note that ipiv corresponds to a row index
of A, not PA.

Finalize L and U: The last column pointers for L and U are recorded, the row
indices of L are fixed to refer to their permuted ordering, and any extra space is
removed from L and U.

The algorithm takes O(n+\A\+f) time, where / is the number of floating-point
operations performed. This is essentially O(f), except when A is diagonal (for exam-
ple). MATLAB uses the algorithm above for the [L,U,P]=lu(A) syntax (GPLU).
It uses a right-looking multifrontal method (UMFPACK) for [L,U,P,Q]=lu(A) and
x=A\b when A is sparse, square, and not symmetric positive definite.

6.3 Right-looking and multifrontal LU
Gaussian elimination is a right-looking variant of LU factorization. The method
is not used in CSparse, but it is presented here for two reasons: (1) it leads to a
simpler constructive proof of the existence of the LU = PA factorization, and (2) it
forms the basis of UMFPACK, the multifrontal method for sparse LU factorization
used in MATLAB.

At each step, an outer product of the pivot column and the pivot row is
subtracted from the lower right submatrix of A. The derivation of the method
(ignoring pivoting) starts with an equation very similar to (4.7) for the right-looking



where In = 1 is a scalar, and all three matrices are square and partitioned identi-
cally. Other choices for /n are possible; this choice leads to a unit lower triangular
L and the four equations

Solving each equation in turn leads to the recursive lu_rightr, written in MATLAB
below. This function is meant as a working description of the algorithm, not an
efficient implementation.

function [L,U] = lu_rightr (A)

n - size (A,l)
if (n == 1)

L = 1 ;

U = A ;

else

ull = A (1,1) ; '/. (6.4)

u!2 = A (l,2:n) ; */. (6.5)

121 = A (2:n,l) / ull ; */. (6.6)

[L22.U22] = lu.rightr (A (2:n,2:n) - 121*ul2) ; '/. (6.7)

L = [ 1 zeros(l,n-l) ; 121 L22 ] ;

U = [ull u!2 ; zeros(n-1,1) U22 ] ;

end

The lu_rightr function uses tail recursion, where the recursive call is the very
last step (the last two lines of the loop do not do any work; they just define the
contents of L and U computed via (6.4) through (6.7)). Tail recursion can easily be
converted into an iterative algorithm, as shown by the lu_right function. This is
how a right-looking LU factorization algorithm would normally be written, except
that in the dense case, A is normally overwritten with L and U.

function [L,U] = lu.right (A)

n - size (A,l)

L - eye (n) ;
U = zeros (n) ;

for k = l:n

U (k,k:n) = A (k,k:n) ; */, (6.4) and (6.5)

L (k+l:n,k) - A (k+l:n,k) / U (k,k) ; '/. (6.6)

A (k+l:n,k+l:n) = A (k+l:n,k+l:n) - L (k+l:n,k) * U (k,k+l:n) ; '/. (6.7)

end

The derivation above is an inductive proof of the existence of the LU — A
factorization with base case (6.4) and the inductive hypothesis from (6.7),
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Cholesky factorization,
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The factorization LU = A exists only if each diagonal entry Ukk is nonzero.
Partial pivoting leads to a more stable variant, LU = PA, where P is a

permutation matrix. With partial pivoting, the rows of A are interchanged so that
\Ukk\ is maximized at each step. This swap can be determined for the first column of
A, and the recursion will construct the remaining permutation of A. Let PI € Enxn

be the permutation matrix that interchanges two rows of A such that

and |an| > max|a2i|. If (6.3) and its equivalent form in (6.4) through (6.7) are
used directly on A, the inductive hypothesis (6.8) cannot be used. If LU — PA is
the statement being proven, the inductive hypothesis must be applied to a matrix
of smaller dimension but with the same form; (6.8) does not have a permutation
matrix. The inductive hypothesis

must be used instead, where PI is a permutation matrix. To make use of this,
the expression (6.9) can be incorporated into a 2-by-2 block matrix expression by
applying (6.4) through (6.7) to A and multiplying both sides of (6.6) by Pj, resulting
in

These four equations can be written as the 2-by-2 matrix expression

Equation (6.14) is in the desired form LU — PA, where

This inductive derivation is demonstrated by the lu_rightpr function below. It is
not a tail-recursive procedure, since P-2 must be applied to /2i after the recursive
call completes, and P must be constructed as well. These permutations can be
postponed and applied when the factorization is complete; this is what the cs_lu



function does. For a dense matrix factorization, access to the rows of L is much sim-
pler, and the permutations can be applied immediately, as done by lu_left. Either
method leads to the same LU = PA factorization. After replacing the recursion
in lu_rightpr with its nonrecursive implementation and allowing A to be over-
written with its LU factorization, the conventional outer-product form of Gaussian
elimination is obtained, as demonstrated by the lu_rightp function, shown below.

function [L,U,P] = lu.rightpr (A)

n = size (A,l)
if (n == 1)

P = 1 ;

L = 1 ;

U - A ;

else

[x,i] = max (abs (A (l:n,l)» ; 7, partial pivoting

PI - eye (n) ;

PI ([1 i],:) = PI ([i 1], :) ;
A = P1*A ;

ull = A (1,1) 5 */. (6.10)
u!2 - A (l,2:n) ; 7. (6.11)

121 = A (2:n,l) / ull ; 7. (6.12)
[L22.U22.P2J - lu.rightpr (A (2:n,2:n) - 121*ul2) ; 7. (6.9) or (6.13)

0 = zeros(l,n-l) ;

L = [ 1 o ; P2*121 L22 ] ; 7, (6.14)
U = [ ull u!2 ; o' U22 ] ;

P = [ 1 o ; o' P2] * PI ;

end

function [L,U,P] = lu_rightp (A)

n = size (A,l)

P = eye (n) ;

for k - l:n

[x,i] = max (abs (A (k:n,k))) ; 7, partial pivoting
1 = i+k-1 ;
P (Ck i],:) = P ([i k], :) ;
A ([k i] , :) = A ([i k] , :) ; 7. (6.10), (6.11)
A (k+l:n,k) = A (k+l:n,k) / A (k,k) ; 7. (6.12)
A (k+l:n,k+l:n) = A (k+l:n,k+l:n) - A (k+l:n,k) * A (k,k-H:n) ; 7. (6.9)

end
L = tril (A.-l) + eye (n) ;
U = triu (A) ;

A right-looking sparse LU factorization is significantly more complicated than
the left-looking algorithm. It forms the basis of the multifrontal method for sparse
LU factorization. The simpler case where the nonzero pattern of A is symmetric
is considered first. Consider an unsymmetric matrix with the same symmetric
nonzero pattern as the matrix shown in Figures 4.2 and 6.1 with the L and U
factors shown as a single matrix. Suppose no numerical pivoting occurs. Each node
in the elimination tree corresponds to one frontal matrix, which holds one raiik-1
outer product. The frontal matrix for node k is an |£fc|-by-|£fc| dense matrix. If
the parent p and its single child c have the same nonzero pattern (£p = £c \ {c}),
they can be combined (amalgamated) into a larger frontal matrix that represents
both of them.
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Figure 6.1. Multifrontal example

Figure 6.2. Unsymmetric-pattern multifrontal example



The frontal matrices are related to one another via the assembly tree, which is
a coarser version of the elimination tree (some nodes having been merged together
via amalgamation). To factorize a frontal matrix, the original entries of A are
added, along with a summation of the contribution blocks of its children (called the
assembly}. One or more steps of dense LU factorization are performed within the
frontal matrix, leaving behind its contribution block (the Schur complement of its
pivot rows and columns). A high level of performance can be obtained using dense
matrix kernels (the BLAS). The contribution block is placed on a stack, and deleted
when it is assembled into its parent.

An example is shown in Figure 6.1. Black circles represent the original entries
of A. Circled x's represent fill-in entries. White circles represent entries in the
contribution block of each frontal matrix. The arrows between the frontal matrices
represent both the data flow and the parent/child relationship of the assembly tree.

A symbolic analysis phase determines the elimination tree and the amalga-
mated assembly tree. During numerical factorization, numerical pivoting may be
required. In this case it may be possible to pivot within the fully assembled rows
and columns of the frontal matrix. For example, consider the frontal matrix holding
diagonal elements 077 and agg in Figure 6.1. If 077 is numerically unacceptable, it
may be possible to select a79 and o97 as the next two pivot entries instead. If this is
not possible, the contribution block of frontal matrix 7 will be larger than expected.
This larger frontal matrix is assembled into its parent, causing the parent frontal
matrix to be larger than expected. Within the parent, all pivots originally assigned
to the parent and all failed pivots from the children (or any descendants) comprise
the set of pivot candidates. If all of these are numerically acceptable, the parent
contribution block is the same size as expected by the symbolic analysis.

If the nonzero pattern of A is unsymmetric, the frontal matrices become rect-
angular. They are related either by the column elimination tree (the elimination
tree of ATA) or by a directed acyclic graph. An example is shown in Figure 6.2.

This is the same matrix used for the QR factorization example in Figure 5.1.
Using a column elimination tree, arbitrary partial pivoting can be accommodated
without any change to the tree. The size of each frontal matrix is bounded by the
size of the Householder update for the QR factorization of A (the fcth frontal matrix
is at most |Vfc|-by-|7?.fc*| in size), regardless of any partial pivoting. In the LU factors
in Figure 6.2, original entries of A are shown as black circles. Fill-in entries when
no partial pivoting occurs are shown as circled x's. White circles represent entries
that could become fill-in because of partial pivoting. In this small example, they all
happen to be in U, but in general they can appear in both L and U. Amalgamation
can be done, just as in the symmetric-pattern case; in Figure 6.2, nodes 5 and 6,
and nodes 7 and 8, have been merged together. The upper bound on the size of
each frontal matrix is large enough to hold all candidate pivot rows, but this space
does not normally need to be allocated.

In Figure 6.2, the assembly tree has been expanded to illustrate each frontal
matrix. The tree represents the relationship between the frontal matrices but not
the data flow. The assembly of contribution blocks can occur not just between par-
ent and child but between ancestor and descendant. For example, the contribution
to «77 made by frontal matrix 2 could be included into its parent 3, but this would
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require one additional column to be added to frontal matrix 3. The upper bound
of the size of this frontal matrix is 2-by-4, but only a 2-by-2 frontal matrix needs
to be allocated if no partial pivoting occurs. Instead of augmenting frontal matrix
3 to include the 0.77 entry, the entry is assembled into the ancestor frontal matrix
4. The data flow between frontal matrices is thus represented by a directed acyclic
graph.

One advantage of the right-looking method over left-looking sparse LU factor-
ization is that it can select a sparse pivot row. The left-looking method does not
keep track of the nonzero pattern of the A^ submatrix, and thus cannot determine
the number of nonzeros in its pivot rows. The disadvantage of the right-looking
method is that it is significantly more difficult to implement.

MATLAB uses the unsymmetric-pattern multifrontal method (UMFPACK)
in x=A\b when A is sparse and either unsymmetric or symmetric but not positive
definite. It is also used in [L,U,P,Q]=lu(A). For the [L,U,P]=lu(A) syntax when
A is sparse, MATLAB uses GPLU, a left-looking sparse LU factorization much like
cs_lu.

6.4 Further reading
Rose and Tarjan [174] and Rose, Tarjan, and Lueker [175] describe the filled graph
of L + U with no pivoting. MA28 by Duff and Reid [61] is an early right-looking
sparse LU factorization method. In [97] George and Ng show that the nonzero
pattern for LU factorization is bounded by the Cholesky factorization of ATA.
The row-merge model of symbolic LU factorization is the topic of a subsequent
paper [98], which gives a tighter bound. The left-looking algorithm (GPLU) used
in cs_lu is due to Gilbert and Peierls [109]. The book by Duff, Erisman, and Reid
[53] delves into great detail on sparse LU factorization. Duff and Reid [62, 63]
present the multifrontal method for unsymmetric matrices with symmetric pattern
and symmetric indefinite matrices. The methods predate the unsymmetric-pattern
multifrontal method of Davis [27, 28], Davis and Duff [31, 32], and GPLU. Liu
[152] summarizes the multifrontal method, including LU factorization. Gilbert and
Liu [103] introduce elimination DAGs for LU factorization. Hadfield [122] discusses
the use of the elimination DAG in an unsymmetric-pattern multifrontal method.
Eisenstat and Liu [74, 75] show how to reduce the amount of work in the depth-
first search for left-looking LU factorization, via symmetric pruning, and provide a
theory of elimination trees for sparse LU factorization. Gilbert and Ng [106] survey
methods for determining the nonzero patterns of LU and QR factorizations. Many
software packages are available for computing a sparse LU factorization. They are
summarized in Section 8.6.

Some sparse LU factorization packages provide a combined row and column
prescaling and permutation option, such as the method described by Duff and
Koster [57, 58]. This increases the magnitude of the diagonal entries and increases
the likelihood of computing an accurate factorization with no partial pivoting at all.
Li and Demmel [147] show how static pivoting is particularly useful in a parallel
sparse LU algorithm [4, 5, 7, 118, 119, 147, 179, 180].
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Exercises
6.1. Use cs_lu, cs_ltsolve, and cs_utsolve to solve ATx = b without forming

AT. See Problem 6.15 for an example application.
6.2. Reduce the size of the workspace xi in cs_lu. Note that L and U both contain

at least n unused space after the call to cs.sprealloc. This space could be
used in a modified cs_spsolve for pstack. Also note that L is unit diagonal,
which simplifies cs_spsolve.

6.3. Implement column pivoting in cs_lu. If no pivot is found in a column or if
the largest pivot candidate is below a given tolerance, permute it to the end
of the matrix and try the next column in its place. Do not modify S->q.

6.4. Write a function with prototype void cs_relu (cs *A, csn *N, ess *S)
that computes the LU factorization of A. It should assume that the nonzero
patterns of L and U have already been computed in a prior call to cs_lu. The
nonzero pattern of A should be the same as in the prior call to cs_lu. Use
the same pivot permutation.

6.5. Modify cs_lu so that it can factorize both numerically and structurally rank-
deficient matrices.

6.6. Modify cs_lu so that it can factorize rectangular matrices.
6.7. Derive an LU factorization algorithm that computes the kth column of L and

the kth row of U at the kth step of factorization (Grout's method). Write a
MATLAB prototype and then a C function that implements this factorization
for a sparse matrix A. Optionally include partial pivoting.

6.8. Derive an LU factorization algorithm that computes the kth row of L and
the kth column of U at the kth step of factorization Why is it difficult to add
partial pivoting to this algorithm?

6.9. The MATLAB interface for cs_lu sorts both L and U with a double transpose.
Modify it so that it requires only one transpose for L and another for U. Hint:
see Problem 6.1.

6.10. Create cs_slu, identical to cs_sqr except for one additional option: a sym-
bolic Cholesky analysis, used for the case when order=l. Use this as a guess
for S->lnz and S->unz.

6.11. If cs_sprealloc fails in cs_lu, the function simply halts and reports that it
is out of memory. The requested memory space is far more than what might
be needed, however. Implement a scheme where 2|Z/| + n is attempted (for
|L|, as in the current cs_lu). If this fails, reduce the request slowly until the
request succeeds or until requesting the bare minimum (\L\ -f n — k) fails.
The bare minimum for U is \U\ + k + 1. This feature cannot be tested via a
MATLAB mexFunction, because mxRealloc terminates a mexFunction if it
fails.

6.12. Write a version of lu_rightpr that uses a permutation vector p instead of a
permutation matrix.

6.13. An incomplete LU factorization computes approximations of L and U with



fewer nonzeros. It is useful as a preconditioner for iterative methods. One
method for computing it is to drop small entries from L and U as they are
computed. Another is to use a fixed sparsity pattern, such as the nonzero
pattern of A. Write an incomplete LU factorization based on cs_lu. The
simplest way to do this is where the entries in x are copied into L and U and
Inz and unz are incremented. If the entry is small (x[i] for U or x[i] /pivot
for L), do not store it and do not increment the corresponding unz or Inz
counter. To drop entries that do not appear in A, scatter the pattern of
the kth column of A into the integer work vector, w. When storing entries
into U or L, store the value only if w [i] is equal to amark. If a numerically
or structurally zero pivot is encountered, replace it with an arbitrary value
(1, say) and select as the pivot row an arbitrary nonpivotal row (preferably
the diagonal). See also the MATLAB luinc function. Saad [178] provides
a detailed look at incomplete Cholesky and LU factorizations for iterative
methods.

6.14. Symmetric pruning is a technique that can reduce the time to compute
Reach(#) for the sparse triangular solve. If both /^ ^ 0 and Uji ^ 0, then any
row index k > i in column j of L is not required when computing Reach(B).
Modify cs_lu to exploit symmetric pruning. If A has a symmetric pattern
and no partial pivoting occurs, the result is the elimination tree of A.

6.15. Implement a 1-norm condition number estimator in C, using Hager's method
in [123] below. Also see Higham's implementation [134] and its generalization
[136]. This problem is one example where the solution to ATx — b is required
after factorizing PAQ = LU (Problem 6.1). See also condest and normest
in MATLAB.

function c = condlest (A) '/. estimate of 1-norm condition number of A
[m n] = size (A) ;

if (m ~= n || "isreal (A))

error ('A must be square and real') ;

end

if isempty(A)

c = 0 ;
return ;

end

[L.U.P.Q] = lu (A) ;

if Cisempty (find (abs (diag (U)) == 0)))

c = Inf ;

else

c = norm (A,l) * normlest (L,U,P,Q) ;

end

function est = normlest (L,U,P,Q) 7, 1-norm estimate of inv(A)

n = size (L,l) ;

for k = 1:5

if (k — 1)

est = 0 ;

x = ones (n,l) / n ;

jold = -1 ;

else
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j = min (find (abs (x) == norm (x,inf)))
if (j =*= jold) break, end ;
x = zeros (n,l) ;
x (j) = 1 ;
jold = j ;

end
x - Q * (U \ (L \ (P*x))) ;
est_old = est ;
est = norm (x,l) ;
if (k > 1 && est <= est_old) break, end ;
s = ones (n,l) ;
s (find (x < 0)) = -1 ;
x = P' * (LJ \ (U' \ (Q'*s))) ;

end

;
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Chapter 7

Fill-reducing orderings

The fill-minimization problem can be stated as follows. Given a matrix A, find a
row and column permutation P and Q (with the added constraint that Q = PT for a
sparse Cholesky factorization) such that the number of nonzeros in the factorization
of PAQ, or the amount of work required to compute it, are minimized. The problem
is impossible to solve in practice, so heuristics are used that attempt to reduce fill-
in. Three basic strategies exist; they are sometimes combined to obtain hybrid
strategies: (1) minimum degree and its variants (minimum fill, for example), (2)
nested dissection (recursive graph partitioning), and (3) band reduction. The first
strategy is most common and is presented in detail below. Features of the other two
are highlighted. The Dulmage-Mendelsohn decomposition is a permutation that
reduces the work required for LU and QR factorization. It consists of two primary
steps: a permutation to obtain a zero-free diagonal and another to permute the
matrix into block triangular form. The method is also useful for converting an edge
separator into a node separator, which is used in many nested dissection methods.

7.1 Minimum degree ordering
The minimum degree algorithm is a widely used heuristic for finding a permutation
P so that PAPT has fewer nonzeros in its factorization than A. It is a greedy
method that selects the sparsest pivot row and column during the course of a
right-looking sparse Cholesky factorization (see Section 4.9). Consider the following
MATLAB fragment, which does no pivoting:

for k - l:n
L (k,k) - sqrt (A (k,k)) ;
L (k+l:n,k) = A (k+l:n,k) / L (k,k) ;
A (k-«-l:n,k+l:n) = A (k+l:n,k+l:n) - L (k+l:n,k) * L (k+l:n,k)' ;

end

The kth step updates A with the outer product L(: ,k)*L(: ,k) '. Let A^ denote
the matrix A(k:n,k:n) at the start of the kth iteration, above.11 Consider the

nThis use of the A^ notation differs from its use in Chapter 5, in which A^ = //*.... HI A.
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undirected graph of A^, G^ = (V, E) with nodes V = {k... n] and (ij) € E if
a\- ^ 0. The graph G^k' is called the elimination graph. If £& is the nonzero pattern
of L( : ,k), the update to G^ and AW corresponds to adding a dense submatrix
to A, and adding a clique in G^ and removing node k. Rather than representing
AW as a simple graph, a quotient graph QW represents this clique implicitly. Node
k is replaced with element k with neighbors Ck- The term "element" is borrowed
from finite-element methods, since they too are a collection of dense submatrices or
cliques in a graph. The adjacency list of an uneliminated node i > k has two kinds
of nodes adjacent to it: Ai is a list corresponding to original nonzeros a^, and Si is
a list of the elements adjacent to i. The nonzero pattern of row or column i is thus

excluding the diagonal (no self-edges occur in G or Q). The degree di of node i
is the size of the set (7.1). When node k is eliminated, any elements adjacent to
it are no longer required to represent the nonzero pattern of A^ (a consequence
of Theorem 4.13); these elements can be removed (called element absorption). An
example sequence of graphs G and quotient graphs Q is given in Figure 7.1. In
the graphs, a plain circle represents a node in (/, while a dark circle represents an
element. In the matrices, a filled-in circle represents an edge between two nodes in
(?, a circle is an edge no longer in G, and a circled x is an edge in G represented by
an element in Q.

Additional terms in Q can be pruned. If two nodes i and j are both in the
pivotal element £&, then j and i can be removed from Ai and Aj, respectively.
They may have been adjacent due to an original entry o^- and are still adjacent in
Q because they are both adjacent to element k. That is, Ai can be replaced with
the smaller set Ai \ Ck for all i G Ck (referred to here as pruning). With element
absorption and pruning of the Ai sets, the graph Q can be represented in place (its
size never exceeds \A\).

With this graph representation Q, the minimum degree algorithm consists
simply of a greedy reordering of the nodes. Rather than selecting node k at the
fcth step, the algorithm selects the node with the least degree. When an element k
is created, the degree of all nodes i € Ck must be recomputed, using (7.1). This is
the most costly part of the algorithm.

The cost can be reduced by exploiting supernodes, also called indistinguishable
nodes. If two nodes i and j become identical (Si = Sj and Ai = Aj), they will
remain identical until one of them is eliminated (either both are adjacent to the
pivotal element or both are not adjacent). When one of them becomes the node
of least degree, the other node is also a node of least degree, and eliminating both
causes no more edges in Q than when eliminating just one of them. Thus, if two
nodes i and j are found to be indistinguishable, they can be merged into a single
supernode that represents both of them. This is done by removing one of the nodes
(j, say) and letting i be a representative of the supernode containing both i and j (j
has been absorbed into i). The minimum degree algorithm selects a supernode k of
least degree and eliminates it. All nodes start out simply representing themselves.
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Figure 7.1. Graph elimination

After k is eliminated, if a node i is left with just an edge to k (£i = {k} and Ai is
empty), it can be eliminated immediately (called mass elimination). Let \i\ denote
the number of nodes represented by supernode i. To keep the notation simple, when
dealing with set expressions the use of i as a member of a set should be interpreted
as the set of nodes represented by i.

Supernodes and mass elimination reduce the number of times (7.1) must be
evaluated. Another technique discards the use of (7.1), and uses an approximation
di to the true degree di instead, which is cheaper to compute, where

and k is the current pivot element, and where Ai is assumed to have already been
pruned. Note that di = di if \£i\ < 2_ (where £j includes fc), because Ai and £&
are disjoint after pruning. Otherwise di > di. Using d in place of d results in the
approximate minimum degree algorithm, or AMD. At first glance, (7.2) looks no
simpler than computing the set (7.1) and then finding its size. The scanl algorithm



below shows how to compute the set differences \Ce \ C^\ efficiently. In (7.2) and in
the rest of the discussion, \Ai\ and \Ce\ refer to the sum of |ji| for the nodes j that
they contain.

function scanl
assume w(e) < 0 for all e = 1,... , n
for each node i € £/t do

for each element e e €{ do
if (w(e) < 0) then

Then w(e) = \Ce \ Ck\ if w(e] > 0. If w(e) < 0, then the sets Ce and Ck are
disjoint, and \Ce \ Ck\ = \£e\- Once the set differences are known, a second pass
over all i € Ck evaluates (7.2) to compute di. The amortized time for computing
the set differences, computing di, and pruning the set Ai is O(|.4j| + \£i\}. This is
much less than the O(di) required to compute (7.1).

The minimum degree algorithm (AMD) is the most complex of the codes pre-
sented in this book. A concise version of AMD is presented below as the cs_amd
function. It uses slightly more workspace than AMD, leading to a simpler code. It
uses the tree postordering cs.tdf s, rather than AMD's own postordering. It has
no control parameters, as AMD does, and does not compute any of the statistics
that AMD does (such as \L\ and the floating-point operation count for a subsequent
Cholesky factorization). It also has a simpler dense-node removal strategy. How-
ever, even with these simplifications, cs_amd generates orderings of the same quality
as AMD and is just as fast.

Construct matrix C: The function accepts the matrix A as input and returns
a permutation vector p. The cs_amd function operates on a symmetric matrix, so
one of three symmetric matrices is formed. If order is 0, a natural ordering p=NULL
is returned. If order is 1 and the matrix is square, C=A+A' is formed, which is
appropriate for a Cholesky factorization or an LU factorization of a matrix with
substantial entries on the diagonal and a roughly symmetric nonzero pattern (using
toKl for cs_lu). If order is 2, C=A'*A is formed after removing "dense" rows from
A. This is suitable for LU factorization of unsymmetric matrices and is similar to
what COLAMD computes. If order is 3, C=A'*A is computed, which is best used
for QR factorization or for LU factorization if A has no dense rows. A "dense" row
is a row with more than 10^/n entries.

Diagonal entries are removed from C (since cs_amd requires a graph with no
self-edges), and extra "elbow room" is added to C->i via cs.sprealloc. The con-
tents of C will be destroyed during the elimination (it holds Q^}. After C is formed,
the output p and workspace of size 8(n + 1) are allocated. The input A is not mod-
ified. To simplify the remainder of the discussion, the superscript [k] is dropped.

Initialize quotient graph: The quotient graph Q is represented by the
arrays Cp, Ci, w, nv, elen, and len, and degree, each of size n+1, except for Ci of
size nzmax. There are four kinds of nodes and elements that must be represented:

A live node is a node i (or a supernode) that has not been selected as a
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pivot and has not been merged into another supernode. In this case, £j
is represented as Ci [Cp[i] . . . Cp[i]+elen[i]-l], where elen[i] > 0.
The set Ai is represented as Ci [Cp[i]+elen[i] ... Cp[i]+len[i]-l].
Note that Cp [i] is greater than or equal to zero. The number of original
nodes represented by i is given by \i\ = nv[i], which is thus greater than
zero. The degree di is degree [i] .

A dead node i is one that has been removed from the graph, having been
absorbed into node r = CS_FLIP(Cp[i]), where CS_FLIP(x) is denned as
-(x)-2. Note that Cp[i] is less than zero. Note that node r might itself be
absorbed into yet another node. In this case Cp forms an assembly tree, very
similar to the elimination tree. The adjacency list of i is not stored. elen[i]
is set to -1 to denote the fact that node i is dead. The size of node i, |?'| =
nv[i], is zero.

A live element e is one that is in the graph G, having been formed when
node e was selected as the pivot. elen[e] is set to -2, and w[e] will always
be greater than zero. The sets Ae and £e do not exist. Instead, the set Ce

is stored in Ci [Cp[e] . . . Cp[e]+len[e]-l] . degree[e] is |£e|, which is
not the same as len [e] ; the latter is smaller because Ce is a list of supernodes.
The size of node e, \e\ = nv[e], is greater than zero. It represents the number
of nodes represented by supernode e when it was selected as the pivot.

A dead element e is one that as been absorbed into a subsequent element s
= CSJFLIP(Cp[e]). elen[e] is -2 and w[e] is set to zero to denote that e is
a dead element. \e\ = nv[e] > 0 is the same as for live elements.

cs_amd initializes the quotient graph Q and two sets of n linked lists: the degree
lists and the hash buckets. Degree list d is a doubly linked list containing a list of
all nodes with approximate degree d. The head of list d is head [d]. The nodes
preceding and following node i in the list are last [i] and next [i], respectively.
The hash buckets share some of this workspace; hhead [h] is the head of the hth
hash bucket, a singly linked list. Since a node is never in both lists, next [i] is the
node following i in the list, and last [i] is the hash key for node i. The degree
lists are used to determine the node of minimum degree, and the hash buckets are
used for supernode detection.

Initialize degree lists: Each node is placed in its degree lists. Nodes of zero
degree are eliminated immediately. Nodes with degree > dense are also eliminated
and merged into a placeholder node n, a dead element. These dense nodes will
appear last in the output permutation p.

Select node of minimum approximate degree: cs_amd is now ready to
start eliminating the graph. It first finds a node k of minimum degree and removes
it from its degree list. The variable nel keeps track of how many nodes have been
eliminated; the elimination of k increments this count by \k\ = nv[k]. Because
nodes are not eliminated in order 0 through n-1, this pivot node k is not equivalent
to the k discussed above, but it serves the same purpose.

Garbage collection: The new element C^ requires space in Ci. It will be
placed at the end of this array, in Ci [cnz ... cnz + \Ck\ — 1], if |£fc| > 0 (more
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precisely, less space than this will be used; the exact degree dk = \C^\ is an upper
bound, and d^ > d^ is yet a higher upper bound). If not enough space is available,
garbage collection is performed to pack Q in the Ci array.

Live nodes and elements need not appear in any particular order in Ci. To
pack Ci efficiently, the method relies on the fact that all entries in Ci[0. . .cnz-1]
are nonnegative, and Cp will be redefined for live nodes and elements. The f or j
loop copies the first entry from each live node and element j into Cp[j] and places
CS_FLIP(j) in the first position of each live object. The second loop scans all of
Ci, looking for negative entries. When a negative entry is found, the live node or
element j is compacted. Garbage collection occurs rarely.

Construct new element: The new element C^ is constructed, using (7.1).
It is constructed in place if \£k \ = 0. nv [i] is negated for all nodes i G Ck to flag
them as members of this set. Each node i is removed from the degree lists. All
elements e € £k are absorbed into element k.

Find set differences: The scanl function now computes the set differences
\Ce \ Ck\ for all elements e. At the start of the scan, no entry in the w array is
greater than or equal to mark. A test is made to ensure mark + max \Ce\ does not
cause integer overflow. If it does, then w is safely reset and the algorithm continues.
The value of mark is used as an offset; w(e) in the scanl pseudocode is replaced
with w[e] -mark in the code.

Degree update: The second pass (scanS) computes the approximate degree
di using (7.2), prunes the sets £i and Ai, and computes a hash function h(i] for
all nodes in Ck- The hash function will be used in the next step for supernode
detection. If a live element e is found where \£e \£>k\ — 0> then aggressive element
absorption is performed. Element e is a subset of k, so it is not needed to represent
Q. At this point, degree[i] = d — di — |£fc \ {i}\ is computed for node i (7.2). The
|£fc \ {i}\ term is added later, after mass elimination and supernode detection. If d
is zero, node i is mass eliminated along with element k; otherwise, node i remains
alive. Element k is added to £;, and node i is placed in the hth hash bucket. Finally,
mark is incremented by max \Ce\ to ensure that all entries in w are less than mark.

Supernode detection: Supernode detection relies on the hash function h(i)
computed for each node i. If two nodes have identical adjacency lists, their hash
functions will be identical. Each hash bucket containing any node i € Ck is consid-
ered. The first node i in the hash bucket is compared with all other nodes j; this
is repeated until the hash bucket is empty. To compare i with a set of other nodes
j, w[s]=mark is set for each node or element s in Ai or £;. These lists have been
pruned in scan2 of all dead nodes and elements. If the adjacent lists of i and j
have the same lengths and all s in Aj or £j are flagged, then i and j are identical.
In this case, j is absorbed into i and removed from the hash bucket. The mark is
incremented to clear the array w for the next iteration.

Finalize new element: The elimination of node k is nearly complete. All
nodes i in Ck are scanned one last time. Node i is removed from C^ if it is dead (it
may have been absorbed during supernode detection). The flagged status of nv[i]
is cleared. The degree di is finalized, and node i is placed in its corresponding degree
list. The new minimum degree is found when nodes are placed back into the degree
lists. Note that the degree of the current element, dk = |£/- \ {i}\, is finally added to
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the degree of each node during this final pass to complete the approximate degree
computation for (7.2). This term was not added in scan2, because it was modified
during that scan due to mass elimination. Finally, nv [k] is updated to reflect the
number of nodes represented by k (this may have increased, since k was selected as
the pivot, due to mass elimination). If the set Ck is empty, element k is a root of
the assembly tree, and element k is removed from the graph.

Postordering: The elimination is complete, but no permutation has been
computed. All that is left of the graph is the assembly tree (Cp) and a set of dead
nodes and elements (i is a dead node if nv[i] is zero and a dead element if nv[i]
> 0). It is from this information only that the final permutation is computed. The
tree is restored by unflipping all of Cp. It now forms a tree; Cp [x] is the parent of
x or -1 if x is a root. This is not the elimination tree, but it is quite similar.

If an element e has been absorbed into its parent Cp [e], then e must precede
Cp[e] in the output permutation p. Likewise, a node i must precede its parent
Cp[i]. A distinction must be made between nodes and elements. The parent of an
element is always an element. The parent of a node can be either another node or
an element, but a node can never be a root of the tree. The children of an element
e must appear before it in p, but all child elements must appear before all child
nodes, because child nodes (and their descendants in the assembly tree) reflect a
set of nodes that were absorbed into supernode e when it was selected as a pivot.

A postordering of the assembly tree gives the permutation p. The list of
children of any node x are partitioned; the child elements appear first, followed
by the child nodes. The dead element n is a placeholder for any dense rows and
columns of C, so it too is included in the postordering; it and its descendants will
be ordered at the very last, followed by n=p[n] itself. Thus, p[0. . .n-1] is the
resulting fill-reducing permutation. This postordering is much simpler than the
postordering in AMD, yet just as effective.

int *cs_amd (int order, const cs *A) /* order 0:natural, l:Chol, 2:LU, 3:QR */

{
cs *C, *A2, *AT ;
int *Cp, *Ci, *last, *W, *len, *nv, *next, *P, *head, *elen, *degree, *w,

*hhead, *ATp, *ATi, d, dk, dext, lemax =0, e, elenk, eln, i, j, k, kl,
k2, k3, jlast, In, dense, nzmax, mindeg = 0, nvi, nvj, nvk, mark, wnvi,

ok, cnz, nel = 0, p, pi, p2, p3, p4, pj, pk, pkl, pk2, pn, q, n, m, t ;

unsigned int h ;
/* Construct matrix C */
if (!CS_CSC (A) I I order <= 0 I I order > 3) return (NULL) ; /* check */

AT * cs_transpose (A, 0) ; /* compute A' */

if (!AT) return (NULL) ;

m = A->m ; n = A->n ;

dense = CS_MAX (16, 10 * sqrt ((double) n)) ; /* find dense threshold */

dense = CS_MIN (n-2, dense) ;

if (order == 1 && n == m)

{
C - cs_add (A, AT, 0, 0) ; /* C = A+A' */

}
else if (order == 2)

{
ATp = AT->p ; /* drop dense columns from AT */

ATi = AT->i ;
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for
{

(p2 = o, j j < m ; j++)

p = ATp [j] ; /* column j of AT starts here */
ATp [j] = p2 ; /* new column j starts here */
if (ATp [j+1] - p > dense) continue ; /* skip dense col j */
for ( ; p < ATp [j+1] ; p++) ATi [p2-n-] = ATi [p] ;

}
ATp [m] = p2 ;
A2 = cs_transpose (AT, 0) ;
C = A2 ? cs_multiply (AT, A2) :
cs_spfree (A2) ;

/* finalize AT */
/* A2 = AT' */

NULL ; /* C=A'*A with no dense rows */

>
else
{

C = cs.multiply (AT, A) ;
}
cs_spfree (AT) ;
if (!C) return (NULL) ;
cs_fkeep (C, &cs_diag, NULL) ;
Cp = C->p ;
cnz = Cp [n] ;
P = cs_malloc (n+1, sizeof (int)) ;
W = cs_malloc (8*(n+1), sizeof (int))
t = cnz + cnz/5 + 2*n ;

/* C=A'*A */

/* drop diagonal entries */

/* allocate result */
/* get workspace */
/* add elbow room to C */

if (!P II !W || !cs_sprealloc (C, t)) return (cs.idone (P, C, W, 0)) ;
len = W ; nv = W + (n+1) ; next = W + 2*(n+1) ;
head = W + 3*(n+1) ; elen = W + 4*(n+1) ; degree = W + 5*(n+1) ;
w = W + 6*(n+1) ; hhead = W + 7*(n+1) ;
last = P ; /* use P as workspace for last */
/* Initialize quotient graph */
for (k « 0 ; k < n ; k++) len [k] = Cp [k+1] - Cp [k] ;
len [n] = 0 ;
nzmax = C->nzmax ;
Ci = C->i ;
for (i - 0 ; i <= n ; i++)
{

head [i] = -1 ; /* degree list i is empty */
last [i] = -1 ;
next [i] = -1 ;
hhead [i] = -1 ; /* hash list i is empty */
nv [i] = 1 ; /* node i is just one node */
w [i] = 1 ; /* node i is alive */
elen [i] = 0 ; /* Ek of node i is empty */
degree [i] = len [i] ; /* degree of node i */

}
mark = cs_wclear (0, 0, w, n) ; /* clear w */
elen [n] = -2 ; /* n is a dead element */
Cp [n] = -1 ; /* n is a root of assembly tree */
w [n] = 0 ; /* n is a dead element */
/* Initialize degree lists */
for (i " 0 ; i < n ; i++)
{

d = degree [i] ;
if (d == 0) /* node i is empty */
{

elen [i] = -2 ; /* element i is dead */
nel++ ;

= 0 ;
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Cp [i] = -1 ; /* i is a root of assembly tree */
w [i] = 0 ;

}
else if (d > dense) /* node i is dense */

{
nv [i] = 0 ; /* absorb i into element n */
elen [i] = -1 ; /* node i is dead */
nel++ ;
Cp [i] = CS.FLIP (n) ;
nv [n]++ ;

}
else
{

if (head [d] != -1) last [head [d]] = i ;
next [i] = head [d] ; /* put node i in degree list d */
head [d] = i ;

}
}
while (nel < n) /* while (selecting pivots) do */
{

/* Select node of minimum approximate degree */
for (k = -1 ; mindeg < n Aft (k = head [mindeg]) == -1 ; mindeg++) ;
if (next [k] != -1) last [next [k]] - -1 ;
head [mindeg] = next [k] ; /* remove k from degree list */
elenk - elen [k] ; /* elenk = |Ek| */
nvk = nv [k] ; /* # of nodes k represents */
nel +== nvk ; /* nv[k] nodes of A eliminated */
/* Garbage collection */
if (elenk > 0 && cnz + mindeg >= nzmax)
{

for (j = 0 ; j < n ; j++)

{
if ((p - Cp [j]) >= 0) /* j is a live node or element */
{

Cp [j] = Ci [p] ; /* save first entry of object */
Ci [p] = CS.FLIP (j) ; /* first entry is now CS_FLIP(j) */

}
}
for (q = 0, p=0 ; p< cnz ; ) /* scan all of memory */
i

if ((j = CS.FLIP (Ci [p++])) >= 0) /* found object j */
<

Ci [q] = Cp [j] ; /* restore first entry of object */
Cp [j] » q++ ; /* new pointer to object j */
for (k3 = 0 ; k3 < len [j]-l ; k3++) Ci [q++] - Ci [p++] ;

>
}
cnz * q ; /* Ci [cnz...nzmax-1] now free */

>
/* Construct new element */
dk = 0 ;
nv [k] - -nvk ; /* flag k as in Lk */
p - Cp [k] ;
pkl - (elenk == 0) ? p : cnz ; /* do in place if elen[k] — 0 */
pk2 = pkl ;
for (kl = 1 ; kl <- elenk 4- 1 ; kl++)

{

0
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if (kl > elenk)
{

e = k ; /* search the nodes in k */
pj = p ; /* list of nodes starts at Ci[pj]*/
In = len [k] - elenk ; /* length of list of nodes in k */

}
else
{

e = Ci [p++] ; /* search the nodes in e */
pj = Cp [e] ;
In = len [e] ; /* length of list of nodes in e */

}
for (k2 = 1 ; k2 <= In ; k2++)
{

i = Ci [pj++] ;
if ((nvi = nv [i]) <= 0) continue ; /* node i dead, or seen */
dk += nvi ; /* degree[Lk] += size of node i */
nv [i] = -nvi ; /* negate nv[i] to denote i in Lk*/
Ci [pk2++] = i ; /* place i in Lk */
if (next [i] != -1) last [next [i]] = last [i] ;
if (last [i] != -1) /* remove i from degree list */
{

next [last [i]] = next [i] ;
>
else
{

head [degree [i]] = next [i] ;
}

}
if (e != k)
{

Cp [e] - CS.FLIP (k) ; /* absorb e into k */
w [e] = 0 ; /* e is now a dead element */

}
}
if (elenk != 0) cnz = pk2 ; /* Ci [cnz...nzmax] is free */
degree [k] = dk ; /* external degree of k - |Lk\i| */
Cp [k] = pkl ; /* element k is in Ci[pkl..pk2-l] */
len [k] = pk2 - pkl ;
elen [k] = -2 ; /* k is now an element */
/* Find set differences */
mark = cs_wclear (mark, lemax, w, n) ; /* clear w if necessary */
for (pk = pkl ; pk < pk2 ; pk++) /* scan 1: find |Le\Lk| */
{

i = Ci [pk] ;
if ((eln = elen [i]) <= 0) continue ;/* skip if elen[i] empty */
nvi = -nv [i] ; /* nv [i] was negated */
wnvi = mark - nvi ;
for (p = Cp [i] ; p <= Cp [i] + eln - 1 ; p++) /* scan Ei */
{

e = Ci [p] ;
if (w [e] >= mark)
{

w [e] -= nvi ; /* decrement |Le\Lk| */
}
else if (w [e] != 0) /* ensure e is a live element */
{
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w [e] = degree [e] + wnvi ; /* 1st time e seen in scan 1 */
}

}
}
/* Degree update */
for (pk = pkl ; pk < pk2 ; pk++) /* scan2: degree update */
{

i = Ci [pk] ; /* consider node i in Lk */
pi = Cp [i] ;
p2 = pi + elen [i] - 1 ;
pn = pi ;
for (h = 0, d = 0, p = pi ; p <- p2 ; p++) /* scan Ei */
{

e = Ci [p] ;
if (w [e] != 0) /* e is an unabsorbed element */
{

dext = w [e] - mark ; /* dext = |Le\Lk| */
if (dext > 0)
{

d +» dext ; /* sum up the set differences */
Ci [pn++] = e ; /* keep e in Ei */
h += e ; /* compute the hash of node i */

}
else
{

Cp [e] = CS_FLIP (k) ; /* aggressive absorb. e->k */
w [e] = 0 ; /* e is a dead element */

}
}

}
elen [i] - pn - pi + 1 ; /* elen[i] = |Ei| */
p3 = pn ;
p4 = pi + len [i] ;
for (p = p2 + 1 ; p < p4 ; p++) /* prune edges in Ai */
{

j = Ci [p] ;
if ((nvj = nv [j]) <= 0) continue ; /* node j dead or in Lk */
d +- nvj ; /* degree(i) += |j| */
Ci [pn++] = j ; /* place j in node list of i */
h += j ; /* compute hash for node i */

>
if (d == 0) /* check for mass elimination */
{

Cp [i] - CS.FLIP (k) ; /* absorb i into k */
nvi = -nv [i] ;
dk -= nvi ; /* |Lk| -= |i| */
nvk += nvi ; /* |k| += nv[i] */
nel •*•= nvi ;
nv [i] = 0 ;
elen [i] = -1 ; /* node i is dead */

>
else
{

degree [i] = CS_MIN (degree [i], d) ; /* update degree(i) */
Ci [pn] = Ci [p3] ; /* move first node to end */
Ci [p3] - Ci [pi] ; /* move 1st el. to end of Ei */
Ci [pi] = k ; /* add k as 1st element in of Ei */
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len [i] = pn - pi + 1 ;
h '/.= n ;
next [i] = hhead [h] ;
hhead [h] = i ;
last [i] = h ;

degree [k] = dk ;
lemax = CS_MAX (lemax, dk) ;
mark = cs_wclear (mark+lemax, lemax, w, n) ; /* clear w */
/* Supernode detection */
for (pk = pkl ; pk < pk2 ; pk++)
{

i = Ci [pk] ;
if (nv [i] >= 0) continue ; /* skip if i is dead */
h = last [i] ; /* scan hash bucket of node i */
i = hhead [h] ;
hhead [h] = -1 ;

/* new len of adj. list of node i */
/* finalize hash of i */
/* place i in hash bucket */

/* save hash of i in last[i] */

/* scan2 is done */
/* finalize |Lk| */

/* hash bucket will be empty */
for ( ; i !=-!&& next [i] != -1 ; i = next [i], mark++)
{

In = len [i] ;
eln = elen [i] ;
for (p = Cp [i]+l ; p <= Cp [i] + ln-1 ; p++) w [Ci [p]] = mark;
jlast = i ;
for (j = next [i] ; j != -1 ; ) /* compare i with all j */
{

ok = (len [j] == In) && (elen [j] == eln) ;
for (p = Cp [j] + 1 ; ok && p <= Cp [j] + In - 1 ; p++)
i.

if (w [Ci [p]] != mark) ok = 0 ; /* compare i and j*/
}
if (ok)
{

Cp [j] = CS.FLIP (i) ;
nv [i] += nv [j] ;
nv [j] = 0 ;
elen [j] = -1 ;
j = next [j] ;

/* i and j are identical */

/* absorb j into i */

/* node j is dead */
/* delete j from hash bucket */

}
else
{

next [jlast] = j ;

jlast = j ;
j = next [j] ;

/* j and i are different */

/* Finalize new element */
for (p = pkl, pk = pkl ; pk < pk2 ; pk++) /* finalize Lk */
{

i = Ci [pk] ;
if ((nvi = -nv [i]) <= 0) continue ;/* skip if i is dead */
nv [i] = nvi ; /* restore nv[i] */
d = degree [i] + dk - nvi ; /* compute external degree(i) */
d = CS.HIN (d, n - nel - nvi) ;
if (head [d] != -1) last [head [d]] - i ;

}
}

>
}

}
}



next [i] » head [d] ; /* put i back in degree list */
last [i] = -1 ;
head [d] = i ;
mindeg = CS_MIN (mindeg, d) ; /* find new minimum degree */
degree [i] = d ;
Ci [p++] = i ; /* place i in Lk */

}
nv [k] = nvk ; /* # nodes absorbed into k */
if ((len [k] = p-pkl) — 0) /* length of adj list of element k*/
{

Cp [k] = -1 ; /* k is a root of the tree */
w [k] = 0 ; /* k is now a dead element */

}
if (elenk != 0) cnz = p ; /* free unused space in Lk */

}
/* Postordering */
for (i - 0 ; i < n ; i++) Cp [i] = CS_FLIP (Cp [i]) ;/* fix assembly tree */
for (j - 0 ; j <- n ; j++) head [j] = -1 ;
for (j = n ; j >= 0 ; j—) /* place unordered nodes in lists */
{

if (nv [j] > 0) continue ; /* skip if j is an element */
next [j] = head [Cp [j]] ; /* place j in list of its parent */
head [Cp [J]] - J ;

}
for (e • n ; e >= 0 ; e—) /* place elements in lists */
{

if (nv [e] <= 0) continue ; /* skip unless e is an element */
if (Cp [e] != -1)
{

next [e] = head [Cp [e]] ; /* place e in list of its parent */
head [Cp [e]] = e ;

}
>
for (k = 0, i = 0 ; i <= n ; i++) /* postorder the assembly tree */
{

if (Cp [i] == -1) k = cs_tdfs (i, k, head, next, P, w) ;
}
return (cs_idone (P, C, W, D) ;

}

The cs_wclear function is used in cs_amd to clear the w array. The condition
is true just once in the first call to cs_wclear and then when integer overflow is
near (in which case w is safely reset and the algorithm continues), cs.diag is used
to drop diagonal entries.

static int cs_wclear (int mark, int lemax, int *w, int n)
{

int k ;
if (mark < 2 I I (mark + lemax < 0))
{

for (k = 0 ; k < n ; k++) if (w [k] != 0) w [k] = 1 ;
mark = 2 ;

}
return (mark) ; /* at this point, w [0..n-1] < mark holds */

}

static int cs_diag (int i, int j, double aij, void *other) { return (i != j) ; }
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In MATLAB, p=amd(A)12 or p=symamd(A) compute essentially the same or-
dering as p=cs_amd(A). Slight differences exist due to tie-breaking. The input matrix
C is computed differently in AMD and cs_amd; the adjacency lists are the same, but
neither produce sorted adjacency lists A. This affects the order that nodes are
replaced in the degree lists, and thus the pivot order can be affected. There is often
more than one node of identical minimum degree in the degree lists, and both AMD
and cs.amd simply select the first node in the first nonempty degree list.

7.2 Maximum matching
A maximum matching (also called a maximum transversal) is a permutation of any
matrix A so that its fcth diagonal is zero-free and \k\ is uniquely minimized (except
when A is completely zero). This permutation determines the structural rank of a
matrix and is a precursor to LU or QR factorization or to the block triangular form
and Dulmage-Mendelsohn decomposition described in the next sections. With this
maximum matching, a matrix has structural full rank if and only if k = 0 and is
structurally rank deficient otherwise. The number of entries on this diagonal gives
the structural rank of a matrix A which is an upper bound on the numerical rank
of any matrix with the same nonzero pattern as A. It is sprank(A) in MATLAB.

Consider the bipartite graph G — (V, E) of an ra-by-n matrix A with ra row
nodes, n column nodes, and undirected edges E = {(i, j } \ «^ ^ 0}; no edge connects
pairs of row nodes or pairs of column nodes. Let Aj denote the nonzeros in column
j or, equivalently, the rows adjacent to j in G. Note that although the edges are
undirected, ( i , j ) and (j, i) are different edges. A matching is a set of rows 'R, and
columns C where each row in i € 7£ is paired with a unique j € C, where (i, j } € E. A
row i € 7£ is called a matched row, a column j e C is called a matched column, and
an edge (i, j) where both i e K and j e C is called a matched edge. All other rows,
columns, and edges are unmatched. The matching defines a zero-free diagonal of a
permuted submatrix (diag(A(r, c)) in MATLAB notation). A maximum matching
of G has a size greater than or equal to any other matching in G. A matching is
row-perfect if all rows are matched and column-perfect if all columns are matched.
A graph can have many maximum matchings (there are n! maximum matchings in
the graph of a square dense matrix). The size of this maximum matching is the
structural rank. Fortunately, the algorithms and theorems presented here can use
any maximum matching, and the matching algorithm presented below is guaranteed
to find one of them.

The algorithm starts with an empty matching. Let jmatch[i] equal j if row
i € 7£ is matched to column j £ C or -1 if row i £ 7£. The algorithm works
by extending the matching one column j ^ C at a time by finding an alternating
augmenting path. The path starts at an unmatched column k and then traverses
any edge to a row i\. Since k is unmatched, this edge (fc, i\) is not matched. When
reaching an unmatched row, the path stops. If i\ is matched, the path traverses the

12The amd function is an internal part of MATLAB, but MATLAB 7.2 does not include an
interface for it. It will likely be added to a future version of MATLAB. In the meantime, use
symamd or use the version of amd at www.siam.org/books/fa02.
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Figure 7.2. An alternating augmenting path

113

Figure 7.3. Matching extended via an alternating augmenting path

matched edge (ii,ji), where j\ = jmatch[ii], and then an unmatched edge (.71,22)-
The path continues until it stops at an unmatched row. The path is alternating
because every other edge in the path is matched. In general the path can be of
any odd length, and no node or edge appears in the path twice. An alternating
augmenting path of length 7 with matched edges shown in bold,

is shown in Figure 7.2. The figure also gives a matrix view of the same path.
Matched edges in the graph are shown in bold; the same edges correspond to the
diagonal elements of the permuted submatrix (drawn as a box). In the matrix view,
entries corresponding to unmatched edges are circled. To extend the matching (as
shown in Figure 7.3), k and i± are added to C and 7£, respectively, and the matching
along the path is changed so that the path becomes



That is, k — jmatch[zi], j\ = jmatchf^], and so on. The matching has been
extended by one additional edge. Note that any matched row or column remains
matched; k and i^ are added to C and 7£, respectively, and no nodes are removed
from C or 7£. If no unmatched row 24 is found, no such path exists and the matching
is not extended (this can occur only if A is structurally rank deficient). The modified
graph and matrix are shown in Figure 7.3. The four entries circled in Figure 7.2
are still circled in Figure 7.3; the rows have been permuted to place them on the
diagonal, and the box denoting the current match is one row and column larger.
The three formerly matched entries are no longer on the diagonal. There can of
course be other unmatched edges incident on these 8 nodes, and correspondingly
more off-diagonal entries in the matrix. They are left out to make the figures clearer.

The path (7.3) can be found via a depth-first search of G, starting at an
unmatched column k and traversing only alternating paths. If the whole graph is
searched at every step, the time complexity is O(|^4|n) to find the entire maximum
matching for a square matrix, but typically only a small part of G needs to be
traversed before finding an alternating path (at which point the search stops). To
reduce the typical cost of finding a path, a one-step breadth-first search is performed
at each column j before continuing in a depth-first manner (called a cheap match).
Once a row i is matched, it remains matched (although the column jmatch[z] it is
matched to may change). The breadth-first search exploits this fact by splitting Aj
into two parts, the first of which contains only matched rows. When considering
a column j, rows in the second part of Aj are considered, and the splitting is
extended until an unmatched row (if any) is found. Thus, any edge is considered
only once in this breadth-first search, adding only 0(|A|) to the time for finding
the entire maximum matching but greatly reducing the average-case complexity of
the algorithm.

The maxtrans and augment functions are not part of CSparse, since they
rely on a recursive depth-first search, which can cause stack overflow for very large
matrices. However, they are simpler to understand than the nonrecursive versions,
so they are discussed first, maxtrans allocates workspace (w and cheap) and the
result j match. Initially, all rows are unmatched. w[j] is used to mark column
node j during a depth-first search; w[j]=k if column j has been visited during
the kth step of the algorithm or w[j]<k otherwise. The splitting of Aj for the
one-step breadth-first search is given by cheap [j]; Ai[Ap[j] . . . cheap [j]-l]
is known to contain only matched rows, whereas Ai[cheap[j] ... Ap[j+!]-!]
may contain both matched and unmatched rows.

After these initializations, the one-line f or k loop computes the matching. It
searches for an alternating augmenting path starting at column k and augments the
matching if this path is found. At the start of the kth iteration, C is a subset of
{0.. .k — 1}, and it may be extended by adding column k. When the algorithm
completes, j=jmatch[i] > 0 if row i is matched to column j. If row i is not
matched, jmatch[i]=-l.

The recursive function augment is called by maxtrans, starting at node j=k (j
will be modified when augment calls itself recursively, but k is kept unchanged).
When at node j, it first attempts to find a cheap match (the first for loop),
cheap [j] is modified to point to the remaining part of Aj. If no cheap match
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is found, all edges i € Aj are considered in a depth-first manner. All of these rows i
must be already matched; otherwise, a cheap match would have already been found
and this loop would be skipped. If column jmatch[i] has not been considered
during this kth step, a recursive call is made to find an augmenting path starting at
column jmatch [i] (corresponding, for example, to column j\ in Figure 7.2). The
loop is terminated if a path is found, and the matching is revised by matching this
new row i to column j.

int *maxtrans (cs *A) /* returns jmatch [O..m-l] */

{
int i, j, k, n, m, *Ap, *jmatch, *w, *cheap ;

if (!A) return (NULL) ; /* check inputs */

n = A->n ; m » A->m ; Ap = A->p ;

jmatch = cs_malloc (m, sizeof (int)) ; /* allocate result */

w = cs_malloc (2*n, sizeof (int)) ; /* allocate workspace */

if (!w || !jmatch) return (cs_idone (jmatch, NULL, w, 0)) ;

cheap = w + n ;

for (j - 0 ; j < n ; j++) cheap [j] = Ap [j] ; /* for cheap assignment */

for (j = 0 ; j < n ; j++) w [j] = -1 ; /* all columns unflagged */

for (i = 0 ; i < m ; i++) jmatch [i] = -1 ; /* no rows matched yet */

for (k = 0 ; k < n ; k++) augment (k, A, jmatch, cheap, w, k) ;

return (cs_idone (jmatch, NULL, w, 1)) ;

}

int augment (int k, cs *A, int *jmatch, int *cheap, int *w, int j)

{
int found = 0, p, i * -1, *Ap = A->p, *Ai = A->i ;

/* Start depth-first-search at node j */
w [j] = k ; /* mark j as visited for kth path */
for (p = cheap [j] ; p < Ap [j+1] && !found ; p++)
{

i = Ai [p] ; /* try a cheap assignment (i,j) */

found = (jmatch [i] == -1) ;

}
cheap [j] * p ; /* start here next time for j */

/* Depth-first-search of neighbors of j */

for (p = Ap [j] ; p < Ap [j+1] ftft !found ; p++)
{

i = Ai [p] ; /* consider row i */
if (w [jmatch [i]] == k) continue ; /* skip col jmatch [i] if marked */
found = augment (k, A, jmatch, cheap, w, jmatch [i]) ;

}
if (found) jmatch [i] = j ; /* augment jmatch if path found */
return (found) ;

}

Just as with the recursive depth-first search algorithm df sr described in Sec-
tion 3.2, using recursion limits augment to solving problems of modest size. The
nonrecursive cs_maxtrans below is essentially the same as maxtrans; it simply al-
locates more workspace and calls the nonrecursive cs_augment instead. The extra
workspace is a stack that holds the intermediate values of the variables j, i, and
p in the recursive augment. The algorithm is more efficient than maxtrans for a
matrix A with more rows than columns (it transposes the matrix in this case). It
also returns quickly if the diagonal is already zero-free.
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The cs.augment function does the same thing as augment (k, . . ., k). First,
the node j is placed on the stack js. The while loop continues until either the
stack is empty or the last node in an augmenting path is found.

int *cs_maxtrans (const cs *A, int seed) /*[jmatch [0..m-1]; imatch [0..n-1]]*/

{
int i, j, k, n, m, p, n2 = 0, m2 = 0, *Ap, *jimatch, *w, *cheap, *js, *is,

*ps, *Ai, *Cp, *jmatch, *imatch, *q ;

cs *C ;

if (!CS_CSC (A)) return (NULL) ; /* check inputs */

n = A->n ; m = A->m ; Ap = A->p ; Ai = A->i ;

w = jimatch = cs_calloc (m+n, sizeof (int)) ; /* allocate result */

if (!jimatch) return (NULL) ;

for (k = 0 , j « 0 ; j < n ; j++) /* count nonempty rows and columns */

{
n2 +- (Ap [j] < Ap [j+1]) ;

for (p = Ap [j] ; p < Ap [j+1] ; p++)
{

w [Ai [p]] = 1 ;
k += (j == Ai [p]) ; /* count entries already on diagonal */

}

}
if (k == CS_MIN (m,n)) /* quick return if diagonal zero-free */
{

jmatch = jimatch ; imatch = jimatch + m ;
for (i = 0 ; i < k ; i++) jmatch [i] = i ;
for ( ; i < m ; i++) jmatch [i] = -1 ;
for (j = 0 ; j < k ; j++) imatch [j] = j ;
for ( ; j < n ; j++) imatch [j] = -1 ;
return (cs_idone (jimatch, NULL, NULL, D) ;

}
for (i = 0 ; i < m ; i++) m2 += w [i] ;
C = (m2 < n2) ? cs_transpose (A,0) : ((cs *) A) ; /* transpose if needed */

if (!C) return (cs_idone (jimatch, (m2 < n2) ? C : NULL, NULL, 0)) ;

n = C->n ; m = C->m ; Cp = C->p ;

jmatch = (m2 < n2) ? jimatch + n : jimatch ;

imatch = (m2 < n2) ? jimatch : jimatch + m ;

w = cs_malloc (5*n, sizeof (int)) ; /* get workspace */
if (!w) return (cs_idone (jimatch, (m2 < n2) ? C : NULL, w, 0)) ;

cheap = w + n ; js = w + 2*n ; is = w + 3*n ; ps = w + 4*n ;
for (j = 0 ; j < n ; j++) cheap [j] = Cp [j] ; /* for cheap assignment */

for (j = 0 ; j < n ; j++) w [j] = -1 ; /* all columns unflagged */

for (i = 0 ; i < m ; i++) jmatch [i] = -1 ; /* nothing matched yet */

q = cs_randperm (n, seed) ; /* q = random permutation */

for (k = 0 ; k < n ; k++) /* augment, starting at column q[k] */

{
cs_augment (q ? q [k]: k, C, jmatch, cheap, w, js, is, ps) ;

}
cs_free (q) ;

for (j = 0 ; j < n ; j++) imatch [j] = -1 ; /* find row match */

for (i = 0 ; i < m ; i++) if (jmatch [i] >= 0) imatch [jmatch [i]] = i ;

return (cs.idone (jimatch, (m2 < n2) ? C : NULL, w, 1)) ;

}
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static void cs_augment (int k, const cs *A, int *jmatch, int *cheap, int *w,
int *js, int *is, int *ps)

-c
int found = 0, p, i - -1, *Ap = A->p, *Ai = A->i, head = 0, j ;
js [0] = k ; /* start with just node k in jstack */
while (head >= 0)
{

/* Start (or continue) depth-first-search at node j */
j = js [head] ; /* get j from top of jstack */
if (w [j] != k) /* 1st time j visited for kth path */
{

w [j] = k ; /* mark j as visited for kth path */
for (p = cheap [j] ; p < Ap [j+1] && !found ; p++)
{

i = Ai [p] ; /* try a cheap assignment (i,j) */
found - (jmatch [i] == -1) ;

}
cheap [j] = p ; /* start here next time j is traversed*/
if (found)
{

is [head] = i ; /* column j matched with row i */
break ; /* end of augmenting path */

}
ps [head] = Ap [j] ; /* no cheap match: start dfs for j */

}
/* Depth-first-search of neighbors of j */
for (p = ps [head] ; p < Ap [j+1] ; p-H-)
{

i = Ai [p] ; /* consider row i */
if (w [jmatch [i]] == k) continue ; /* skip jmatch [i] if marked */
ps [head] = p + 1 ; /* pause dfs of node j */
is [head] = i ; /* i will be matched with j if found */
js [++head] = jmatch [i] ; /* start dfs at column jmatch [i] */
break ;

}
if (p == Ap [j+1]) head— ; /* node j is done; pop from stack */

} /* augment the match if path found: */
if (found) for (p = head ; p >= 0 ; p—) jmatch [is [p]] = js [p] ;

}

Start (or continue) depth-first search of node j: At each iteration of
the while loop in cs_augment, the node j at the top of the stack is considered. If
this is the first time j is considered, w[j] will not be equal to k; this corresponds to
the start of a call to augment (k,. . . , j). Thus, the next seven lines of code (from
w [j] =k to cheap [j] =p) are identical to the same seven lines in augment. If a cheap
match is found, this is recorded in the stack is, and the "recursion" will start to
unwind (the while loop terminates). Otherwise, the starting position p=Ap[j] in
AJ for the depth-first part is saved in ps, corresponding to the initialization of the
for (p=Ap[j] . . . ) loop in augment.

Depth-first search of neighbors of j: The for (p=ps[head] . . .) loop
starts (or continues) the corresponding for (p=Ap[j] . . .) loop in augment. If
an unmarked column jmatch [i] is found, the iteration for node j is paused, and
the new column jmatch[i] is now at the top of the stack. The break statement
terminates the for loop so that the outermost while loop can consider this node



jmatch[i] at the top of the stack. If the for loop terminates after searching
all rows i G Aj, then no match is found (yet), and j is popped from the stack by
decrementing head. Finally, if an augmenting path is found the "recursion" unwinds
by revising the matching for all unmatched edges (i, j) in this path, corresponding
to the jmatch[i]=j statement in augment.

If a column-perfect matching is found, imatch[0. . .n-1] is a permutation of
a subset of the columns of A (or all of the columns if A is square), and A(imatch,:)
has a zero-free diagonal. The MATLAB statement p=dmperm(A) is identical (that
is, p is imatch).

The worst-case time complexity of cs_maxtrans is O(|.A|n), but this rarely
occurs in practice, csjnaxtrans can match the columns of A in reverse order (from
n-1 to 0), or in a randomized order, which can help avoid this worst-case behavior.
The cs_randperm computes a random permutation used by csjnaxtrans. If seed
is zero, the identity permutation is returned (p=NULL). If seed is -1, the reverse
permutation is returned (p=n-l: -1:0 in MATLAB notation). Otherwise, a random
permtutation is returned.

int *cs_randperm (int n, int seed)

{

int *p, k, j, t ;
if (seed == 0) return (NULL) ; /* return p = NULL (identity) */

p = cs_malloc (n, sizeof (int)) ; /* allocate result */

if (!p) return (NULL) ; /* out of memory */

for (k = 0 ; k < n ; k++) p [k] = n-k-1 ;

if (seed == -1) return (p) ; /* return reverse permutation */

srand (seed) ; /* get new random number seed */

for (k = 0 ; k < n ; k++)

{
j = k + (rand ( ) */, (n-k)) ; /* j = rand int in range k to n-1 */
t * P [j] ; /* swap p[k] and p[j] */
P [j] = p M ;
p [k] = t ;

}
return (p) ;

>

7.3 Block triangular form
The block triangular form and its generalization the Dulmage-Mendelsohn decom-
position (described in the next section) is a useful tool for many sparse matrix
algorithms and theorems. It is a permutation of a matrix A that reduces the work
required for LU and QR factorization and provides a precise characterization of
structurally rank-deficient matrices.

An ra-by-n matrix A has the strong Hall13 property if every set of k columns
has nonzero entries in at least k + 1 rows for all k in the range 1 to n — 1. If A is
square and has structural full rank but is not strong Hall, it can be permuted to

13 An m-by-n matrix A has the Hall property if every set of k columns has nonzero entries in at
least k rows for all fc in the range 1 to n. Equivalently, A has the Hall property if and only if it
has full structural column rank.

118 Chapter 7. Fill-reducing orderings



where each diagonal block is square with a zero-free diagonal and has the strong Hall
property. The strong Hall property implies full structural rank. The block trian-
gular form (7.5) is unique, except that the blocks can sometimes be interchanged.
There is often a choice of ordering within the blocks (the diagonal must remain
zero-free). To solve Ax = b with LU factorization, only the diagonal blocks need to
be factorized, followed by a block backsolve for the off-diagonal blocks. No fill-in
occurs in the off-diagonal blocks. Because each diagonal block is strong Hall, the
theorems in Chapters 5 and 6 provide tighter bounds on the nonzero pattern of the
factors.

The inverse of a strong Hall matrix has no zero entries (ignoring numerical
cancellation), and thus should very rarely be computed in practice.

Permuting a square matrix with a zero-free diagonal into block triangular
form is identical to finding the strongly connected components of a directed graph,
G(A). The directed graph is defined as G(A) = (V,E), where V = (1,... ,n} and
E = {(i, j] \aij ^ 0}. That is, the nonzero pattern of A is the adjacency matrix
of the directed graph G(A). A strongly connected component is a maximal set of
nodes such that for any pair of nodes i and j in the component, the paths i ~> j
and j ~» i both exist in the graph.

The strongly connected components of a graph can be found in many ways.
The simplest method uses two depth-first traversals, one of G(A) and the second of
the graph G(AT}. This is simple in CSparse, because cs_df s can already perform
this depth-first traversal. It was presented in the context of a directed acyclic
graph (the graph of L) to find the nonzero pattern X = Reaches) for the sparse
triangular solve in Section 3.2, but nothing in the design of cs_df s limits it to
acyclic graphs. In general, the graph of A can have cycles, unlike the graph of L.

The first depth-first search returns a set X that contains all the nodes of the
graph. As a set, this is not very interesting. However, the order in which nodes
appear in X is very important. A node j is placed in the stack X in the order in
which its corresponding dfs(j) finishes. A second depth-first traversal of G(AJ},
where nodes are considered in the reverse order of their finish times (from the top
of the stack X to the bottom), determines the strongly connected components.
Every new node i found in a new depth-first search in the second pass, and all
nodes reachable from it in G(AT), define a unique strongly connected component
of G(A), denoted as Cb. The algorithm and its implementation (cs_scc) are given
below. The components are actually computed in reverse order; this detail is not
included in the sec function below. See Section 7.7 for more details on why it works.

Since A is stored in compressed-column form, Aj is the adjacency list of node
j in the graph G(AT). However, the sec algorithm will find a permutation that puts
the adjacency matrix of the graph in block lower triangular form. A block upper
triangular form is more conventional for sparse matrix computations, so cs_scc
can be applied to the transpose. These two transposes cancel each other, so the

block triangular form,
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cs_scc algorithm is identical to the pseudocode sec. It finds a permutation vector
p such that C=A(p,p) is in block upper triangular form (7.5) and an array r that
determines where the blocks are in C; the kth block is C(kl: k2, kl: k2) in MATLAB
notation, where kl=r[k] and k2=r[k+l]-l.

function scc(A)
A' = Reach^({l...n})
6 = 0
for each node i & X

if i is unmarked
6=6+1
Cb =dfs(i) of the graph G(AT)

csd *cs_scc (cs *A) /* matrix A temporarily modified, then restored */

{
int n, i, k, b, nb = 0, top, *xi, *pstack, *p, *r, *Ap, *ATp, *rcopy, *Blk ;

cs *AT ;

csd *D ;

if (!CS_CSC (A)) return (NULL) ; /* check inputs */

n = A->n ; Ap = A->p ;

D = cs_dalloc (n, 0) ; /* allocate result */

AT = cs_transpose (A, 0) ; /* AT = A' */

xi = cs_malloc (2*n+l, sizeof (int)) ; /* get workspace */

if (!D || !AT || !xi) return (cs_ddone (D, AT, xi, 0)) ;

Blk = xi ; rcopy = pstack = xi + n ;

p = D->p ; r = D->r ; ATp = AT->p ;

top = n ;

for (i = 0 ; i < n ; i++) /* first dfs(A) to find finish times (xi) */

{
if (!CS_MARKED (Ap, i)) top = cs_dfs (i, A, top, xi, pstack, NULL) ;

}
for (i = 0 ; i < n ; i++) CS_MARK (Ap, i) ; /* restore A; unmark all nodes*/

top = n ;
nb = n ;
for (k = 0 ; k < n ; k++) /* dfs(A') to find strongly connnected comp */

-C
i = xi [k] ; /* get i in reverse order of finish times */

if (CS_MARKED (ATp, i)) continue ; /* skip node i if already ordered */
r [nb—] = top ; /* node i is the start of a component in p */

top = cs_dfs (i, AT, top, p, pstack, NULL) ;

}
r [nb] = 0 ; /* first block starts at zero; shift r up */

for (k = nb ; k <= n ; k++) r [k-nb] = r [k] ;
D->nb = nb = n-nb ; /* nb = # of strongly connected components */

for (b = 0 ; b < nb ; b++) /* sort each block in natural order */

{
for (k = r [b] ; k < r [b+1] ; k++) Blk [p [k]] = b ;

}
for (b = 0 ; b <= nb ; b++) rcopy [b] = r [b] ;
for (i = 0 ; i < n ; i++) p [rcopy [Blk [!]]++] = i ;
return (cs_ddone (D, AT, xi, 1)) ;

>
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The last part of the cs_scc function sorts the permutation vector p in linear
time (O(n)), so that the rows and columns in each block appear in their natural
order. This is not essential but useful because a subsequent fill-reducing ordering
algorithm can tend to give slightly better results if it is provided with the matrix in
natural order, P = I if the matrix; consists of a single strongly connected component,
and cs_dmspy looks prettier in MATLAB.

The cs_dalloc, cs_df ree, and cs_ddone functions allocate, free, and return
a csd object that represents the strongly connected components found by cs_scc.

typedef struct cs_dmperm_results /* cs_dmperm or cs_scc output */

{
int *p ; /* size m, row permutation */

int *q ; /* size n, column permutation */

int *r ; /* size nb+1, block k is rows r[k] to r[k+l]-l in A(p,q) */
int *s ; /* size nb+1, block k is cols s[k] to s[k+l]-l in A(p,q) */
int nb ; /* # of blocks in fine dmperm decomposition */
int rr [5] ; /* coarse row decomposition */
int cc [5] ; /* coarse column decomposition */

> csd ;

csd *cs_dalloc (int m, int n)
{

csd *D ;
D = cs_calloc (1, sizeof (csd)) ;
if (!D) return (NULL) ;
D->p = cs_malloc (m, sizeof (int)) ;
D->r = cs_malloc (m+6, sizeof (int)) ;
D->q = cs_malloc (n, sizeof (int)) ;
D->s = cs_malloc (n+6, sizeof (int)) ;
return ((!D->p || !D->r II !D->q II !D->s) ? cs_dfree (D) : D) ;

}

csd *cs_dfree (csd *D)
{

if (!D) return (NULL) ; /* do nothing if D already NULL */
cs_free (D->p) ;
cs_free (D->q) ;
cs_free (D->r) ;
cs_free (D->s) ;
return (cs_free (D)) ;

>

csd *cs_ddone (csd *D, cs *C, void *w, int ok)
{

cs_spfree (C) ; /* free temporary matrix */
cs_free (w) ; /* free workspace */
return (ok ? D : cs_dfree (D)) ; /* return result if OK, else free it */

}

In MATLAB, [p,q,r,s]=dmperm(A) applied to a square matrix A with a
zero-free diagonal will return the same block triangular form A(p,p) (where p=q
and r=s), subject to the nonuniqueness of this form, as described above.
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7.4 Dulmage-Mendelsohn decomposition
The Dulmage-Mendelsohn decomposition is a generalization of (7.5). Suppose a
maximum matching of A has been found (A need not be square). Let 72. be the set
of matched rows and C be the set of matched columns. This matching partitions
the rows and columns of A into four disjoint subsets:

7£ the set of unmatched rows
C the set of unmatched columns
Tli the set of all rows reachable from any column in C via an alternating path
d the columns matched to T^i
Cs the set of all columns reachable from any row in 72, via an alternating path
7?-3 the rows matched to €3
72-2 anY row n°t in any of the above sets
C-2 any column not in any of the above sets

Note that all rows in 1Z,\ are matched; if they were not, an alternating augmenting
path could be found, extending the maximum matching (which is a contradiction).
Likewise, all columns in €3 are matched. Also note that if C\ and €3 had a column
in common, there would be an alternating augmenting path from 7£ to C through
that column. Similarly, T^i and 72-3 are disjoint. All rows in T^i are matched to
some row in C-2- Thus, 7£ is divided into three disjoint subsets 7£i, 72-2, and 72-3,
and C is divided into three disjoint subsets C\, €2, and €3. Given this four-way
partition of the rows and columns, any matrix A can be permuted into the 4-by-4
block matrix

where A^, ^23, and ^34 are square with a zero-free diagonal. The transpose of the
matrix

and the matrix

are both rectangular and have the strong Hall property. The matrix (7.7) has a
perfect row-matching, and the matrix (7.8) has a perfect column-matching. If C is
empty, the matrix A has a column-perfect matching, and both 7£i and C\ will be
empty. Likewise, if 7£ is empty, the matrix A has a row-perfect matching, and both
7?-3 and €3 will be empty. Thus, it is possible for the two matrices (7.7) and (7.8)
to be empty (with no rows and columns). If they do exist, (7.7) will have more
columns than rows, corresponding to the structurally underdetermined part of the
system Ax — 6, and (7.8) will have more rows than columns, corresponding to the
structurally overdetermined part of the system Ax = b. The matrix ^23 need not
have the strong Hall property. If it does not, it can be permuted into block upper
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triangular form, as described in Section 7.3. It has structural full rank because it is
square with a zero-free diagonal. Thus, for any matrix A, LU or QR factorization
can be applied to submatrices, all of which have the strong Hall property.

The permutation and partitioning of A given in (7.6) is unique, except that
a different maximum matching can swap columns between C and C\ and can swap
rows between Tl and "R-s (but not arbitrarily; C\ must still be matchable to the
set 7£i). Otherwise the eight sets, and their sizes, are unique. The row or column
ordering within each of the eight sets is not unique in general.

The cs_dmperm function computes the Dulmage-Mendelsohn decomposition.
It returns a csd object containing the row and column permutation vectors p and
q. The four subsets of these permutation vectors are given by cc and rr; this
determines the coarse decomposition, given in (7.6). The eight sets are given by

The fine decomposition includes the permutation of the A<23 submatrix into its
strongly connected components, (7.5). It is given by r and s. If C=A(p,q), the kth
block consists of rows r [k] through r [k+1] -1 and columns s [k] through s [k+1] -1
of C. The first block is the rectangular matrix (7.7) and the last block is (7.8) if
they are not O-by-0. The middle blocks are the strongly connected components of
A23- Note that (7.7) can have columns but no rows (An is 0-by-cc[l] and A\i is
O-by-0). Similarly, (7.8) can have rows but no columns.

Maximum matching: cs.dmperm finds the maximum matching jmat ch [i] = j
and its inverse imatch[j]=i.

Coarse decomposition: A breadth-first search starting from unmatched
columns C finds C\ and T?-I. Using the matrix AT, another breadth-first search
starting from rows in 7?. determines €3 and 7 .̂3. In the code, C and 7£ are CO and
RO, respectively. At this point, the coarse decomposition is determined solely by
the flag arrays wi and wj and the matching j match and imatch. These arrays are
scanned to find the permutations p and q and the coarse set sizes cc and rr.

Fine decomposition: The strongly connected components of the A(R2,C2)
submatrix are found. The A(R2,C2) matrix is formed by first computing C=A(p,q)
and then removing all rows and columns not in the set R2 or C2. The cs_f keep
function is used to drop entries not in R2, and then the size of Rl is subtracted from
all row indices. The strongly connected components could be found without forming
C=A(R2,C2) explicitly, but this method results in a simpler cs_scc function.

Combine decompositions: The fine and coarse decompositions are com-
bined into the r and s vectors that determine the boundaries of the blocks. The
permutation vectors p and q from the coarse decomposition are combined with the
permutation scc->p of A(R2,C2) that reveals its strongly connected components.
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csd *cs_dmperm (const cs *A, int seed)

{
int m, n, i, j, k, cnz, nc, *jmatch, *imatch, *wi, *wj, *pinv, *Cp, *Ci,

*ps, *rs, nbl, nb2, *p, *q, *cc, *rr, *r, *s, ok ;

cs *C ;
csd *D, *scc ;
/* Maximum matching */
if (!CS_CSC (A)) return (NULL) ; /* check inputs */
m - A->m ; n = A->n ;
D = cs_dalloc (m, n) ; /* allocate result */
if (!D) return (NULL) ;
p - D->p ; q = D->q ; r = D->r ; s = D->s ; cc = D->cc ; rr = D->rr ;
jmatch = cs_maxtrans (A, seed) ; /* max transversal */
imatch = jmatch + m ; /* imatch = inverse of jmatch */
if (!jmatch) return (cs_ddone (D, NULL, jmatch, 0)) ;
/* Coarse decomposition */
wi = r ; wj = s ; /* use r and s as workspace */
for (j = 0 ; j < n ; j++) wj [j] = -1 ; /* unmark all cols for bfs */
for (i = 0 ; i < m ; i++) wi [i] = -1 ; /* unmark all rows for bfs */
cs_bfs (A, n, wi, wj, q, imatch, jmatch, 1) ; /* find Cl, Rl from CO*/
ok = cs_bfs (A, m, wj, wi, p, jmatch, imatch, 3) ; /* find R3, C3 from RO*/
if (!ok) return (cs_ddone (D, NULL, jmatch, 0)) ;
cs_unmatched (n, wj, q, cc, 0) ; /* unmatched set CO */
cs_matched (n, wj, imatch, p, q, cc, rr, 1, 1) ; /* set Rl and Cl */
cs_matched (n, wj, imatch, p, q, cc, rr, 2, -1) ; /* set R2 and C2 */
cs_matched (n, wj, imatch, p, q, cc, rr, 3, 3) ; /* set R3 and C3 */
cs_unmatched (m, wi, p, rr, 3) ; /* unmatched set RO */
cs_free (jmatch) ;
/* Fine decomposition */
pinv = cs_pinv (p, m) ; /* pinv=p' */
if (Ipinv) return (cs_ddone (D, NULL, NULL, 0)) ;
C = cs_permute (A, pinv, q, 0) ;/* C=A(p,q) (it will hold A(R2,C2)) */
cs_free (pinv) ;
if (!C) return (cs.ddone (D, NULL, NULL, 0)) ;
Cp = C->p ;
nc = cc [3] - cc [2] ; /* delete cols CO, Cl, and C3 from C */
if (cc [2] > 0) for (j = cc [2] ; j <= cc [3] ; j++) Cp [j-cc[2]] = Cp [j] ;
C->n = nc ;
if (rr [2] - rr [1] < m) /* delete rows RO, Rl, and R3 from C */
{

cs_fkeep (C, cs_rprune, rr) ;
cnz = Cp [nc] ;
Ci = C->i ;
if (rr [1] > 0) for (k = 0 ; k < cnz ; k++) Ci [k] -= rr [1] ;

}
C->m = nc ;
sec = cs_scc (C) ; /* find strongly connected components of C*/
if (!scc) return (cs_ddone (D, C, NULL, 0)) ;
/* Combine coarse and fine decompositions */
ps = scc->p ; /* C(ps,ps) is the permuted matrix */
rs = scc->r ; /* kth block is rs[k] . .rs[k-H]-l */
nbl = scc->nb ; /* # of blocks of A(R2,C2) */
for (k » 0 ; k < nc ; k++) wj [k] = q [ps [k] + cc [2]] ;
for (k = 0 ; k < nc ; k++) q [k + cc [2]] = wj [k] ;
for (k = 0 ; k < nc ; k++) wi [k] = p [ps [k] + rr [1]] ;
for (k = 0 ; k < nc ; k++) p [k + rr [1]] = wi [k] ;
nb2 = 0 ; /* create the fine block partitions */
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r [0] - s [0] - 0 ;
if (cc [2] > 0) nb2++ ; /* leading coarse block A (Rl, [CO Cl]) */
for (k = 0 ; k < nbl ; k++) /* coarse block A (R2.C2) */
{

r [nb2] = rs [k] + rr [1] ; /* A (R2.C2) splits into nbl fine blocks */
s [nb2] = rs [k] + cc [2] ;
nb2++ ;

}
if (rr [2] < m)
{

r [nb2] - rr [2] ; /* trailing coarse block A ([R3 RO], C3) */
s [nb2] = cc [3] ;
nb2++ ;

}
r [nb2] = m ;
s [nb2] = n ;
D->nb - nb2 ;
cs_dfree (sec) ;
return (cs_ddone (D, C, NULL, 1)) ;

}

The breadth-first search is performed by the cs_bf s function below.

static int cs_bfs (const cs *A, int n, int *wi, int *wj, int *queue,
const int *imatch, const int *jmatch, int mark)

{
int *Ap, *Ai, head = 0, tail = 0, j, i, p, j2 ;
cs *C ;
for (j = 0 ; j < n ; j++) /* place all unmatched nodes in queue */
{

if (imatch [j] >= 0) continue ; /* skip j if matched */
wj [j] * 0 ; /* j in set CO (RO if transpose) */
queue [tail++] = j ; /* place unmatched col j in queue */

}
if (tail == 0) return (1) ; /* quick return if no unmatched nodes */
C = (mark == 1) ? ((cs *) A) : cs_transpose (A, 0) ;
if (!C) return (0) ; /* bfs of C=A' to find R3.C3 from RO */
Ap - C->p ; Ai = C->i ;
while (head < tail) /* while queue is not empty */
{

j = queue [head++] ; /* get the head of the queue */
for (p = Ap [j] ; p < Ap [j+1] ; p++)
{

i = Ai [p] ;
if (wi [i] >- 0) continue ; /* skip if i is marked */
wi [i] = mark ; /* i in set Rl (C3 if transpose) */
j2 = jmatch [i] ; /* traverse alternating path to j2 */
if (wj [j2] >= 0) continue ;/* skip j2 if it is marked */
wj [j2] = mark ; /* j2 in set Cl (R3 if transpose) */
queue [tail++] = J2 ; /* add J2 to queue */

}
}
if (mark != 1) cs_spfree (C) ; /* free A' if it was created */
return (1) ;

}

To find KI and C\, cs_bfs starts at unmatched column nodes in C and tra-
verses alternating paths, according to the maximum matching found by cs_maxtrans.
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The order of the nodes in the sets KI and C\ is not important, so a simpler breadth-
first search can be used instead of a more complicated depth-first search. To find
7?-3 and £3, it starts at unmatched row nodes in 7£ and searches the transpose of the
graph of A. The queue array is workspace for the breadth-first queue. cs_dmperm
passes p and q to cs_bf s to use as workspace for the breadth-first search queue.

cs_matched constructs the portions of the output permutations corresponding
to the matched submatrices (A ([Rl R2 R3] , [Cl C2 C3])).

static void cs_matched (int n, const int *wj, const int *imatch, int *p, int *q,
int *cc, int *rr, int set, int mark)

{
int kc = cc [set], j ;

int kr = rr [set-1] ;

for (j = 0 ; j < n ; j++)

{
if (wj [j] != mark) continue ; /* skip if j is not in C set */

p [kr++] = imatch [j] ;

q [kc++] = j ;

}
cc [set+1] = kc ;

rr [set] = kr ;

}

cs.unmatched constructs the RO and CO sets. The cs_rprune function is used
with cs_f keep to remove all rows not in the set R2.

static void cs_unmatched (int m, const int *wi, int *p, int *rr, int set)

{
int ±, kr = rr [set] ;

for (i = 0 ; i < m ; i++) if (wi [i] == 0) p [kr++] = i ;
rr [set+1] = kr ;

>

static int cs_rprune (int i, int j, double ai j, void *other)

{
int *rr = (int *) other ;
return (i >= rr [1] && i < rr [2]) ;

}

In MATLAB, the corresponding decomposition is [p, q, r, s] =dmperm (A). The
four outputs of dmperm are identical to the same outputs of cs_dmperm. The dmperm
function in MATLAB 7.2 does not return the coarse decomposition. The matrix
A([R1 R2 R3] , [Cl C2 C3] ) permuted by cs_dmperm has a zero-free diagonal of
maximum size. This is almost the same as dmperm, except that dmperm returns
the sets CO and Cl jumbled together in no particular order, as are the sets R3
and RO. The function cs_dmperm makes the distinction between these sets clearer
by returning the maximum matching as the diagonal of the square matrix A( [Rl
R2 R3] , [Cl C2 C3]). Also, dmperm in MATLAB does not explicitly return the
coarse decomposition (cc and rr). cs_dmperm returns the columns of each block in
natural order, while dmperm does not. The two functions may not find the same
matching, since any maximum matching is valid. Both functions return a valid
Dulmage-Mendelsohn decomposition.
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7.5 Bandwidth and profile reduction
The profile (also called the envelope) of a symmetric matrix is a measure of how close
its entries are to the diagonal. Assuming the diagonal of A is nonzero, the profile of
A is X]?=i (3 ~ mui A*j) • The bandwidth of the matrix is similar, max^ (j — min A*j).
A permutation that reduces the profile or bandwidth of a matrix can provide a good
ordering for the LU or Cholesky factorization of PAPT. Minimizing the profile or
bandwidth is NP-hard, so heuristics are used.

The reverse Cuthill-McKee algorithm is one of the simplest heuristics. It starts
at a given node and orders it first. Next, all unnumbered neighbors of any ordered
nodes are ordered by increasing degree. This gives the Cuthill-Mckee ordering; the
profile is reduced further by reversing this ordering (the profile cannot be increased
by this reversal). Finding a good starting node is critical for obtaining a good order-
ing. The method starts with a pseudoperipheral node, which is found by repeated
breadth-first searches. An arbitrary starting node is selected, and a breadth-first
search determines the most distant node from this starting node. The breadth-first
search is repeated, starting at this distant node, and the process repeats until the
distance does not increase. The pseudoperipheral node is the last node found, and
becomes the starting node for the reverse Cuthill-McKee algorithm. The MATLAB
function for reverse Cuthill-McKee is p=symrcm(A). CSparse does not include a C
version of this algorithm.

The Fiedler vector of a symmetric matrix A is the eigenvector corresponding to
the second largest eigenvalue of the Laplacian of the graph of A (assuming the graph
is connected). The Laplacian S has the same nonzero pattern as A. Off-diagonal
entries are replaced with —1, and the fcth diagonal is replaced by the number of
off-diagonal entries in the fcth column. With the permutation P obtained from
sorting the Fiedler vector, the matrix PAPT will tend to have a small profile. It
can be computed using the MATLAB eigs function. The eigs function uses a shift-
and-invert technique; it thus computes the factorization of the positive semidefinite
matrix S — al. For the Fiedler vector, the Lanczos method could be used instead,
which does not require the factorization of S.
function [p,v,d] = cs_fiedler (A)
7.CS_FIEDLER the Fiedler vector of a connected graph.

7. [p,v,d] = cs_fiedler(A) computes the Fiedler vector v (the eigenvector
7, corresponding to the 2nd smallest eigenvalue d of the Laplacian of the graph

7, of A+A'). p is the permutation obtained when v is sorted. A should be a

% connected graph.

7.
7. See also CS_SCC, EIGS, SYMRCM, UNMESH.

n = size (A,l) ;

if (n < 2) p = 1 ; v = l ; d = 0 ; return ; end

opt.disp = 0 ; 7. turn off printing in eigs

opt.tol » sqrt (eps) ;

S = A | A' I speye (n) ; 7. compute the Laplacian of A

S = diag (sum (S)) - S ;

[v,d] = eigs (S, 2, 'SA', opt) ; 7, find the Fiedler vector v

v - v (:,2) ;
d = d (2,2) ;

[ignore p] = sort (v) ; 7, sort it to get p
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7.6 Nested dissection
Nested dissection is a fill-reducing ordering well suited to matrices arising from the
discretization of a problem with two-dimensional (2D) or three-dimensional (3D)
geometry. The goal of this ordering is the same as the minimum degree ordering;
it is a heuristic for reducing fill-in, not the profile or bandwidth. Consider the
undirected graph of a matrix A with symmetric nonzero pattern. Nested dissection
finds a node separator that splits the graph into two or more roughly equal-sized
subgraphs (left and right) when the nodes in the separator (and their incident edges)
are removed from the graph. The subgraphs are then ordered recursively via nested
dissection for a large subgraph or minimum degree for a small one.

With a single node separator, a matrix is split into the following form, where
AW is the matrix corresponding to the nodes in the node separator, AH corresponds
to the left subgraph, and ^22 corresponds to the right subgraph. Since the left
subgraph (An) and right subgraph (Azz) are not joined by any edges, A\2 is zero.

There are many methods for finding a good node separator. One class of
methods starts with an edge separator and then converts it into a node separator.
Likewise, an edge separator can be found in many ways; the method discussed here
is based on the profile-reducing methods discussed in the previous section. There
are many ways of finding a nested dissection ordering; this method was chosen for
its simplicity of implementation. State-of-the-art methods are highlighted at the
end of this section. See also Section 7.7.

Suppose a profile-reducing ordering P has been found. Divide the matrix
PAPT into its first [n/2\ rows and columns and its last n— \n/1\ rows and columns.

Since the profile of PAPT has been reduced, the number of entries in Ai2 will be
small. If these entries (edges in the graph G) are removed, the graph splits into
two components of equal size (possibly more than two connected components if the
graphs of Au or ^22 are unconnected). The edges in A\% are an edge separator of
G. In practice, the matrix is not divided equally, since the size of the edge separator
can often be reduced if the two subgraphs are allowed to differ in size (they are kept
roughly equal in size; otherwise, a good ordering is not obtained). The cs_esep
M-file shown below finds an edge separator using symrcm.

The Dulmage-Mendelsohn decomposition can convert this edge separator into
a node separator by finding a minimal node cover of the edges in A\i- Consider the



7.6. Nested dissection 129

bipartite graph of S = A\2 and its Dulmage-Mendelsohn decomposition,

The method can select as the node cover either the set H\ U €2 U £3 or T^i U
7?.2 U £3, both with size equal to the size of the maximal matching of Ai2 (its
structural rank). Any edge in S will be incident on at least one node in one of
these two sets. The cs_sep M-file selects T^i UC2 U^. In practice, the set is chosen
that best balances the sizes of the left and right subgraphs. The cs_nsep M-file
constructs an edge separator and converts it into a node separator. The recursive
cs_nd M-file finds a node separator using cs_nsep and then recursively bisects the
two subgraphs. Small graphs (of order 500 or less) are ordered with cs.amd.

function [a,b] = cs_esep (A)

*/,CS_ESEP find an edge separator of a symmetric matrix A

'/, [a,b] = cs_esep(A) finds a edge separator s that splits the graph of A

% into two parts a and b of roughly equal size. The edge separator is the

7, set of entries in A(a,b) .

7.
7. See also CS_NSEP, CS_SEP, CSJJD, SYMRCM.

p = symrcm (A) ;
n2 - fix (size(A,l)/2) ;

a = p (I:n2) ;
b = p (n2+l:end) ;

function [s,as,bs] = cs_sep (A,a,b)
7.CS_SEP convert an edge separator into a node separator.
7. [s.as.bs] « cs_sep (A,a,b) converts an edge separator into a node separator.
7. [a b] is a partition of l:n, thus the edges in A(a,b) are an edge separator
7. of A. s is the node separator, consisting of a node cover of the edges of
7, A(a,b) . as and bs are the sets a and b with s removed.

7.
7. See also CS_DMPERM, CS_NSEP, CS_ESEP, CS_ND.

[p q r s cc rr] = cs_dmperm (A (a,b)) ;
s = [(a (p (l:rr(2)-l))) (b (q (cc(3):(cc(5)-l))))] ;
w » ones (1, size (A,l)) ;
w (s) - 0 ;
as = a (find (w (a))) ;
bs - b (find (w (b))) ;

function [s,a,b] * cs_nsep (A)
7tCS_NSEP find a node separator of a symmetric matrix A.
7, [s,a,b] = cs_nsep(A) finds a node separator s that splits the graph of A

7t into two parts a and b of roughly equal size. If A is unsymmetric, use
7. cs_nsep(A|A') . The permutation p = [a b s] is a one-level dissection of A.

7,
7. See also CS_SEP, CS.ESEP, CS_ND.

[a b] = cs_esep (A) ;
[ sab] = cs_sep (A, a, b) ;
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function p = cs_nd (A)

7,CS_ND generalized nested dissection ordering.

7, p = cs_nd(A) computes the nested dissection ordering of a. matrix. Small

7. submatrices (order 500 or less) are ordered via cs_amd. A must be sparse

7. and symmetric (use p = cs_nd(A|A') if it is not symmetric).

7,
7, See also CS_AMD, CS_SEP, CS_ESEP, CS_NSEP, AMD.

n = size (A,l) ;

if (n == 1)

P - i ;
elseif (n < 500)

p = cs_amd (A) ; 7. use cs_amd on small graphs

else

[ s a b ] = csjasep (A) ; 7, find a node separator
a = a (cs_nd (A (a, a))) ; 7, order A (a, a) recursively

b = b (cs_nd (A (b,b))) ; 7. order A(b,b) recursively

p = [a b s] ; 7« concatenate to obtain the final ordering

end

The Fiedler vector, or other eigenvector techniques, can lead to a smaller node
separator and orderings with lower fill-in, but they are prohibitively expensive to
compute for large graphs. To overcome this problem, the graph G of A can be
successively coarsened. A node in the coarse graph Gc of A represents a unique
set of nodes in G with node weight equal to the number of nodes it represents.
Edge weights are used to reflect the number of edges (the sum of their weights)
between sets of nodes in G. A sequence of coarser and coarser graphs G (the
original graph), G?i, G%, • • • , Gk is found until Gk is small enough to use powerful
edge or node separator methods efficiently. Next, the edge or node separator is
mapped to the graph of Gfc-i, and refinement techniques (such as the Kernighan-
Lin algorithm) are used to improve this partition of Gk-i- The refinement process
continues until a separator of G is obtained.

Figure 7.4 is the graph of the matrix in Figure 4.2 on page 39 with both node
and edge separators highlighted.

If applied to a 2D s-by-s mesh with node separators selected along a mesh
line that most evenly divides the graph, nested dissection leads to an asymptot-
ically optimal ordering, with 31(nlog2n)/8 + O(ri) nonzeros in L, and requiring
829(n3/2)/84-f O(nlogn) floating-point operations to compute, where n — s2 is the
dimension of the matrix. For a 3D s-by-s-by-s mesh the dimension of the matrix is
n — s3. There are 0(n4/3) nonzeros in I/, and 0(n2) floating-point operations are
required to compute L, which is also asymptotically optimal.

7.7 Further reading
Finding a good fill-reducing ordering is essential for reducing time and memory
requirements for sparse factorization methods. Since it is an NP-hard problem
(Yannakakis [199]), many heuristic methods have been developed. These heuristics
can be divided into three broad categories: minimum degree, nested dissection, and
profile reduction. The Dulmage-Mendelsohn decomposition [72] is not a heuristic,
but it can be considered as a fourth category of ordering methods, since it restricts
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Figure 7.4. A node and edge separator

fill-in to the diagonal blocks.
Minimum degree and its variants are the most commonly used methods, pro-

viding low fill-in on the widest range of matrices. Good nested dissection order ings
tend to be superior to minimum degree for large problems that come from 2D and
3D spatial discretizations (finite-element methods, for example), particularly when
coupled with minimum degree for ordering small subgraphs. An early unsymmetric
form is Markowitz's method [155] that selects aij to minimize the product of the
row degree i and column degree j. MA28 by Duff and Reid [61] in the HSL package
is based on an efficient implementation of the method. It is interesting to note that
Markowitz received the 1990 Nobel prize [79] in economics for his pioneering work
in portfolio theory, part of which is his LU ordering work.14

Minimum degree is a local greedy strategy, or a "bottom-up" approach, since it
finds the leaves of the elimination tree first. Tinney and Walker [196] developed the
first minimum degree method for symmetric matrices. Note that the word "optimal"
in the title of their paper is a misnomer, since minimum degree is a non-optimal
method. Its earliest efficient implementation is by George and Liu's algorithm
(MMD and its precursors in SPARSPAK [85, 87, 91]). Other implementations
include YSMP (Eisenstat et al. [73] and Eisenstat, Schultz, and Sherman [76]) and
MA27 (Duff, Erisman, and Reid [53] and Duff and Reid [62]).

Since computing the exact degree is costly, Amestoy, Davis, and Duff de-
veloped AMD, an approximate minimum degree ordering [1, 2]; Davis et al. later
extended this to compute a column ordering of AT A without forming AT A explicitly
(COLAMD [33, 34]). The approximate degree spurred the search for approxima-
tions to the deficiency. The deficiency of a node is how much fill-in would occur if

14http://nobelprize.org/economics/laureates/1990/markowitz-autobio.html

http://nobelprize.org/economics/laureates/1990/markowitz-autobio.html
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the node were selected as the pivot. Methods based on variations of approximate
deficiency have been developed by Rothberg and Eisenstat [176], Ng and Raghavan
[161], and Pellegrini, Roman, and Amestoy [166].

Nested dissection is a "top-down" approach, since the first level separator
includes the root of the elimination tree and its immediate descendants. Kernighan
and Lin [140] present an early graph partitioning technique based on exchanging
pairs of nodes in the graph. Fiduccia and Mattheyses present a more efficient node-
swapping method [77]. Hager, Park, and Davis extend this idea to exchange blocks
of nodes [126]. The first nested dissection algorithm for ordering sparse matrices
is due to George [81, 82]. It relies on finding a good pseudoperipheral node, as
discussed by George and Liu [86]. See also Duff, Erisman, and Reid's discussion of
George's nested dissection method [52].

More recent approaches to nested dissection are based on multilevel meth-
ods and eigenvector techniques (in particular the Fiedler vector [78]). These in-
clude methods by Pothen, Simon, and Liou [170], Karypis and Kumar (METIS
[139]), Hendrickson and Leland (CHACO [131]), Pellegrini, Roman, and Amestoy
(SCOTCH [166]), and Walshaw, Cross, and Everett (JOSTLE [197]). Since many
matrices arise in problems with 2D and 3D geometry, Heath and Raghavan [129] and
Gilbert, Miller, and Teng (MESHPART [104]) present partitioning methods based
on the geometric position of nodes in the graph. CHOLMOD includes both AMD
and a partitioning method that combines METIS with a constrained approximate
column minimum degree ordering algorithm, CCOLAMD [30].

Many of the early sparse matrix factorization methods used a profile or enve-
lope data structure, so reducing the profile of a matrix had a direct impact on the
memory usage of the method. Profile reduction is still a useful method for more
recent factorization techniques. It can form a first step in finding a good edge or
node separator for graph partitioning and nested dissection. Cuthill and McKee [25
developed one of the first techniques, which is still in use. Liu and Sherman [153]
showed that reversing the Cuthill-McKee ordering never increases the profile and
often reduces it. Chan and George [21] present an efficient implementation. Other
profile reduction techniques include those by Crane et al. [24], Gibbs [99], Gibbs,
Poole, and Stockmeyer [100], Hager [125], Reid and Scott [172, 173], Lewis [146],
and Sloan [187]. Eigenvector techniques are also an effective method for reducing
the profile, as discussed by Barnard, Pothen, and Simon [14], Pothen, Simon, and
Liou [170], and Kumfert and Pothen [142].

Gormen, Leiserson, and Rivest [23] describe the sec algorithm discussed in
Section 7.3. The earliest algorithm for finding the strongly connected components
of a graph is due to Tarjan [194]; Duff and Reid [59, 60] implement the algorithm.
Gustavson [120] discusses both the maximum matching and an implementation of
Tarjan's algorithm. Duff [48, 49] presents the 0(|yl|n)-tinie maximum matching
algorithm used by cs_maxtrans. Duff and Wiberg [71] implement an Od^lv/n)-
time maximum matching algorithm of Hopcroft and Karp [137] that is not always
faster than the O(|^4|n)-time algorithm in practice. Pothen and Fan [169] compare
various methods for computing the block triangular form. Duff and Koster [57, 58]
present a maximum weighted matching.

Ordering methods in MATLAB are discussed in Chapter 10.
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Exercises
7.1. Download a copy of AMD from www.siam.org/books/fa02 (or from www.acm.

org as ACM Algorithm 837). Compare it with cs_amd and make a list
of the differences between the two codes. Compare the run time, mem-
ory usage, and ordering quality on a large range of symmetric matrices (use
p=cs_amd(A) and compare with p=amd(A) in MATLAB). The MATLAB ex-
pression lnz=sum(symbfact(A(p,p))) gives the number of nonzeros in the
Cholesky factor L of the matrix A(p,p) (ignoring numerical cancellation).

7.2. Compare the MATLAB statement q=cs_amd(A, 2) with the permutation com-
puted by the MATLAB statement q=colamd(A). Compare the ordering time
and memory usage. Use the column ordering in [L,U,P]=lu(A(: ,q)) to
compare the ordering quality (nnz(L)+nnz(U)). Add code to cs_amd and
COLAMD to compute their memory usage. COLAMD orders ATA without
forming it explicitly, so it will tend to use much less memory than cs_amd(A).
Both drop dense rows from A.

7.3. Compare the MATLAB statement p=cs_amd(A ,3) with the permutation com-
puted by the MATLAB statement p=amd(A>*A) (see Problem 7.1). Compare
the ordering time and memory usage. Compare ordering quality; use rnz
=sum(symbfact(A(: ,q), 'col')) (where rnz is the same as nnz(qr(A,0)),
ignoring numerical cancellation and assuming A is not structurally rank defi-
cient) .

7.4. Write a function that solves Ax = b by combining LU factorization with the
block triangular form (the fine Dulmage-Mendelsohn decomposition). Find
the blocks with cs_dmpenn and then analyze and factorize each block with
cs_sqr and cs_lu, respectively. Next, solve Ax = b via a block backsolve.
Compare with cs_lu on matrices with many diagonal blocks (these include
matrices arising in circuit simulation and chemical process simulation). See
also Section 8.4.

7.5. Why is the block triangular form not helpful for sparse Cholesky factoriza-
tion? Hint: consider the elimination tree postordering. What happens if the
elimination tree is a forest?

7.6. Heuristics for placing large entries on the diagonal of a matrix are useful
methods for reducing the need for partial pivoting during factorization (see
[57, 58], for example). Try the following method. First, scale a copy of the
matrix A so that the largest entry in each column is equal to one. Next,
remove small entries from the matrix and use csjnaxtrans to find a zero-free
diagonal. If too many entries were dropped, decrease the drop tolerance and
try again, or simply complete the matching arbitrarily. Use the matching as
a column preordering Q and then order AQ -+- (AQ)T with minimum degree.
Use a small pivot tolerance in cs_lu and determine how many off-diagonal
pivots are found.

7.7. Compare the run time of cs_dmperm with different values of seed (0, -1, and
1) on a wide range of matrices from real applications. Symmetric indefinite

www.siam.org/books/fa02
www.acm.org
www.acm.org
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matrices arising in optimization problems are of particular interest (many
of the matrices from Gould, Hu, and Scott [116] in the GHS_indef group
in the UF sparse matrix collection, for example). Find examples where the
randomized order, reverse order, and natural order methods each outperform
the other methods (the boyd2 matrix is an extreme example).



Chapter 8

Solving sparse linear
systems

Solving a sparse linear system Ax = 6 is now a matter of putting together the
methods described in Chapters 2 through 7. The typical steps are to (1) find a
permutation to reduce fill-in, (2) analyze and factorize the permuted matrix A (via
Cholesky, LU, or QR), (3) permute the right-hand side 6, (4) solve for x using
forward/backsolve or by applying Householder reflections, (5) permute the solution
x, and (6) optionally perform one or two steps of iterative refinement, which can
sometimes improve the solution (see Problem 8.5), even when performed in standard
floating-point precision.

A naive method for solving Ax — b when A is square and nonsingular is to
compute the inverse A~l, or x=inv(A) *b in MATLAB. This is numerically unstable
when A is ill-conditioned in the dense case and also very costly in the sparse case.
The inverse normally has no zero entries at all, as shown by the following two
theorems.

Theorem 8.1 (Gilbert [101]). Ignoring numerical cancellation, the nonzero pattern
of the solution to Ax = b, where A has a zero-free diagonal, is X = Reach A(&)-
Ignoring numerical cancellation, the solution x has no zero entries if A is strong
Hall

Theorem 8.2 (Gilbert [101]). The transitive closure of the directed graph of A is
the graph C, where Ci = ReachA(i)- Ignoring numerical cancellation, C gives the
nonzero pattern of A~l. Every edge is present in C, and A~* has no zero entries,
if A is strong Hall.

8.1 Using a Cholesky factorization
When A is symmetric positive definite, the system Ax = b can be solved via
Cholesky factorization. If P is the fill-reducing permutation, LLT = PAPT. The
system Ax = b becomes PAPTPx = Pb. Solving Ly = Pb for T/, solving LT z = y
for z, and finally x = PTz results in the solution x. In MATLAB notation,

135
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p = amd (A) ;
L = chol (A) ;
x = L' \ (L \ b (p)) ;
x (p) = x ;

The cs.cholsol function overwrites its input b with the solution to
order determines the input ordering used (0 for P = I, or 1 for a minimum degree
ordering of A). It returns true (l) if successful, false (0) if the matrix is not positive
definite or if the method ran out of memory. Note that the forward/backsolve steps
cannot fail because they do not allocate memory.

int cs_cholsol (int order, const cs *A, double *b)

8.2 Using a QR factorization
The least squares problem is to find x that minimizes the 2-norm of the residual,
||r||2, where r = b — Ax and A is m-by-n with m > n. Multiplying a vector by an
orthogonal matrix Q does not change its 2-norm. If A is factorized into the product
A = QR, then

where Q is ra-by-ra, RI is n-by-n, and Qi is m-by-n. Assuming A has full rank, RI
is nonsingular and so the upper triangular system Q^b = RIX can be solved, which
makes r\ = 0 and minimizes ||r||2-

QR factorization also provides a reliable method for solving underdetermined
systems Ax = 6, where A is m-by-n with m < n. Ignoring the fill-reducing ordering,
consider the QR factorization QR = AT. The system becomes RTQTx — b. If the
upper triangular system R7 y = b is solved for y, the solution to Ax = b is x — Qy.

{
double *x ;

ess *S ;

csn *N ;

int n, ok ;

if (!CS_CSC (A) || !b) return (0) ; /* check inputs */

n = A->n ;

S * cs_schol (order, A) ; /* ordering and symbolic analysis */

N - cs_chol (A, S) ; /* numeric Cholesky factorization */

x = cs_malloc (n, sizeof (double)) ; /* get workspace */

ok « (S && N && x) ;

if (ok)

-c
cs_ipvec (S->pinv, b, x, n) ; /* x = P*b */

cs_lsolve (N->L, x) ; /* x = L\x */

cs_ltsolve (N->L, x) ; /* x = L'\x */

cs.pvec (S->pinv, x, b, n) ; /* b = P'*x */

}
cs_free (x) ;

cs_sfree (S) ;

cs_nfree (N) ;
return (ok) ;

}
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In cs_qrsol, Q = HI H^ . • • Hn is represented implicitly as a product of House-
holder reflections, and the permuted matrix PAQ is factorized instead of A, where
Q is the fill-reducing column permutation. The right-hand side b[0.. .m-1] is over-
written with the solution x[0. .n-1] (and thus b must be of size max(m,n)). Use
order=0 for the natural ordering or 3 for a minimum degree ordering of ATA.

int cs_qrsol (int order, const cs *A, double *b)

{
double *x ;

ess *S ;

csn *N ;

cs *AT = NULL ;

int k, m, n, ok ;

if (!CS_CSC (A) || !b) return (0) ; /* check inputs */

n = A->n ;

m = A->m ;
if (m >= n)
{

S = cs_sqr (order, A, 1) ; /* ordering and symbolic analysis */

N = cs_qr (A, S) ; /* numeric QR factorization */

x = cs_calloc (S ? S->m2 : 1, sizeof (double)) ; /* get workspace */

ok - (S ft& N && x) ;

if (ok)

{
cs_ipvec (S->pinv, b, x, m) ; /* x(0:m-l) = b(p(0:m-l) */

for (k = 0 ; k < n ; k++) /* apply Householder refl. to x */

{
csjiapply (N->L, k, N->B [k], x) ;

}
cs_usolve (N->U, x) ; /* x - R\x */

cs_ipvec (S->q, x, b, n) ; /* b(q(0:n-l)) - x(0:n-l) */

>

}
else

<
AT = cs_transpose (A, 1) ; /* Ax=b is underdetermined */

S = cs_sqr (order, AT, 1) ; /* ordering and symbolic analysis */

N = cs_qr (AT, S) ; /* numeric QR factorization of A' */
x = cs_calloc (S ? S->m2 : 1, sizeof (double)) ; /* get workspace */

ok = (AT && S &ft N && x) ;

if (ok)

{
cs_pvec (S->q, b, x, m) ; /* x(q(0:m-l)) = b(0:m-l) */
cs_utsolve (N->U, x) ; /* x - R'\x */

for (k = m-1 ; k >= 0 ; k—) /* apply Householder refl. to x */

{
csjiapply (N->L, k, N->B [k], x) ;

>
cs_pvec (S->pinv, x, b, n) ; /* b(0:n-l) = x(p(0:n-l)) */

}
}
cs_free (x) ;

cs_sfree (S) ;

cs_nfree (N) ;

cs.spfree (AT) ;

return (ok) ;

}
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8.3 Using an LU factorization
When A is a general square matrix, solving Ax = b is normally done via LU fac-
torization. The factorization is PAQ = LU, where P and Q serve two purposes:
reducing fill-in and maintaining numerical accuracy. In left-looking sparse LU fac-
torization, Q is chosen to reduce fill-in and P is chosen via partial pivoting. Solving
Ly = Pb and Uz = y gives the permuted solution, and then x = Qz gives the
solution to Ax = b.

The cs_lusol function solves Ax — b using LU factorization. The parameter
order determines the ordering method used. The natural order (Q = I) is order=0.
If the matrix has a mostly symmetric nonzero pattern and large enough entries on
its diagonal, then a minimum degree ordering of A + AT (order=l) with a small
tol is best. Otherwise, an ordering of ATA with tol=l is more suitable (order=2
removes dense rows of A prior to ordering A1 A; order=3 does not).

int cs_lusol (int order, const cs *A, double *b, double tol)

-C
double *x ;

ess *S j

csn *N ;

int n, ok ;

if (!CS_CSC (A) || !b) return (0) ;

n = A->n ;

S = cs_sqr (order, A, 0) ;

N = cs_lu (A, S, tol) ;

x = cs_malloc (n, sizeof (double)) ;

(S fe& N &ft x) ;ok

if

{

(ok)

cs_ipvec (N->pinv, b, x, n) ;
cs_lsolve (N->L, x) ;
cs_usolve (N-XJ, x) ;

cs_ipvec (S->q, x, b, n) ;

cs_free (x) ;

cs_sfree (S) ;
cs_nfree (N) ;
return (ok) ;

/* check inputs */

/* ordering and symbolic analysis */

/* numeric LU factorization */

/* get workspace */

/* x = b(p) */
/* x = L\x */

/* x = U\x */

/* b(q) = x */

8.4 Using a Dulmage-Mendelsohn decomposition
The Dulmage-Mendelsohn decomposition provides a precise characterization of the
structurally overdetermined, well-determined, and underdetermined parts of a linear
system Ax — b. It allows the LU and QR factorizations to be applied to submatrices
that have structural full rank, have a zero-free diagonal, and always have the strong
Hall property. This simplifies the theorems and algorithms and ensures that the
symbolic analysis is as tight as possible. Consider the matrix C = PAQ, where P
and Q are the Dulmage-Mendelsohn permutations from (7.6). Let C\\ = [AuAw]

}

>
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and Cas = [^34; Au]. The system Cx — b becomes

where €22 = ^23- The overdetermined system £33X3 = 63 can first be solved for #3
using a QR factorization to obtain a least squares solution. Next, €22X2 = &2~C*23#3
can be solved for #2 using an LU factorization. When solving this system the block
upper triangular form of 622 should be exploited (see Problem 7.4). Finally, the
underdetermined system GHX\ = bi — €12X2 — Ci3x^ can be solved for x\ using the
QR factorization of C^.

This method is illustrated by the cs_dmsol M-file. It is able to find consistent
solutions to rank-deficient problems, assuming the structural rank and numeric rank
are equal. It finds the least squares solution if A is overdetermined, even though it
relies on an LU factorization for the well-determined part of the system.

function x = cs_dmsol (A,b)
7.CS_DMSOL x=A\b using the coarse Dulmage-Mendelsohn decomposition.
7. x = cs_dmsol(A,b) computes x=A\b where A may be rectangular and/or
7t structurally rank deficient, and b is a full vector.
7.
7. See also CS.QRSOL, CSJLUSOL, CS.DMPERM, SPRANK, RANK.

[m n] = size (A) ;
[p q r s cc rr] = cs_dmperm (A) ;
C - A (p,q) ;
b = b (p) ;
x - zeros (n,1) ;
if (rr(3) <= m && cc(4) <- n)

x (cc(4):n) = cs_qrsol (C (rr(3):m, cc(4):n), b (rr(3):m)) ;
b (l:rr(3)-l) - b (l:rr(3)-l) - C (l:rr(3)-l, cc(4):n) * x (cc(4):n) ;

end
if (rr(2) < rr (3) ft& cc(3) < cc(4))

x (cc(3):cc(4)-l) = ...
cs.lusol (C (rr(2):rr(3)-l, cc(3):cc(4)-l), b (rr(2):rr(3)-l)) ;

b <l:rr(2)-l) = ...
b (l:rr(2)-l) - C (l:rr(2)-l, cc(3):cc(4)-l) * x (cc(3):cc(4)-l) ;

end
if (rr(2) > 1 &ft cc(3) > 1)

x (l:cc(3)-l) = cs_qrsol (C (l:rr(2)-l, l:cc(3)-l), b (l:rr(2)-l)) ;
end
x (q) = x ;

The Dulmage-Mendelsohn decomposition can also be used to exploit sparsity
in x and 6. Consider a graph G where (j, i) € E if the (ij)th block is nonzero; G
is sometimes called the acyclic reduction of the graph of C. Solving Ax = b is then
analogous to solving the sparse upper triangular system Ux = 6, where U is sparse
and fc-by-fc, and where k is the number of fine blocks in the Dulmage-Mendelsohn
decomposition. A depth-first traversal of this graph, starting from nonzero blocks
of 6, will determine the blocks of x that are nonzero.



8.5 MATLAB sparse backslash
Almost the entire book (and more) is encapsulated in the single MATLAB state-
ment x=A\b. The single character "\" invokes a host of powerful matrix solvers
(LAPACK, the BLAS, UMFPACK, CHOLMOD, GPLU, Givens-based sparse QR
factorization, Maple, and many specialized solvers). The algorithm follows the fol-
lowing steps in order. It uses the first method that fits the given rule and succeeds.
If the linear system is not too ill-conditioned (and even sometimes when it is),
backslash (mldivide as it is formally known) nearly always finds a good solution.

1. If A is a symbolic matrix, the Symbolic Toolbox (Maple) solves it symbolically.

2. If A is sparse and diagonal, b is scaled. See cs_scale in Problem 2.4.

3. If A is sparse, square, and banded (with a sufficiently dense band), either a
tridiagonal solver or a band solver (in LAPACK) is used.

4. If A is a lower or upper triangular sparse matrix, a forward solve or backsolve
is used (like csJLsolve and cs.usolve). If it is a full matrix, the BLAS
triangular solvers are used.

5. If A is a permuted triangular matrix, a permuted backsolve is used (one solver
for the sparse case and another for the full case). See Problem 3.7.

6. If A is symmetric (or Hermitian) and has real positive diagonal elements, a
Cholesky factorization is tried. It uses CHOLMOD in the sparse case (either
an up-looking algorithm much like cs_chol if A is very sparse or a supernodal
algorithm otherwise). The matrix is first permuted via an approximate min-
imum degree ordering algorithm (see cs_amd). This algorithm uses most of
the theory and algorithms presented in Chapters 2 through 4 and Chapter 7.
In the full case, it uses LAPACK Cholesky factorization routines. This step
is terminated early if the matrix is found not to be positive definite.

7. If A is a full Hessenberg matrix, it is reduced to an upper triangular matrix
and the BLAS backsolve is used.

8. If A is square and sparse, UMFPACK is used to perform an LU factoriza-
tion, L*U=P* (R\A) *Q, where R is a diagonal matrix that scales the rows of A
(GPLU can be optionally used instead; it can be faster for very sparse matri-
ces). UMFPACK selects one of three ordering strategies: COL AMD, AMD,
or a cheap diagonal matching followed by AMD, depending on the matrix
properties (how symmetric its nonzero pattern is and how many entries are
on the diagonal). It uses its default pivot tolerances (0.001 for diagonal en-
tries and 0.1 for off-diagonal entries). These tolerances lead to a much sparser
factorization than partial pivoting but may result in a numerically unsta-
ble factorization. If mhij \ua\f max.j \Ujj\ is less than machine epsilon (about
2 x 10~16), the matrix is factorized again using partial pivoting (a tolerance of
1.0). UMFPACK is a multifrontal method, based on the column elimination
tree and a symbolic QR analysis. Iterative refinement with sparse backward
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error is used [9], [135, Chap. 12]. UMFPACK relies on the theory and some
of the algorithms presented in nearly the whole book.

9. If A is square and full, LAPACK is used.

10. If A is sparse and not square, a sparse QR factorization based on Givens
rotations is used (Section 5.5).

11. If A is full and not square, a QR factorization based on Householder reflections
is used (in LAPACK).

The x=b/A statement in MATLAB is called the forward slash, or matrix right-
division (mrdivide). It is translated immediately into x=(A'\b ') ' , and the above
algorithm for backslash is used. Type doc mldivide in MATLAB for more details.

Even with all its host of supporting solvers, the backslash operator in MAT-
LAB 7.2 has its limitations. It does not attempt to use iterative methods. It makes
no use of ordering methods based on graph partitioning methods, and so its fill-in
can be higher than it might be otherwise. It does not use the Dulmage-Mendelsohn
decomposition. It uses LU factorization for symmetric indefinite matrices, rather
than methods that exploit symmetry.

Gilbert, Moler, and Schreiber [105] developed the original sparse backslash for
MATLAB 4.0.

8.6 Software for solving sparse linear systems
Table 8.1 summarizes most of the available software for solving sparse linear sys-
tems via direct methods as of April 2006. The first column lists the name of the
package. The next four columns describe what kinds of factorizations are available:
LU, Cholesky, LDLT for symmetric indefinite matrices, and QR. If the LDLT fac-
torization uses 2-by-2 block pivoting a "2" is listed; a "1" is listed otherwise [18, 19].
The next column states if complex matrices (unsymmetric, symmetric, and/or Her-
mitian) are supported. The ordering methods available are listed in the next four
columns: minimum degree and its variants (minimum fill, column minimum degree,
Markowitz, and related methods), nested or one-way dissection (including all graph-
based partitionings), permutation to block triangular form, and profile/bandwidth
reduction (or related) methods. The next three columns indicate what level of
BLAS is used (1: vector, 2: matrix-vector, 3: matrix-matrix), if the package is
parallel ("s" for shared memory or "d" for distributed memory), and whether or
not the package includes an out-of-core option (where most of the factors remain
on disk). Most distributed-memory packages can also be used in a shared-memory
environment, since most message-passing libraries (MPI in particular) are ported
to shared-memory environments. A code is listed as "sd" if it includes two versions,
one for shared memory and the other for distributed memory. The next column
indicates if a MATLAB interface is available. The primary method(s) used in the
package are listed in the final column. Table 8.2 lists the authors of the packages,
relevant papers, and where to get the code. An up-to-date table will be maintained
at www.siam.org/books/fa02.
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Table 8.1. Package features

Package
BCSLIB-EXT
CHOLMOD
C Sparse
DSCPACK
GPLU
KLU
LDL
MA27
MA28
MA32
MA37
MA38
MA41
MA42
HSL.MP42
MA46
MA47
MA48
HSL.MP48
MA49
MA57
MA62
HSL.MP62
MA67
Mathematica
MATLAB
Meschach
MUMPS
NSPIV
Oblio
PARDISO
PaStiX
PSPASES
RF
S+
Sparse 1.4
SPARSPAK
SPRSBLKLLT
SPOOLES
SuperLU
SuperLLLMT
SuperLUJDIST
TAUCS
UMFPACK
WSMP
Y12M

Method
multifrontal
left-looking supernodal
various
multifrontal
left-looking
left-looking
up-looking
multifrontal
right-looking Markowitz
frontal
multifrontal
unsymmetric multifrontal
multifrontal
frontal
frontal
finite-element multifrontal
multifrontal
left-looking
left-looking
multifrontal
multifrontal
frontal
frontal
right-looking Markowitz
various
various
right-looking
multifrontal
up-looking
left, right, multifrontal
left/right supernodal
left-looking supernodal
multifrontal
product form of inverse
right-looking supernodal
right-looking Markowitz
left-looking
left-looking supernodal
left-looking, multifrontal
left-looking supernodal
left-looking supernodal
right-looking supernodal
left-looking, multifrontal
multifrontal
multifrontal
right-looking Markowitz
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Table 8.2. Package authors, references, and availability

Package Authors, references URL and/or contact
BCSLIB-EXT

CHOLMOD

CSparse
DSCPACK
GPLU
KLU
LDL
MA27
MA28
MA32
MA37
MA38
MA41
MA42
HSL.MP42
MA46
MA47
MA48
HSL.MP48
MA49
MA57
MA62
HSL_MP62
MA67
Mathematica
MATLAB
Meschach
MUMPS

NSPIV
Oblio

PARDISO

PaStiX
PSPASES

RF
s+
Sparse 1.4
SPARSPAK
SPOOLES
SPRSBLKLLT
SuperLU

SuperLU_MT
SuperLU_DIST
TAUCS
UMFPACK
WSMP
Y12M

Ashcraft, Grimes, Lewis,
and Pierce [10, 12, 13, 167]
Davis, Hager, Chen, and
Rajamanickam [30]
Davis
Heath and Raghavan [129, 130, 171]
Gilbert and Peierls [109]
Davis and Palamadai
Davis [29]
Duff and Reid [62]
Duff and Reid [61]
Duff [50]
Duff and Reid [63]
Davis and Duff [31]
Amestoy and Duff [3]
Duff and Scott [67]
Scott [182, 183, 184]
Damhaug and Reid [26]
Duff and Reid [64]
Duff and Reid [65]
Duff and Scott [69]
Amestoy, Duff, and Puglisi [6]
Duff [51, 66]
Duff and Scott [68]
Scott [184]
Reid [54]
Wolfram Research, Inc. [198]
The MathWorks, Inc. [105]
Steward and Leyk
Amestoy, Duff, Guermouche,
Koster, L'Excellent, Pralet [4, 5, 7]
Sherman [186]
Dobrian, Kumfert, and
Pothen [42]
Schenk, Gartner, and Fichtner
[179, 180]
Henon, Ramet, and Roman [132]
Joshi, Karypis, Kumar, Gupta,
and Gustavson [119]
Neculai
Fu, Jiao, and Yang [80, 185]
Kundert [143]
George and Liu [85, 89]
Ashcraft and Grimes [11]
Ng and Peyton [159]
Demmel, Eisenstat, Gilbert,
and Li [40]
Demmel, Gilbert, and Li [41]
Demmel and Li [147]
Chen, Rotkin, and Toledo [177]
Davis and Duff [28, 31, 32]
Gupta [118, 119]
Zlatev, Wasniewski, and
Schaumburg [200]

www.boeing.com/
phantom/bcslib-ext

www.cise.ufl.edu/research/sparse

www.cise.ufl.edu/research/sparse
www.cse.psu.edu/~raghavan
www.mathworks.com
www.cise.ufl.edu/research/sparse
www.cise.ufl.edu/research/sparse
www.cse.clrc.ac.uk/nag/hsl
www.cse.clrc.ac.uk/nag/hsl
www.cse.clrc.ac.uk/nag/hsl
www.cse.clrc.ac.uk/nag/hsl
www.cse.clrc.ac.uk/nag/hsl
www.cse.clrc.ac.uk/nag/hsl
www.cse.clrc.ac.uk/nag/hsl
www.cse.clrc.ac.uk/nag/hsl
www.cse.clrc.ac.uk/nag/hsl
www.cse.clrc.ac.uk/nag/hsl
www.cse.clrc.ac.uk/nag/hsl
www.cse.clrc.ac.uk/nag/hsl
www.cse.clrc.ac.uk/nag/hsl
www.cse.clrc.ac.uk/nag/hsl
www.cse.clrc.ac.uk/nag/hsl
www.cse.clrc.ac.uk/nag/hsl
www.cse.clrc.ac.uk/nag/hsl
www.wolfram.com
www.mathworks.com
www.netlib.org/c/meschach
www.enseeiht.fr/apo/MUMPS
graal.ens-lyon.fr/MUMPS
www.netlib.org/toms/533
email: pothen@cs.odu.edu

www.computational.unibas.ch/
cs/scicomp/software/pardiso

www.labri.fr/~ramet/pastix
www.cs.umn.edu/~mjoshi/pspases

www. ici. ro/camo/neculai/RF
www.cs.ucsb.edu/projects/s4-
sparse.sourceforge.net
www.cs.uwaterloo.ca/~jageorge
www.netlib.org/linalg/spooles
email: EGNg@lbl.gov
crd.lbl.gov/~xiaoye/SuperLU

crd.lbl.gov/~xiaoye/SuperLU
crd.lbl.gov/~xiaoye/SuperLU
www.tau.ac.il/~stoledo/taucs
www.cise.ufl.edu/research/sparse
www.cs.umn.edu/~agupta/wsmp
www.netlib.org/yl2m

www.boeing.com/phantom/bcslib-ext
www.boeing.com/phantom/bcslib-ext
www.cise.ufl.edu/research/sparse
www.cise.ufl.edu/research/sparse
www.cse.psu.edu/~raghavan
www.mathworks.com
www.cise.ufl.edu/research/sparse
www.cise.ufl.edu/research/sparse
www.cse.clrc.ac.uk/nag/hsl
www.wolfram.com
www.mathworks.com
www.netlib.org/c/meschach
www.netlib.org/toms/533
www.computational.unibas.ch/cs/scicomp/software/pardiso
www.labri.fr/~ramet/pastix
www.cs.umn.edu/~mjoshi/pspases
www.ici.ro/camo/neculai/RF
www.cs.uwaterloo.ca/~jageorge
www.netlib.org/linalg/spooles
www.tau.ac.il/~stoledo/taucs
www.cise.ufl.edu/research/sparse
www.cs.umn.edu/~agupta/wsmp
www.netlib.org/yl2m
www.enseeiht.fr/apo/MUMPSgraal.ens-lyon.fr/MUMPS
www.cs.ucsb.edu/projects/s4sparse.sourceforge.net
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Exercises
8.1. Write a sparse backslash algorithm, just like x=A\b in MATLAB, that solves

Ax = b. Assume A is sparse, and b can be a full or sparse vector. Examine A
and determine its properties. If A is upper or lower triangular, use cs_usolve
or cs_lsolve (or cs_spsolve if b is sparse). If it is square, symmetric, and
all its diagonal entries are greater than zero, try cs.chol. Otherwise (or if
cs_chol fails), use cs_lu if it is square or cs_qr if it is rectangular. Order
the matrix as appropriate, factorize it, and then perform the appropriate
forward/backsolves. For LU factorization, optionally select order and tol
based on how symmetric the nonzero pattern is and how large the diagonal
entries are relative to the off-diagonal entries. For yet more possibilities, see
Sections 8.4 and 8.5. Optionally allow b to be a matrix.

8.2. CSparse does very little error checking of its inputs. CSparse checks only a
few key error conditions: if it runs out of memory, if the matrix is singular
for an LU factorization, if the matrix is not positive definite for a Cholesky
factorization, if the matrix has the wrong type (compressed-column versus
triplet), or if the row or column index is negative in cs_entry. Add more
error checking to CSparse. See also Problem 2.12.

8.3. Add a floating-point operation (flop) counter to CSparse. Avoid adding state-
ments such as flop++. Use a global double flop variable.

8.4. Modify cs_qrsol so that it returns x, r, and ||r|J2.
8.5. Iterative refinement is a process that can improve the accuracy of the solu-

tion to Ax = b. In the sparse case, it is most useful in LU factorization when a
small pivot tolerance is used. In MATLAB notation, x=A\b ; x=x+A\ (b-A*x
where of course A needs to be factorized only once. Add iterative refinement
to cs_lusol. Note that b-A*x can be computed with cs_gaxpy. MATLAB
uses iterative refinement with sparse backward error [9], [135, Chap. 12] in
x=A\b when A is sparse and unsymmetric, so in this case iterative refinement
will not lead to any improvement, since it has already been done. Compare
with cs_lu with a very small pivot tolerance and no iterative refinement.

8.6. Modify cs_lusol, adding a qrbound parameter. Use this as the qr input to
cs_sqr. For a wide range of matrices, determine how close \L\ and \U\ are
to their upper bounds, computed when qrbound=l. Determine how good the
guess is when qrbound=0. Add a parameter a to cs.lusol and cs_sqr that
modifies the initial guess (replace \U\ = 4|A| + n in cs_sqr with a times the
upper bound) and experiment with this parameter.

8.7. Modify cs_lusol so that b can have multiple columns.
8.8. Write a version cs_lusol where b is a sparse n-by-k matrix.
8.9. Repeat Problems 8.7 and 8.8 for cs_cholsol and cs.qrsol.

8.10. Repeat Problem 8.1, where b can have multiple columns.
8.11. Write a MATLAB interface for CXSparse. Note that MATLAB and CX-

Sparse use different methods for storing complex values.



Chapter 9

CSparse

This chapter provides an overview of the use of CSparse as a stand-alone sparse
matrix package available for download from www.siam.org/books/fa02. CSparse
functions are divided into three sets: primary, secondary, and tertiary. The pri-
mary functions are all that an application needs to create a matrix A, solve Ax = 6,
and perform basic matrix operations. Secondary routines include the ordering and
factorization methods, forward/backsolve, rank-1 update/downdate, and routines
for manipulating permutation vectors. These can be useful in some applications
(when a matrix is analyzed and ordered once but factorized multiple times with
different numerical values but identical nonzero pattern, for example). Tertiary
routines would rarely be used in any application; they are primarily meant as func-
tions for use within CSparse itself.

Every file in CSparse starts with the statement ^include "cs.h", as must
every program that uses CSparse. It defines the cs sparse matrix data structure and
the prototypes for each function. The cs. h file is split into three sections (primary,
secondary, and tertiary routines). The routines in each set are described below.
Each parameter or return value of CSparse is described as one of the following:

• in: The parameter must be defined on input. It is not modified.

• in/out: The parameter must be defined on input. It is modified on output.

• out: The memory space for the parameter must be allocated on input. Its
contents are not defined on input. It is modified and defined on output.

• work: The memory space for the parameter must be allocated on input. Its
contents are typically not defined on input or output.

• returns: The return value of each CSparse function. CSparse functions that
return a pointer return NULL if an error occurs.

If not otherwise specified, m is the number of rows in the sparse matrix, n is
the number of columns, and all CSparse routines expect matrices in compressed-
column form. The order parameter is used in several routines: 0 results in the
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natural ordering; 1 is a minimum degree ordering of A + AT; 2 is a minimum
degree ordering of S^ S where S — A, except rows with more than W^/n entries are
removed; and 3 is a minimum degree ordering of AT A.

9.1 Primary CSparse routines and definitions

cs: sparse matrix in compressed-column or triplet form

typedef struct cs_sparse /* matrix in compressed-column or triplet form */
{

int nzmax ; /* maximum number of entries */
int m ; /* number of rows */
int n ; /* number of columns */
int *p ; /* column pointers (size n+1) or col indices (size nzmax) */
int *i ; /* row indices, size nzmax */
double *x ; /* numerical values, size nzmax */
int nz ; /* # of entries in triplet matrix, -1 for compressed-col */

} cs ;

cs.add: C = aA + (3B
cs *cs_add (const cs *A, const cs *B, double alpha, double beta) ;

Adds two sparse matrices, C — a A + (3B.
A in sparse matrix
B in sparse matrix
alpha in scalar
beta in scalar

returns C=alpha*A+beta*B; NULL on error

cs.cholsol: solve Ax = b using Cholesky factorization

int cs_cholsol (int order, const cs *A, double *b) ;
Solves Ax = b, where A is symmetric positive definite.

order in ordering method to use (0 or 1)
A in sparse matrix; only upper triangular part used
b in/out size n; b on input, x on output

returns 1 if successful; 0 on error

cs_compress: triplet form to compressed-column conversion
cs *cs_compress (const cs *T) ;

Converts a triplet-form matrix T into a compressed-column matrix C. The
columns of C are not sorted, and duplicate entries may be present in C.

T in sparse matrix in triplet form
returns C if successful; NULL on error

cs_dupl: remove duplicate entries
int cs_dupl (cs *A) ;

Removes and sums duplicate entries in a sparse matrix.

A in/out sparse matrix; duplicates summed on output
returns 1 if successful; 0 on error
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cs_entry: add an entry to a triplet-form matrix
int cs_entry (cs *T, int i, int j , double x) ;

Memory-space and dimension of T are increased if necessary.
T in/out triplet matrix; new entry added on output
i in row index of new entry
j in column index of new entry
x in numerical value of new entry

returns 1 if successful; 0 on error

| cs^gaxpy; y = Ax + y\
int cs_gaxpy (const cs *A, const double *x, double *y) ;

Sparse matrix times dense column vector, y = Ax + y.

A in sparse matrix
x in size n
y in/out size m

returns 1 if successful; 0 on error

cs *cs_load (FILE *f) ;
Loads a triplet matrix T from a file. Each line of the file contains three values:

a row index i, a column index jf, and a numerical value a^. The file is zero-based.

returns T if successful; 0 on error

cs_lusol: solve Ax = b using LU factorization
int cs_lusol (int order, const cs *A, double *b, double tol) ;

Solves Ax = 6, where A is square and nonsingular. The diagonal entry is
selected if ajr,fc~ fc~ ' > tol x max |a^fc~ '|. Partial pivoting if t

order in ordering method to use (0 to 3)
A in sparse matrix
b in/out size n; b on input, x on output
tol in partial pivoting tolerance

returns 1 if successful; 0 on error

cs_multiply: C = AB

cs *cs_multiply (const cs *A, const cs *B) ;
Sparse matrix multiplication, C = AB.

A in sparse matrix
B in sparse matrix

returns C=A*B; NULL on error

I cs_norm: matrix 1-norm|
double cs_norm (const cs *A) ;

Computes the 1-norm of a sparse matrix.

I cs_load: load a matrix from a file

f in file pointer to an open file
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A in sparse matrix
returns the 1-norm if successful; -1 on error

cs_print: print a sparse matrix
int cs_print (const cs *A, int brief) ;

Prints a compressed-column or triplet-form sparse matrix.

A in sparse matrix
brief in print all of A if zero, a few entries otherwise

returns 1 if successful; 0 on error

cs_qrsol: solve a least squares or underdetermined problem

int cs_qrsol (int order, const cs *A, double *b) ;
Solves a least squares problem (min || Ar—6||2, where A is m-by-n with ra > n),

or an underdetermined system (Ax = b, where ra < n).

order in ordering method to use (0 or 3)
A in sparse matrix
b in/out size max(m,n); b (size m) on input, x (size n) on output

returns 1 if successful; 0 on error

cs_transpose: C = AT

cs *cs_transpose (const cs *A, int values) ;

A in sparse matrix
values in pattern only if 0, both pattern and values otherwise

returns C=A'; NULL on error

Primary CSparse utilities

cs_calloc: allocate and clear memory
void *cs_calloc (int n, size_t size) ;

n in number of items to allocate
size in size of each item in bytes

returns pointer to allocated block if successful; NULL on error

cs_f ree: free memory
void *cs_free (void *p) ;

p in/out block to free
returns NULL

cs_realloc: change size of a block of memory
void *cs_realloc (void *p, int n, size_t size, int *ok) ;

p in/out block to change
n in new size of the block in number of items
size in size of each item, in bytes
ok out 1 if successful; 0 on error

returns pointer to possibly moved block of memory
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cs_spalloc: allocate a sparse matrix
cs *cs_spalloc (int m, int n, int nzmax, int values, int triplet) ;

Allocates a sparse matrix in either compressed-column or triplet form.

m in number of rows
n in number of columns
nzmax in maximum number of entries
values in allocate pattern only if 0, values and pattern otherwise
triplet in compressed-column if 0, triplet form otherwise

returns A if successful; NULL on error

cs_spf ree: free a sparse matrix
cs *cs_spfree (cs *A) ;

Frees a sparse matrix, in either compressed-column or triplet form.

A in/out sparse matrix to free
returns NULL

cs_sprealloc: reallocate a sparse matrix
int cs_sprealloc (cs *A, int nzmax) ;

Changes the maximum number of entries a sparse matrix can hold.

A in/out matrix to reallocate (compressed-column or triplet)
nzmax in new maximum number of entries

returns 1 if successful; 0 on error

cs_malloc: allocate memory
void *cs_malloc (int n, size_t size) ;

Allocates an uninitialized block of memory of size n items.

n in number of items to allocate
size in size of each item in bytes

returns pointer to allocated block if successful; NULL on error

9.2 Secondary CSparse routines and definitions

ess: symbolic analysis

typedef struct cs_symbolic /* symbolic Cholesky, LU, or QR analysis */

{
int *pinv ; /* inverse row perm, for QR, fill red. perm for Choi */

int *q ; /* fill-reducing column permutation for LU and QR */

int *parent ; /* elimination tree for Cholesky and QR */

int *cp ; /* column pointers for Cholesky, row counts for QR */

int *leftmost ; /* leftmost[i] = min(find(A(i,:))), for QR */

int m2 ; /* # of rows for QR, after adding fictitious rows */

double Inz ; /* # entries in L for LU or Cholesky; in V for QR */

double unz ; /* # entries in U for LU; in R for QR */

} ess ;

I csn: numeric factorization j
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typedef struct cs_numeric /* numeric Cholesky, LU, or QR factorization */
{

cs *L ; /* L for LU and Cholesky, V for QR */
cs *U ; /* U for LU, R for QR, not used for Cholesky */
int *pinv ; /* partial pivoting for LU */
double *B ; /* beta [0..n-1] for QR */

} csn ;

csd: Dulmage—Mendelsohn decomposition

typedef struct cs_dmperm_results /* cs_dmperm or cs_scc output */
{

int *p ; /* size m, row permutation */
int *q ; /* size n, column permutation */
int *r ; /* size nb+1, block k is rows r[k] to r[k+l]-l in A(p,q) */
int *s ; /* size nb+1, block k is cols s[k] to s[k+l]-l in A(p,q) */
int nb ; /* # of blocks in fine dmperm decomposition */
int rr [5] ; /* coarse row decomposition */
int cc [5] ; /* coarse column decomposition */

> csd ;

cs_amd: approximate minimum degree ordering
int *cs_amd (int order, const cs *A) ;

Minimum degree ordering of A + AT or ATA.
order in ordering method to use (0 to 3)
A in matrix to order

returns size n permutation; NULL on error or for natural ordering

cs.chol: Cholesky factorization

csn *cs_chol (const cs *A, const ess *S) ;
Cholesky factorization LL = PAPT.

A in matrix to factorize, only upper triangular part used
S in symbolic analysis from cs_schol

returns numeric factorization N; NULL on error

cs_dmperm: Dulmage—Mendelsohn decomposition
csd *cs_dmperm (const cs *A, int seed) ;

Dulmage-Mendelsohn decomposition, seed optionally selects a randomized
algorithm.

A in matrix to order
seed in 0: natural, -1: reverse, random order otherwise

returns Dulmage-Mendelsohn analysis D; NULL on error

cs_droptol: drop small entries

int cs_droptol (cs *A, double tol) ;
Removes entries from a matrix with absolute value < tol.

A in/out matrix to remove entries from
tol in drop tolerance

returns 1 if successful; 0 on error
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cs_dropzeros: drop exact zeros
int cs_dropzeros (cs *A) ;

Removes numerically zero entries from a matrix.

A in/out matrix to remove entries from
returns 1 if successful; 0 on error

cs_happly: apply a Householder reflection
int cs_happly (const cs *V, int i, double beta, double *x) ;

Applies a Householder reflection to a dense vector, x = (I — (3vvT}x.

V in matrix of Householder vectors
i in v = V( : , i), the ith column of V
beta in the scalar (3
x in/out the vector x of size m

returns 1 if successful; 0 on error

cs.ipvec: x = PTb
int cs_ipvec (const int *p, const double *b, double *x, int n) ;

Permutes a vector; x = PTb. In MATLAB notation, x(p)=b.

p in permutation vector
b in input vector
x out x(p)=b, output vector
n in length of p, b, and x

returns 1 if successful; 0 on error

cs_lsolve: solve a lower triangular system Lx = b

int cs_lsolve (const cs *L, double *x) ;
Solves a lower triangular system Lx — 6, where x and b are dense vectors.

The diagonal of L must be the first entry of each column.

L in lower triangular matrix
x in/out size n; right-hand side on input, solution on output

returns 1 if successful; 0 on error

cs_ltsolve: solve an upper triangular system LTx — b
int cs_ltsolve (const cs *L, double *x) ;

Same as csJLsolve, except it solves LTx — b instead.

csJLu: sparse LU factorization
csn *cs_lu (const cs *A, const ess *S, double tol) ;

Sparse LU factorization of a square matrix, PAQ = LU.

A in matrix to factorize
S in symbolic analysis from cs_sqr
tol in partial pivoting threshold (1 for partial pivoting)

returns numeric factorization N; NULL on error

cs_permute: C = PAQ
cs *cs_permute (const cs *A, const int *p, const int *q, int values) ;
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Permutes a sparse matrix; C — PAQ, or C=A(p,q) in MATLAB notation.
A in m-by-n matrix to permute
p in a permutation vector of length m
q in a permutation vector of length n
values in allocate pattern only if 0, values and pattern otherwise

returns C=A (p, q); NULL on error

cs_pinv: invert a permutation vector
int *cs_pinv (const int *p, int n) ;

Inverts a permutation vector. Returns pinv[i]=k if p[k]=i on input.
p in a permutation vector of length n
n in length of p

returns pinv, an integer vector of length n; NULL on error

cs_pvec: x — Pb
int cs_pvec (const int *p, const double *b, double *x, int n) ;

Permutes a vector; x — Pb. In MATLAB notation, x=b(p).

p in permutation vector
b in input vector
x out x=b(p), output vector
n in length of p, b, and x

returns 1 if successful; 0 on error

cs_qr: sparse QR factorization
csn *cs_qr (const cs *A, const ess *S) ;

Sparse QR factorization of an m-by-n matrix ^4, where m > n.
A in matrix to factorize
S in symbolic analysis from cs_sqr

returns numeric factorization N; NULL on error

cs_schol: symbolic Cholesky ordering and analysis
ess *cs_schol (int order, const cs *A) ;

Symbolic ordering and analysis for a Cholesky factorization.
order in ordering option (0 or 1)
A in matrix to factorize

returns S, symbolic analysis for cs_chol; NULL on error

cs_sqr: symbolic QR or LU ordering and analysis
ess *cs_sqr (int order, const cs *A, int qr) ;

Symbolic ordering and analysis for a QR or LU factorization,
order in ordering method to use (0 to 3)
A in matrix to factorize
qr in analyze for QR if nonzero or LU if zero

returns S, symbolic analysis for cs_qr or cs_lu; NULL on error

cs_symperm: C = PAPT for a symmetric matrix A
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cs *cs_symperm (const cs *A, const int *pinv, int values) ;
Symmetric permutation of a symmetric matrix A.

A in matrix to permute (only upper triangular part used)
pinv in size n; inverse permutation
values in allocate pattern only if 0, values and pattern otherwise

returns C=A(p,p); NULL on error

cs_updown: rank-1 update/downdate LLT ± CCT

int cs_updown (cs *L, int sigma, const cs *C, const int *parent) ;
Sparse Cholesky rank-1 update/downdate. The nonzero pattern C of c must

be a subset of the nonzero pattern of column k of L, where k = minC.
L in/out factorization to update/downdate
sigma in +1 for update, -1 for downdate
C in the vector c
parent in the elimination tree of L

returns 1 if successful; 0 on error

cs_usolve: solve an upper triangular system Ux = b
int cs_usolve (const cs *U, double *x) ;

Solves an upper triangular system Ux = 6, where x and b are dense vectors.
The diagonal of U must be the last entry of each column.

U in upper triangular matrix
x in/out size n; right-hand side on input, solution on output

returns 1 if successful; 0 on error

cs_utsolve: solve a lower triangular system U'x = b
int cs_utsolve (const cs *U, double *x) ;

Same as cs_usolve, except it solves UTx = b instead.

Secondary CSparse utilities

cs_sf ree: free a ess symbolic analysis
ess *cs_sfree (ess *S) ;

S in/out symbolic analysis to free
returns NULL

I cs_nf ree; free a csn numeric factorization j
csn *cs_nfree (csn *N) ;

N in/out numeric factorization to free
returns NULL

cs_df ree: free a csd Dulmage—Mendelsohn decomposition
csd *cs_dfree (csd *D) ;

D in/out decomposition to free
returns NULL
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9.3 Tertiary CSparse routines and definitions

cs_counts: column counts for Cholesky factorization of A or ATA
int *cs_counts (const cs *A, const int *parent, const int *post, int ata) ;

A in matrix to analyze
parent in elimination tree of A
post in postordering of parent
ata in analyze A if zero, AT A otherwise

returns c, a vector of length n; NULL on error

cs_cumsum: cumulative sum of an integer vector
double cs_cumsum (int *p, int *c, int n) ;

p out size n+1; cumulative sum of c
c in/out size n; overwritten with p[0. .n-1] on output
n in length of c; length of p is n+1

returns sum(c); -1 on error

cs_df s: depth-first search of a directed graph
int cs_dfs (int j, cs *G, int top, int *xi, int *pstack, const int *pinv) ;

j in starting node
G in graph to search (G->p modified, then restored)
top in stack xi [top . . . n-1] in use on input
xi in/out size n; stack containing nodes traversed
pstack work size n
pinv in mapping of rows to columns of G, ignored if NULL

returns new value of top; -1 on error

cs_ereach: nonzero pattern of kth row of Cholesky factor, L(k,l:k-l)

int cs_ereach (const cs *A, int k, const int *parent, int *s, int *w) ;

A in L is the Cholesky factor of A

parent in elimination tree of A
s out size n; s[top. . .n-1] is nonzero pattern of L(k,l:k-l)
w work size n; w[0. . .n-l]>=0 on input, unchanged on output

returns top; -1 on error

I cs_etree; elimination tree of A or ATA|
int *cs_etree (const cs *A, int ata) ;

A in matrix to analyze
ata in analyze A if zero, ATA otherwise

returns parent of size n; NULL on error

cs_f keep: drop entries from a sparse matrix
int cs_fkeep (cs *A, int (*fkeep) (int, int, double, void *), void *other) ;

k in find kth row of Lk in find kth row of Lk in find kth row of Lk in f
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A in/out matrix to remove entries from
fkeep in drop a^ if fkeep(i, j ,aij ,other) is zero.
other any optional parameter to fkeep

returns nz, new number of entries in A; -1 on error

csjiouse: compute a Householder reflection
double cs_house (double *x, double *beta, int n) ;

Computes a Householder reflection H = I — (3vvT so that (Hx)<2...n — 0.

x in/out x on input, v on output
beta out the scalar /?
n in the length of x

returns \\x\\2', -1 on error

cs_leaf: determine if j is a leaf and find least common ancestor

Determine if j is a leaf of Tl and return q = lca(jprev,j). See page 51.

csjnaxtrans: maximum matching
int *cs_maxtrans (const cs *A, int seed) ;

Finds a zero-free diagonal, seed optionally selects a randomized algorithm.

A in matrix to find matching for
seed in 0: natural, -1: reverse, randomized otherwise

returns jimatch, row and column matching, size m+n

cs_post: postorder a tree or forest
int *cs_post (const int *parent, int n) ;

parent in defines a tree of n nodes
n in length of parent

returns post [k] =i, of size n; NULL on error

cs_randperm: random permutation
int *cs_randperm (int n, int seed) ;

n in length of p
seed in 0: natural, -1: reverse, random p otherwise

returns random perm, p; NULL on error or for natural order

cs_reach: nonzero pattern of sparse triangular solve
int cs_reach (cs *G, const cs *B, int k, int *xi, const int *pinv) ;

G in graph to search (G->p modified, then restored)
B in right-hand side, b — B(:,k)
k in use kth column of B
xi out size 2*n; output in xi [top. . .n-1]
pinv in mapping of rows to columns of G, ignored if NULL

returns top; -1 on error

cs_scatter: scatter a sparse vector
int cs_scatter (const cs *A, int j, double beta, int *w, double *x, int mark,

cs *C, int nz) ;
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Scatters and sums a sparse vector A (: , j ) into a dense vector, x=x+beta*A (: , j ) ,
A in the sparse vector is A (: , j)
j in the column of A to use
beta in scalar multiplied by A (:, j)
w in/out size m; node i is marked if w[i]=mark
x in/out size m; ignored if NULL
mark in mark value for w
C in/out pattern of x accumulated in C->i
nz in pattern of x placed in C starting at C->i [nz]

returns new value of nz; -1 on error

cs_scc: strongly connected components of a square matrix
csd *cs_scc (cs *A) ;

A in matrix to analyze (A->p modified then restored)
returns strongly connected components D; NULL on error

cs_spsolve: sparse lower or upper triangular solve, Lx — b or Ux = b
int cs_spsolve (cs *G, const cs *B, int k, int *xi, double *x,

const int *pinv, int lo) ;
If lo is zero, Ux = B*k is solved, where G = U is upper triangular. Otherwise

Lx = B*k is solved instead, where G = L. Both b = £?*& and x are sparse; X is the
nonzero pattern of x.

G in lower or upper triangular matrix (L or U)
B in right-hand side, 6 = B*k
k in use kth column of B as right-hand side
xi out size 2*n; X in xi[top.. .n-1]
x out size n; x in x [xi [top. . . n-1] ]
pinv in mapping of rows to columns of L, ignored if NULL
lo in 1 if lower triangular, 0 if upper

returns top; -1 on error

cs_tdf s: postorder a tree
int cs_tdfs (int j, int k, int *head, const int *next, int *post,

int *stack) ;
All arrays are of size n, where n is the number of nodes in the tree.

j in postorder the tree rooted at node j
k in number of nodes ordered so far
head in/out head[i] is first child of node i; -1 on output
next in next [i] is next sibling of i or -1 if none
post in/out postordering
stack work size n

returns new value of k; -1 on error
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Tertiary CSparse utilities

cs_dalloc: allocate a csd object
csd *cs_dalloc (int m, int n) ;

Allocates a csd object (a Dulmage—Mendelsohn decomposition).

m in number of rows of the matrix A to be analyzed
n in number of columns of A

returns Dulmage-Mendelsohn decomposition D; NULL on error

cs_ddone: return a csd Dulmage—Mendelsohn decomposition
csd *cs_ddone (csd *D, cs *C, void *w, int ok) ;

Frees internally allocated workspace and returns a csd result or NULL if an
error has occurred. The result is freed if ok is zero.

D in/out csd result
C in/out temporary sparse matrix to free
w in/out workspace to free
ok in free D if zero, keep D otherwise

returns D; NULL on error

cs_done: free workspace and return a sparse matrix result
cs *cs_done (cs *C, void *w, void *x, int ok) ;

Frees internally allocated workspace and returns a sparse matrix result or NULL
if an error has occurred. The result is freed if ok is zero.

C in/out sparse matrix result
w in/out workspace to free
x in/out workspace to free
ok in free C if zero, keep C otherwise

returns C; NULL on error

cs_idone: free workspace and return an int array result
int *cs_idone (int *p, cs *C, void *w, int ok) ;

Frees internally allocated workspace and returns an int array result or NULL
if an error has occurred. The result is freed if ok is zero,

p in/out int array result
C in/out temporary sparse matrix to free
w in/out workspace to free
ok in free p if zero, keep p otherwise

returns p; NULL on error

| cs_ndone: return a csn numeric factorization
csn *cs_ndone (csn *N, cs *C, void *w, void *x, int ok) ;

Frees internally allocated workspace and returns a numeric factorization result
or NULL if an error has occurred. The result is freed if ok is zero.
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N
C
w
X

ok

in/out
in/out
in/out
in/out
in
returns

numeric factorization result
temporary sparse matrix to free
workspace to free
workspace to free
free N if zero, keep N otherwise
N; NULL on error

1 Macros |

The cs.h include file starts with the following lines. The _CS_H definition en-
sures that cs .h can be included multiple times without causing an error. Four ANSI
standard definition files are included (stdlib.h, limits.h, math.h, and stdio.h).
The MATLAB mex.h file is included if CSparse is being compiled for MATLAB.
Next, the CSparse version numbers, release date, and copyright are defined (for use
in cs_print).

#ifndef _CS_H

tdefine _CS_H

tinclude <stdlib.h>

^include <limits.h>

#include <math.h>

#include <stdio.h>

#ifdef MATLAB_MEX_FILE

tfinclu.de "mex.h"

#endif

#define CS_VER 2 /* CSparse Version 2.0.1 */

#define CS.SUBVER 0

tdefine CS.SUBSUB 1

tfdefine CS_DATE "May 27, 2006" /* CSparse release date */

#define CS.COPYRIGHT "Copyright (c) Timothy A. Davis, 2006"

Each one-line prototype described in this chapter is listed in cs.h. The cs.h
file ends with the following lines, which define the CSparse macros.

#define CS_MAX(a,b) (((a) > (b)) ? (a) : (b))
#define CS_MIN(a,b) (((a) < (b)) ? (a) : (b))
#define CS_FLIP(i) (-(i)-2)
#define CS_UNFLIP(i) (((i) < 0) ? CS_FLIP(i) : (i))
#define CS_MARKED(w,j) (w [j] < 0)
#define CS_MARK(w,j) { w [j] = CS_FLIP (w [j]) ; }
#define CS_CSC(A) (A && (A->nz == -1))
#define CS_TRIPLET(A) (A &ft (A->nz >= 0))
#endif

9.4 Examples
The three example programs below exercise every routine and nearly every line of
code in CSparse (all but out-of-memory condition handling).

cs_demol: file I/O and basic matrix operations

The complete program cs_demol reads in a triplet matrix from stdin and performs
various matrix operations.
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ftinclude "cs.h"
int main (void)
{

cs *T, *A, *Eye, *AT, *C, *D ;
int i, m ;
T = cs_load (stdin) ; /* load triplet matrix T from stdin */
printf ("T:\n") ; cs_print (T, 0) ; /* print T */
A = cs_compress (T) ; /* A = compressed-column form of T */
printf ("A:\n") ; cs_print (A, 0) ; /* print A */
cs_spfree (T) ; /* clear T */
AT = cs_transpose (A, 1) ; /* AT = A' */
printf ("AT:\n") ; cs_print (AT, 0) ; /* print AT */
m = A ? A->m : 0 ; /* m = # of rows of A */
T = cs_spalloc (m, m, m, 1, 1) ; /* create triplet identity matrix */
for (i = 0 ; i < m ; i++) cs_entry (T, i, i, 1) ;
Eye = cs_compress (T) ; /* Eye = speye (m) */
cs_spfree (T) ;
C - cs.multiply (A, AT) ; /* C = A*A» */
D - cs_add (C, Eye, 1, cs_norm (C)) ; /* D - C + Eye*norm (C,l) */
printf ("D:\n") ; cs_print (D, 0) ; /* print D */
cs_spfree (A) ; /* clear A AT C D Eye */
cs_spfree (AT) ;
cs_spfree (C) ;
cs_spfree (D) ;
cs.spfree (Eye) ;
return (0) ;

}

The tl file can be used as input to cs_demol. It contains the triplet form of the
matrix used in Section 2.1:

2 2 3.0
1 0 3.1
3 3 1.0
0 2 3.2
1 1 2.9
3 0 3.5
3 1 0.4
1 3 0.9
0 0 4.5
2 1 1.7

The cs_demol.m script below is the MATLAB equivalent for the C program
cs_demol, except that the CSparse results are compared with the same operations
in MATLAB. The MATLAB load statement can read a triplet-form matrix in the
same format as the tl file above, except that MATLAB expects its matrices to be
1-based. MATLAB always returns matrices with sorted columns.

*/,CS_DEM01: MATLAB version of the CSparse/Demo/cs_demol.c program.
'/, Uses both MATLAB functions and CSparse mexFunctions, and compares the two
7, results. This demo also plots the results, which the C version does not do.

load ../../Matrix/tl
T = tl
A = sparse (T(:,l)+l, T(:,2)+l, T(:,3))
A2 - cs_sparse (T(:,l)+l, T(:,2)+l, T(:,3))
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fprintf ('A difference: 7.g\n', norm (A-A2.1)) ;
7, CSparse/Demo/cs_demol.c also clears the triplet matrix T at this point:
7, clear T
elf
subplot (2,2,1) ; espy (A) ; title ('A', 'FontSize', 16) ;
AT = A'
AT2 = cs_transpose (A)
fprintf ('AT difference: 7.g\n', norm (AT-AT2,!)) ;
subplot (2,2,2) ; espy (AT) ; title ('A'", 'FontSize', 16) ;
n = size (A,2) ;
I = speye (n) ;
C = A*AT ;
C2 = cs.multiply (A, AT)
fprintf ('C difference: 7.g\n', norm (C-C2.1)) ;
subplot (2,2,3) ; espy (C) ; title CC=A*A" ', 'FontSize', 16) ;
cnorm = norm (C,l) ;
D = C + I*cnorm
D2 = cs_add (C, I, 1, cnorm)
fprintf ('D difference: 7.g\n', norm (D-D2.D) ;
subplot (2,2,4) ; espy (D) ; title ('D=C+I*norm(C,D', 'FontSize', 16) ;
7i CSparse/Demo/cs_demol.c clears all matrices at this point:
7. clear A AT C D I
7. clear A2 AT2 C2 D2

The output of the C program cs.demol is given below. Compare it with the triplet
and compressed-column matrices defined in Section 2.1. Also compare it with the
output of the MATLAB equivalent code above. The maximum number of entries
that T can hold is 16; it was doubled four times from its original size of one entry.

T:
CSparse Version 2.0.1, May 27, 2006. Copyright (c) Timothy A. Davis, 2006
triplet: 4-by-4, nzmax: 16 nnz: 10

2 2 3
1 0 3.1
3 3 1
0 2 3.2
1 1 2.9
3 0 3.5
3 1 0.4
1 3 0.9
0 0 4.5
2 1 1.7

A:
CSparse Version 2.0.1, May 27, 2006. Copyright (c) Timothy A. Davis, 2006
4-by-4, nzmax: 10 nnz: 10, 1-norm: 11.1

col 0 : locations 0 to 2
1 3.1
3 3.5
0 4.5

col 1 : locations 3 to 5
1 2.9
3 0.4
2 1.7

col 2 : locations 6 to 7
2 3
0 3.2

col 3 : locations 8 to 9
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3 : 1
1 : 0.9

AT:
CSparse Version 2.0.1, May 27, 2006. Copyright (c) Timothy A. Davis, 2006
4-by-4, nzmax: 10 nnz: 10, 1-norm: 7.7

col 0 : locations 0 to 1
0 4.5
2 3.2

col 1 : locations 2 to 4
0 3.1
1 2.9
3 0.9

col 2 : locations 5 to 6
1 1.7
2 3

col 3 : locations 7 to 9
0 3.5
1 0.4
3 1

D:
CSparse Version 2.0.1, May 27, 2006. Copyright (c) Timothy A. Davis, 2006
4-by-4, nzmax: 16 nnz: 16, 1-norm: 139.58

col 0 : locations 0 to 3
1 13.95
3 15.75
0 100.28
2 9.6

col 1 : locations 4 to 7
1 88.62
3 12.91
0 13.95
2 4.93

col 2 : locations 8 to 11
1 4.93
3 0.68
2 81.68
0 9.6

col 3 : locations 12 to 15
1 12.91
3 83.2
0 15.75
2 0.68

cs_demo2: matrix factorization

The cs_demo2 program reads a matrix from a file in triplet form. If it is upper (or
lower) triangular, the matrix is assumed to be symmetric, and the lower (or upper)
triangular part is added. The matrix is analyzed with cs_dmperm and the number
of blocks, number of singletons (1-by-l blocks), and structural rank are printed. If
the matrix is symmetric, a Cholesky factorization is used to solve Ax = b. If the
matrix is square, the system is also solved using an LU factorization. Next, a least
squares problem is solved using QR factorization. Each method is tested with a
range of ordering options, and the relative residual \\Ax — b\\/(\\A\\\\x\\ + \\b\\) and
run time are printed. The cs_demo.h file contains prototypes for the cs_demo2 and
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cs_demo3 programs.

#include "cs.h"
typedef struct problem_struct
{

cs *A ;
cs *C ;
int sym ;

double *x ;

double *b ;

double *resid ;

} problem ;

problem *get_problem (FILE *f, double tol) ;

int demo2 (problem *Prob) ;

int demoS (problem *Prob) ;

problem *free_problem (problem *Prob) ;

The cs.demo.c file contains functions used by several demo programs.

#include "cs_demo.h"

#include <time.h>

/* 1 if A is square & upper tri., -1 if square & lower tri., 0 otherwise */

static int is_sym (cs *A)

{
int is_upper, is_lower, j, p, n = A->n, m = A->m, *Ap = A->p, *Ai = A->i ;

if (m != n) return (0) ;

is_upper = 1 ;

is_lower = 1 ;

for (j - 0 ; j < n ; j++)

{
for (p = Ap [j] ; p < Ap [j+1] ; p++)
{

if (Ai [p] > j) is_upper = 0 ;
if (Ai [p] < j) is_lower = 0 ;

}
}
return (is_upper ? 1 : (is_lower ? -1 : 0)) ;

>

/* true for off-diagonal entries */
static int dropdiag (int i, int j, double aij, void *other) { return (i != j) ;}

/* C = A + triu(A.l)' */
static cs *make_sym (cs *A)
{

cs *AT, *C ;
AT = cs.transpose (A, 1) ; /* AT - A' */
cs_fkeep (AT, ftdropdiag, NULL) ; /* drop diagonal entries from AT */
C = cs_add (A, AT, 1, 1) ; /* C = A+AT */
cs_spfree (AT) ;
return (C) ;

}

/* create a right-hand side */
static void rhs (double *x, double *b, int m)
{

int i ;
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for (i - 0 ; i < m ; i-n-) b [i] - 1 + ((double) i) / m ;
for (i = 0 ; i < m ; i++) x [i] = b [i] ;

}

/* infinity-norm of x */
static double norm (double *x, int n)
{

int i ;
double normx = 0 ;
for (i = 0 ; i < n ; i-n-) normx - CS_MAX (normx, fabs (x [i])) ;
return (normx) ;

}

/* compute residual, norm(A*x-b,inf) / (norm(A,l)*norm(x,inf) + norm(b.inf)) */
static void print_resid (int ok, cs *A, double *x, double *b, double *resid)
{

int i, m, n ;
if (!ok) { printf (" (failed)\n") ; return ; }
m = A->m ; n = A->n ;
for (i = 0 ; i < m ; i++) resid [i] - -b [i] ; /* resid = -b */
cs_gaxpy (A, x, resid) ; /* resid = resid + A*x */
printf ("resid: */,8.2e\n", norm (resid,m) / ((n == 0) ? 1 :

(cs_norm (A) * norm (x,n) + norm (b,m)))) ;
}

static double tic (void) { return (clock () / (double) CLOCKS_PER_SEC) ; }
static double toe (double t) { double s = tic () ; return (CS_MAX (0, s-t)) ; }

static void print_order (int order)
{

switch (order)
{

case 0: printf ("natural ") ; break ;
case 1: printf ("amd(A+A') ") ; break ;
case 2: printf ("amd(S'*S) ") ; break ;
case 3: printf ("amd(A'*A) ") ; break ;

}
}

/* read a problem from a file */
problem *get_problem (FILE *f, double tol)
{

cs *T, *A, *C ;
int sym, m, n, mn, nzl, nz2 ;
problem *Prob ;
Prob = cs_calloc (1, sizeof (problem)) ;
if (!Prob) return (NULL) ;
T = cs_load (f) ; /* load triplet matrix T from a file */
Prob->A = A = cs_compress (T) ; /* A = compressed-column form of T */
cs_spfree (T) ; /* clear T */
if (!cs_dupl (A)) return (free_problem (Prob)) ; /* sum up duplicates */
Prob->sym * sym = is_sym (A) ; /* determine if A is symmetric */
m = A->m ; n = A->n ;
mn = CS_MAX (m,n) ;
nzl « A->p [n] ;
cs_dropzeros (A) ; /* drop zero entries */
nz2 = A->p [n] ;
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if (tol > 0) cs_droptol (A, tol) ; /* drop tiny entries (just to test) */
Prob->C = C = sym ? make_sym (A) : A ; /* C = A + triu(A,l)', or C=A */
if (!C) return (free.problem (Prob)) ;
printf ("\n Matrix: 7,d-by-7,d, nnz: */.d (sym: 7,d: nnz */.d), norm: */.8.2e\n",

m, n, A->p [n] , sym, sym ? C->p [n] : 0, cs_norm (C)) ;
if (nzl != nz2) printf ("zero entries dropped: 7,d\n", nzl - nz2) ;
if (nz2 != A->p [n]) printf ("tiny entries dropped: 7.d\n", nz2 - A->p [n]) ;
Prob->b = cs_malloc (mn, sizeof (double)) ;
Prob->x = cs_malloc (mn, sizeof (double)) ;
Prob->resid = cs_malloc (mn, sizeof (double)) ;
return ((!Prob->b I I !Prob->x I I !Prob->resid) ? free_problem (Prob) : Prob) ;

}

/* free a problem */
problem *free_problem (problem *Prob)
{

if (IProb) return (NULL) ;
cs_spfree (Prob->A) ;
if (Prob->sym) cs_spfree (Prob->C) ;
cs_free (Prob->b) ;
cs_free (Prob->x) ;
cs_free (Prob->resid) ;
return (cs_free (Prob)) ;

}

/* solve a linear system using Cholesky, LU, and QR, with various orderings */
int demo2 (problem *Prob)
•C

cs *A, *C ;
double *b, *x, *resid, t, tol ;
int k, m, n, ok, order, nb, ns, *r, *s, *rr, sprank ;
csd *D ;
if (IProb) return (0) ;
A = Prob->A ; C = Prob->C ; b = Prob->b ; x = Prob->x ; resid = Prob->resid;
m = A->m ; n = A->n ;
tol = Prob->sym ? 0.001 : 1 ; /* partial pivoting tolerance */
D = cs_dmperm (C, 1) ; /* randomized dmpenn analysis */
if (!D) return (0) ;
nb = D->nb ; r = D->r ; s = D->s ; rr = D->rr ;
sprank = rr [3] ;
f o r ( n s = 0 , k = 0 ; k < n b ; k++)
{

ns •*•= ((r [k+1] == r [k]+D && (s [k+1] =- s [k]+l)) ;
}
printf ("blocks: 7.d singletons: 7.d structural rank: 7.d\n", nb, ns, sprank) ;
cs_dfree (D) ;
for (order = 0 ; order <= 3 ; order += 3) /* natural and amd(A'*A) */
{

if (!order && m > 1000) continue ;
printf ("QR ") ;
print_order (order) ;
rhs (x, b, m) ; /* compute right-hand side */
t = tic () ;
ok = cs_qrsol (order, C, x) ; /* min norm(Ax-b) with QR */
printf ("time: 7,8.2f ", toe (t)) ;
print_resid (ok, C, x, b, resid) ; /* print residual */

}
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if (m != n I I sprank < n) return (1) ; /* return if rect. or singular*/
for (order = 0 ; order <= 3 ; order++) /* try all orderings */
{

if (!order ftft m > 1000) continue ;
printf ("LU ") ;
print_order (order) ;
rhs (x, b, m) ; /* compute right-hand side */
t = tic () ;
ok = cs_lusol (order, C, x, tol) ; /* solve Ax=b with LU */
printf ("time: 7,8.2f ", toe (t)) ;
print_resid (ok, C, x, b, resid) ; /* print residual */

}
if (!Prob->sym) return (1) ;
for (order = 0 ; order <= 1 ; order++) /* natural and amd(A+A') */
{

if (!order && m > 1000) continue ;
printf ("Choi ") ;
print_order (order) ;
rhs (x, b, m) ; /* compute right-hand side */
t - tic () ;
ok = cs_cholsol (order, C, x) ; /* solve Ax=b with Cholesky */
printf ("time: 7.8.2f ", toe (t)) ;
print_resid (ok, C, x, b, resid) ; /* print residual */

}
return (1) ;

}

The cs_demo2. c file contains just the main program itself.

^include "cs_demo.h"
/* cs_demo2: read a matrix and solve a linear system */
int main (void)
{

problem *Prob = get_problem (stdin, le-14) ;
demo2 (Prob) ;
free_problem (Prob) ;
return (0) ;

}

The output of cs_demo2 for the bcsstkOl, fs_183_l, mbeacxc, west0067, and
lp_af iro matrices is shown below. One matrix (mbeacxc) is actually 496-by-496,
but cs_load returns a matrix of size 492-by-490 as determined by the largest row
and column index of nonzero entries in the matrix. The matrix has a numeric and
structural rank of 448, which is why the residual is nan.

Matrix: 48-by-48, nnz: 224 (sym: -1: nnz 400), norm: 3.57e+09
blocks: 1 singletons: 0 structural rank: 48
QR natural time: 0.00 resid: 2.83e-19
QR amd(A'*A) time: 0.00 resid: 5.19e-19
LU natural time: 0.00 resid: 2.63e-19
LU amd(A+A') time: 0.00 resid: 8.63e-20
LU amd(S'*S) time: 0.00 resid: 2.04e-19
LU amd(A'*A) time: 0.00 resid: 2.04e-19
Choi natural time: 0.00 resid: 1.90e-19
Choi amd(A+A') time: 0.00 resid: 2.01e-19
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Matrix: 183-by-183, nnz: 988 (sym: 0: nnz 0), norm: 1.70e+09

zero entries dropped: 71

tiny entries dropped: 10

blocks: 38 singletons: 37 structural rank: 183

QR natural time: 0.01 resid: 1.09e-27

QR amd(A'*A) time: 0.00 resid: 5.34e-28

LU natural time: 0.00 resid: 3.08e-28

LU amd(A+A') time: 0.00 resid: 1.42e-27

LU amd(S'*S) time: 0.00 resid: 7.11e-28

LU amd(A'*A) time: 0.00 resid: 7.11e-28

Matrix: 492-by-490, nnz: 49920 (sym: 0: nnz 0), norm: 9.29e-01

blocks: 10 singletons: 8 structural rank: 448

QR natural time: 0.24 resid: nan

QR amd(A'*A) time: 0.28 resid: nan

Matrix: 67-by-67, nnz: 294 (sym: 0: nnz 0), norm: 6.14e+00

blocks: 2 singletons: 1 structural rank: 67

QR natural time: 0.00 resid: 3.42e-17

QR amd(A'*A) time: 0.00 resid: 1.95e-17

LU natural time: 0.00 resid: 3.85e-17

LU amd(A+A') time: 0.00 resid: 1.95e-17

LU amd(S'*S) time: 0.00 resid: 2.60e-17

LU amd(A'*A) time: 0.00 resid: 2.60e-17

Matrix: 27-by-51, nnz: 102 (sym: 0: nnz 0), norm: 3.43e+00

blocks: 1 singletons: 0 structural rank: 27

QR natural time: 0.00 resid: 9.54e-17

QR amd(A'*A) time: 0.00 resid: 1.89e-16

cs_demo3: Cholesky update/downdate

The cs_demo3 program demonstrates the use of many of the secondary CSparse
routines and utilities. It computes the Cholesky factorization of a matrix and then
updates and downdates it. The first two functions are in the cs.demo.c file.

/* free workspace for demoS */

static int doneS (int ok, ess *S, csn *N, double *y, cs *W, cs *E, int *p)

{
cs_sfree (S) ;

cs_nfree (N) ;

cs_free (y) ;

cs_spfree (W) ;

cs_spfree (E) ;

cs_free (p) ;

return (ok) ;

}

/* Cholesky update/downdate */

int demoS (problem *Prob)

{
cs *A, *C, *W = NULL, *WW, *WT, *E = NULL, *W2 ;

int n, k, *Li, *Lp, *Wi, *Wp, pi, p2, *p = NULL, ok ;

double *b, *x, *resid, *y = NULL, *Lx, *Wx, s, t, tl ;

ess *S = NULL ;
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csn *N - NULL ;
if (IProb || !Prob->sym I I Prob->A->n == 0) return (0) ;
A = Prob->A ; C = Prob->C ; b = Prob->b ; x = Prob->x ; resid = Prob->resid;
n « A->n ;
if (!Prob->sym I I n == 0) return (1) ;
rhs (x, b, n) ; /* compute right-hand side */
printf ("\nchol then update/downdate ") ;
print_order (1) ;
y = cs_malloc (n, sizeof (double)) ;
t = tic () ;
S = cs_schol (1, C) ; /* symbolic Choi, amd(A+A>) */
printf ("\nsymbolic chol time */,8.2f\n", toe (t)) ;
t = tic () ;
N = cs_chol (C, S) ; /* numeric Cholesky */
printf ("numeric chol time */.8.2f\n", toe (t)) ;
if (!S II !N II !y) return (done3 (0, S, N, y, W, E, p)) ;
t = tic () ;
cs_ipvec (S->pinv, b, y, n) ; /* y = P*b */
cs_lsolve (N->L, y) ; /* y = L\y */
cs.ltsolve (N->L, y) ; /* y = L'\y */
cs_pvec (S->pinv, y, x, n) ; /* x = P'*y */
printf ("solve chol time 7.8.2f\n", toe (t)) ;
printf ("original: ") ;
print_resid (1, C, x, b, resid) ; /* print residual */
k = n/2 ; /* construct W */
W - cs_spalloc (n, 1, n, 1, 0) ;
if (!W) return (done3 (0, S, N, y, W, E, p)) ;
Lp = N->L->p ; Li = N->L->i ; Lx = N->L->x ;
Wp = W->p ; Wi = W->i ; Wx = W->x ;
Wp [0] - 0 ;
pi = Lp [k] ;
Wp [1] = Lp [k+1] - pi ;
s = Lx [pi] ;
srand (1) ;
for ( ; pi < Lp [k+1] ; pl++)
{

P2 = pi - Lp [k] ;
Wi [p2] - Li [pi] ;
Wx [p2] = s * rand () / ((double) RAND.MAX) ;

>
t = tic () ;
ok = cs_updown (N->L, +1, W, S->parent) ; /* update: L*L'+W*W' */
tl = toe (t) ;
printf ("update: time: 7.8.2f\n", tl) ;
if (!ok) return (done3 (0, S, N, y, W, E, p)) ;
t = tic () ;
cs_ipvec (S->pinv, b, y, n) ; /* y = P*b */
cs_lsolve (N->L, y) ; /* y * L\y */
cs_ltsolve (N->L, y) ; /* y = L'\y */
cs_pvec (S->pinv, y, x, n) ; /* x = P'*y */
t = toe (t) ;
p = cs_pinv (S->pinv, n) ;
W2 = cs_permute (W, p, NULL, 1) ; /* E = C + (P'W)*(P'W)> */
WT = cs_transpose (W2,l) ;
WW - csjnultiply (W2, WT) ;
cs_spfree (WT) ;
cs_spfree (W2) ;
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E = cs_add (C, WW, 1, 1) ;

cs_spfree (WW) ;

if (!E II !p) return (doneS (0, S, N, y, W, E, p)) ;
printf ("update: time: %8.2f (incl solve) ", tl+t) ;

print_resid (1, E, x, b, resid) ; /* print residual */

cs_nfree (N) ; /* clear N */

t = tic () ;

N = cs_chol (E, S) ; /* numeric Cholesky */

if (!N) return (done3 (0, S, N, y, W, E, p)) ;

cs_ipvec (S->pinv, b, y, n) ; /* y = P*b */

cs_lsolve (N->L, y) ; /* y = L\y */

cs_ltsolve (N->L, y) ; /* y = L'\y */

cs_pvec (S->pinv, y, x, n) ; /* x = P'*y */

t = toe (t) ;

printf ("rechol: time: */,8.2f (incl solve) ", t) ;

print_resid (1, E, x, b, resid) ; /* print residual */

t = tic () ;

ok = cs_updown (N->L, -1, W, S->parent) ; /* downdate: L*L'-W*W' */
tl = toe (t) ;

if (!ok) return (doneS (0, S, N, y, W, E, p)) ;

printf ("downdate: time: 7.8.2f\n", tl) ;

t = tic () ;

cs_ipvec (S->pinv, b, y, n) ; /* y = P*b */

cs_lsolve (N->L, y) ; /* y = L\y */

cs_ltsolve (N->L, y) ; /* y = L'\y */

cs_pvec (S->pinv, y, x, n) ; /* x = P'*y */

t = toe (t) ;

printf ("downdate: time: 7.8.2f (incl solve) ", tl+t) ;

print_resid (1, C, x, b, resid) ; /* print residual */

return (done3 (1, S, N, y, W, E, p)) ;

}

The cs_demo3. c file contains just the main program itself.
#include "cs_demo.h"
/* cs_demo3: read a matrix and test Cholesky update/downdate */

int main (void)

{
problem *Prob = get_problem (stdin, 0) ;

demoS (Prob) ;

free_problem (Prob) ;
return (0) ;

>

The output of cs_demo3 for the bcsstklG matrix is shown below.

Matrix: 4884-by-4884, nnz: 147631 (sym: -1: nnz 290378), norm: 7.01e+09

chol then update/downdate amd(A+A')

symbolic chol time 0.03

numeric chol time 0.54

solve chol time 0.01
original: resid: 9.28e-23

update: time: 0.00

update: time: 0.01 (incl solve) resid: 1.05e-23

rechol: time: 0.55 (incl solve) resid: 8.72e-24

downdate: time: 0.01

downdate: time: 0.02 (incl solve) resid: 3.60e-22
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Sparse matrices in
MATLAB

Almost all MATLAB operators and functions work seamlessly on both sparse and
full matrices.15 It is possible to write an efficient MATLAB M-file that can operate
on either full or sparse matrices with no changes to the code. In MATLAB, "sparse"
is an attribute of the data structure used to represent a matrix.

Sparsity propagates in MATLAB; if a function or operator has sparse operands,
the result is usually sparse. A fixed set of rules determines the storage class (sparse
or full) of the result. In general, unary functions and operators return a result of
the same storage class as the input. For example, chol (A) is sparse if A is sparse
and full otherwise. The result of a binary operator (A+B, for example) is sparse if
both A and B are sparse and full if both A and B are full. If the operands are mixed,
the result is usually full, unless the operation preserves sparsity ([A B] , [A; B] , and
A. *B are sparse if either A or B are sparse, for example). The submatrix A (i, j ) has
the same type as A, unless it is a scalar (in which case A(i , j) is full). Submatrix
assignment (A(i , j) = . . .) leaves the storage class of A unchanged.

10.1 Creating sparse matrices
There are many ways of creating a sparse matrix in MATLAB, most of which rely
on the MATLAB sparse function. Usually the fastest method is to create the
triplet form first and then use sparse, much like how cs_entry, cs.compress, and
cs_dupl can be used. Avoid using for loops. This example creates an n2-by-n2

matrix, corresponding to the second difference operator applied to an n-by-n mesh.

function A = mesh2d2 (n)
*/, create an n-by-n 2D mesh for the 2nd difference operator
nn = l:n"2 ;
ii = [nn-n ; nn-1 ; nn ; nn+1 ; nn+n] ;
jj = repmat (nn, 5, 1) ;
xx = repmat ([-1 -14-1-1]',!, n~2) ;
keep - find (ii >= 1 & ii <= n~2 & jj >= 1 ft jj <= n"2) ;
A = sparse (ii (keep), jj (keep), xx (keep)) ;

15Since MATLAB refers to matrices as either sparse or full, that nomenclature is used here.
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If for loops are unavoidable, at least try to create subsets of more than one entry
at a time. This function computes the same matrix as mesh2d2. Preallocating a
matrix at its final size is better than repeatedly appending new entries to it.

function A = mesh2dl (n)

'/, create an n-by-n 2D mesh for the 2nd difference operator

ii = zeros (5*n~2, 1) ; 7, preallocate ii, jj, and xx

jj = zeros (5*n~2, 1) ;

xx = zeros (5*n~2, 1) ;

k = 1 ;
for j = 0:n-l

for i = 0:n-l

s = j*n+i + 1 ;

ii (k:k+4) = [(j-l)*n+i j*n+(i-l) j*n+i j*n+(i+l) (j+l)*n+i ] + 1 ;

jj (k:k+4) = [s s s s s] ;

xx (k:k+4) = [-1 -1 4 -1 -1] ;

k = k + 5 ;
end

end

*/. remove entries beyond the boundary

keep = find (ii >= 1 ft ii <= n'2 & jj >= 1 & jj <= n~2) ;

A = sparse (ii (keep), jj (keep), xx (keep)) ;

Here is an example that creates a random finite-element matrix.

function A = frand (n,nel,s)

'/t A = frand (n,nel,s) creates an n-by-n sparse matrix consisting of nel finite

'/, elements, each of which are of size s-by-s with random symmetric nonzero

'/. pattern, plus the identity matrix.

ss = s"2 ;

nz = nel*ss ;

ii = zeros (nz,l) ;

jj = zeros (nz,l) ;

xx = zeros (nz,l) ;
k = 1 ;
for e = Irnel

i = 1 * fix (n * rand (s,l)) ;

i = repmat (i, 1, s) ;

j - i' ;
x = rand (s,s) ;
ii (k:k+ss-l) = i (:) ;
jj (k:k+ss-l) = j (:) ;
xx (k:k+ss-l) = x (:) ;
k = k + ss ;

end
A = sparse (ii,jj,xx,n,n) + speye (n) ;

The csJfrand function is the CSparse version of frand.

cs *cs_frand (int n, int nel, int s)

{
int ss = s*s, nz = nel*ss, e, i, j, *P ;

cs *A, *T = cs_spalloc (n, n, nz, 1, 1) ;

if (!T) return (NULL) ;

P = cs.malloc (s, sizeof (int)) ;

if (!P) return (cs_spfree (T)) ;

for (e = 0 ; e < nel ; e++)
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{
for (i = 0 ; i < s ; i++) P [i] = rand () 7. n ;

for (j = 0 ; j < s ; j++)

{
for (i = 0 ; i < s ; i++)

{
cs_entry (T, P [i], P [j], rand () / (double) RAND_MAX) ;

}
>

}
for (i - 0 ; i < n ; i++) cs_entry (T, i, i, 1) ;
A = cs_compress (T) ;

cs_spfree (T) ;

return (cs_dupl (A) ? A : cs_spfree (A)) ;

}

The worst way to create a sparse matrix is with a statement A(i, j) = . . ., where
i and j are scalars. Below are four methods of creating the same matrix A. The
first method is an example of what not to do.

7. method 1: A(i,j) - ...
rand ('state', 0) ;

A = sparse (n,n) ;

for k = l:nz

'/, compute some arbitrary entry and add it into the matrix

i = 1 + fix (n * rand (1)) ;

j = 1 + fix (n * rand (1)) ;

x = rand (1) ;

A (i,j) = A (i,j) + x ; */. VERY slow, esp. if A(i,j) not already nonzero!
end

A better method, if the matrix is to be constructed one entry at a time, is to
preallocate a triplet form, fill it, and then convert it to a sparse form.

% method 2: triplet form, one entry at a time

rand ('state*, 0) ;

ii = zeros (nz, 1) ; 7. preallocate ii, jj, and xx

jj « zeros (nz, 1) ;
xx = zeros (nz, 1) ;

for k = l:nz
7. compute some arbitrary entry and add it into the matrix

ii (k) = 1 + fix (n * rand (1)) ;

jj (k) - 1 + fix (n * rand (D) ;
xx (k) - rand (1) ;

end

A = sparse (ii,jj,xx) ;

If the number of entries is unknown, the size of the triplet matrix can be increased
as needed, just like cs_entry.

7t method 3: triplet form, one entry at a time, pretend nz is unknown

rand ('state', 0) ;

len = 16 ;

ii = zeros (len, 1) ;

jj = zeros (len, 1) ;

xx = zeros (len, 1) ;
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for k = l:nz
7, compute some arbitrary entry and add it into the matrix
if (k > len)

7. double the size of ii,jj,xx
len = 2*len ;
ii (len) = 0 ;
jj (len) = 0 ;
xx (len) = 0 ;

end
ii (k) = 1 + fix (n * rand (1)) ;
jj (k) = 1 + fix (n * rand (1)) ;
xx (k) = rand (1) ;

end
A = sparse (ii (l:k), jj (l:k), xx (l:k)) ;

Of course, the best method is to avoid for loops completely.

% method 4: avoid the for loop
rand ('state', 0) ;
e = rand (3, nz) ;
e (1,:) = 1 + fix (n * e (1,:)) ;
e (2,:) = 1 + fix (n * e (2,:)) ;
A = sparse (e (1,:), e (2,:), e (3,:)) ;

Each of the above four methods constructs the same matrix A. The first is exceed-
ingly slow, taking O(|.A|2) time. Methods 2 and 3 take about the same time, but
method 4 is much faster (methods 2, 3, and 4 all take O(|^4|) time, however).

Finally, never create a full matrix A and then convert it to sparse. For example,
A=sparse(eye(n)) takes O(n2) time and memory, but A=speye(n) takes only O(n)
time and memory. The difference is dramatic for large n.

10.2 Sparse matrix functions and operators
The following is a list of the primary functions and operators for sparse matrices in
MATLAB 7.2.

| referencing and assigning submatrices
subsref . . . =A(i, j) extracts a sparse submatrix of A. Matrix permutation

is an important special case. C=A(p,q) is the same as C = PAQ if
p and q are permutations of 1: m and 1: n, respectively, that repre-
sent the permutation matrices P and Q (where [m n]=size(A)).

subasgn A(i , j) = . . . modifies a sparse submatrix of A.
subs index . . .=A(k), one-dimensional indexing.

[ elementary sparse matrices:J
spdiags A generalization of diag that constructs a matrix from diagonals

or extracts diagonals of a matrix.
speye I=speye (n) is the sparse identity matrix; I=speye (m,n) is m-by-n.
sprand A=sprand(m,n,d) is a random m-by-n sparse matrix with about

d*m*n nonzero entries with values uniformly distributed in the
range [0,1]. A=sprand(S) is a random matrix with the same pat-
tern as S.
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| elementary sparse matrices, continued:
sprandn Identical to sprand but with normally distributed random entries,
sprandsym A=sprandsym(n,d) is a symmetric random matrix with about dn?

entries. A=sprandsym(n,d,rc,kind) is also positive definite with
a reciprocal condition number of re (kind selects the method).

| full to sparse conversion
find [i j x]=find(A) extracts the triplet form of a matrix A; it is

the opposite of sparse. With one output, i=f ind(A) returns the
one-dimensional indices i of the nonzero entries in A.

full C=full (A) converts a sparse matrix A into a full matrix C.
sparse A=sparse(C) converts a full matrix C into sparse matrix A.

A=sparse(i, j ,x,m,n,s) converts a triplet form into an m-by-n
sparse matrix A with space for s entries. A=sparse(i, j ,x,m,n)
uses s=length(x). A=sparse(i,j,x) uses m=max(i) and
n=max(j), just like cs_sparse. A=sparse(m,n) is a sparse m-by-n
matrix with all zero entries.

spconvert A=spconvert (x) is A=sparse (x (: , 1), x (: , 2) , x (: , 3)) i fx has 3
columns. A is complex if size (x, 2) =4.

| working with sparse matrices:
issparse issparse(A) is 1 if A is sparse and 0 otherwise,
nnz nnz(A) is the number of nonzeros in A (A->p[A->n] in CSparse).
nonzeros x from [i, j ,x]=f ind(A) (A->x in CSparse).
nzmax nzmax(A) is the maximum number of nonzeros A can hold; this is

increased when necessary (A->nzmax in CSparse).
spalloc A=spalloc (m,n, nzmax) allocates a zero m-by-n sparse matrix with

space for nzmax entries,
spfun Applies a function to the entries of a matrix. C=spfun(@f,A)

is a matrix with the same nonzero pattern as A, where
C ( i , j ) = f ( A ( i , j ) ) (zero entries are removed from C).

spones C=spones (A) is a binary sparse matrix with the pattern of A.
spparms Parameters for sparse methods. Try spparms(' spumoni' ,2).
spy spy (A) plots a picture of a sparse matrix.

| ordering methods:
amd Approximate minimum degree algorithm used in backslash, lu,

and chol. p=amd(A) orders A+A' so that chol(A(p,p)) tends to
be sparser than chol (A).

colamd Column approximate minimum degree ordering used in backslash
and lu. q=colamd(A) finds a column ordering so that lu(A(: ,q))
tends to be sparser than lu(A). Dense rows are removed from A
prior to ordering A (like cs_amd(A,2)). For QR factorization, use
q=colamd(A, [n m] ), where [m n] =size(A), so that dense rows in
A are not ignored (like cs_amd(A, 3)). This finds a column ordering
q so that qr(A(: ,q)) tends to be sparser than qr(A).

colperm Sorts columns by increasing degree.



174 Chapter 10. Sparse matrices in MATLAB

| ordering methods, continued:
dmperm [p,q,r,s]=dmperm(A) is the Dulmage-Mendelsohn decomposi-

tion of A, where C=A(p,q) is in block upper triangular form. The
kth block is C(r(k) :r(k+l)-l,s(k) :s(k+l)-l).

randperm p=randperm(n) is a random permutation of l:n.
symamd Approximate minimum degree, based on colamd; p=symamd(A), is

like p=amd(A), just slower, symamd orders the matrix with pattern
tril(A)+tril(A)'.

symrcm p=symrcm(A) finds a reverse Cuthill-McKee ordering so that the
entries of C(p,p) tend to be close to the diagonal, where C=A+A'.

| linear algebra:
cholinc Incomplete Cholesky factorization. See Problem 4.13.
condest c=condest (A) is a lower bound for cond(f ull (A) , 1) that is much

less expensive to compute.
eigs e=eigs(A) returns the six largest eigenvalues of a square ma-

trix A, using a method that is less expensive than e=eig(A).
[V,e]=eigs(A) also returns the eigenvectors V. Many more op-
tions are available. Based on ARPACK.

luinc Incomplete LU factorization. See Problem 6.13.
normest s=normest (A) is an estimate of the 2-norm norm (full (A)) that

is much less expensive to compute.
spaugment S=spaugment(A,c) is the augmented system S=[c*I A ; A ' 0].
sprank s=sprank(A) is the structural rank of A (the size of the maximum

matching).
svds s=svds(A) finds the six largest singular values of A. Many more

options are available.

| sparse factorization methods:
lu LU factorization. [L,U,P]=lu(A) returns L*U=P*A, using the left-

looking GPLU algorithm (much like cs_lu) with no fill-reducing
ordering. [L2,U]=lu(A) is the same, except L2=P'*L is returned.
[L,U,P,Q]=lu(A) uses UMFPACK, where Q is a fill-reducing or-
dering and P is for both threshold partial pivoting and reducing
fill-in. A second input to lu controls the threshold.

qr Givens-rotation-based QR factorization. R=qr(A) computes
just R and not Q; this uses much less memory than [Q
R]=qr(A). R=qr(A,0) returns R with just min(size(A)) rows.
[x,R]=qr(A,b) solves the least squares problem to minimize
\\Ax — b\\2- No column ordering is used to reduce nnz(R); use
q=colamd(A, [n m] ) and qr(A(: ,q)) to reduce fill-in.

chol Cholesky factorization of A, using CHOLMOD. R=chol(A) returns
an upper triangular matrix where R'*R=A. No fill-reducing order-
ing is used; use p=amd(A) or p=symamd(A) and chol(A(p,p)) to
reduce fill-in.
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| operators (highlights only; all MATLAB operators work for sparse matrices)
\ Backslash, or mldivide. See Section 8.5.
/ Slash, or mrdivide. See Section 8.5.
' C=A' is the transpose of A (complex conjugate transpose if A is

complex).
+ C=A+B adds two matrices. C is sparse if A and B are sparse.

C=A-B subtracts two matrices. C is sparse if A and B are sparse.
* C=A*B multiplies two matrices. C is sparse if A and B are sparse.
; C=[A;B] concatenates A and B vertically; A and B must have the

same number of columns. C is sparse if A or B are sparse.
, C=[A,B] concatenates A and B horizontally; A and B must have the

same number of rows. C is sparse if A or B are sparse.

| iterative methods:
Iterative methods exploit sparsity when solving Ax = b by not factorizing A.

They typically rely on repeated matrix-vector multiplications. Methods in MAT-
LAB include bicg, bicgstab, cgs, gmres, Isqr, minres, peg, qmr, and symmlq.

| tree and graph operations
etree parent=etree(A) is the elimination tree of triu(A)+triu(A)'.

[parent post]=etree(A) also returns the elimination tree post-
ordering, etree (A, 'col') finds the elimination tree of A'*A.

etreeplot etreeplot (A) plots a picture of the elimination tree of A+A'.
gplot gplot(A,xy) plots a picture of the undirected graph of A+A',

where the n-by-2 matrix xy gives the x-y coordinates of each node.
symbfact Symbolic Cholesky factorization. c=symbfact(A) is a vector of

column counts of the Cholesky factor L=chol(A)', where only
triu(A) is accessed, symbfact (A, 'col ') analyzes A'*A but
does not form it. Additional outputs are [c h parent post
R] =symbf act ( . . . ) , where h is the height of the elimination tree,
parent is the tree, post is the postordering of the tree, and R is a
binary matrix with the same pattern chol (A).

treelayout [x, y, h] =treelayout (parent) finds x-y coordinates for the nodes
of a tree, and the height h of the tree, for use in treeplot.

treeplot treeplot (parent) plots a picture of the elimination tree.

[ functions that partially work on sparse matrices or that have sparse substitutes
cholupdate Rank-1 update/downdate of full Cholesky factorization. Use

CHOLMOD or cs_updown for the sparse case,
cond Use condest instead.
eig Use eigs instead or d=eig(A) for sparse symmetric A.
norm Works for 1-norm, co-norm, vector 2-norm, and Frobenius norm.

Use normest (A) to estimate the 2-norm of a sparse matrix A.
poly Only works if A is symmetric,
svd Use svds instead.

| functions and features that do not work on sparse matrice
Functions and features of MATLAB that do not work at all for sparse matri-
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ces include JV-dimensional arrays for N > 2, different types (only double and com-
plex double are available), airy, bessel, besselj, bessely, besseli, besselk,
besselh, betainc, bitand, bitcmp, bitor, bitxor, bitset, bitget, bitshift,
complex, condeig, conv2, convn, deconv, erf, erfc, erfcx, fft, fft2, fftn,
filter, f ilter2, funm, gamma, gammaln, gsvd, hess, histc, ifft, ifftn, linsolve
logm, Isqnonneg, null, ordeig, ordqz, ordschur, orth, qz, pinv, psi, rank,
rcond, reallog, realpow, realsqrt, residue, rsf2csf, schur, sqrtm, ss2zp,
subspace, surfnorm, and tzero.

The following accept sparse inputs but produce full outputs: ellipj, ellipke,
erfcinv, erfinv, expint, gammainc, legendre, polyeig, polyval, and polyvalm.

10.3 CSparse MATLAB interface
The MATLAB mexFunction interface for CSparse allows all of CSparse to be
used within MATLAB. MATLAB already includes most of the functionality of
CSparse (and much more) with the exception of the rank-1 sparse Cholesky up-
date/downdate. Most CSparse functions are about as fast, or faster, than built-in
functions in MATLAB 7.2 with notable exceptions of chol and lu because they
rely on dense matrix kernels. See CSparse/MATLAB/cs_install.m to compile and
install CSparse for use in MATLAB.

cs_add: sparse matrix addition

Usage: C = cs_add(A,B,alpha,beta)
MATLAB equivalent: C = alpha*A+beta*B
Adds two sparse matrices, alpha and beta default to 1 if not present.
See also csjnultiply, cs_gaxpy, plus, minus.

cs_amd: approximate minimum degree ordering

Usage: p = cs_amd(A,order)
MATLAB equivalent: p = amd(A), p = colamd(A), or p = symamd(A)
Approximate minimum degree ordering. The order parameter is optional.

The default is order=l, which orders A+A'. order=2 orders S'*S, where S = A
except that dense rows are removed from S. order=3 orders A'*A.

See also amd, colamd, symamd.

cs_chol: sparse Cholesky factorization

Usage: [L,p] = cs_chol(A,drop)
MATLAB equivalent: p=amd(A) ; L=chol(A(p,p) ' ) ' , or L=chol(A') '
Factorizes A or A(p,p) into its Cholesky factorization L*L'. drop is optional;

if zero, numerically zero entries are not dropped from L. The default is to drop
these entries (drop = 1). With one output, no fill-reducing ordering is used.

See also cs_amd, cs_updown, chol, amd, symamd.

cs_cholsol: solve Ax = b using a sparse Cholesky factorization

Usage: x = cs_cholsol(A,b,order)



where ^12, A^z-, and ^34 are square with zero-free diagonals. The columns of AH
are the unmatched columns, and the rows of A^ are the unmatched rows. Any
of these blocks can be empty. In the coarse decomposition, the (i,j)th block is
C(rr(i) :rr(i+l)-l,cc(j) :cc(j+l)-l). In terms of a linear system, [All A12]
is the undetermined part of the system (it is always rectangular and with more
columns than rows or O-by-0), A23 is the well-determined part of the system (it is
always square), and [A34 ; A44] is the overdetermined part of the system (it is
always rectangular with more rows than columns or O-by-0). The structural rank of
A is rr(4)-l. The A^j, submatrix is further subdivided into block upper triangular
form via the fine decomposition (the strongly connected components of ^23).

C(r(i) :r(i+l)-l,s(j) :s(j+l)-l) is the (i,j)th block of the fine decompo-
sition. The (1,1) block is the rectangular block [All A12], unless this block is
O-by-0. The (&, 6) block is the rectangular block [A34 ; A44], unless this block is
O-by-0, where b = length(r)-!. All other diagonal blocks are submatrices of A^
and are square with a zero-free diagonal.

A second argument provides a seed for a randomized maximum matching.
See also cs_dmspy, cs_dmsol, dmperm, sprank, cs_randperm.
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MATLAB equivalent: x = A\b
Solves Ax = b using a sparse Cholesky factorization, b must be a full vector.

If order is present, cs_amd(A,order) is used.
See also cs_chol, cs_amd, cs.lusol, cs_qrsol, mldivide.

cs.counts: column counts for sparse Cholesky factorization

Usage: c = cs_counts(A,mode)
MATLAB equivalent: c = symbfact(A) or c = symbfact(A,'col')
Returns a vector of the column counts of L, c = sum(spones(chol(A)')),

except that it is computed more efficiently, c = cs_counts(A,'col') computes
the counts for the factorization of A'*A.

See also symbfact.

cs.dmperm: maximum matching or Dulmage—Mendelsohn decomposition

Usage: [p,q,r,s,cc,rr] = cs_dmpenn(A) or p = cs_dmperm(A)
MATLAB equivalent: [p,q,r,s] = dmperm (A) or p = dmperm (A)
p = cs_dmperm(A) finds a maximum matching p such that p( j) = i if column

j is matched to row i or -1 if column j is unmatched. If A is square and full
structural rank, p is a row permutation and A (p,:) has a zero-free diagonal. The
structural rank of A is sprank(A) = sum(p>0).

[p, q, r, s, cc, rr] = cs_dmperm(A) finds the Dulmage-Mendelsohn decompo-
sition of A. p and q are permutation vectors, cc and rr are vectors of length 5. C
= A(p,q) is split into a 4-by-4 set of coarse blocks
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cs_dmsol: solve Ax = b using a Dulmage—Mendelsohn decomposition

See Section 8.4 for a complete description of the cs_dmsol M-file.

cs.dmspy: plot a Dulmage—Mendelsohn decomposition

Usage: [p,q,r,s,cc,rr] = cs_dmspy(A,res)
MATLAB equivalent: [p,q,r,s] = dmperm(A) ; spy(A(p,q))
Plots a picture of the Dulmage-Mendelsohn decomposition of a matrix. It

first computes [p,q,r,s,cc,rr] = cs_dmperm(A), does cspy(A(p,q)), and then
draws boxes around the coarse and fine decompositions. A second input argument
(cs_dmspy(A,res)) changes the resolution of the image to res-by-res (default res-
olution is 256). If res is zero, spy is used instead of espy.

See also cs_dmperm, cs_dmsol, dmperm, sprank, spy, espy.

cs_droptol: remove small entries from a sparse matrix

Usage: C = cs_droptol(A,tol)
MATLAB equivalent: A = A.*(abs(A)>tol)
Removes small entries from a sparse matrix (those with magnitude < tol).

cs_esep: find an edge separator

See Section 7.6 for a complete description of the cs_esep M-file.

I cs_etree; elimination tree of A or A'*A

Usage: [parent,post] = cs_etree(A,mode)
MATLAB equivalent: [parent,post] = etree(A)
parent = cs_etree(A) returns the elimination tree of A. With a second in-

put, parent = cs_etree(A, 'col') returns the elimination tree of A'*A. For the
symmetric case (cs_etree(A)), only triu(A) is used.

[parent, post] = cs_etree(. . .) also returns a postorder of the tree.
See also etree, treeplot.

cs_gaxpy: sparse matrix times vector

Usage: z = cs_gaxpy(A,x,y)
MATLAB equivalent: z = A*x+y
x and y must be full vectors.
See also plus, mtimes.

cs_lsolve: solve a sparse lower triangular system, Lx = b

Usage: x = cs_lsolve(L,b)
MATLAB equivalent: x = L\b
Solves a sparse lower triangular system. L must be lower triangular with a

zero-free diagonal, b can be a full or sparse vector.
See also cs_ltsolve, cs.usolve, cs_utsolve, mldivide.

cs_ltsolve: solve a sparse upper triangular system, LTx — b
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Usage: x = cs_ltsolve(L,b)
MATLAB equivalent: x = L'\b
Solves a sparse upper triangular system. L must be lower triangular with a

zero-free diagonal, b must be a full vector.
See also cs_lsolve, cs_usolve, cs.utsolve, mldivide.

cs_lu: sparse LU factorization

Usage: [L,U,p,q] = cs_lu(A,tol)
MATLAB equivalent: [L,U,P,Q] = lu(A,tol)
[L,U,p] = cs_lu(A) factorizes A(p , : ) into L*U.
[L,U,p] = cs_lu(A, tol) factorizes A(p , : ) into L*U. Entries on the diagonal

are given preference in partial pivoting.
[L,U,p,q] = cs_lu(A) factorizes A(p,q) into L*U, using a fill-reducing or-

dering q = cs_amd(A,2). Normal partial pivoting is used.
[L,U,p,q] = cs_lu(A,tol) factorizes A(p,q) into L*U, using a fill-reducing

ordering q = cs_amd(A). Entries on the diagonal are given preference in partial
pivoting. With a pivot tolerance tol, the entries in L have magnitude 1/tol or
less, tol = 1 is normal partial pivoting (but with the q = cs_amd(A) ordering),
tol = 0 ensures p = q. 0<tol<l is relaxed partial pivoting; the diagonal is selected
if it is at least tol*max(abs(A(: ,k))) .

See also cs.amd, lu, umf pack, amd, colamd.

cs_lusol: solve Ax = b using LU factorization

Usage: x = cs_lusol(A,b,order,tol)
MATLAB equivalent: x = A\b
x = cs_lusol(A,b) computes x=A\b, where A is sparse and square, and b

is a full vector. The ordering cs_amd(A,2) is used, x = cs_lusol(A,b,l) also
computes x=A\b but uses the cs_amd(A) ordering with diagonal preference (default
tol=0.001). If order is present, cs_amd(A,order) is used.

See also csJLu, cs_amd, cs_cholsol, cs_qrsol, mldivide.

I csjnake: compiles CSparse for use in MATLAB

Usage: csjnake
See also mex. Type help csjnake in MATLAB for more information, includ-

ing instructions on how to add new mexFunctions to CSparse.

csjnultiply: sparse matrix multiply

Usage: C = cs_multiply(A,B)
MATLAB equivalent: C = A*B
See also cs_gaxpy, cs_add, mtimes.

cs_nd: generalized nested dissection

See Section 7.6 for a complete description of the cs_nd M-file.

csjisep: find a node separator
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See Section 7.6 for a complete description of the cs_nsep M-file.

cs_permute: permute a sparse matrix

Usage: C = cs_permute(A,p,q)
MATLAB C = A(p,q)
See also cs_symperm, subsref.

cs_print: print a sparse matrix

Usage: cs_print(A,brief)
MATLAB equivalent: A with no semicolon
cs_print(A) prints a sparse matrix. cs_print(A,l) prints just a few entries.

cs_qleft: apply Householder vectors on the left

See Section 5.3 for a description of the cs.qlef t M-file.

cs_qr: sparse QR factorization

Usage: [V,beta,p,R,q] = cs_qr(A)
MATLAB equivalent: q=colamd(A, [n m] ) ; [Q,R] = qr(A(: ,q))
[V,beta,p,R] = cs_qr(A) computes the QR factorization of A(p , : ) .
[V,beta,p,R,q] = cs_qr(A) computes the QR factorization of A(p,q). The

fill-reducing ordering q is found via q = cs_amd(A,3).
A must be m-by-n with m > n. If A is structurally rank deficient, additional

empty rows may have been added to V and R. The orthogonal factor Q can be
obtained via Q = cs_qright(V,Beta,p,speye(size(V,l))).

See also cs_amd, cs_qr, cs_qright, cs_dmperm, qr, colamd.

cs_qright: apply Householder vectors on the right

See Section 5.3 for a description of the cs_qright M-file.

cs_qrsol: solve a sparse least squares problem

Usage: x = cs_qrsol(A,b,order)
MATLAB x = A\b
x = cs_qrsol(A,b) solves the overdetermined least squares problem to find

x that minimizes norm(A*x-b), where b is a full vector. A is m-by-n with m > n. If
order is present, cs_amd(A,order) is used. If A has fewer rows than columns, an
underdetermined problem is solved.

See also cs_qr, cs.amd, cs_lusol, cs_cholsol, mldivide.

cs_randpenn: random permutation

Usage: p = cs_randperm(n,seed)
MATLAB equivalent: p = randperm(n)

cs_scc: strongly connected components of a square sparse matrix

Usage: [p,r] = cs_scc(A)



10.3. CSparse MATLAB interface 181

MATLAB equivalent: [p,q,r,s] = dmperm(A+speye(size(A,l)))
[p,r] = cs_scc(A) finds a permutation p so that A(p,p) is permuted into

block upper triangular form. The diagonal of A is ignored.
See also cs_dmperm, dmperm.

cs_sep: convert an edge separator into a node separator

See Section 7.6 for a complete description of the cs_sep M-file.

cs_sparse: convert a triplet form into a MATLAB sparse matrix

Usage: A = cs_sparse(i, j ,x)
MATLAB equivalent: A = sparsed, j ,x)
A = cs_sparse(i, j ,x) is identical to A = sparsed, j ,x), except that x

must be real, and the lengths of i, j, and x must be the same. The MATLAB
sparse function has many more features than cs_sparse.

See also sparse, spconvert.

cs_sqr: symbolic QR or LU ordering and analysis

Usage: [vnz,rnz,parent,c,leftmost,p,q] = cs_sqr(A)
MATLAB equivalent: [c,parent] = symbfact (A, 'col')
[vnz,rnz,parent,c,leftmost,p] = cs_sqr(A) computes the symbolic QR

factorization of A (p,:). [vnz, rnz, par ent,c, leftmost, p,q] = cs_sqr(A) com-
putes the symbolic QR factorization of A (p, q). The fill-reducing ordering q is found
via q=cs_amd(A,3). vnz is the number of entries in the matrix of Householder vec-
tors, V. rnz is the number of entries in R. parent is the elimination tree. c(i)
is the number of entries in R( i , : ) . leftmost(i) is min(find(A(i,q))) . p is the
row permutation used to ensure R has a symbolically zero-free diagonal, q is the
fill-reducing ordering if requested.

See also cs_amd, cs_qr.

cs_symperm: symmetric permutation of a symmetric matrix

Usage: C = cs_symperm(A,p)
MATLAB equivalent: C = triu(A)+triu(A,l) ' ; C = triu(C(p,p))
C = cs_symperm(A,p) computes C = A(p,p) but accesses only the upper tri-

angular part of A and returns C upper triangular (A and C are symmetric with just
their upper triangular parts stored). A must be square.

See also cs_permute, subsref, triu.

cs_transpose: transpose a sparse matrix

Usage: C = cs_transpose(A)
MATLAB equivalent: C = A'
See also transpose, ctranspose.

cs.updown: rank-1 sparse Cholesky update/downdate

Usage: L = cs_updown(L,c,parent,sigma)
MATLAB equivalent: L = sparse(choldupate(full(L) ,c,sigma))
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L=cs_updown(L, c .parent) computes the rank-1 update L=chol (L*L' +c*c') ',
where parent is the elimination tree of L. c must be a sparse column vector, and
find(c) must be a subset of find(L(: ,k)), where k=min(f ind(c)).

L=cs_updown(L,c,parent,'-') is the downdate L=chol(L*L'-c*c') '.
L=cs_updown(L,c,parent,' + ') is the update L=chol(L*L'+c*c')'.
Updating/downdating is much faster than refactorization with cs_chol or

chol. L must not have an entries dropped due to numerical cancellation.
See also cs_etree, cs_chol, etree, cholupdate, chol.

cs_usolve: solve a sparse upper triangular system Ux = b

Usage: x = cs_usolve(U,b)
MATLAB equivalent: x = U\b
Solves a sparse upper triangular system. U must be upper triangular with a

zero-free diagonal, b can be a full or sparse vector.
See also cs_lsolve, cs_ltsolve, cs_utsolve, mldivide.

cs_utsolve: solve a sparse lower triangular system U'x — b

Usage: x = cs_utsolve(U,b)
MATLAB equivalent: x = U'\b
Solves a sparse lower triangular system. U must be upper triangular with a

zero-free diagonal, b must be a full vector.
See also cs_lsolve, csJLtsolve, cs_usolve, mldivide.

espy: plot a sparse matrix in color

Usage: espy (A, res)
espy (A) plots a sparse matrix, in color, with a default resolution of 256-by-

256. espy (A, res) changes the resolution to res. Entries with tiny absolute value
are light tan. Entries with large magnitude are black. Entries in the midrange
(the median of the Iog10 of the nonzero values, ± one standard deviation) range
from light green to deep blue. With no inputs, the color legend of espy is plotted.
[s,M,H] = espy (A) returns the scale factor s, the image M, and colormap H.

See also cs_dmspy, spy.

10.4 Examples
The cs.demol, cs_demo2, and cs_demo3 M-files in the MATLAB/Demo directory are
MATLAB equivalents of the C demo programs of the same name. They access
CSparse via a set of mexFunctions. These demos also plot their results with espy.

A mexFunction interfaces a C or Fortran program to MATLAB. Once com-
piled, it acts just like an M-file. Its name is always "mexFunction" and it always has
the same parameters. C- and Fortran-callable MATLAB functions with the prefix
mx provide access to MATLAB data structures, while functions with mex prefixes
operate in the MATLAB environment. Below is a sample mexFunction in CSparse
that interfaces the cs_chol function to MATLAB (the file cs_chol_mex.c). It calls
cs_mex_get_sparse to convert a MATLAB matrix A into a CSparse matrix A. The
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matrix is analyzed and factorized with cs_schol and cs_chol. The drop parame-
ter determines whether or not numerically zero entries should be dropped from the
matrix (they must be kept for cs_updown to work properly). cs_mex_put.sparse
returns L to the MATLAB caller. If two output parameters have been provided,
then the permutation p is computed and returned to MATLAB via cs_mex_put_int.

^include "cs_mex.h"
/* cs_chol: sparse Cholesky factorization */
void mexFunction (int nargout, mxArray *pargout C ], int nargin,

const mxArray *pargin [ ])
{

cs Amatrix, *A ;
int order, n, drop, *p ;
ess *S ;
csn *N ;
if (nargout > 2 I I nargin < 1 I I nargin > 2)

mexErrMsgTxt ("Usage: [L,p] = cs_chol(A,drop)") ;
A » cs_mex_get_sparse (ftAmatrix, 1, 1, pargin [0]) ; /* get A */
n = A->n ;
order = (nargout > 1) ? 1 : 0 ; /* determine ordering */
S = cs_schol (order, A) ; /* symbolic Cholesky */
N = cs_chol (A, S) ; /* numeric Cholesky */
if (!N) mexErrMsgTxt ("cs_chol failed: not positive definite\n") ;
drop = (nargin ==!)?!: mxGetScalar (pargin [1]) ;
if (drop) cs_dropzeros (N->L) ; /* drop zeros if requested*/
pargout [0] = cs_mex_put_sparse (&(N->L)) ; /* return L */
if (nargout > 1)
{

p = cs_pinv (S->pinv, n) ; /* p=pinv' */
pargout [1] = cs_mex_put_int (p, n, 1, 1) ; /* return p */

}
cs_nfree (N) ;
cs_sfree (S) ;

}

nargin and nargout are the number of input and output parameters, pargout and
pargin are arrays of pointers to the input and output parameters. The cs_chol
mexFunction makes use of a set of utility routines called cs_mex_* shared by all
CSparse mexFunctions, in the cs_mex. c file, listed below.

#include "cs_mex.h"
/* check MATLAB input argument */
void cs_mex_check (int nel, int m, int n, int square, int sparse, int values,

const mxArray *A)
{

int nnel, mm = mxGetM (A), nn = mxGetN (A) ;
if (values)
{

if (mxIsComplex (A)) mexErrMsgTxt ("matrix must be real") ;
if OmxIsDouble (A)) mexErrMsgTxt ("matrix must be double") ;

}
if (sparse && ImxIsSparse (A)) mexErrMsgTxt ("matrix must be sparse") ;
if (!sparse && mxIsSparse (A)) mexErrMsgTxt ("matrix must be full") ;
if (nel)
{

/* check number of elements */
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nnel = mxGetNumberOfElements (A) ;

if (m >= 0 && n >= 0 && m*n !* nnel) mexErrHsgTxt ("wrong length") ;

}
else

{
/* check row and/or column dimensions */

if (m >= 0 && m != mm) mexErrHsgTxt ("wrong dimension") ;

if (n >= 0 && n != nn) mexErrMsgTxt ("wrong dimension") ;

}
if (square && mm != nn) mexErrMsgTxt ("matrix must be square") ;

>

/* get a MATLAB sparse matrix and convert to cs */

cs *cs_mex_get_sparse (cs *A, int square, int values, const mxArray *Amatlab)

{
cs_mex_check (0, -1, -1, square, 1, values, Amatlab) ;

A->m = mxGetM (Amatlab) ;

A->n = mxGetN (Amatlab) ;

A->p = mxGetJc (Amatlab) ;

A->i = mxGetlr (Amatlab) ;

A->x = values ? mxGetPr (Amatlab) : NULL ;

A->nzmax = mxGetNzmax (Amatlab) ;

A->nz = -1 ; /* denotes a compressed-col matrix, instead of triplet */

return (A) ;

}

/* return a sparse matrix to MATLAB */

mxArray *cs_mex_put_sparse (cs **Ahandle)

{
cs *A ;

mxArray *Amatlab ;

A = *Ahandle ;

Amatlab = mxCreateSparse (0, 0, 0, mxREAL) ;

mxSetM (Amatlab, A->m) ;
mxSetN (Amatlab, A->n) ;
mxSetNzmax (Amatlab, A->nzmax) ;

cs_free (mxGetJc (Amatlab)) ;

cs_free (mxGetlr (Amatlab)) ;

cs_free (mxGetPr (Amatlab)) ;

mxSetJc (Amatlab, A->p) ; /* assign A->p pointer to MATLAB A */

mxSetlr (Amatlab, A->i) ;
mxSetPr (Amatlab, A->x) ;

mexMakeMemoryPersistent (A->p) ; /* ensure MATLAB does not free A->p */

mexMakeMemoryPersistent (A->i) ;

cs_free (A) ; /* frees A struct only, not A->p, etc */

*Ahandle = NULL ;

return (Amatlab) ;

}

/* get a MATLAB dense column vector */

double *cs_mex_get_double (int n, const mxArray *X)

{
cs_mex_check (0, n, 1, 0, 0, 1, X) ;

return (mxGetPr (X)) ;

}

mexMakeMemoryPersistent (A->x) ;
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/* return a double vector to HATLAB */
double *cs_mex_put.double (int n, const double *b, mxArray **X)
{

double *x ;
int k ;
*X = mxCreateDoubleMatrix (n, 1, mxREAL) ; /* create x */
x » mxGetPr (*X) ;
for (k = 0 ; k < n ; k++) x [k] = b [k] ; /* copy x = b */
return (x) ;

}

/* get a MATLAB flint array and convert to int */
int *cs_mex_get_int (int n, const mxArray *Imatlab, int *imax, int lo)
{

double *p ;
int i, k, *I = cs_malloc (n, sizeof (int)) ;
cs_mex_check (1, n, 1, 0, 0, 1, Imatlab) ;
p = mxGetPr (Imatlab) ;
*imax = 0 ;
for (k = 0 ; k < n ; k++)
{

i - p [k] ;
I [k] = i - 1 ;
if (i < lo) mexErrMsgTxt ("index out of bounds") ;
*imax = CS.MAX (*imax, i) ;

}
return (I) ;

}

/* return an int array to MATLAB as a flint row vector */
mxArray *cs_mex_put_int (int *p, int n, int offset, int do_free)
{

mxArray *X = mxCreateDoubleMatrix (1, n, mxREAL) ;
double *x = mxGetPr (X) ;
int k ;
for (k = 0 ; k < n ; k++) x [k] = (p ? p [k] : k) + offset ;
if (do_free) cs_free (p) ;
return (X) ;

}

The cs_chol.m M-file provides documentation. Typing help cs_chol in the
MATLAB Command Window prints the comments in the first part of cs_chol.m.

function [L,p] = cs_chol (A,drop)
7.CS.CHOL sparse Cholesky factorization.
7. L = cs_chol(A) is the same as L » chol(A)', using triu(A) .
'/. [L,p] = cs_chol(A) first orders A with p=cs_amd(A) , so that L*L' * A(p,p).
7. A second optional input argument controls whether or not numerically zero
7t entries are removed from L. cs_chol(A) and cs_chol(A,l) drop them;
7. cs_chol(A,0) keeps them. They must be kept for cs_updown to work properly.
7.
7. See also CS_AMD, CS.UPDOWN, CHOL, AMD, SYMAMD.

7. Copyright 2006, Timothy A. Davis.
7. http: //www. ci se. uf 1. edu/research/sparse
error ('cs_chol mexFunction not found') ;

The mex and mx functions used by CSparse are listed below.

http://www.cise.uf1.edu/research/sparse
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mex.h
mexErrMsgTxt
mexFunction
mexMakeMemoryPersistent
mxArray
mxCalloc
mxCreateDoubleMatrix
mxCreateDoubleScalar
mxCreateSparse
mxFree
mxGetJc
mxGetlr
mxGetPr
mxGetM
mxGetN
mxGetNumberOfElements
mxGetNzmax
mxGetScalar
mxGetString
mxIsChar
mxIsComplex
mxIsDouble
mxIsSparse
mxMalloc
mxRealloc
mxSetJc
mxSetlr
mxSetPr
mxSetM
mxSetN
mxSetNzmax

required mexPunction include file
print error message and abort the mexFunction
required name of a mexFunction
ensures memory persists after mexFunction completes
a MATLAB array
MATLAB equivalent of the C calloc function
create a MATLAB full matrix
create a MATLAB scalar (a 1-by-l matrix)
create a MATLAB sparse matrix
MATLAB equivalent of the C free function
get the column pointers of a MATLAB sparse matrix
get the row indices of a MATLAB sparse matrix
get the numerical values of a MATLAB sparse matrix
get number of rows of a MATLAB matrix
get number of columns of a MATLAB matrix
get number of entries of a MATLAB matrix
get the maximum number of entries of a MATLAB matrix
get the value of a MATLAB scalar
get a MATLAB string
true if a MATLAB matrix is a string
true if a MATLAB matrix is complex
true if a MATLAB matrix is double
true if a MATLAB matrix is sparse
MATLAB equivalent of the C malloc function
MATLAB equivalent of the C realloc function
set the column pointers of a MATLAB sparse matrix
set the row indices of a MATLAB sparse matrix
set the numerical values of a MATLAB sparse matrix
set number of rows of a MATLAB matrix
set number of columns of a MATLAB matrix
set the maximum number of entries of a MATLAB matrix

10.4 Examples
Gilbert, Moler, and Schreiber introduced sparse matrices into MATLAB [105], in-
cluding the first implementation of the sparse backslash. Additional sparse matrix
functions of Amestoy, Davis, and Duff (AMD [1,2]), Davis and Duff (UMFPACK
[27, 28, 31, 32]), Davis, Gilbert, Larimore, and Ng (COLAMD [33, 34]), Davis,
Hager, Chen, and Rajamanickam (CHOLMOD [30]), and Lehoucq, Sorensen, and
Yang (ARPACK [144, 145, 188]) have been included, condest is based on Higham
and Tisseur's [136] method, a generalization of Hager's 1-norm estimator [123].
Penny Anderson, Bobby Cheng, and Pat Quillen have written many of the sparse
matrix methods in MATLAB. For more information on MATLAB, see Higham and
Higham [133] or Davis and Sigmon [38]. Duff [47] discusses how random matrices
(sprand, sprandn, and sprandsym) can give misleading results when factorized.

Exercises
10.1. Compare the performance (speed and accuracy) of the CSparse mexFunctions

and MATLAB, using a range of large sparse matrices from real applications.



Appendix A

Basics of the C
programming language

The following is a brief overview of the features of C used in CSparse, including a
description of how each feature translates into MATLAB. See [141] for a full yet
concise description of the C programming language.

Variables
Six of C's basic variable types are used in CSparse:

int an integer
unsigned int an integer that is always positive
double a double-precision floating-point value
size_t an integer large enough to hold a pointer
char a character
void an object of no specific type used for pointers

In MATLAB, variables do not need to be declared (except with the rarely
used global statement). They must be declared in C. For example, the follow-
ing C statements declare integer scalars i and j and a double-precision scalar x.
Declarations can include initializations as well. C also includes a complex type.

int i ;

double x ;

int j = 0 ;

In C, an array is represented by a pointer to an address in memory containing the
first element of the array. The following is also an example of a /* comment */ in
C.

int *s ; /* declares a pointer to an int */

double *x ; /* declares a pointer to a double */

void *p ; /* declares a pointer to "void" */

187
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Statements and Operators
Logical operators are slightly different in C and MATLAB. In C, ! is the logical
negation operator, which is the same as the tilde operator (") in MATLAB. The
not-equals operator is != in C and "= in MATLAB. In both languages, logical or
( I I ) and logical and (&&) are the same. The caret (") operator in C is the exclusive-
or (bitxor in MATLAB). Logical statements are evaluated left to right; evaluation
terminates as soon as the result is known.

A pointer whose value is NULL is special (NULL is zero). It points to nothing.
In both C and MATLAB, true is nonzero and false is zero. Thus if x is a pointer,
the expression !x is true if x is a NULL pointer and false otherwise.

In C, single statements must always be terminated with a semicolon. A com-
pound statement can be used in C wherever a single statement can be used; it starts
with { and ends with }. The latter is analogous to end in MATLAB. Assignments
can be used as expressions in C but not in MATLAB. For example, x=y=0 ; in C
sets both x and y to zero. The comma operator can be used to separate a pair of
expressions. Both expressions are evaluated, and the result is the value of the right
operand. It is used only in for loops in CSparse. C does not have matrix operators.
The ternary operator ?: is unique to C. In C, the statement

x = (y > 0) ? z : w ;

is equivalent to the MATLAB statements

if (y > 0)
x = z ;

else
x = w ;

end

If p is a pointer, *p denotes the value stored at that memory location; that

memory location referred to by the pointer. The expression &x is a pointer to the
variable x. Arithmetic can be performed on C pointers. If x is a pointer to an array
of size 10, x[i] is the ith entry in the array, where i can be in the range 0 to 9.
In MATLAB, the array is x(l) through x(10). Pointer arithmetic is always done
in units of the size of the type of variable pointed to by the pointer. Thus, *(x+i)
is identical to x[i]. CSparse uses very little pointer arithmetic of the form x+i,
except when laying out subarrays from a larger workspace. It uses the form x[i]
extensively.

The ++ and — operators are unique to C. As stand-alone statements, x++ and
++x are both the same as x = x + 1. When used in expression, x++ increments x
after its value is used in the expression, and ++x increments x before it is used.
Thus,

y = x++ ;

is the same (in both C and MATLAB) as

y = x ;
x = x + 1 ;

is, the unary * operator dereferences a C pointer to obtain the value stored at the
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and

y - ++x ;

is the same (in both C and MATLAB) as

x = x + 1 ;
y - x ;

Likewise, the C statement

x [k++] = i ;

is the same as the C statements

x [k] = i ;
k - k + 1 ;

C has a suite of assignment operators that modify the left-hand side. The following
table shows five of these and their equivalents using the regular assignment in C.

x += 2
x -= 2
x /= 2
x *= 2
x 7,= 2

x =
X =

X =

X =

X =

x + 2
x - 2
x / 2
x * 2
x 7. 2

The 7o operator in C is the rem function in MATLAB, except that the meaning of
a 7e b when either a or b are negative is machine dependent (it is used in CSparse
only for positive numbers).

Variables can be typecast into values of a different type. For example, to
convert an int to a double,

x = (double) i ;

This conversion is done automatically by the assignment x=i and when variables of
one type are passed to a function expecting another type, so it is rarely needed.

Control structures
The while loop is almost the same in C and MATLAB. These two code fragments
are the same, the first in C and the second in MATLAB:

while (x < 10)

{
x = x + i ;

}

while (x < 10)

x = x + i ;

end

Both C and MATLAB have a for loop, but they differ in how they work.
These two code fragments are the same in C and MATLAB, respectively.
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for (i = 0 ; i < n ; i++)
{

x = x + i ;
}

for i = 0:n-l
x = x + i ;

end

The C for loop has four components. In general,

f or ( initialization ; condition ; post )
<

body
>

is identical to

initialization
while ( condition )
{

body
post

}

Thus, these two loops are identical in C:

for (i - 0 ; i < n ; i++)
{

x = x + i ;
>

i = 0 ;
while (i < n)
i

x = x + i ;
i = i + 1 ;

>

Any of the four components of a for loop can be empty. Thus for (; ;) ; is an
infinite loop. The continue and break statements are identical in C and MATLAB;
the former causes the next iteration of the nearest enclosing for or while loop to
begin, the latter terminates the nearest enclosing loop immediately.

Functions
Parameters to C and MATLAB functions are both passed by value; a C function
and a MATLAB M-file function cannot modify their input parameters. However,
a pointer can be passed by value to a C function, and the contents of what that
pointer points to can be modified. Most CSparse functions do not modify their
inputs. The const keyword when used in a function header or prototype declares
that the function does not modify the contents of an array (or, equivalently, what
a pointer argument points to).
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A C function can return only a single value to its caller. This value can be
a pointer. For example, the cs_malloc(n,b) function returns a pointer to a newly
allocated (but uninitialized) memory space of size large enough to hold an array of
n items each of b bytes. The sizeof operator is applied to a C type and returns
the number of bytes in an object of that type (normally, sizeof (int) is four, and
sizeof (double) is eight). The C return statement is like the MATLAB return,
except that it also defines the value returned to the caller. The following C function
and MATLAB function are the same, except MATLAB always uses double-precision
floating-point values to represent its integers (called a flint in MATLAB).

int *myfunc (int n)
{

int *p, i ;
p = cs_malloc (n, sizeof (int)) ;
for (i = 0 ; i < n ; i++) p [i] = i ;
return (p) ;

}

In MATLAB, the same function is
function p = myfunc (n)
p = 0:n-l ;

These functions are called in the same way in C and MATLAB: p=myfunc(n) ;. C
functions that are private to a specific source code file are declared static. They
can be called only by other functions in that same file, just like a nested or private
function in MATLAB. A prototype is a statement declaring the name, parameters
(and their type), and return value of a function. These are normally placed in
an include file (described below), so that they can be incorporated into any code
that calls the function. Prototypes for functions returning an int are not strictly
required. However, if the declaration and use of the function are different and no
prototype is present, the results are unpredictable. Prototypes should always be
used in well-written C code. MATLAB has no prototypes but checks each usage of
a function as it is called at run time. The prototype for myfunc is

int *myfunc (int n) ;

Both C and MATLAB can work with pointers to functions (called function
handles in MATLAB). Consider the cs_fkeep function with prototype:
int cs_fkeep (cs *A, int (*fkeep) (int, int, double, void *), void *other) ;

Its second argument is a pointer to a function with four parameters (two int's, a
double, and a pointer to void). The function cs_f keep calls the f keep function for
each entry in the matrix. An example of the use of cs_f keep is in the cs_droptol
function. Note that cs_droptol passes a pointer to cs_tol to cs_f keep.
static int cs_tol (int i, int j, double aij, void *tol)
{

return (fabs (aij) > *((double *) tol)) ;
}
int cs_droptol (cs *A, double tol)
{

return (cs_fkeep (A, &cs_tol, fttol)) ; /* keep all large entries */
}
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Data structures
Both C and MATLAB can create a compound object called a struct. In C, these
must be declared statically. They can be dynamically created in MATLAB. The
following code fragments are identical. In C, the mystuf f type is first defined as a
structure containing a scalar integer and a pointer to a double. It is then used in a
declaration statement to define f of type mystuf f.

typedef struct mystuffstruct

{
int i ;

double *x ;

} mystuff ;

mystuff f ;

f.i = 3 ;

f.x = cs_calloc (4, sizeof (double)) ;

In MATLAB, the struct function may be used, or the components of a structure
may be defined one at a time:

g - struct ('i', 3, 'x', zeros (4,1)) ;
f.i - 3 ;
f.x = zeros (4,1) ;

In the C example above, f is declared as an object of type mystuff. A pointer
to an object of this type can also be defined. Accessing the contents of a struct
with a pointer is different, using the -> operator. The fragment below is identical
to the C code above, except that it uses a pointer instead. The -> operator is used
exclusively in CSparse, instead of the dot (.). In C, if p is a pointer to a struct
containing the member i, the expressions p->i and (*p) . i are identical.

typedef struct mystuffstruct

-C
int i ;

double *x ;

} mystuff ;
mystuff *p ;

p = cs_malloc (1, sizeof (mystuff)) ;

p->i = 3 ;

p->x = cs_calloc (4, sizeof (double)) ;

Examples
Consider the following statement from cs_pvec:

for (k = 0 ; k < n ; k++) x [k] = b [p ? p [k] : k] ;

A more leisurely way of expressing this is

for (k = 0 ; k < n ; k++)
{

if (p != NULL)
{
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x [k] = b CP [k]] ;
}
else
{

x [k] = b [k] ;
}

>

Both examples shown above compile into code that is equally fast. The former is
just more concise. The statements from cs_transpose

Ci [q = w [Ai [p]]++] = j ; /* place A(i , j ) as entry C(j , i ) */
if (Cx) Cx [q] = Ax [p] ;

are a more concise form of the following:

i - Ai [P] ;
q « w [i] ;
w [i] = w [i] 4- 1 ;
Ci [q] = j ;
if (Cx != NULL)
{

Cx [q] = Ax [p] ;
}

The left-to-right evaluation of logical statements in C is exploited by this
example from csjoaultiply.

if (nz + m > C->nzmax ftft !cs_sprealloc (C, 2*(C->nzmax)-Hn))
{

return (cs_done (C, w, x, 0)) ; /* out of memory */
}

If nz+m is less than the space available in C (C->nzmax), the first operand of && is
false, and the second expression is not evaluated. Thus, cs_sprealloc is called only
if nz+m > C->nzmax. If this first expression is true but cs_sprealloc returns false,
then it failed to allocate sufficient memory. In this case, cs_done frees all workspace
and the result C and returns NULL to signify that it ran out of memory.

C library functions
The following C library functions are used in CSparse:

f abs(x) absolute value of x
sqrt (x) square root of x
malloc (n) allocates a block of n bytes of memory
calloc(n,b) allocates a block of n items each of size b and sets it to zero
f ree(p) frees a block of memory
realloc(p,n) changes the size of a block of memory to n bytes
printf just like fprintf in MATLAB
f scanf just like f scanf in MATLAB
clock returns CPU time used (used only in the CSparse demos)
qsort sorts an array
rand random number generator
srand set random number seed
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C preprocessor

The C preprocessor is a text-only preprocessing step, applied to a program before
it is compiled. Preprocessor statements start with #, usually in the first column.
The statements used in CSparse are listed below.

#include includes a file
#def ine defines a macro or token
#if def true if the token is defined
#if ndef true if the token is not defined
#else the "else" part to an if def or if ndef
#endif the "endif" part to an if def or if ndef

The #include statement has one of the forms

#include <file.h>
#include "file.h"

The only difference between the two is where the C compiler looks for the file called
file.h. The first one looks in a sequence of predetermined locations (dependent
on your compiler and operating system). The second ("file.h") looks first in the
same place as the current source file and, failing that, looks in the same place as
the <f ile.h> form. This file is copied into the source code that has the #include
statement before it is compiled.

The #def ine statement can define a token or a macro. A token is a single word
that has no parameters. For example, the word NULL is defined as 0, or ((void *)
0), in the <stdio.h> or <stdlib.h> file. The #def ine statement is used in CSparse
to define the memory management routines CSparse should use. If CSparse is
being compiled in a MATLAB mexFunction, the token MATLAB_MEX_FILE is defined,
and the MATLAB memory management routines are used (mxMalloc, mxCalloc,
mxFree, and mxRealloc) instead of their standard C counterparts (malloc, calloc,
free, and realloc). Consider three macros that are defined in the cs.h file:

#define CS_MAX(a,b) (((a) > (b)) ? (a) : (b))
tfdefine CS_MIN(a,b) (((a) < (b)) ? (a) : (b))
tfdefine CS_FLIP(i) (-(i)-2)

CS_MAX and CS_MIN are easier-to-read versions of the ternary ?: operator and com-
pute the maximum and minimum of a and b, respectively. The CS_FLIP(i) macro
computes the simple function -(i)-2, so named because it "flips" an integer about
the pivotal integer -1, somewhat analogous to flipping the sign-bit of a num-
ber. More precisely, CS_FLIP(-1) is -1, and for all integers (ignoring overflow)
CS_FLIP(CS_FLIP(i)) equals i.
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cs.qrsol, 137, 139, 148, 1640
cs_randperm, 118, 155, 1
cs_reach, 33, 34, 43, 155
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forward solve, see solve
frontal matrix, 62, 91
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Gaussian elimination, 3, 83, 88, 91
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givens2, 79
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graph, 4

Hall, see strong Hall
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least common ancestor, 47, 50, 53, 54,

67
least squares, see solve

level, 47
linear algebra, 2, 6
linear independence, 3
lower triangular, 2, 3, 27, 36, 37, 43,

63, 73, 83, 89, 140, 151, 153,
156, 178, 182

LU factorization, 3, 6, 83, 141
block triangular form, 119, 123,

133, 138
data structure, 59
left-looking, 85, 86, 91, 94, 138,

151, 174, 179
multifrontal, 88, 91, 94, 140, 174
ordering, 102, 112, 118, 127, 131
partial pivoting, 3, 36, 83-86, 88,

90, 93-96, 133, 138, 140, 147,
151, 174, 179

QR upper bound, 83
right-looking, 83, 86, 88, 89, 91,

94
solving Ax = b, 138, 147, 179
static pivoting, 84, 94
symbolic, 57, 94, 140, 152
threshold pivoting, 88, 151, 174

lu_left, 86, 91
lu_right, 89
lu_rightp, 91
lu_rightpr, 91
lu_rightr, 89

macro, 158, 194
Maple, 140
Markowitz's method, 131
matching, 112
MATLAB, 6, 8, 169

amd, 112, 133, 136, 173, 174
chol, 17, 21, 46, 58, 136, 169,

173-176
cholinc, 68, 174
cholupdate, 66, 67, 175
colamd, 79, 133, 173, 174
colperm, 173
cond, 174, 175
condest, 96, 174, 175, 186
dmperm, 118, 121, 126, 174
eig, 174, 175
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eigs, 127, 174, 1
etree, 42, 46, 175
etreeplot, 175
find, 20, 24, 169, 17
full, 3, 173, 17
gplot, 175
horzcat (,), 26, 17
issparse, 173
lu, 35, 36, 88, 94, 96, 133, 17

174, 176
luinc, 96, 174
mex.h include file, 158, 186
mexErrMsgTxt, 183, 186
mexFunction, 8, 16, 66, 68, 95,

176, 182, 183, 186, 194
mexMakeMemoryPersistent, 184,

186
minus (-), 17
mldivide (\), 1, 44, 140, 14

144, 173, 175, 
mrdivide (/), 141, 
mtimes (*), 10, 19, 144, 1
mxArray, 183, 18
mxCalloc, 186, 19
mxCreateDoubleMatrix,185, 186
mxCreateDoubleScalar, 186
mxCreateSparse, 184, 18
mxFree, 186, 19
mxGetlr, 8, 184, 18
mxGetJc, 8, 184, 18
mxGetM, 8, 183, 18
mxGetN, 8, 183, 18
mxGetNumberOfElements, 184, 18
mxGetNzmax, 8, 184, 186
mxGetPr, 8, 184, 186
mxGetScalar, 186
mxGetString, 186
mxIsChar, 186
mxIsComplex, 183, 186
mxIsDouble, 183, 186
mxIsSparse, 183, 186
mxMalloc, 186, 194
mxRealloc, 95, 186, 194
mxSetlr, 184, 186
mxSetJc, 184, 186
mxSetM, 184, 186

mxSetN, 184, 186
mxSetNzmax, 184, 186
mxSetPr, 184, 186
nnz, 12, 17, 133, 173, 174
nonzeros, 173
norm, 22, 159, 175
normest, 22, 96, 174, 175
nzmax, 12, 173
plus (+), 10, 19, 144, 175
poly, 175
qr, 78, 79, 81, 133, 173, 174
randperm, 174
repmat, 169, 170
spalloc, 11, 173
sparse, 16, 20, 159, 169-173
sparse matrix storage, 8
spaugment, 174
spconvert, 173
spdiags, 172
speye, 159, 172, 180
spfun, 173
spones, 173
spparms, 173
sprand, 24, 172, 186
sprandn, 173, 186
sprandsym, 173, 186
sprank, 112, 174, 177
spy, 173
subasgn, 26, 172
subsindex, 172
subsref, 9, 21, 26, 46, 58, 112,

118, 120, 121, 126, 133, 172
svd, 175
svds, 174
symamd, 112, 174
symbfact, 56, 68, 133, 175
symrcm, 127, 128, 174
transpose ('), 14, 26, 136, 175
treelayout, 175
treeplot, 175
vert cat (;) , 26, 175

matrix, 2
matrix add, 2, 9, 19, 175, 176, 178
matrix multiply, 2, 9, 17, 147, 179
maximum matching, 112, 114, 122, 123,

125, 126, 132, 174, 177
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maximum transversal, see maximum
matching

maxtrans, 115
minimum degree, 6, 57, 58, 99, 128,

130, 131, 133, 136, 138, 140,
141, 146, 150, 173, 174, 176

aggressive absorption, 104
approximate, 101
assembly tree, 103, 105
column, 76, 131, 132, 137, 146,

173
deficiency, 131
element absorption, 100
elimination graph, 100
indistinguishable nodes, 100
mass elimination, 101
quotient graph, 100, 102, 103
tie-breaking, 112

neighbor, 4, 32, 35, 100, 117, 127
nested dissection, 81, 99, 128, 130-

132, 141, 179
node, 4, 30
node cover, 5, 128, 129
node separator, 5, 128-130, 132, 180
node-induced subgraph, 4, 5
nonsingular, 3, 135, 136, 147
nonzero, 3
nonzero entry, see nonzero
norm, 3, 22, 23, 69, 82, 96, 136, 147,

148, 174, 175, 180, 186
normlest, 96

one-based, 7
orthogonal, 3, 20, 69, 70, 76, 78, 79,

85, 136, 180
orthonormal, 3
out-adjacency, 4
outer product, 2, 62, 88, 91
overdetermined, 122, 138, 139, 177,

180

parallel algorithms, 141
parent, 4, 39, 40, 42, 52, 54, 63, 73,

74, 91, 93, 105
partial pivoting, see LU factorization

path, 4, 30, 37, 39, 43, 47, 52, 64, 80,
112, 119, 122

path compression, 41
path decomposition, 47, 49, 50
permutation, 3, 20, 21, 56, 74, 84, 99,

112, 118, 123, 127, 135, 151,
153, 181

permutation vector, 20
inverse, 20

pivoting, see LU factorization
pointer, 187
positive definite, 1, 3, 6, 37, 58, 62,

63, 66, 72, 84, 88, 94, 135,
136, 140, 144, 146, 173

positive semidefinite, 3, 127
postorder, 5, 37, 44, 46-51, 54, 58,

67, 68, 76, 82, 102, 105, 133,
154-156, 175, 178

profile, 127, 128, 130, 132, 141
proper, 5, 44
prototype, 24, 25, 61, 68, 95, 145, 158,

161, 190, 191
pseudoperipheral node, 127, 132

QR factorization, 3, 6, 81, 141
block triangular form, 123, 138
data structure, 59
Givens, 69, 78-81, 140, 141, 174
Householder, 69-71, 79, 81, 83,

93, 136, 141, 152, 180
left-looking, 29, 70, 71, 73
multifrontal, 71, 80-82
ordering, 102, 112, 118, 131, 173
right-looking, 70, 71
row counts, 55, 74
row-merge, 81
solving Ax = 6, 136
symbolic, 57, 74, 81, 84, 93, 140,

152
upper bound on LU, 83

qr_givens, 80
qr_givens_full, 80
qr_left, 71, 74
qr_right, 71

range, 3
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rank, 3, 9, 63, 88, 95, 112
rank deficient, 3, 9, 74, 88, 112
reachable, 4, 6, 30, 31, 38, 119, 122
reachr, 32
refining a graph, 130
root of a tree, 4
row subtree, 40, 43, 46-50, 52-54, 61,

66, 154
row-perfect matching, 112, 122
rowcnt, 51, 54, 66

scatter, 17, 58, 96, 155
singular, 3, 144
skeleton matrix, 47, 49, 52-54, 66
solve

band, 140
diagonal, 140
Hessenberg matrix, 140
least-squares, 69, 136, 141
lower triangular, 27, 140
permuted triangular, 140
sparse right-hand side, 29, 37, 38,

43, 58, 72, 78, 85
symmetric positive definite, 135
tridiagonal, 30, 140
unsymmetric, 138
upper triangular, 28, 140

sort, 14, 19, 25
span, 3
sparse matrix, 3, 6, 7
sparse matrix storage, see compressed-

column form, triplet form
sparse_qr_left, 73
star matrix, 56
static pivoting, see LU factorization
strong Hall, 72, 73, 81, 83, 84, 118,

119, 122, 123, 135, 138
strongly connected components, 39, 119,

121, 123, 132, 156, 177, 181
strongly connected graph, 4
structural rank, 9, 74, 112, 138, 174
subgraph, 4-6, 128, 129, 131
subtree, 5, 39, 41, 72-74, see also row

subtree
symbolic analysis, 37, 56
symbolic factorization, 56

symmetric matrix, 21
symmetric pruning, 94, 96

tail recursion, 89
topological order, 6, 31, 32, 35, 43, 58,

68
transpose, 2, 14, 54, 95, 148, 175, 181
tree, 4, 38, 41, 102
triplet form, 7, 10-12, 23, 146-149,

158, 169, 181

UFget, 24
UMFPACK package, 88, 94, 140, 141,

174, 186
underdetermined, 136, 138, 139, 180
underlying undirected graph, 4
undirected graph, 4, 100, 112, 128
update, 2, 63, 67, 153, 175, 181
upper triangular, 2, 3, 28, 36, 70, 73,

83, 140, 151, 153, 156, 174,
179, 182

well-determined, 138, 139, 177

zero-based, 7


