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Genetic Epidemiology

e Studies the disease with the aim of deciphering
— Whether it has a genetic background,
— The heritability,
— The mode of inheritance,
— The genetic locus in which the responsible gene lies,
— The gene and the allele that predisposes for the disease
— The interactions with other genes or environmental factors
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Each gene has a distinct
biological effect.

gene effect

@

Pleiotropy: A gene has
multiple effects.

gene effect

Polygenic trait: Many genes
contribute to a single effect.

gene effect

Polygenic traits and pleiotropy



Study types

e |nheritance studies
— Family history
— Family studies (twins, adoptions etc)
— Segregation studies

e Linkage studies
— Aim to find the genetic locus in which the genes are

e Genetic association studies
— Find the gene and quantify the risk
— Family-based vs. population-based
— GxG and GxE interactions
— GAS vs. GWAS






Genetic Association Studies

ldentify the allele that causes the disease
— Use effect sizes like the OR

In families vs. in population
— case-control studies, TDT, family based studies

Gene X Gene and Gene X environment interactions
— Special designs (mty case-only studies)
GAS vs. GWAS

— One candidate gene or million SNPs



Family based genetic
association studies

» Compares the allele in cases and in healthy parents

> Use theTransmission-Disequilibrium Test (TDT) which is equivalent
to McNemar’s x?2

> TDT tests both linkage and association

Transmission disequilibrium test
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Extensions

e 1-TDT (one parent is available)
e Multi-allelic loci

e Sib-TDT (compares the marker genotypes in
affected and unaffected offspring)

e Quantitative traits (cholesterol etc)
e X-linked genes

e And more...



1-TDT

TABLE 1. Case-parental control design when only one
parental genotype is available

Case Parental genotype
genotype NN(0) NM(1) MM(2)
NN(0) Ay Ay 0
NM(1) Am A1'I A‘IZ
MM(2) 0 A, A
Ag + Ay —Ap— A by —¢
7 — 2o 12 10 2 _ o I V; = 2(by; — cu)

| Vv Y2



e \When diseases with onset in adulthood or in old age
are studied, it may be impossible to obtain
genotypes for markers in the parents of the affected
offspring. This difficulty has limited the applicability
of the TDT.

e |nstead of using marker data from affected offspring
and their parents, this method compares the marker
genotypes in affected and unaffected offspring. The
S-TDT does not reconstruct parental genotypes and
does not depend on estimates of allele frequencies



No. oF SiBs WITH GENOTYPE MALLELES IN “AFFECTED" S1BS, BY CHANCE®

SIBSHIP AND SIB STATUS MM, MM, M;M, M;M; Mean Variance
1(7 sibs):
Affected 2 1
Unaffected 2 2 3.8571 4082
2(5 sibs):
Affected 1
Unaffected 1 2 1 .6000 .2400
3 (4 sibs):
Affected 1
Unaffected 1 2 7500 .6875

Table 2. Total Number of Alleles in Affected and Unaffected Members of Sibships in Table 1

No. oF ALLELES
S1e STATUS M, M, M; Total
Affected 8 2 0 10

Unaffected 7 12 3 22



HHRR

e The haplotype-based haplotype relative risk
(HHRR), in an effort to increase power (i.e. to
decrease the variance), uses the unmatched
version of Table, since, under the null
hypothesis, the two alleles of each parent are
independent. The transition to the unmatched
analysis is given in Table



Table 1. The 2x2 contingency table corresponding to a population-based case-control study in
which allele B is considered the susceptibility allele. The total number of B and A alleles are
compared between cases and controls. For brevity we denote ng,=2BBy+AB, ngg=2AAy+AB,, n;,=
2AA+AB, and n,;=2BB,+AB,. The total number of cases’ alleles is n; and controls’ n, (i.e. the
total number of cases is n,/2 and that of controls ny/2).

Allele
B A Total
Status | Cases ni n10 ni
Controls | no 100 no
Total Hot+ Ny




Table 2. Presentation of the data in a family-based study using the Transmission Disequilibrium
Test (TDT). The transmitted alleles are contrasted against the non-transmitted ones and the OR is

given by the ratio of the discordant pairs (b/c). For comparison with Table 1 we denote
a+b=w=n;, and c+d=x=n.

Non-transmitted allele
Transmitted B A Total
Allele B a b w
A c d X
Total y z n

Table 3. Presentation of the data of a family-based study under the Haplotype-based Haplotype
Relative Risk (HHRR). The transmitted alleles are contrasted against the non-transmitted alleles of
parents that form a “pseudo-control” population. The OR is given by wz /xy. To make the

connection with the data in Table 1 we have to notice that the first rows of the tables are identical
(n;;=w and n;;=x)

Allele

B A Total
Transmitted w X n
Non-transmitted y Z n
Total w+y X+7 2n




Remarks

e From a historical point of view, it is worth-noting that Falk and
Rubinstein were the first to propose the use of untransmitted
alleles to form a single pseudocontrol genotype (Falk &
Rubinstein, 1987).

e Later, Terwilliger and Ott extended this idea and they
discussed, for the first time, the use of McNemar’s test,
although they concluded that it was less powerful than the
unmatched analysis that corresponds to the HHRR test
(Terwilliger & Ott, 1992).

e Few years later, the McNemar’s statistic was reformulated and
presented as the TDT test that is now widely used (Spielman
& Ewens, 1996; Spielman et al, 1993).



Population based genetic association
studies

e Compares the allele in cases and unrelated controls

e Typical epidemiological design

» advantages statistical power, large
sample

» disadvantages: requires testing to
control for confounding due to ethnicity
(population stratification)

Exposed | Unexposed
Cases a B
Controls Y 0
Odds Ratio
()R=a—5, S€ogor = —+i+l+l
By By o




X2 as criterion of association

Genotype
AA AB BB Total
Disease
yes 140 125 55 320
(320*380)/890=136,6 (320*390)/890=140,2 (320*%120)/890=43,2
no 240 265 65 570
(570*380)/890=243,4 (570*%390)/890=249,8 (570*%120)/890=76,8
2UvoAo 380 390 120 890

Z(c:u -EY _(110- 136,6Y (125 140,2 Y (55 432Y (240 243,4Y (265 2498y (65 ?6,8)2
136,6 140,2 432 2434 2498 76,8
u,oa+1,55+3,22+u,05+092+1,31 7.73




X2 as criterion of association

HO: disease and exposure are unrelated
H1: there is a relation

® a=0.05

& df. =(r-1)*(c-1)=(2-1)*(3-1)=2

7/

> 2 =773




Collapsing the table

Genotypes
AA AB BB
R —
Cases T B B Yo
Controls |I & 1] € ¢ 1
N i R ——— ]

> The Pearson x?, performs a model-free approach

> In order to assume a particular model we need to have a 2x2 table, i.e.
merging AA+AB or AB+BB

22



Example

Genotypes
AA AB BB
Cases 105 225 119
Controls 132 206 &7

23



. tabi

132 206 87\ 105 225 119, all

col
row 1 2 3 Total
1 132 206 87 425
2 105 225 119 449
Total 237 431 206 874
Pearson chi2(2) = 8.2316 Pr = 0.016
lTikelihood-ratio chi2(2) = 8.2524 Pr = 0.016
Cramér's V = 0.0970
gamma = 0.1628 ASE = 0.056
Kendall's tau-b = 0.0915 ASE = 0.032



. tabi 132 293\ 105 344, all
col

row 1 2 Total

1 132 293 425

2 105 344 449

Total 237 637 874
Pearson chi2(1l) = 6.5050 Pr = 0.011
Tikelihood-ratio chi2(1l) = 6.5111 Pr = 0.011

Cramér's V = 0.0863
gamma = 0.1922 ASE = 0.074
Kendall's tau-b = 0.0863 ASE = 0.034
tabi

338 87\ 330 119,

all

row 1 2 Total

1 338 87 425

2 330 119 449

Total 668 206 874

Pearson chi2(1l) = 4.4110 Pr =0

Tikelihood-ratio chi2(1l) = 4.4277 Pr =0
Cramér's V = 0.0710

gamma = 0.1670 ASE =0

Kendall's tau-b = 0.0710 ASE =0

.036
.035

.078
.034



Case-control study for genetic association

Controls (n=1,000)
VS. (do not express
the trait)

Cases (n=1,000)
(express the trait)

Cases | 62% 38%
Controls| 49% 51%




GWAS

Million of SNPs
Different platforms (need for imputation)

The statistical analysis is simple(i.e. OR, CATT, SMD) but there are
complications

Basic issues: multiple comparisons, quality control, data sharing,
population stratification
— Teo, Y. (2008) Common statistical issues in genome-wide association studies:

a review on power, data quality control, genotype calling and population
structure, Curr Opin Lipidol, 19, 133-143

— Zeggini, E. and loannidis, J.P. (2009) Meta-analysis in genome-wide association
studies, Pharmacogenomics, 10, 191-201

— Ziegler, A., Konig, I.R. and Thompson, J.R. (2008) Biostatistical aspects of
genome-wide association studies, Biom J, 50, 8-28
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FIGURE 1: IMPUTATION OVERVIEW
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SNPs 1-92 form three blocks of high LD, indicated by the red
diamonds between the SNPs. Data Sets 1 and 2 represent a
total of eight individuals genotyped using two different ar-
rays at SNPs 1-9. The imputed data set contains genotypes
for all SNP loci, with estimated genotypes filling in the miss-
ing data from Data Set 2. For example, SNP 2 is genotyped
in Data Set 1 but not Data Set 2. Due to strong LD between
SNPs 1-3, the individual genotypes for SNP 2 can be inferrred
in Data Set 2 based on those present in Data Set 1.




TABLE 1: COMMONRNLY USED IMPUTATION SOFTWARE PACKAGES

SOFTWARE NAME
MACH

BEAGLE

IMPUTE

PLINK

INSTITUTION
University of Michigan'?
University of Auckland?
Oxford University*®

Massachusetts General
Hospital / Broad Institute®

URL

http://www.sph.umich.edu/csg/abecasis/MaCH/tour/imputation.html
http://www.stat.auckland.ac.nz/~bbrowning/beagle/beagle.html
http://mathgen.stats.ox.ac.uk/impute/impute.html

http://pngu.mgh.harvard.edu/~purcell/plink/



Genomic Coverage of GWAS Chips

estimated by the percent of common SNPs having an r{ of 0.8
or greater with at least 1 SNP on the platform.

Platforms comprising 500,000 to 1,000,000 SNPs capture ~67
-89% of common SNPs in populations of European and Asian
ancestry and 46-66% in populations of African ancestry.
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Melson et al. G3 (Bethesda) 2013, 3; 17951807,



Genotyping and Quality Control in GWAS

Genotype “calling” is based on intensities for the two alleles at

each genetic marker

Genotyping errors, must be diligently sought and corrected.

Established quality control features should be applied both on a
per-sample and a per-SNP basis.
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Controls

@

Genome-wide

SNP genotyping

Remove bad variants

Remove poor performing
subjects J

Resolve gender/familial

inconsistencies

Quality control analysis
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Recombination rate (cM/Mb)
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Statistical methods

Table1 The 2x3 contingency table with the distribution of cases and controls in a traditional GAS or GWAS concerning a single
biallelc locus.

AA(g) AB(g) BB (g,) Total
Cases r, r, r,
Controls 5 s,
Total p A n,
(r—nyr/n ) (s ns,i’n]
Pearson Chi-square Ti= 2 2

= nr/n o ns/n

Logistic Regression logit [P(caselg)]=a-+Bx+ X,
(Odds Ratio)

- U WY x(sn-rs)
Cochran-Armitage i T @ : e =0
H,

Trend Test (CATT) ) sy xin-( ) |

Bagos PG. Genetic model selection in genome-wide association studies: robust

methods and the use of meta-analysis. Statistical Applications in Genetic and
Molecular Biology, 2013

~N(0,1)



Robust methods

e The methods are designed to have the maximum statistical power
irrespective of the mode of inheritance

MERT 7 _Z{;-‘HTLGJ_I_ZCMTL!] ”N{D, 1]

MERT \/2 (1+P._r;,g'n'l“~”)

M AX Zﬂiﬂ.‘f: LS ( |ZL'.¢I F| []]'l 2 |Zf.'.-‘1 m ."_J']l 5 |ZL'.4'J'H 1) F]

MIN2 M 2=miﬂ(ﬂ--: B )

X

Bagos PG. Genetic model selection in genome-wide association studies: robust
methods and the use of meta-analysis. Statistical Applications in Genetic and
Molecular Biology, 2013



et al. (2008). Recently, Zang et al. found that Zcarr0) ZeaTrop
and Zcatr(1) are linearly dependent, a result that allowed them to
develop faster algorithms for calculating the statistical significance
of MAX (Zang et al., 2010). Thus, the P-value for the MAX statistic

is given by:

{1 —ewy ) feog t—op z
P(Ziiis -f:.t)—Zj PCATT(0.1)%0

0 [1—pc
Pearry,

&(z0)dzo

* 1 —woZo )/ 01 — PearT(0,1)20
“'ZJ @ ( )/ PCATT(0,1) lealidso
H(1—ewq ) oy /11— ﬂCATT}lm:
i —t—p 2o
_EJ‘ O | CATTON® | oes)dio
0 \/ 1 —Pcatry
(4)
where:
PcaTT(0,1/2) — PCATT(0,1)PCATT(1/2,1
= {”1_; (0,1) (1/2,1) (5)
| CATT{%m
PCATT(1/2,1) — PCATT(0,1)PCATT(0,1/2)
01 = (6)

1=pcarmy,,
Zang Y, Fung WK, Zheng G. Simple algorithms to calculate the asymptotic null
distributions of robust tests in case-control genetic association studies in R. Journal
of Statistical software. 2010 Feb 17;33(8).



MINZ2 is an interesting robust approach that was adopted by investi-
gators of the Wellcome Trust Case-Control Consortium (WTCCC,
2007). They applied the y»” along with the CATT(1/) and, subse-

quently, chose the minimum of the P-values:

MIN2 = min(Prs,, Pzeurry ) (7)

The use of MIN2 is justified by simulations showing that y,” has
5% less power compared with MAX and outperforms MERT, ex-
cept when the additive model holds (Zheng et al., 2006). However,
MIN2 is not a proper P-value since the statistics are correlated and
multiple tests are performed. Later, Joo et al. (2009) derived the
joint distribution needed in order to calculate a proper P-value:

2 2 _
P(Zm?’r{uz} < f‘*Tﬁ < tl) =

L T e P 2t
s Ay i SR Z—I——J e 2Zarcsin —T—T dut; <t
2 2 2n ), 7
4
t_g
1—e 2,t|}t1

(8)
Unlike MAX, MIN2 is independent of the allele frequency.

Joo J, Kwak M, Ahn K, Zheng G. A Robust Genome-Wide Scan Statistic of the
Wellcome Trust Case—Control Consortium. Biometrics. 2009 Dec;65(4):1115-22.



Confounding

Exposure of Interest

v
True Risk Factor » Disease

Population Stratification

Ethnicity « » Genotype of Interest

=

True Risk Factor » Disease




Population Stratification

Case Control

09...000

Population
2

Balding, Nature Reviews Genetics 2010
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Genomic Control

Let ;{i’*, e xf be the yx2-statistics at the null markers. The same type of test
statistic is selected and applied to all null loci and the marker loci are tested
formally for association. The inflation factor A for the variance can then be
estimated by

0.4549

A= .
mediﬂn{}f?, s }f%}

The value of 0.4549 corresponds to the median for the y2-distribution with 1
df. The test statistic, e.g., x% or x E for the marker locus of interest is then
adjusted by

IE‘;C ZEIE ““}fiz

for the alleles test, and similarly for the trend test x;‘?‘.. For a codominant test
we use the median value of a x% distribution in the numerator of A.



GXE interactions

& Ganobype A # Ganotype A

& Genohype B

Pranatype

Phanatype

Phanctype

g(EY)=po+B1x X+ xE+B3xX xE,



TABLE 1. Data for a unmatched case-control study with a
binary genetic factor and a binary environmental

exposure
G=0 G=1
E=0 E=1 E=10 E=1 Total
D=0 1000 1001 1010 o011 no
D=1 100 101 110 11 1
= Odds-ratio between G and E among cases

Odds-ratio between G and E among controls

A Foo1¥o1071007111 ; ~ :
Bcc = log ( ) = 1 under G—E independence and rare disease
Fooo¥o1171017110

BCO _ log (?’100?’111)‘

1017110



TABLE 2. Gene-environment interaction analysis in the
context of a case-control study

Exposure* Smﬁ? Cases Controls gfbﬁ
- - a b 1.0
- + c d OR " belad
$ - e f OR e = be/af
+ + g h DHU. = bg/ah

* —, absent; +, present.
t Under an additive model: OHW=OHF+OH_—1.

Under a multiplicative model: OF\‘F = DF‘} x OR,.

SIM = OR,,/OR, X OR,



TABLE 4. Gene-environment interaction analysis in the
context of a case-only study*

Su
" ~ Susceptibily genotype
- +
- a b
+ C d

* COR, case-only odds ratio = ad/bc. Under assumption of
independence between axposure and genotype among controls:
COR = OR_/OR, x OR_ = SIM, where SIM is the synergy index.

COR = OR,,/(OR, X OR,) X Z,



TABLE 3. Case-control analysis of the interaction between maternal cigaretts smoking, transforming
growth factor alpha ( Tagl) polymorphism, and the risk of cleft palate. Adapted from Hwang et al. (11)

No. No. Odds 5%

Taq| :
- - 38 187 1.0 Referent
- + 7 34 1.0 0.3-24
+ - 13 69 0.8 0.4-1.8
+ + 13 11 5.5 2.1-148

* Crude odds ratios are presented.
1 Odds ratio based on a case-only study is 5.1 (85% confidence interval 1.5-18.5) ((13 x 38)/(13 x 7)).

marked departure from multiplicative effects of the
genotype and the exposure. The COR obtained from
this analysis is 5.1, comparable with the SIM of 6.1
obtained from the regular case-control analysis. Also,
the assumption of independence between exposure and
genotype among controls is reasonable.



Tahle 1.

Reproducibility

Examples of Some Reported Reproducibility Concerns in Preclinical Studies

Author

Field

Reported Concerns

loannidis et al (2009)*
Baggerly et al (2009)#
Sena et al (2010)*

Prinz (2011)'

Begley & Ellis (2012)°
Nekrutenko & Taylor(2012)%
Perrin (2014)*®

Tsilidis et al (2013)7
Lazic & Essioux (2013)®
Haibe-Kains et al (2013)
Witwer (2013)

Elliott et al (2006)*"
Prassas et al (2013)2
Stodden et al (2013)%
Baker et al (2014)*

Vaux (2012)*

Microarray data
Microarray data

Stroke animal studies
General biology
Oncology

NGS data access
Mouse, in-vivo
Neurological studies
Mouse VPA model
Genomics/cell line analysis
Microarray data
Commercial antibodies
Commercial ELISA
Journals

Journals

Journals

16/18 studies unable to be reproduced in principle from raw data

Multiple; insufficient data/poor documentation

Overt publication bias: only 2% of the studies were negative

75% to 80% of 67 studies were not reproduced

90% of 53 studies were not reproduced

26/50 no access to primary data sets/software

(/100 reported treatments repeated positive in studies of ALS

Too many significant results, overt selective reporting bias

Only 3/34 used correct experimental measure

Direct comparison of 15 drugs and 471 cell lines from 2 groups revealed little/no concordant data
93127 articles were not MIAME compliant

Commercial antibodies detect wrong antigens

ELISA Kit identified wrong antigen

Computational biclogy: 105/170 journals noncompliant with National Academies recommendations
Top tier fail to comply with agreed standards for animal studies

Failure to comply with their own statistical guidelines

ALS indicates amyotrophic lateral sclerosis; MIAME, minimum information about a microarray experiment; NGS, next generation sequencing; and VPA, valproic acid

{model of autism).

Begley, C.G. and J.P. loannidis, Reproducibility in science: improving the standard for basic and
preclinical research. Circ Res, 2015. 116(1): p. 116-26.



Grading the credibility of molecular
evidence for complex diseases (1)

. . s 5 d
Table 1 Effect sizes in the pre-molecular era and in the molecular era

Effect sizes Putative frequency Typical examples of postulated risk factors

Pre-molecular era Molecular era

; ; . P : 31
Large {RR = 5) Rare Smoking and lung cancer APOE and Alzheimer's disease

.. 32
BRCA1 and breast cancer

Moderate (RR 2-5) Uncommaon Maoderate obesity and NOD2 and Crohn’s disease”

cholesterol gallstones

HLA shared epitopes and
rheumatoid arthritis
Small (RE 1.2-2) Common Racial descent and hypertension FcyRlIa and SLE*?
GSTMI and bladder cancer’®

Very small (RR 1-1.2) Unclear 1J'L*L]1|enc1,-] Passive smoking and lung cancer GSTMI and lung cancer

. ) e 18
MTHFR and ischaemic stroke

RR: relative risk.

a o L A ;i : p 3 Zoed 5
Presented examples refllect current state of knowledge and are subject to possible refutation in the luture; for small and very small effect sizes, it is uncertain

whether these risk factors are true, even when evidence is based on large sample sizes from several studies.

loannidis, J.P., Commentary: grading the credibility of molecular evidence for complex diseases.
Int J Epidemiol, 2006. 35(3): p. 572-8; discussion 593-6.



Grading the credibility of molecular
evidence for complex diseases (2)

Table 2 Typical credibility of research findings according to effect size
and extent of replication

Effect size Typical
(relative risk) Replication credibility (%)
Large (=5) None 1060
Limited 30-80
Extensive 70-95
Moderate (2-5) None 520
Limited 1040
Extensive 30-490
Small {1.2-2) None =<5
Limited 220
Extensive 10-70
Very small (1-1.2) None =]
Limited 1-5
Extensive 2-30

loannidis, J.P., Commentary: grading the credibility of molecular evidence for complex diseases.
Int J Epidemiol, 2006. 35(3): p. 572-8; discussion 593-6.



Table 3 Proposed grading of credibility in molecular
evidence

First axis: Effect size
1.1 Very small or small effect size (relative risk < 2)
1.2 Moderaie effect size (relative risk 2-5)
1.3 Large effea size (relative risk = 5)
Second axis: Amount and replication of evidence
2.1 Single or few scattered studies
2.2 Meta-analyses of group data
2.3 Large-scale evidence from inclusive networks
Third axis: Protection [rom bias
3.1 Clear presence of strong bias in the evidence
3.2 Uncenain about the presence of bias
3.3 Clear strong protection from bias
Fourth axis: Biological credibility
4.1 No functional/biological data or negative daia
4.2 Limited or controversial functional/biological data
4.3 Convincng functional/biological data
Fifth axis: Relevance
5.1 No clinical or public health applicability
5.2 Limited clinical or public health applicability

5.3 Considerable clinical/public health applicability

loannidis, J.P., Commentary: grading the credibility of molecular evidence for complex diseases.
Int J Epidemiol, 2006. 35(3): p. 572-8; discussion 593-6.
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