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1 Introduction

The well known discrete algebraic Riccati equation (DARE) is formed

X D A�XACQ � A�XB
�
RC B�XB

��1
B�XA; (1)

where A;Q and X are n � n complex matrices, R is an m �m matrix, B is an n �m; and it is assumed that Q;R
are Hermitian and positive definite matrices; here A� denotes the complex conjugate A of the transpose AT of the
transition matrix A:

The discrete algebraic Riccati equation (DARE) has attracted enormous attention. One of the more important
motivations for the study of DARE was the recognition of the work of Kalman [15] on filtering and prediction prob-
lem of discrete type. The discrete time Kalman filter [4, 15] is the well known algorithm that solves the filtering
problem, that solves the corresponding DARE emanating from Kalman filter. The solution is required to be a unique
Hermitian positive semidefinite matrix (or positive definite, if there exists). The existence of this solution, XR, de-
pends on the modulus of all the eigenvalues of matrixA�B.RCB�XRB/

�1B�XRA: In view of the importance of
the Riccati equation, there exists considerable literature on its algebraic solutions [4, 16, 22] and recursive solutions
[4, 6, 11, 18] concerning per step or doubling algorithms.

A detailed discussion of the solution theory for the case where A is a nonsingular complex matrix is given
in [16, 20], whereas the case of singular A is treated in [16] (see and references therein). The algebraic solution
method of (1) is closely connected to the standard eigenvalue problem [22] or the generalized eigenvalue problem
[9, 12, 17, 19] for a 2n � 2n real matrix, which depends on the coefficients matrices A;B;Q;R of (1). The usual
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52 M. Adam, N. Assimakis

solution method is the classical eigenvector approach and the case of the nonsingularity of A described in [22]; the
Schur vector method is established in [9, 17, 19] without the assumption of nonsingularity of A.

The nonlinear matrix equation, which arises in various research areas including control theory, stochastic filter-
ing and statistics, (see [1, 8] and the references therein), is formed

X CA�X�1A D L (2)

where A is an n � n matrix and L is an n � n positive definite matrix.
It is well known [1, 3, 8] that, the existence of the positive definite solution of the equation (2) depends on the

numerical radius of matrix L�1=2AL�1=2: In particular, it is required

r.L�1=2AL�1=2/ �
1

2
; (3)

where
F.A/ D fx�Ax W for every x 2 Cn with x�x D 1g

is defined the numerical range (also known as the field of values) of A; and

r.A/ D maxfjzj W z 2 F.A/g

is defined the numerical radius of A; [8, 10]. Also, if the nonlinear matrix equation (2) has a unique positive definite
solution X; then there exist minimal and maximal solutions Xmin and Xmax ; respectively, such that 0 < Xmin �

X � Xmax for any positive definite solution X: We will refer to Xmin and Xmax ; as the extreme solutions of (2).
Here, when X and Y are Hermitian matrices, X > Y means that X � Y is a positive definite matrix denoted
X � Y > 0 and X � Y means that X � Y is a positive semidefinite matrix denoted X � Y � 0:

The theoretical properties of the positive definite solution Xmax of (2) have been investigated by many authors
(see [8, 14, 21] and the references therein) and the available methods for computing Xmax are algebraic (nonrecur-
sive) [1–3] and recursive algorithms concerning per step or doubling [5, 7, 8, 13, 14].

The positive definite solutions XR; Xmax of the nonlinear equations (1) and (2) are related and the solutions
methods are combined [1, 2, 7, 13, 14].

Although for applications the real case (i.e., when all the matrices A;B;Q;R are real and real solution matrices
X are to be found) is especially important, we consider here the general (i.e., complex) case as well as the real
case. The objective of this paper is to develop a new algebraic method for the computation of the solution of the
DARE independent on the nonsingularity of the transition matrix A and link the method to the solution of the matrix
equation X C A�X�1A D L in (2). The proposed algebraic method for the computation of the solution of the
DARE (1) is based on the standard eigenvalue problem for the 2n � 2n matrix

T D

"
AC BR�1B�.A�/�1Q �BR�1B�.A�/�1

�.A�/�1Q .A�/�1

#
; (4)

which depends only on the coefficientsA;B;Q;R of (1), (see the developed theory in terms of Lagrangian subspaces
in [16, chapters 12-15]). The key idea of this paper is to construct the solution of the DARE in (1) using a basis for
the eigenspace of T:

The paper is organized as follows. In Section 2, the classical algebraic Riccati equation method for nonsingular
transition matrix is presented using a new symplectic matrix in order to be computed the extreme solutions of the
DARE. Section 3 contains the relationship between the discrete algebraic Riccati equations and the matrix equation
X C A�X�1A D L. In Section 4, the new algebraic Riccati equation method for singular transition matrix is
developed and the proposed algorithm is implemented in two examples. Finally, concluding remarks are given in
Section 5.
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2 Nonrecursive algebraic solution for the DARE with nonsingular
transition matrix

Here, motivated by [2, 22], an algebraic Riccati equation solution method is presented, which is based on the use
of a basis for the eigenspace of T in (4). The algebraic Riccati equation solution method requires the transition
matrix A to be nonsingular, so that the matrix T to be well defined. At this point we make the assumption that A is
a nonsingular matrix, which will be removed in the next section.

Using the 2n � 2n Hermitian matrix

J D

"
O �i In

i In O

#
; (5)

where In denotes the n � n identity matrix, a straightforward calculation shows that

T �JT D J: (6)

A matrix T is called symplectic, whenever equality (6) is verified. It is obvious by (6) that a symplectic matrix is a
nonsingular matrix, thus all its eigenvalues are non-zero, that is 0 … �.T /; where �.T / denotes the spectrum of T:

Lemma 2.1. Let A be a nonsingular matrix,Q; R; be positive definite matrices and T a symplectic matrix as in (4).
If � is an eigenvalue of T; then . � /�1 2 �.T /:

Proof. Since T is nonsingular matrix, it is easy to verify that its inverse matrix is formulated as

T�1
D

"
A�1 A�1BR�1B�

QA�1 A� CQA�1BR�1B�

#
: (7)

Assume that � is an eigenvalue of T; and
h

x1 x2

iT

is the corresponding eigenvector, thus

T

"
x1

x2

#
D

"
AC BR�1B�.A�/�1Q �BR�1B�.A�/�1

�.A�/�1Q .A�/�1

# "
x1

x2

#
D �

"
x1

x2

#
: (8)

Since � is an eigenvalue of T T ; it follows that ��1 2 �..T�1/T /I hence from (7) we obtain

.T�1/T

"
x2

�x1

#
D

"
.AT /�1 .AT /�1QT

B.RT /�1BT .AT /�1 AC B.RT /�1BT .AT /�1QT

# "
x2

�x1

#
D ��1

"
x2

�x1

#
and the conjugate of the above equality yields"

.A�/�1 .A�/�1Q

BR�1B�.A�/�1 AC BR�1B�.A�/�1Q

# "
x2

�x1

#
D .�/�1

"
x2

�x1

#
: (9)

Since the linear systems in (8) and (9) coincide for � and .�/�1; the proof is completed.

According to Lemma 2.1 and supposing that the eigenvalues of the symplectic matrix T in (4) are distinct, T can be
written as

T D W

"
� O
O .� /�1

#
W �1; (10)

where � is the diagonal matrix, which contains the eigenvalues of matrix T that lie outside the unit disk and W is
the matrix of the corresponding eigenvectors of T ; its partition into four n � n blocks is denoted as

W D

"
W11 W12

W21 W22

#
: (11)
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A matrix A is said to be stable if all eigenvalues of A lie in the open unit disk, i.e. j�i .A/j < 1 for i D 1; : : : ; n;
the pair .A;B/ is called stabilizable, if there exists an m � n matrix K such that all the eigenvalues of A C BK
lie in the open unit disk, and a Hermitian solution X of the DARE is called stabilizing if all the eigenvalues of
A � B.RC B�XB/�1B�XA lie in the open unit disk.

Since the existence of a Hermitian solution of (1) guarantees the uniqueness of the maximal (Hermitian) solution
XR, [16, Theorem 13.1.1], for which holds XR � X for all Hermitian solutions X of (1), firstly we are interested
to find one.

Assuming that .A;B/ is a stabilizable pair, the DARE (1) is known to have a unique XR positive semidefinite
solution and all the eigenvalues of the matrix OA1 � A � B.R C B�XRB/

�1B�XRA lie in the closed unit disk
(see, [16, Corollary 13.1.2]). If, additional, .A�;Q/ is a stabilizable pair, then OA1 is stable; XR is positive definite,
when .A�;Q/ is a controllable pair, (see, [16, Theorem 13.1.3]). There are, of course, many other solutions of (1)
but we are interested in computing the positive semidefinite one, (or the positive definite one, if it exists).

In the following, the maximal solution of (1) is given in terms of the eigenvectors of matrix T; which is achieved
by the property of stability.

Theorem 2.2. Let .A;B/ and .A�;Q/ be stabilizable pairs with A nonsingular matrix. Let the DARE in (1) have
a Hermitian solution and the block matrices W12; W22 in (11) be nonsingular. Then,

XR D W22W
�1

12 (12)

is the unique maximal Hermitian solution of (1) and XR is positive definite matrix.

Proof. Rewriting the equality in (10) as

W

"
� O
O .� /�1

#
D T W;

where T;W are given by (4), (11), respectively, the following equalities are derived:

W11� D BR
�1B�.A�/�1 .QW11 �W21/C AW11 (13)

W21� D .A
�/�1 .W21 �QW11/ (14)

W12 .� /
�1
D BR�1B�.A�/�1 .QW12 �W22/C AW12 (15)

W22 .� /
�1
D .A�/�1 .W22 �QW12/ (16)

The nonsingularity of W12 allows us to write the equality (15) in the form

.� /�1
D W �1

12 BR�1B�.A�/�1 .QW12 �W22/CW
�1

12 AW12

and substituting the above equality in (16) arises

W22W
�1

12 BR�1B�.A�/�1 .QW12 �W22/CW22W
�1

12 AW12 D .A
�/�1 .W22 �QW12/ :

Multiplying the above equality by W �1
12

(on the right) and A� (on the left) we obtain

A�W22W
�1

12 AC
h
In C A

�W22W
�1

12 BR�1B�.A�/�1
i �
Q �W22W

�1
12

�
D O:

The nonsingularity of A� allows us to write the above equality in the form

A�W22W
�1

12 AC A�
�
In CW22W

�1
12 BR�1B�

�
.A�/�1

�
Q �W22W

�1
12

�
D O)

W22W
�1

12 AC
�
In CW22W

�1
12 BR�1B�

�
.A�/�1

�
Q �W22W

�1
12

�
D O: (17)

We claim that In CW22W
�1

12
BR�1B� is nonsingular; indeed, let the row vector y be such that

y.In CW22W
�1

12 BR�1B�/ D 0: (18)
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Multiplying (17) by y; using (18) and the nonsingularity of W12; W22; A arises yW22W
�1

12
A D 0; that implies

y D 0: So In CW22W
�1

12
BR�1B� is nonsingular. Furthermore, the following equality

.In CW22W
�1

12 BR�1B�/W22W
�1

12 D W22W
�1

12 .In C BR
�1B�W22W

�1
12 /;

and the nonsingularity of In C W22W
�1

12
BR�1B�; W12; W22 imply the nonsingularity of the matrix In C

BR�1B�W22W
�1

12
; its inverse matrix is formulated by the matrix inversion lemma

1
as�

In C BR
�1B�W22W

�1
12

��1

D In � B
�
RC B�W22W

�1
12 B

��1

B�W22W
�1

12 : (19)

Multiplying (17) by A�
�
In CW22W

�1
12
BR�1B�

��1
; and using the nonsingularity of W12; W22 we can write

A�
�
In CW22W

�1
12 BR�1B�

��1

W22W
�1

12 ACQ �W22W
�1

12 D O)

A�
�
W12W

�1
22 C BR

�1B�
��1

ACQ D W22W
�1

12 )

A�W22W
�1

12

�
In C BR

�1B�W22W
�1

12

��1

ACQ D W22W
�1

12 :

Hence from (19) we obtain

A�W22W
�1

12 ACQ � A�W22W
�1

12 B
�
RC B�W22W

�1
12 B

��1

B�W22W
�1

12 A D W22W
�1

12 ;

and so X D W22W
�1

12
satisfies (1). Since Q;R are positive definite matrices and the pairs .A;B/ and .A�;Q/ are

stabilizable, all the hypotheses of Theorem 13.1.3 in [16] are satisfied, hence the existence of the maximal Hermitian
solutionXR of (1) is guaranteed, furthermoreXR � 0; andA�B.RCB�XRB/

�1B�XRA is stable, [16, Theorem
13.1.3]. Moreover, the maximal solution is unique [16, Corollary 13.1.2]. The uniqueness of the maximal solution
implies that W22W

�1
12
D XR; and XR > 0 follows from the nonsingularity of W12; W22; that completes the

proof.

Remark 2.3.
i) It is obvious from (4) that the algebraic method for the computation of the maximal solution (12) of the DARE (1)

cannot be used, when the matrix A is singular.
ii) The assumptions of Theorem 2.2 guarantee that T has no eigenvalues on the unit disk [19, Theorem 3].

iii) If the block matrices W11; W21 are nonsingular, using (13)-(14) and following the same statements as in the
proof of Theorem 2.2, the minimal Hermitian solution X� of (1) is given by

X� D W21W
�1

11 : (20)

In the real case, the DARE (1) is formed

X D ATXACQ � ATXB
�
RC BTXB

��1

BTXA; (21)

where the coefficients A;B;Q;R are real matrices of sizes n� n; n�m; n� n; andm�m; respectively, withQ;R
symmetric and Q;R > 0; X is an n � n real symmetric matrix to be found.

The 2n � 2n matrix

T D

"
AC BR�1BT .AT /�1Q �BR�1BT .AT /�1

�.AT /�1Q .AT /�1

#
(22)

requires the nonsingularity of the matrix A in (22) in order to be well defined and using the 2n � 2n real matrix

J D

"
O �In

In O

#
; (23)

1 We recall that for the matrices K; L; M; N with K; M nonsingular the matrix inversion lemma is formed [4]: .K C LMN /�1 D

K�1 �K�1L.M �1 CNK�1L/�1NK�1
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it is proved that T is a symplectic matrix. Thus, T can be written as

T D W

"
� O
O ��1

#
W �1 (24)

where � is the diagonal matrix, which contains the eigenvalues of matrix T that lie outside the unit disk and W
is the matrix, which contains the corresponding eigenvectors of T in (22). Consider the associated partition of W
as in (11), then, the unique maximal real symmetric solution of (21) is related to the eigenvectors of matrix T and
formulated as in (12), i.e.,

XR D W22W
�1

12 :

Remark 2.4.
i) It is obvious from (22) that the above algebraic method cannot be used, when the matrix A is singular.

ii) The maximal real solution of DARE in (21) is formulated through the eigenvectors of a symplectic matrix ˚ in
[2, 22], which has the same form as in (12), (see, [2, subsection 2.2.1]). It is expected, since T in (22) is the
inverse matrix of ˚ in [2, 22], hence using the factorization of T in (24), we can write

˚ D T�1
D W

"
��1 O
O �

#
W �1;

where W is given by (11) and � is the diagonal matrix with the eigenvalues of matrix ˚ , that lie outside the
unit disk.

3 Relationship between the DARE and the matrix equation
X CA�X�1A D L

3.1 DARE solution via the solution of the matrix equation

Assuming that X is a nonsingular matrix and since R is positive definite, applying the matrix inversion lemma in the
DARE (1), the following equivalent DARE is derived

X D A�
h
X�1

C BR�1B�
i�1

ACQ: (25)

Under the assumptions of Theorem 2.2 it is obvious that XR in (12) is a nonsingular matrix, hence, replacing X by
XR, the DARE in (1) is equivalent to the DARE in (25). Now, we are able to derive a nonlinear matrix equation as
in (2), that follows from the DARE in (25). Indeed, setting in (25)

˘ D X�1
R

(26)

arises

˘�1
D QC A�

�
˘ C BR�1B�

��1

A:

The inverse matrix ofQCA�
�
˘ C BR�1B�

��1
A is derived by the matrix inversion lemma in the above equation

and formulated

˘ D Q�1
�Q�1A�

�
˘ C BR�1B�

C AQ�1A�
��1

AQ�1: (27)

Setting
X D ˘ C BR�1B�

C AQ�1A�; (28)

the equation (27) can be written as

X CQ�1A�X�1AQ�1
D Q�1

C BR�1B�
C AQ�1A�; (29)
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which is formulated as (2), where the coefficients A; L are

A D AQ�1; and L D Q�1
C BR�1B�

C AQ�1A�: (30)

Thus, we are able to compute the solution of the DARE (25) via the solution of the matrix equation (2) with the
coefficients A; L in (30), which are calculated in terms of the parameters A;B;Q;R of the DARE.

Recall that the solvability of the matrix equation (2) is related to the numerical radius of L�1=2AL�1=2 and
the relation is formulated in (3). Considering that the matrix equation (2) is solvable and Xmax D X is the unique
maximal solution, [8], the unique maximal solution XR of the DARE (25) can be computed in terms of Xmax . In
fact, using (26) and (28) we have

XR D

h
Xmax � .BR

�1B�
C AQ�1A�/

i�1

: (31)

3.2 Matrix equation solution via the solution of the DARE

Consider that A in the matrix equation (2) is nonsingular and r.L�1=2AL�1=2/ � 1
2
: Working as in [1, 2],

we are able to derive a DARE, which is implied by (2). Indeed, since the matrix equation (2) can be written as
X D L � A�X�1A; the substitution of the matrix X with L � A�X�1A and the nonsingularity of A yield the
following equality

X D L �A�
h
L �A�X�1A

i�1

A D L �A�A�1
h
.A�/�1LA�1

�X�1
i�1

.A�/�1A

D LCA�A�1
h
X�1

� .A�/�1LA�1
i�1

.A�/�1A:

The above related DARE is formed as (25) and the associated coefficients are

A D .A�/�1A; BR�1B�
D �.A�/�1LA�1; Q D L:

The assumption for the numerical radius guarantees the existence of the solutions of the matrix equation (2), thus
now we are able to compute the unique maximal positive definite solution Xmax of (2), which coincides with the
unique positive definite solution XR of the above related DARE, i.e.,

Xmax D XR: (32)

Since the DARE (1) is equivalent to DARE (25), the solution of the above related DARE can be derived using the
algebraic proposed method in Section 2. More specifically, using the following symplectic matrix

T D

"
.A�/�1A � .A�/�1L.A�/�1L .A�/�1L.A�/�1

�A.A�/�1L A.A�/�1

#
; (33)

and (10)-(11), the maximal solution XR of the related DARE is given in terms of the eigenvectors of matrix T as
in (12). Finally, the maximal positive definite solution of (2) is computed from (12) and (32).

Example 3.1. Let the matrix equation X CA�X�1A D L; where

A D

"
0:1773 � 0:2682i 0

0:1397C 0:1373i 0:0052C 0:1459i

#
; L D

"
0:8596 �0:0504 � 0:0402i

�0:0504C 0:0402i 0:9704

#
:

It is evident that A is nonsingular. The Hermitian matrix L has �.L/ D f0:83; 1g; hence L > 0: Here, and in all
computations of the paper, Matlab 7.11.0 (R2010b) has been used (the accuracy of the real numbers is into three
entry, the third decimal is rounded to the nearest integer); the square root L1=2 of the positive definite matrix L is
computed by the Matlab function sqrtm; thus

L�1=2AL�1=2
D

"
0:2080 � 0:3052i 0:0088C 0:0007i
0:1560C 0:1423i 0:0065C 0:1579i

#
:
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Fig. 1. The numerical range of L�1=2AL�1=2 in Example 3.1.
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The boundary of the numerical range L�1=2AL�1=2 is illustrated in Figure 1, from which the numerical radius
appears as r.L�1=2AL�1=2/ � 0:39: Since r.L�1=2AL�1=2/ � 1

2
; the given matrix equation has a unique

positive definite solution Xmax , which is computed by (32). The symplectic matrix T; formulated in (33) of the
paragraph 3.2, is

T D

26664
0:6603C 5:5630i 11:7169C 14:9488i �3:5191 � 8:4463i �12:0709 � 16:5953i
�1:7741C 2:8271i 41:5552 � 4:1791i �1:3628C 0:1710i �43:9285C 4:3324i
0:3638C 0:8731i 0:4709 � 1:2825i �0:3918 � 0:9201i �0:4675C 1:2576i
�0:6119C 0:1594i 1:6799C 0:3621i 0:5959 � 0:1270i �1:6950 � 0:3550i

37775 ;
with �.T / D f38:3764� 4:5257i ; 1:6530C 4:4398i ; 0:0257� 0:0030i ; 0:0737C 0:1978i g, and its corresponding
eigenvectors are the columns of the following matrix

W D

26664
0:1647C 0:3874i 0:9843 0:0244C 0:0064i 0:7662

0:9062 0:0311C 0:0337i 0:7257 �0:0391C 0:2232i
0:0052 � 0:0211i 0:1454 � 0:0034i �0:0313 � 0:0395i 0:5360 � 0:0124i
0:0333C 0:0061i �0:0180C 0:0868i 0:6857C 0:0011i �0:0877C 0:2578i

37775 :
Considering the partition of above W as in (11) easily it is verified that the matrices W11; W12; W21 and W22 are
nonsingular, hence the maximal solution Xmax follows from (32) and (12) and it is equal to

Xmax D XR D W22W
�1

12 D

"
0:6787 �0:0660 � 0:0604i

�0:0660C 0:0604i 0:9476

#
:

Moreover, usingW11; W21 from the above partition ofW; the minimal solution X� follows from (20) and it is equal
to

X� D W21W
�1

11 D

"
0:1454 �0:0207 � 0:0855i

�0:0207C 0:0855i 0:0771

#
:

4 DARE solution method for singular transition matrix

In this section, we are going to develop a new algebraic method for the solution of the DARE (1) without the
restriction of the nonsingularity of the transition matrix A as it has been required in the previous section; the basic
idea is to solve the DARE via the maximal solution of the matrix equation (2). In particular, the maximal solution
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Xmax of (2) is computed by the implementation of the below algorithm and in the following the maximal solution
XR is computed by the methodology of the paragraph 3.1.

Firstly, the given DARE is transformed into the equivalent DARE (25), from which the matrix equation (29)
follows. From (30), it is clear that the singularity of A implies the singularity of A; consequently it is needed to be
developed a methodology in order to solve the matrix equation (2) with A singular.

In the following, working as in [1, 2] multiplying the both sides of (2) with the nonsingular matrix L�1=2 arises
the equation L�1=2XL�1=2 C L�1=2A�X�1AL�1=2 D In; in which setting

Y D L�1=2XL�1=2 (34)

C D L�1=2AL�1=2 (35)

it is derived
Y C C�Y �1C D In: (36)

Thus, it is obvious that the computation of the solution of (2) is achieved through the solving of the special matrix
equation (36) and the solutions are related as in (34). Further, by (35) it is evident that the nonsingularity of A is
equivalent to the nonsingularity of C .

Based on the ideas of the algorithm mentioned in [1, 7], we proposed an algorithm, which achieves the solution
of (36) for singular matrix C:

Using a Schur factorization of C in (35), there exists an n � n unitary matrix U such that

C D U

"
C 0
c 0

#
U � (37)

where C is an .n� 1/ � .n� 1/ matrix, 0 is the .n� 1/ � 1 zero-vector and c is an 1 � .n� 1/ row vector. Consider
that there exists an .n � 1/ � .n � 1/ nonsingular matrix Z such that

Y D U

"
Z 0
0T 1

#
U �: (38)

Substituting the matrices C; Y by (37), (38) in (36) and using the properties of the matrices U;Z; we derive:

U

"
Z 0
0T 1

#
U �
C U

"
C 0
c 0

#�

U �.U �/�1

"
Z 0
0T 1

#�1

U�1 U

"
C 0
c 0

#
U �
D In )

U.

"
Z 0
0T 1

#
C

"
C 0
c 0

#� "
Z�1 0
0T 1

# "
C 0
c 0

#
/ U �

D In )"
Z 0
0T 1

#
C

"
C� c�

0T 0

# "
Z�1 0
0T 1

# "
C 0
c 0

#
D

"
In�1 0
0T 1

#
)"

Z 0
0T 1

#
C

"
C�Z�1C C c�c 0

0T 0

#
D

"
In�1 0
0T 1

#
:

The above matrix equation leads to
Z C C�Z�1C D L; (39)

where
L D In�1 � c�c: (40)

Note that, c�c is a Hermitian matrix, hence the matrix equation (39) is formed as (2) if and only if L > 0: Thus, we
distinguish the following cases:

i) If the matrix L is not positive definite, then the algorithm is finished.
ii) If L > 0 and r.L�1=2CL�1=2/ � 1

2
the following cases are examined:

a. If C is the zero matrix, then the matrix equation (39) yields Z D L D In�1 � c�c: The maximal solution
of (2) follows from (38) and (34).
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60 M. Adam, N. Assimakis

b. If C ¤ O; and detC ¤ 0; then the matrix equation (39) is formed as (2). Thus, the solving of (39) is achieved
using the methodology in the paragraph 3.2 for the computation of the maximal solution Z: The solution of
(2) follows from (38) and (34).

c. If C ¤ O; and detC D 0; then multiplying both sides of (39) with the nonsingular matrix L�1=2; the matrix
equation (39) is transformed in the equation of the type (36), and the algorithm is repeated.

Finally, applying the above algebraic algorithm the unique maximal solution Xmax of the matrix equation in (2)
with A singular can be computed. Using the solution Xmax the maximal solution XR of the DARE (1), whose A is
singular, arises from (31).

In the following the above algorithm is implemented in two examples with A singular.

Example 4.1. Consider n D 3; m D 2 and the DARE X D Q C A�
�
X�1 C BR�1B�

��1
A; where A D264 1 i 0

i 0 1

0 0 0

375 ; B D
264 1 2

2 3

4 3

375 ; Q D I3; and R D

"
1 0

0 4

#
: It is evident that detA D 0 and using (30) the

coefficients of the associated matrix equation X CA�X�1A D L are computed

A D AQ�1
D

264 1 i 0

i 0 1

0 0 0

375 ; L D Q�1
C BR�1B�

C AQ�1A�
D

264 5 3:5 � i 5:5

3:5C i 9:25 10:25

5:5 10:25 19:25

375 ;
and

L�1=2AL�1=2
D

264 0:3097 � 0:0747i �0:0125C 0:3066i �0:0737 � 0:0846i
�0:0851C 0:2549i �0:0788 � 0:0699i 0:1741 � 0:0230i
�0:0254 � 0:0735i 0:0260 � 0:0332i �0:0484C 0:0222i

375 : (41)

The boundary of the numerical range L�1=2AL�1=2 is illustrated in Figure 2, from which the numerical radius
appears as r.L�1=2AL�1=2/ � 0:45:

Fig. 2. The numerical range of L�1=2AL�1=2 in Example 4.1.
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Since r.L�1=2AL�1=2/ � 1
2
; there exists a solution of the matrix equation of the type (2). Applying the equalities

in (34) and (35) the matrix equation Y C C�Y �1C D I3 is derived, where C D L�1=2AL�1=2 in (41).

Using the unitary matrix U D

264 0:6763 0:4222C 0:0122i 0:3733C 0:4742i
�0:4533 � 0:4744i 0:6037C 0:2611i �0:2341C 0:2865i
�0:2735C 0:1932i 0:0306C 0:6229i 0:6806 � 0:1889i

375 ; by (37) the matrix
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C can be written as

C D U

"
C 0
c 0

#
U �
D U

264 0:1773 � 0:2682i 0 0

0:1397C 0:1373i 0:0052C 0:1459i 0
0:1565 � 0:3404i 0:1536 � 0:0775i 0

375 U �:

By (40) the Hermitian matrix L D I2 � c�c D

"
0:8596 �0:0504 � 0:0402i

�0:0504C 0:0402i 0:9704

#
is computed

with �.L/ D f0:83; 1g; hence L > 0: Since detC ¤ 0; the statement (ii)(b) of the algorithm is applica-
ble. The unique maximal solution of Z C C�Z�1C D L is computed in Example 3.1 and given by Z D"

0:6787 �0:0660 � 0:0604i
�0:0660C 0:0604i 0:9476

#
:

From (38) the solution Y is equal to

Y D U

"
Z 0
0T 1

#
U �
D

264 0:8050 0:0486 � 0:1355i 0:0442C 0:0811i
0:0486C 0:1355i 0:8712 0:0357 � 0:0441i
0:0442 � 0:0811i 0:0357C 0:0441i 0:9501

375 ;
and by (34) the maximal positive definite solution Xmax is equal to

Xmax D L
1=2YL1=2

D

264 4:5351 3:5799 � 1:2684i 5:5799C 0:1965i
3:5799C 1:2684i 8:7969 10:0654 � 0:0799i
5:5799 � 0:1965i 10:0654C 0:0799i 18:8689

375 :
Finally, by (31) the maximal solution of the given DARE is computed

XR D

264 3:0555 �0:8188C 1:3966i �0:8188 � 0:6589i
�0:8188 � 1:3966i 2:9344 0:5378C 0:8188i
�0:8188C 0:6589i 0:5378 � 0:8188i 2:1967

375 :
The DARE (1) with real coefficients founds an application of the associated Riccati equation emanating from Kalman
filter, which arises from time invariant system with standard coefficients F;H;Q;R and formed as the DARE in
(21). For time invariant system, it is well known [4] that if the signal process model is asymptotically stable (i.e. all
eigenvalues of the transition matrix lie in the unit disk), then there exists a steady state value P of the prediction
error covariance matrix; P can be calculated by solving the corresponding discrete time Riccati equation emanating
from Kalman filter

P D FPF T
CQ � FPHT

h
RCHPHT

i�1

HPF T ;

where F is the n � n transition matrix and H is the m � n output matrix. Matrix Q is the n � n covariance matrix
for the white plant noise process and R is them�m covariance matrix for the white measurement noise process and
it is convenient to assume throughout that Q;R > 0: It is evident that setting F D AT and H D BT , the above
DARE follows the DARE in (21) with real coefficients.

The matrices in the following example are the associated coefficients of an implementation of the Kalman filter
in a time invariant system and taken in [17, Example 1].

Example 4.2. Consider the DARE P D FPF T CQ � FPHT
�
RCHPHT

��1
HPF T ; where F D

"
0 0

1 0

#
;

H D
h
0 1

i
; Q D

"
1 0

0 2

#
; and R D 1: Setting A D F T and B D HT in order to follow the notations

of the paragraph 3.2, it is evident that detA D 0 and using (30) the coefficients of the associated matrix equation
X CATX�1A D L are computed

A D AQ�1
D

"
0 1

2

0 0

#
; L D Q�1

C BR�1BT
C AQ�1AT

D

"
3
2

0

0 3
2

#
;
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and

L�1=2AL�1=2
D

"
0 1

3

0 0

#
:

The boundary of the numerical range L�1=2AL�1=2 is illustrated in Figure 3, from which the numerical radius
appears as r.L�1=2AL�1=2/ � 0:17:

Fig. 3. The numerical range of L�1=2AL�1=2 in Example 4.2.
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Since r.L�1=2AL�1=2/ � 1
2
; there exists a solution of the matrix equation of the type (2). Applying the equalities

in (34) and (35) the matrix equation Y C C�Y �1C D I3 is derived, where C D L�1=2AL�1=2:

Using the unitary matrix U D

"
0 1

1 0

#
; by (37) the matrix C can be written as

C D U

"
C 0
c 0

#
UT
D U

"
0 0
1
3
0

#
UT

and by (40) the matrix L D 1 � c�c D 8
9
> 0: Since C D 0; the statement (ii)(a) of the above algorithm is

applicable and the maximal solution of Z C CTZ�1C D L is Z D L D 8
9
; and from (38) the solution Y is

equal to Y D U

"
8
9
0

0 1

#
UT D

"
1 0

0 8
9

#
: By (34) the maximal positive definite solution Xmax is equal to

Xmax D L
1=2YL1=2 D

"
3
2

0

0 4
3

#
:

Finally, by (31) the maximal solution of the given DARE is computed

P D XR D

h
Xmax � .BR

�1BT
C AQ�1AT /

i�1

D

"
1 0

0 3

#
:

5 Conclusions

The standard algebraic solution of the discrete algebraic Riccati equation (DARE) requires the nonsingularity of the
transition matrix. In this paper two new algebraic algorithms for solution of the discrete algebraic Riccati equation
were proposed: one for nonsingular transition matrix and the other for singular transition matrix.
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Concerning the nonsingular transition matrix case, the proposed algorithm requires the nonsingularity of the transi-
tion matrix and is based on the solution of a standard eigenvalue problem for a new symplectic matrix. The maximal
and minimal solutions of the DARE are derived.
Concerning the singular transition matrix case, the proposed algorithm solves the discrete algebraic Riccati equation
through the solutions of the matrix equation XCA�X�1A D L for suitable A; Lmatrices, which are related to the
matrices of the DARE. Note that the singularity of the transition matrix is equivalent to the singularity of A:

The proposed method is especially important for solving the DARE emanating from Kalman filter, which arises
from a time invariant system with standard real coefficients. The proposed algebraic method faces successfully the
singular transition matrix case and computes the maximal solution, which is equivalent to the steady state prediction
error covariance matrix.
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