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Summary

We study in this paper the linear quadratic optimal control (linear quadratic
regulation, LQR for short) for discrete-time complex-valued linear systems,
which have several potential applications in control theory. Firstly, an itera-
tive algorithm was proposed to solve the discrete-time bimatrix Riccati equation
associated with the LQR problem. It is shown that the proposed algorithm
converges to the unique positive definite solution (bimatrix) to the bimatrix
Riccati equation with appropriate initial conditions. With the help of this iter-
ative algorithm, the LQR problem for the antilinear system, which is a special
case of complex-valued linear system, was carefully examined and three differ-
ent Riccati equations–based approaches were provided, namely, bimatrix Riccati
equation, anti-Riccati equation, and normal Riccati equation. The established
approach is then used to solve the LQR problem for a discrete-time time-delay
system with one-step state delay, and a numerical example was used to illustrate
the effectiveness of the proposed methods.
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1 INTRODUCTION

Complex-valued linear systems refer to linear systems whose right-hand side is dependent on both the state and its
conjugate.1 We study complex-valued linear systems because they have several potential applications in control theory, for
example, describing linear dynamical quantum systems,2 second-order dynamical systems,3 symmetric linear systems,3
and time-delay systems (see Section 4 in this paper). Recently, we have studied several analysis and design problems for
complex-valued linear systems, including state response, controllability, observability, stability, pole assignment, stabiliza-
tion, linear quadratic regulation (LQR) and observer design.1 We have shown that, with the help of the so-called bimatrix,
results obtained for complex-valued linear systems are quite analogous to those for normal linear systems.1 Moreover,
we have shown that the obtained results include those for normal linear systems4 and antilinear systems,5,6 which are
particular cases of complex-valued linear systems, as special cases.1

The LQR problem is a fundamental problem in both linear systems theory and optimal control theory, and has been
extensively investigated in the literature.7,8 For the infinite-time LQR problem, it has been well known that the solution is
completely characterized by the associated algebraic Riccati equation.7-9 The LQR problem has been extended to several
different situations. For example, LQR control with time delay was investigated in the works of Liang and Zhang10 and
Wu and Shu11; the LQR problem for stochastic systems was studied in the works of Liu et al12 and Wu and Zhuang13; and
LQR for stochastic time-delay systems was solved in the work of Li et al.14 In the work of Wu et al,15 the LQR problem was

Optim Control Appl Meth. 2020;41:499–520. wileyonlinelibrary.com/journal/oca © 2019 John Wiley & Sons, Ltd. 499

https://doi.org/10.1002/oca.2554
https://orcid.org/0000-0003-1272-2652
http://crossmark.crossref.org/dialog/?doi=10.1002%2Foca.2554&domain=pdf&date_stamp=2019-12-02


500 ZHOU

solved for the so-called antilinear system (which is a special case of the complex-valued linear systems), and a so-called
anti-Riccati equation–based solution was established.

With the help of the concept of bimatrix, we have recently solved the LQR problem for complex-valued linear systems.1
It was shown that the existence of an optimal solution is equivalent to the stabilizability of the complex-valued linear
systems and is also equivalent to the existence of positive definite bimatrix to some bimatrix Riccati equation.1 In this
paper, based on our early work, we continue to study the LQR problem for discrete-time complex-valued linear systems.
We first establish an iterative algorithm for solving the discrete-time bimatrix Riccati equation. The convergence of the
algorithm is proven. This iterative algorithm is not only useful for computing the solution (a bimatrix) to the bimatrix
Riccati equation but is also helpful in establishing theoretical results for the so-called anti-Riccati equation associated
with the LQR problem for antilinear systems. Indeed, with such an iterative algorithm, we have shown that, under the
stabilizability assumption, the existence of a solution to the LQR problem for antilinear systems is equivalent to the exis-
tence of a positive definite solution to the anti-Riccati equation, which closes the gap in the work of Wu et al,15 where
the existence of a positive definite solution to the ani-Riccati equation was not guaranteed. We will also establish another
normal Riccati equation–based solution to the LQR problem for antilinear systems. The relationships among the bima-
trix Riccati equation, anti-Riccati equation, and normal Riccati equation are revealed. At the same time, we show that the
anti-Riccati equation can be equivalently transformed into a nonlinear matrix equation that has been carefully studied
in our early work.16,17 Finally, by expressing a discrete-time linear time-delay system as a complex-valued system model,
the LQR problem for such a system is solved by using bimatrix Riccati equations. A numerical example was worked out
to illustrate the effectiveness of the proposed approach.

The remainder of this paper is organized as follows. In Section 2, after reviewing briefly the complex-valued system
model and the bimatrix Riccati equation–based solution to the LQR problem, we establish an iterative algorithm and
prove its convergence. Then, in Section 3, the LQR problem for the antilinear system will be carefully studied. The LQR
theory for complex-valued linear systems was then used in Section 4 to study the LQR problem for discrete-time time-delay
systems, and a numerical example will also be provided. This paper concludes in Section 5.

Notation. For a matrix A ∈ Cn×m, we use A#, AT, AH, rank (A), ||A||, Re (A), and Im (A) to denote respectively its
conjugate, transpose, conjugate transpose, rank, norm, real part, and imaginary part. Thus, A−# denotes (A#)−1 or
(A−1)#. Denote by j the unitary imaginary number. For a matrix pair (A1,A2) ∈ (Cn×m,Cn×m), the bimatrix {A1,A2} is
defined in such a manner that {A1,A2}x = A1x+A#

2x#. Further definitions and properties about bimatrix are collected
in the Appendix.

2 OPTIMAL CONTROL OF COMPLEX-VALUED LINEAR SYSTEMS

2.1 A brief introduction to complex-valued linear systems
We continue to study in this paper the following complex-valued linear system1,3:

x(k + 1) = {A1,A2}x(k) + {B1,B2}u(k), (1)

where Ai ∈ Cn×n and Bi ∈ Cn×m, i = 1, 2, are known coefficients; x(k) is the state; and u(k) is the control. The initial
condition is set to be x(0) = x0 ∈ Cn. Clearly, system (1) becomes the normal linear system

x(k + 1) = A1x(k) + B1u(k), (2)

if A2 and B2 are null, and becomes the so-called antilinear system

x(k + 1) = A#
2x#(k) + B#

2u#(k), (3)

if A1 and B1 are zeros. The antilinear system (3) was firstly studied in the works of Wu et al.5,6 We have shown recently
in our other works1,3 that the complex-valued linear system has several potential applications in control, for example, for
control of linear dynamical quantum systems2 and second-order dynamical systems.3
In this paper, based on our early work,1 we continue to study the linear quadratic optimal control problem for system (1).

To this end, we introduce some based concepts for this system.
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Definition 1 (See our other work1). The complex-valued linear system (1) is said to be stabilizable if there exists a
so-called full-state feedback

u(k) = {K1,K2} x(k) = K1x(k) + K#
2 x#(k) (4)

such that the following closed-loop system is asymptotically stable:

x(k + 1) = ({A1,A2} + {B1,B2} {K1,K2}) x(k). (5)

The following result was proven in our other work.1

Lemma 1. The complex-valued linear system (1) is stabilizable if and only if

rank

[
𝜆In − A1 −A#

2 B1 B#
2

−A2 𝜆In − A#
1 B2 B#

1

]
= 2n, ∀𝜆 ∈ {s ∶ |s| ≥ 1}.

The following simple test for the stabilizability of the antilinear system (3) was also recalled from our other work.1

Corollary 1. The antilinear system (3) is stabilizable if and only if

rank
[
𝜆In − A2A#

2 B2 A2B#
2
]
= n, ∀𝜆 ∈ {s ∶ |s| ≥ 1} , (6)

namely, the normal discrete-time linear system
(

A2A#
2,
[
B2,A2B#

2
])

is stabilizable.

It follows that, for stabilization of the complex-valued linear system (1), the full-state feedback (4) is generally necessary.
However, for the discrete-time antilinear system (3), the well-used normal linear feedback

u(k) = K1x(k), (7)

is enough for stabilization under condition (6).1

2.2 Problem formulation and solution
We study the LQR problem for the complex-valued linear system (1). Consider the real-valued quadratic index function

J(u) =
∞∑

k=0

(
xH(k)Qx(k) + uH(k)Ru(k)

)
, (8)

where Q ∈ Cn×n and R ∈ Cm×m are given positive definite weighting matrices (Q can be semipositive definite; however,
we assume Q > 0 for simplicity). The LQR problem refers to as finding an optimal controller u∗ for system (1) such that
J(u) is minimized, denoted by Jmin(u∗). The LQR problem is said to be solvable if Jmin(u∗) < ∞.1,7

The following result was proven in our other work,1 regarding the existence of a solution to the LQR problem.

Lemma 2. The following statements are equivalent:

1. The LQR problem associated with system (1) has a solution.
2. The complex-valued linear system (1) is stabilizable.
3. There is a unique bimatrix {P1,P2} > 0 to the following bimatrix Riccati equation

−{Q, 0} ={A1,A2}H{P1,P2}{A1,A2} − {P1,P2}
− {A1,A2}H{P1,P2}{B1,B2}{S1, S2}−1{B1,B2}H{P1,P2}{A1,A2}, (9)

where {S1, S2} = {R, 0} + {B1,B2}H{P1,P2}{B1,B2}.

Under one of the above conditions, the optimal control is the full-state feedback

u∗(k) =
{

K∗
1 ,K∗

2
}

x(k), (10)
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where
{

K∗
1 ,K∗

2
}

is the optimal feedback gain bimatrix determined by{
K∗

1 ,K∗
2
}
= −{S1, S2}−1{B1,B2}H{P1,P2}{A1,A2}, (11)

the closed-loop system is asymptotically stable, and the minimal value of J(u) is given by

Jmin (u∗) = Re
(

xH
0 {P1,P2}x0

)
. (12)

The above result is quite neat in the sense that the bimatrix Riccati equation takes an analogous form as the usual Riccati
matrix equation.9

2.3 Iterative solution to the bimatrix Riccati equation
In this section, we provide an iterative method for solving the bimatrix Riccati equation (9). This method is not only useful
for computing solutions to (9) but is also helpful in proving theoretical results in the subsequent sections.

Motivated by the existing work for normal discrete-time Riccati equations,18 we construct the following iteration
associated with the bimatrix Riccati equation (9):

{P1(k + 1),P2(k + 1)} = {Q, 0} + {A1,A2}H {P1(k),P2(k)} {A1,A2}
− {A1,A2}H {P1(k),P2(k)} {B1,B2} {S1(k), S2(k)}−1{B1,B2}H {P1(k),P2(k)} {A1,A2} , (13)

where {P1(0),P2(0)} = {Q, 0} and

{S1(k), S2(k)} = {R, 0} + {B1,B2}H {P1(k),P2(k)} {B1,B2} .

For notation simplicity, we also denote

{R1,R2} = {B1,B2} {R, 0}−1{B1,B2}H. (14)

Theorem 1. Assume that the complex-valued linear system (1) is stabilizable and {P1,P2} is the unique positive definite
solution to (9). Then, for any k ≥ 0,

{Q, 0} ≤ {P1(k),P2(k)} ≤ {P1(k + 1),P2(k + 1)} ≤ {P1,P2}. (15)

Consequently, the limit of {P1(k),P2(k)} as k approaches infinity exists and

{P1,P2} = lim
k→∞

{P1(k),P2(k)} . (16)

Proof. We first show

{Q, 0} ≤ {P1(k),P2(k)} ≤ {P1(k + 1),P2(k + 1)} , (17)

by mathematical induction. We have from Lemma 3 that

{P1(1),P2(1)} ={Q, 0} + {A1,A2}H{Q, 0}{A1,A2}
− {A1,A2}H{Q, 0}{B1,B2}{S1(0), S2(0)}−1{B1,B2}H{Q, 0}{A1,A2}

={Q, 0} + {A1,A2}H({Q, 0}−1 + {R1,R2}
)−1{A1,A2}

≥{Q, 0} = {P1(0),P2(0)}, (18)

which means that (17) is true with k = 0. We now assume that (17) is true with k = i, namely, {Q, 0} ≤ {P1(i),P2(i)} ≤

{P1(i + 1),P2(i + 1)}, or equivalently, {P1(i),P2(i)}−1 ≥ {P1(i + 1),P2(i + 1)}−1. Therefore,(
{P1(i + 1),P2(i + 1)}−1 + {R1,R2}

)−1
≥
(
{P1(i),P2(i)}−1 + {R1,R2}

)−1
.
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On the other hand, by Lemma 3, we can write the iteration (13) as

{P1( 𝑗 + 1),P2( 𝑗 + 1)} = {Q, 0} + {A1,A2}H({P1( 𝑗),P2( 𝑗)}−1 + {R1,R2}
)−1{A1,A2}, (19)

where j = i and i + 1. Then,

{P1(i + 2),P2(i + 2)} − {P1(i + 1),P2(i + 1)}

= {A1,A2}H
((

{P1(i + 1),P2(i + 1)}−1 + {R1,R2}
)−1 −

(
{P1(i),P2(i)}−1 + {R1,R2}

)−1
)
{A1,A2}

≥ 0, (20)

which implies that (17) is satisfied with k = i + 1.
We next show

{P1(k),P2(k)} ≤ {P1,P2}, (21)

also by mathematical introduction. It follows from

{P1,P2} = {Q, 0} + {A1,A2}H({P1,P2}−1 + {R1,R2}
)−1{A1,A2} (22)

≥ {Q, 0} = {P1(0),P2(0)}

that (21) is satisfied with k = 0. Assume that (21) is true with k = i, namely, {P1(i),P2(i)} ≤ {P1,P2}. Then, similarly
to (20), we have from (19) and (22) that

{P1,P2} − {P1(i + 1),P2(i + 1)} ={A1,A2}H({P1,P2}−1 + {R1,R2}
)−1{A1,A2}

− {A1,A2}H({P1(i),P2(i)}−1 + {R1,R2}
)−1{A1,A2} ≥ 0,

which shows (21) with k = i + 1. Thus, (15) is proven.
Finally, (16) follows from (15) because the bimatrix Riccati equation (9) has only a unique positive definite solution.

The proof is finished.

By (15), we can see that, with Lemma 3, the iteration (13) can also be written as

{P1(k + 1),P2(k + 1)} = {Q, 0} + {A1,A2}H({P1(k),P2(k)}−1 + {R1,R2}
)−1 {A1,A2} , (23)

where {P1(0),P2(0)} = {Q, 0} and{R1,R2} is given by (14).

3 OPTIMAL CONTROL OF ANTILINEAR SYSTEMS

In this section, we are interested in the antilinear system (3). Because it possesses a special structure, more specific results
can be obtained.

3.1 The anti-Riccati equation–based approach
We first present a so-called anti-Riccati equation–based approach.

Theorem 2. Consider the antilinear system (3). Then, the following three statements are equivalent:

1. The LQR problem associated with system (3) has a solution.
2. The system (3) is stabilizable, namely, (6) is satisfied.
3. There is a unique positive definite solution PA > 0 to the so-called anti-Riccati equation

−Q = AH
2 P#

AA2 − AH
2 P#

AB2
(

R + BH
2 P#

AB2
)−1BH

2 P#
AA2 − PA. (24)
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In this case, the unique positive definite solutions to (9) and (24) are related with

{P1,P2} = {PA, 0}. (25)

Moreover, the optimal controller is the normal-state feedback (7) with K1 = K∗
1 defined by

K∗
1 = −

(
R + BH

2 P#
AB2
)−1BH

2 P#
AA2, (26)

the closed-loop system is asymptotically stable, and the optimal value of J(u) is

Jmin(u) = xH
0 PAx0. (27)

Proof. In view of Lemma 2, we need only to show the equivalence of Item 3 of Lemma 2 and Item 3 of this theorem.
Let the bimatrix Riccati equation (9) have a positive definite solution {P1,P2}. The bimatrix {R1,R2} defined in (14)
associated with the antilinear system (3) is given by

{R1,R2} = {0,B2}{R−1, 0}{0,B2}H

=
{

0,B2R−1}{0,BT
2
}

=
{

B#
2R−#BT

2 , 0
}
,

and the iteration (23) for the associated bimatrix Riccati equation (9) can be simplified as

{P1(k + 1),P2(k + 1)} = {Q, 0} +
{

0,AT
2
} (

{P1(k),P2(k)}−1 +
{

B#
2R−#BT

2 , 0
})−1 {0,A2} , (28)

where {P1(0),P2(0)} = {Q, 0}.
In the following, we will show that

P1(k) > 0, P2(k) = 0, ∀k ≥ 0. (29)

We show this by mathematical induction. Clearly, (29) is satisfied with k = 0. Assume that (29) is true with k = i.
Then, for k = i + 1, we have from (28) that

{P1(i + 1),P2(i + 1)} = {Q, 0} +
{

0,AT
2
} (

{P1(i), 0}−1 +
{

B#
2R−#BT

2 , 0
})−1 {0,A2}

= {Q, 0} +
{

0,AT
2
}{

P−1
1 (i) + B#

2R−#BT
2 , 0
}−1 {0,A2}

= {Q, 0} +
{

AH
2
(

P−#
1 (i) + B2R−1BH

2
)−1A2, 0

}
=
{

Q + AH
2
(

P−#
1 (i) + B2R−1BH

2
)−1A2, 0

}
, (30)

which means that P2(i + 1) = 0 and P1(i + 1) > 0, namely, (29) is true with k = i + 1.
As a result, by Theorem 1, we must have

{P1,P2} = lim
k→∞

{P1(k),P2(k)} =
{
lim

k→∞
P1(k), 0

}
,

namely, P1 > 0 and P2 = 0, which satisfies the bimatrix Riccati equation (9), namely,

−{Q, 0} ={0,A2}H{P1, 0}{0,A2} − {P1, 0}
− {0,A2}H{P1, 0}{0,B2}{S1, S2}−1{0,B2}H{P1, 0}{0,A2}, (31)
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where

{S1, S2} = {R, 0} + {0,B2}H{P1, 0}{0,B2}
= {R, 0} +

{
0,BT

2 P1
}
{0,B2}

=
{

R + BH
2 P#

1B2, 0
}
. (32)

By the definition of the product of bimatrices, (31) is just

−{Q, 0} =
{

AH
2 P#

1A2, 0
}
− {P1, 0} −

{
AH

2 P#
1B2, 0

}{
R + BH

2 P#
1B2, 0

}−1 {BH
2 P#

1A2, 0
}

=
{

AH
2 P#

1A2, 0
}
− {P1, 0} −

{
AH

2 P#
1B2
(

R + BH
2 P#

1B2
)−1BH

2 P#
1A2, 0

}
=
{

AH
2 P#

1A2 − AH
2 P#

1B2
(

R + BH
2 P#

1B2
)−1BH

2 P#
1A2 − P1, 0

}
.

Hence, the anti-Riccati equation (24) also has a positive definite solution PA = P1.
On the other hand, if the anti-Riccati equation (24) has a different positive definite solution P∗

A, then it follows from
(31) and (32) that {P∗

A, 0} is another positive definite solution to the bimatrix Riccati equation (9), which contradicts
with Lemma 2. Hence, the positive definite solution to (24) is unique.

Conversely, if the anti-Riccati equation (24) has a positive definite solution PA, then, as shown above, the bimatrix
Riccati equation (9) has a positive definite solution {P∗

A, 0}, which, by Lemma 2, must be the unique solution. Thus,
the equivalence of Item 3 of Lemma 2 and Item 3 of this theorem is proven. Finally, the relationship (25) follows
obviously.
The expression (26) and Jmin (u∗) have been proven in our other work1 and we provide the proofs here for complete-
ness. In view of (11), (25), and (32), the optimal gain can be computed as{

K∗
1 ,K∗

2
}
= −

{
R + BH

2 P#
AB2, 0

}−1{0,B2}H{PA, 0}{0,A2}

= −
{(

R + BH
2 P#

AB2
)−1

, 0
}{

BH
2 P#

AA2, 0
}
,

= −
{(

R + BH
2 P#

AB2
)−1BH

2 P#
AA2, 0

}
,

which is just (26) by noting (10). At last, it follows from (12) and (25) that

Jmin(u∗) = Re
(

xH
0 {PA, 0}x0

)
= 1

2

[ x0

x#0

]H [ PA 0
0 P#

A

] [ x0

x#0

]
= xH

0 PAx0.

The proof is finished.

Theorem 2 improves some results in the work of Wu et al15 and our other work,1 where the existence of a positive definite
solution to (24) was not guaranteed. Moreover, we have relaxed controllability in the work of Wu et al15 as stabilizability
in this paper.

Remark 1. As a by-product of the proof of Theorem 2, we see from (30) that the iteration

PA(k + 1) = Q + AH
2
(

P−#
A (k) + B2R−1BH

2
)−1A2, (33)

with PA(0) = Q, converges to the unique positive definite solution to the anti-Riccati equation (24).

Very recently, we have studied a class of nonlinear matrix equations in the form of16,17

X + AHX−#A = In, (34)
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where A ∈ Cn×n is known. Next, we show how to link the anti-Riccati equation (24) with this class of nonlinear matrix
equations. To this end, we define

Q0 = Q−1 +
(

A2Q−1AH
2
)# + (B2R−1BH

2
)#

> 0. (35)

Proposition 1. If the anti-Riccati equation (24) has a positive definite solution PA, then the nonlinear matrix
equation (34), with

A = Q
− #

2
0 A2Q−1Q

− 1
2

0 , (36)

also has a positive definite solution X such that

X = Q
− 1

2
0

(
P−1

A +
(

A2Q−1AH
2
)# + (B2R−1BH

2
)#)Q

− 1
2

0 . (37)

Moreover, if the antilinear system (3) is stabilizable, then X given by (37) is the maximal solution to (34).

Proof. The proof of this lemma is similar to the case of normal discrete-time Riccati equation (see, for example, the
work of Adam and Assimakis19). By using (A4), we get from (24) that

−Q + PA = AH
2
(

P−#
A + B2R−1BH

2
)−1A2.

Let
P−#

A + B2R−1BH
2 = T1. (38)

Then, we have PA = AH
2 T−1

1 A2 + Q. Taking inverse on both sides of this equation to give

P−1
A =

(
AH

2 T−1
1 A2 + Q

)−1

= Q−1 − Q−1AH
2
(

T1 + A2Q−1AH
2
)−1A2Q−1,

where we have used (A4) again. Let
T1 + A2Q−1AH

2 = T#
2 . (39)

Then, in view of (38), we further have

Q−1 − Q−1AH
2 T−#

2 A2Q−1 = P−1
A

= T#
1 −
(

B2R−1BH
2
)#

= T2 −
(

A2Q−1AH
2
)# − (B2R−1BH

2
)#
,

or equivalently
T2 + Q−1AH

2 T−#
2 A2Q−1 = Q−1 +

(
A2Q−1AH

2
)# + (B2R−1BH

2
)# = Q0.

Because Q0 > 0, we multiply both sides of the above equation on the left and right by Q
− 1

2
0 to give

Q
− 1

2
0 T2Q

− 1
2

0 + Q
− 1

2
0 Q−1AH

2 Q
− #

2
0

(
Q

− 1
2

0 T2Q
− 1

2
0

)−#

Q
− #

2
0 A2Q−1Q

− 1
2

0 = In. (40)

With A defined in (36), we have

AH =
(

Q
− 1

2
0

)H(
Q−1)HAH

2

(
Q

− #
2

0

)H

= Q
− 1

2
0 Q−1AH

2 Q
− #

2
0 .
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Then, (40) is just (34) by setting

X ≜ Q
− 1

2
0 T2Q

− 1
2

0

= Q
− 1

2
0

(
T#

1 +
(

A2Q−1AH
2
)#)Q

− 1
2

0

= Q
− 1

2
0

(
P−1

A +
(

A2Q−1AH
2
)# + (B2R−1BH

2
)#)Q

− 1
2

0 ,

which is (37).
Let (34) have another positive definite solution X1 ≥ X. Then, there exists a positive definite matrix P1 ≤ PA

such that

X1 = Q
− 1

2
0

(
P−1

1 +
(

B2R−1BH
2
)# + (A2Q−1AH

2
)#)Q

− 1
2

0 .

Reversing the procedure in the above shows that P1 is also a positive definite solution to the anti-Riccati equation (24).
This leads to a contradiction as the positive definite solution to (24) is unique when system (3) is stabilizable.

By this proposition, when system (3) is stabilizable, the unique positive solution to the anti-Riccati equation (24) can be
obtained by computing the maximal solution to the nonlinear matrix equation (34), which has been carefully studied in
our other works.16,17 We finally remark that, as indicated by Proposition 1, if system (3) is stabilizable and (34) has any
other positive definite solutions X2, then we must have

X2 ≤ Q
− 1

2
0

(
P−1

A +
(

B2R−1BH
2
)# + (A2Q−1AH

2
)#)Q

− 1
2

0 .

3.2 A normal Riccati equation–based approach
In this section, we establish a normal Riccati equation–based approach to the LQR problem for the antilinear system (3).
For notation simplicity, we denote

⎧⎪⎪⎪⎨⎪⎪⎪⎩

AN = A#
2

(
In − B2

(
R + BH

2 Q#B2
)−1BH

2 Q#
)

A2,

BN =
[

B#
2 A#

2B2
]
,

QN = Q + AH
2
(

Q−# + B2R−1BH
2
)−1A2,

RN =
[

R# 0
0 R + BH

2 Q#B2

]
.

(41)

Theorem 3. Consider the antilinear system (3). Then, the following three statements are equivalent:

1. The LQR problem associated with system (3) has a solution.
2. The system (3) is stabilizable, namely, (6) is satisfied.
3. There is a unique positive definite solution PN to the normal Riccati equation

−QN = AH
N PN AN − PN − AH

N PN BN
(

RN + BH
N PN BN

)−1BH
N PN AN . (42)

In this case, the optimal controller is the normal-state feedback (7) with K1 = K∗
1 defined by

K∗
1 = −

((
R + BH

2 Q#B2
)−1BH

2 Q#A2 + [0 Im]
(

RN + BH
N PN BN

)−1BH
N PN AN

)
, (43)

the closed-loop system is asymptotically stable, and the minimal value of J(u) is

Jmin(u) = xH
0 PN x0. (44)
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Proof. Clearly, we only need to show the equivalence of (2) and (3). Denote

AL = A#
2A2, BL = BN , RL = RN , QL = Q + AH

2 Q#A2, LL =
[

0n×m AH
2 Q#B2

]
.

We use system (3) repeatedly to give

x(k + 2) = A#
2A2x(k) + A#

2B2u(k) + B#
2u#(k + 1). (45)

Let k = 2𝜏, 𝜉(𝜏) = x(2𝜏) = x(k), and

v(𝜏) =
[

u#(2𝜏 + 1)
u(2𝜏)

]
=
[

u#(k + 1)
u(k)

]
. (46)

Then, system (45) can be further equivalently expressed by

𝜉(𝜏 + 1) = AL𝜉(𝜏) + BLv(𝜏), (47)

where 𝜏 ≥ 0, and the initial condition is 𝜉(0) = x(0) = x0. Notice that (47) is a normal linear system with the same
dimension as system (3) (yet the dimension for the input has been doubled).

Now, consider the functional (8). In view of (3), we have

J(u) =
∞∑
𝜏=0

(
xH(2𝜏)Qx(2𝜏) + xH(2𝜏 + 1)Qx(2𝜏 + 1) + uH(2𝜏)Ru(2𝜏) + uH(2𝜏 + 1)Ru(2𝜏 + 1)

)
=

∞∑
𝜏=0

(
xH(2𝜏)Qx(2𝜏) + x#H(2𝜏 + 1)Q#x#(2𝜏 + 1) + uH(2𝜏)Ru(2𝜏) + u#H(2𝜏 + 1)R#u#(2𝜏 + 1)

)
=

∞∑
𝜏=0

(
xH(2𝜏)Qx(2𝜏) + (A2x(2𝜏) + B2u(2𝜏))HQ# (A2x(2𝜏) + B2u(2𝜏))

+uH(2𝜏)Ru(2𝜏) + u#H(2𝜏 + 1)R#u#(2𝜏 + 1)
)

=
∞∑
𝜏=0

⎡⎢⎢⎣
x(2𝜏)

u#(2𝜏 + 1)
u(2𝜏)

⎤⎥⎥⎦
H ⎡⎢⎢⎢⎣

Q + AH
2 Q#A2 0 AH

2 Q#B2

0 R# 0
BH

2 Q#A2 0 R + BH
2 Q#B2

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

x(2𝜏)
u#(2𝜏 + 1)

u(2𝜏)

⎤⎥⎥⎦
=

∞∑
𝜏=0

[
𝜉(𝜏)
v(𝜏)

]H [QL LL

LH
L RL

] [
𝜉(𝜏)
v(𝜏)

]
, (48)

where 𝜉(𝜏) and v(𝜏) are those in system (47). Design a preliminary state feedback

v(𝜏) = K0𝜉(𝜏) + w(𝜏), (49)

for system (47), where

K0 = −R−1
L LH

L = −
[

0(
R + BH

2 Q#B2
)−1BH

2 Q#A2

]
.
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Then, we can show that

[
𝜉(𝜏)
v(𝜏)

]H [QL LL

LH
L RL

] [
𝜉(𝜏)
v(𝜏)

]

=
[

𝜉(𝜏)
K0𝜉(𝜏) + w(𝜏)

]H [QL LL

LH
L RL

] [
𝜉(𝜏)

K0𝜉(𝜏) + w(𝜏)

]

=
[
𝜉(𝜏)
w(𝜏)

]H [ In KH
0

0 Im

] [QL LL

LH
L RL

] [
In 0
K0 Im

] [
𝜉(𝜏)
w(𝜏)

]

=
[
𝜉(𝜏)
w(𝜏)

]H
[

QL + KH
0 RLK0 + LLK0 + KH

0 LH
L LL + KH

0 RL

LH
L + RLK0 RL

][
𝜉(𝜏)
w(𝜏)

]

=
[
𝜉(𝜏)
w(𝜏)

]H [QL + KH
0 RLK0 + LLK0 + KH

0 LH
L 0

0 RL

] [
𝜉(𝜏)
w(𝜏)

]
.

Direct computation gives

QL + KH
0 RLK0 + LLK0 + KH

0 LH
L

= QL − LLR−1
L LH

L

= Q + AH
2 Q#A2 − AH

2 Q#B2
(

R + BH
2 Q#B2

)−1BH
2 Q#A2

= QN = Q + AH
2
(

Q−# + B2R−1BH
2
)−1A2

> Q > 0.

Consequently, the index function (48) becomes

J(u) =
∞∑
𝜏=0

(
𝜉H(𝜏)QN𝜉(𝜏) + wH(𝜏)RN w(𝜏)

)
. (50)

On the other hand, with the preliminary state feedback (49), the linear system (3) or system (47) becomes

𝜉(𝜏 + 1) = (AL + BLK0)𝜉(𝜏) + BLw(𝜏)

=
(

A#
2A2 − A#

2B2
(

R + BH
2 Q#B2

)−1BH
2 Q#A2

)
𝜉(𝜏) + BLw(𝜏)

= AN𝜉(𝜏) + BN w(𝜏), 𝜉(0) = x(0) = x0.

This is a normal linear system with a normal quadratic index function (50) in the same form as (8). Hence, by the
standard LQR theory,7,9 the optimal control problem has a solution if and only if (AN,BN) is stabilizable, which is
further equivalent to the existence of a unique positive definite solution to the normal Riccati equation (42). As
(AN,BN) = (AL + BLK0,BL), (AN,BN) is stabilizable if and only if (AL,BL) is stabilizable,4 namely, by Corollary 1, the
antilinear system (3) is stabilizable. This proves the equivalence of (2) and (3).
When the normal Riccati equation (42) has a (unique) positive definite solution, the optimal control is just the state
feedback w(𝜏) = KN𝜉(𝜏) with

KN = −
(

RN + BH
N PN BN

)−1BH
N PN AN .
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Notice that [
u#(k + 1)

u(k)

]
= v(𝜏) = K0𝜉(𝜏) + w(𝜏)

= K0𝜉(𝜏) + KN𝜉(𝜏)
= K0x(k) + KN x(k)

= −
[

0(
R + BH

2 Q#B2
)−1BH

2 Q#A2

]
x(k) + KN x(k), (51)

by which

u(k) =
(
−
(

R + BH
2 Q#B2

)−1BH
2 Q#A2 +

[
0 Im

]
KN

)
x(k)

= K1x(k). (52)

This proves (43). Finally, by the standard LQR theory,7,9 the optimal controller is also the stabilizing controller and
the minimal value of J(u) is

Jmin(u) = 𝜉H(0)PN𝜉(0) = xH
0 PN x0.

The proof is finished.

For system (3), Theorem 3 is better than Lemma 2 in the sense that the dimension of the Riccati equation in Theorem 3 is
half of that in Lemma 2, and Theorem 3 is better than Theorem 2 in the sense that a normal Riccati equation is involved
in Theorem 3 while a nonstandard Riccati equation is involved in Theorem 2.

Remark 2. The closed-loop system with the optimal control determined by Theorem 3 is

x(k + 1) =
(

A#
2 + B#

2K#
1
)

x#(k),

by which
u(k + 1) = K1x(k + 1) = K1

(
A#

2 + B#
2K#

1
)

x#(k). (53)

On the other hand, it follows from (51) that

u(k + 1) =
[

Im 0
]

K#
N x#(k). (54)

This and (53) imply

K1
(

A#
2 + B#

2K#
1
)
=
[

Im 0
]

K#
N .

This identity, though is determined implicitly by Theorem 3, is however not easy to show by manipulation.

3.3 Relationships among three Riccati equations
The following theorem links solutions to these three different Riccati equations (9), (24), and (42).

Theorem 4. Consider the antilinear system (3). Then, the following three statements are equivalent:

1. The bimatrix Riccati equation (9) has a unique positive definite solution {P1,P2}.
2. The anti-Riccati equation (24) has a unique positive definite solution PA.
3. The normal Riccati equation (42) has a unique positive definite solution PN.

Moreover, these solutions satisfy P2 = 0 and
P1 = PA = PN . (55)
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Proof. In view of Lemma 2, Theorem 1, and Theorem 3, we need only to show that PA = PN. We consider the
iteration (33) for the anti-Riccati equation (24) and show that P1 (k) is monotonically increasing, namely,

PA(k + 1) ≥ PA(k) ≥ Q, k ≥ 0. (56)

Similarly to the proof of Theorem 1, we show this by mathematical induction. Notice that

PA(1) = AH
2
(

Q−# + B2R−1BH
2
)−1A2 + Q

= QN ≥ Q = PA(0). (57)

Therefore, (56) is true with k = 0. We assume that (56) is true with k = i, namely, PA(i + 1) ≥ PA(i) ≥ Q > 0, which
implies that P−1

A (i + 1) ≤ P−1
A (i) or P−#

A (i + 1) + B2R−1BH
2 ≤ P−1

A (i) + B2R−1BH
2 , namely,

(
P−#

A (i + 1) + B2R−1BH
2
)−1

≥
(

P−1
A (i) + B2R−1BH

2
)−1

.

Then, for k = i + 1, we have

PA(i + 2) − PA(i + 1)

= AH
2

((
P−#

A (i + 1) + B2R−1BH
2
)−1 −

(
P−#

A (i) + B2R−1BH
2
)−1
)

A2

≥ 0,

which indicates that (56) is true with k = i + 1.
Now, using (33) repeatedly gives

PA(k + 2) = AH
2
(

P−#
A (k + 1) + B2R−1BH

2
)−1A2 + Q

= AH
2

((
AT

2
(

P−1
A (k) + B#

2R−#BT
2
)−1A#

2 + Q#
)−1

+ B2R−1BH
2

)−1

A2 + Q. (58)

Notice that, by using the identity (A4) twice,

((
AT

2
(

P−1
A (k) + B#

2R−#BT
2
)−1A#

2 + Q#
)−1

+ B2R−1BH
2

)−1

=
(

Q−# − Q−#AT
2
(

P−1
A (k) + B#

2R−#BT
2 + A#

2Q−#AT
2
)−1A#

2Q−# + B2R−1BH
2

)−1

=
(

Q−# + B2R−1BH
2 − Q−#AT

2
(

P−1
A (k) + B#

2R−#BT
2 + A#

2Q−#AT
2
)−1A#

2Q−#
)−1

=
(

Q−# + B2R−1BH
2
)−1 +

(
Q−# + B2R−1BH

2
)−1Q−#AT

2 (P
−1
A (k) + B#

2R−#BT
2 + A#

2Q−#AT
2

− A#
2Q−#(Q−# + B2R−1BH

2
)−1Q−#AT

2 )
−1A#

2Q−#(Q−# + B2R−1BH
2
)−1

=
(

Q−# + B2R−1BH
2
)−1 +

(
In + Q#B2R−1BH

2
)−1AT

2 (P
−1
A (k) + B#

2R−#BT
2 + A#

2Q−#AT
2

− A#
2Q−#(Q−# + B2R−1BH

2
)−1Q−#AT

2 )
−1A#

2
(

In + B2R−1BH
2 Q#)−1

=
(

Q−# + B2R−1BH
2
)−1 +

(
In + Q#B2R−1BH

2
)−1AT

2 (P
−1
A (k) + B#

2R−#BT
2 + A#

2Q−#AT
2

− A#
2Q−#

(
Q# − Q#B2

(
R + BH

2 Q#B2
)−1BH

2 Q#
)

Q−#AT
2 )

−1A#
2
(

In + B2R−1BH
2 Q#)−1

=
(

Q−# + B2R−1BH
2
)−1 +

(
In + Q#B2R−1BH

2
)−1AT

2 (P
−1
A (k) + B#

2R−#BT
2

+ A#
2B2
(

R + BH
2 Q#B2

)−1BH
2 AT

2 )
−1A#

2
(

In + B2R−1BH
2 Q#)−1

. (59)
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With the notation BN and RN in (41), we have

B#
2R−#BT

2 + A#
2B2
(

R + BH
2 Q#B2

)−1BH
2 AT

2 = BN R−1
N BH

N . (60)

By using the identity (A4) again, we obtain

(
In + B2R−1BH

2 Q#)−1 = In − B2
(

R + BH
2 Q#B2

)−1BH
2 Q#. (61)

Therefore, by substituting (59), (60), and (61) into (58), it yields

PA(k + 2) = AH
2

((
AT

2
(

P−1
A (k) + B#

2R−#BT
2
)−1A#

2 + Q#
)−1

+ B2R−1BH
2

)−1

A2 + Q

= Q + AH
2
(

Q−# + B2R−1BH
2
)−1A2 + AH

2

(
In − B2

(
R + BH

2 Q#B2
)−1BH

2 Q#
)

AT
2
(

P−1
A (k)

+ BN R−1
N BH

N
)−1A#

2

(
In − B2

(
R + BH

2 Q#B2
)−1BH

2 Q#
)

A2

= QN + AH
N
(

P−1
A (k) + BN R−1

N BH
N
)−1AN . (62)

Now, because the antilinear system (3) is stabilizable, by Theorem 3, for the normal Riccati equation (42), we can
construct the iteration

PN(k + 1) = QN + AH
N
(

P−1
N (k) + BN R−1

N BH
N
)−1AN , (63)

with PN(0) = QN. Then, similarly to the proof of Theorem 1 (see, for example, the work of Assimakis et al18),

lim
k→∞

PN(k) = PN . (64)

Thus, in view of (62) and (63), we can see that

PN(k) = PA(2k + 1), k ≥ 0. (65)

As a result, we get from (64) that

lim
k→∞

PA(2k + 1) = lim
k→∞

PN(k) = PN . (66)

On the other hand, by using (56) and (65) again, we have

PN(k − 1) = PA(2k − 1) ≤ PA(2k) ≤ PA(2k + 1) = PN(k).

Therefore, it follows from (64) that

PN = lim
k→∞

PN(k − 1) ≤ lim
k→∞

PA(2k) ≤ lim
k→∞

PN(k) = PN . (67)

Combining (66) and (67) gives

PA ≜ lim
k→∞

PA(k) = PN .

This completes the proof.
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As a by-product of the above proof, we see from (65) that the iteration (63) for the normal Riccati equation (42) converges
faster than the iteration (33) for the anti-Riccati equation (24). Thus, from the computational point of view, the normal
Riccati equation (42) is recommended to use.

Remark 3. It follows from this theorem that the bimatrix Riccati equation–based optimal gain (11), the anti-Riccati
equation–based optimal gain (26), and the normal Riccati equation–based optimal gain (43) are equivalent.

Remark 4. Another simple proof for PA = PN can be given as follows. By Theorems 2 and 3, the optimal problem
is solvable with respectively the minimal value Jmin(u) = xH

0 PAx0 and Jmin(u) = xH
0 PN x0. As both PA and PN are

independent of x0, we must have

xH
0 PAx0 = xH

0 PN x0, ∀x0 ∈ Cn. (68)

Next, we claim that, for positive definite matrices PA and PN, PA = PN if and only if (68). Clearly, we need only to
prove the “if” part. Denote PA = [ai j] and PN = [ni j], i, j ∈ I[1,n]. Letting x0 = ei, where ei is the ith column of In, in
(68) gives aii = nii, i ∈ I[1,n]. Letting x0 = [1, a + jb, 0, … , 0]H, where a ∈ R, b ∈ R, in (68) gives

aRe(a12) − bIm(a12) = aRe(n12) − bIm(n12),

which, by respectively choosing (a = 0, b ≠ 0) and (b = 0, a ≠ 0), implies respectively Im(a12) = Im(n12) and Re(a12) =
Re(n12), namely, a12 = n12. Similarly, if we choose x0 = [1, 0, a + jb, 0, … , 0]H, we get a13 = n13. Repeating this
process, we finally have PA = PN. However, the current proof for Theorem 4 has its own value because it reveals the
relationship (see Equation (65)) between the iteration (33) for the anti-Riccati equation (24) and the iteration (63) for
the normal Riccati equation (42).

4 APPLICATIONS TO OPTIMAL CONTROL OF TIME-DELAY SYSTEMS

4.1 System and problem descriptions
In this section, we consider the following discrete-time time-delay system with only one-step delay20

𝜉(k + 1) = A0𝜉(k) + Ad𝜉(k − 1) + Gv(k), k ≥ 0, (69)

where A0,Ad ∈ Rn×n and B ∈ Rn×p are known matrices, 𝜉 ∈ Rn is the state vector, and v ∈ Rp is the control vector. The
initial condition is 𝜉(0) ∈ Rn and 𝜉(−1) ∈ Rn. Without loss of generality, we assume that p = 2m, namely, p is an even
number. Otherwise, we let v = [vT,wT]T and G = [G, 0] where w is any slack variable. Thus, we can let

G = [G1 G2], v(k) =
[

v1(k)
v2(k)

]
,Gi ∈ Rn×m, vi ∈ Rm, i = 1, 2. (70)

The problem to be solved is finding v(k) for system (69) such that the following quadratic index function is minimized

J(v) =
∞∑

k=0

(
𝜉T(k)Q0𝜉(k) + vT(k)R0v (k)

)
, (71)

where Q0 ∈ Rn×n and R0 ∈ Rm×m are given positive definite matrices.

Remark 5. We explain that we can assume without loss of generality that R0 is a block diagonal matrix. Denote

R0 =
[ R01 R02

RT
02 R03

]
, R0i ∈ Rm×m, i = 1, 2, 3.
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Because R0 > 0, by the Schur complement, we have R03 − RT
02R−1

01 R02 > 0. Thus, we can denote

L0 =
⎡⎢⎢⎣

Im −R−1
01 R02

(
R03 − RT

02R−1
01 R02

)− 1
2 R

1
2
01

0
(

R03 − RT
02R−1

01 R02
)− 1

2 R
1
2
01

⎤⎥⎥⎦ .
Direct computation gives

LT
0 R0L0 =

[
R01

R01

]
> 0.

Then, by the input transformation v̂ = L−1
0 v, the time-delay system (69) can be written as

𝜉(k + 1) = A0𝜉(k) + Ad𝜉(k − 1) + Ĝv̂(k),

where Ĝ = GL0, and the quadratic index function (71) becomes

J(v) =
∞∑

k=0

(
𝜉T(k)Q0𝜉(k) + v̂T (k)LT

0 R0L0v̂ (k)
)

=
∞∑

k=0

(
𝜉T(k)Q0𝜉(k) + v̂T(k)

[
R01

R01

]
v̂(k)
)
.

Thus, without loss of generality, we can assume that

R0 =
[

R
R

]
, 0 < R ∈ Rm×m. (72)

Therefore we assume hereafter that R0 takes the special form (72).

Proposition 2. The time-delay system (69) can be equivalently written as (1), where

{
x(k) = 𝜉(k) + j𝜉(k − 1),
u(k) = v1(k) + jv2(k), k ≥ 0, (73)

and {
A1 = 1

2
A0 + j

2
(In − Ad), B1 = 1

2
G1 − j

2
G2,

A2 = 1
2

A0 − j
2
(In + Ad), B2 = 1

2
G1 − j

2
G2.

(74)

Moreover, if R0 takes the form (72), the quadratic index function (71) can be written as

J1(u) =
∞∑

k=0

(
xH(k)Qx(k) + uH(k)Ru(k)

)
− 𝜉T(−1)Q𝜉(−1), (75)

where Q = 1
2

Q0 > 0.
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Proof. With the notations defined in this proposition, we can compute

{A1,A2}x(k) + {B1,B2}u(k)

= A1x(k) + A#
2x#(k) + B1u(k) + B#

2u#(k)

=
(

1
2

A0 +
j
2
(In − Ad)

)
(𝜉(k) + j𝜉(k − 1)) +

(
1
2

A0 +
j
2
(In + Ad)

)
(𝜉(k) − j𝜉(k − 1))

+
(

1
2

G1 −
j
2

G2

)
(v1(k) + jv2(k)) +

(
1
2

G1 +
j
2

G2

)
(v1(k) − jv2(k))

=
(1

2
A0 +

1
2

A0

)
𝜉(k) +

(1
2
(In + Ad) −

1
2
(In − Ad)

)
𝜉(k − 1)

+ j
(1

2
A0𝜉(k − 1) + 1

2
(In − Ad) 𝜉(k) −

1
2

A0𝜉(k − 1) + 1
2
(In + Ad) 𝜉(k)

)
+
(1

2
G1 +

1
2

G1

)
v1(k) +

(1
2

G2 +
1
2

G2

)
v2(k)

+ j
(1

2
G1v2(k) −

1
2

G2v1(k) −
1
2

G1v2(k) +
1
2

G2v1(k)
)

= A0𝜉(k) + Ad𝜉(k − 1) + Gv(k) + j𝜉(k)

= 𝜉(k + 1) + j𝜉(k)

= x(k + 1),

which shows that x(k) satisfies (1). Notice that

J(v) =1
2

( ∞∑
k=0

𝜉T(k)Q0𝜉(k) +
∞∑

k=0
𝜉T(k)Q0𝜉 (k)

)
+

∞∑
k=0

vT(k)R0v(k)

=1
2

( ∞∑
k=0

𝜉T(k − 1)Q0𝜉(k − 1) +
∞∑

k=0
𝜉T(k)Q0𝜉(k)

)
+

∞∑
k=0

vT(k)R0v(k) − 1
2
𝜉T(−1)Q0𝜉(−1)

=
∞∑

k=0

[
𝜉(k)

𝜉(k − 1)

]T
[

1
2

Q0
1
2

Q0

][
𝜉(k)

𝜉(k − 1)

]
+

∞∑
k=0

vT(k)R0v(k) − 1
2
𝜉T(−1)Q0𝜉(−1). (76)

On the other hand, for any Qx = Q1 + jQ2 > 0, where Qi, i = 1, 2 are real matrices, we can compute

xH(k)Qxx(k) =
(
𝜉T(k) − j𝜉T(k − 1)

)
(Q1 + jQ2)(𝜉(k) + j𝜉(k − 1))

=
(
𝜉T(k)Q1 + 𝜉T(k − 1)Q2

)
𝜉(k) −

(
𝜉T(k)Q2 − 𝜉T(k − 1)Q1

)
𝜉(k − 1)

+
((
𝜉T(k)Q1 + 𝜉T(k − 1)Q2

)
𝜉(k − 1) +

(
𝜉T(k)Q2 − 𝜉T(k − 1)Q1

)
𝜉(k)

)
j

=
(
𝜉T(k)Q1 + 𝜉T(k − 1)Q2

)
𝜉(k) −

(
𝜉T(k)Q2 − 𝜉T(k − 1)Q1

)
𝜉(k − 1)

=
[

𝜉(k)
𝜉(k − 1)

]T [Q1 −Q2
Q2 Q1

] [
𝜉(k)

𝜉(k − 1)

]
,

where we have noticed that Q1 = QT
1 and Q2 = −QT

2 . Similarly, for any Ru = R1 + jR2 > 0, where Ri, i = 1, 2, are real
matrices, we have

uH(k)Ruu(k) =
[

v1(k)
v2(k)

]T [ R1 −R2
R2 R1

] [
v1(k)
v2(k)

]
= vT(k)

[
R1 −R2
R2 R1

]
v(k).

Thus, in view of (72), it yields from (76) that, if we denote Qx = 1
2

Q0 and Ru = R, the quadratic index function J(v) can
be exactly written as (75). The proof is finished.
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Since the last term 𝜉T(−1)Q𝜉(−1) in (75) dependents on only the initial condition, J1(u) is minimized if and only if

J2(u) =
∞∑

k=0

(
xH(k)Qx(k) + uH(k)Ru(k)

)
(77)

is minimized. Hence, the linear optimal control problem for the time-delay system (69) has been transformed equivalently
to the linear quadratic optimal control problem for the complex-valued linear system (1) with the quadratic index function
(77). According to results in Section 2, the solution to this problem has been completely characterized by Lemma 2. Thus,
the optimal control is u(k) = K∗

1 x(k) +
(

K∗
2
)#x#, which, by separating real and imaginary parts, is equivalent to our other

work1:

v(k) =
[ v1(k)

v2(k)

]
=

[
Re
(

K∗
1 + K∗

2
)
−Im

(
K∗

1 + K∗
2
)

Im
(

K∗
1 − K∗

2
)

Re
(

K∗
1 − K∗

2
) ] [ 𝜉(k)

𝜉(k − 1)

]
,

which is physically implementable.1

4.2 An illustrative example
In this section, we use the linearized F-16 aircraft model studied previously in the works of Sobel and Shapiro21 and Liu
and Zhou22 to illustrate the obtained results. The continuous-time model is shown as follows

.
𝜉(t) = 𝜉(t) +d𝜉(t − 𝜏) + v(t), (78)

in which we have assumed that there is a state delay 𝜏 = 0.1 in the elevator deflection, which is the fourth element of
x(t).22 The coefficient matrices are then given by22

 =

⎡⎢⎢⎢⎢⎣
0 1.0 0 0 0
0 −0.8694 43.223 −17.251 −1.5766
0 0.9934 −1.3411 −0.1690 −0.2518
0 0 0 0 0
0 0 0 0 −20.0

⎤⎥⎥⎥⎥⎦
,

d =

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −20.0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦
, =

⎡⎢⎢⎢⎢⎣
0 0
0 0
0 0

20.0 0
0 20.0

⎤⎥⎥⎥⎥⎦
.

By taking the sampling period as T = 0.1 second, the continuous-time time-delay system (78) can be discretized as (69),
where

A0 =

⎡⎢⎢⎢⎢⎣
1.0000 0.1025 0.2080 −0.0879 −0.0057

0 1.1175 4.1534 −1.8042 −0.1010
0 0.0955 1.0722 −0.0994 −0.0153
0 0 0 1.0000 0
0 0 0 0 0.1353

⎤⎥⎥⎥⎥⎦
,

Ad =

⎡⎢⎢⎢⎢⎣
0 0 0 0.0594 0
0 0 0 −1.8165 0
0 0 0 0.0434 0
0 0 0 −2.0000 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦
,G =

⎡⎢⎢⎢⎢⎣
−0.0581 −0.0040
−1.7586 −0.1131
−0.0720 −0.0175
2.0000 0

0 0.8647

⎤⎥⎥⎥⎥⎦
.

We now consider the corresponding linear optimal control problem (71) with Q0 = 2I5 and R = 1. Thus, Q = I5. Let
{P1(k),P2(k)} be computed according to the iteration (23). Denote e(k) = ln ||{E1(k),E2(k)}||, where

{E1(k),E2(k)} = {A1,A2}H({P1(k),P2(k)}−1 + {R1,R2}
)−1 {A1,A2} + {Q, 0} − {P1(k),P2(k)}.
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FIGURE 1 The iteration error e(k)
for (23) [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 2 State responses of the
closed-loop system [Colour figure can be
viewed at wileyonlinelibrary.com]

The history of e(k) as a function of k is plotted in Figure 1 from which we can see that it converges to zero in a rather fast
speed. For k = 140, we obtain

P1(k) =

⎡⎢⎢⎢⎢⎣
12.3464 + 0.0000j 2.3671 + 0.0000j 8.6342 + 0.0000j −2.0194 + 3.2919j −0.1762 + 0.0000j

2.3671 + 0.0000j 3.7958 + 0.0000j 10.5820 + 0.0000j −3.6990 + 5.5020j −0.2025 + 0.0000j
8.6342 + 0.0000j 10.5820 + 0.0000j 56.7625 + 0.0000j −18.9340 + 23.6474j −0.9975 + 0.0000j

−2.0194 − 3.2919j −3.6990 − 5.5020j −18.9340 − 23.6474j 28.0046 + 0.0000j 0.3487 + 0.4725j
−0.1762 + 0.0000j −0.2025 + 0.0000j −0.9975 + 0.0000j 0.3487 − 0.4725j 1.5259 + 0.0000j

⎤⎥⎥⎥⎥⎦
,

P2(k) =

⎡⎢⎢⎢⎢⎣
11.3464 + 0.0000j 2.3671 + 0.0000j 8.6342 + 0.0000j −2.0194 + 3.2919j −0.1762 + 0.0000j

2.3671 + 0.0000j 2.7958 + 0.0000j 10.5820 + 0.0000j −3.6990 + 5.5020j −0.2025 + 0.0000j
8.6342 + 0.0000j 10.5820 + 0.0000j 55.7625 + 0.0000j −18.9340 + 23.6474j −0.9975 + 0.0000j

−2.0194 + 3.2919j −3.6990 + 5.5020j −18.9340 + 23.6474j −3.5897 − 17.1002j 0.3487 − 0.4725j
−0.1762 + 0.0000j −0.2025 + 0.0000j −0.9975 + 0.0000j 0.3487 − 0.4725j 0.5259 + 0.0000j

⎤⎥⎥⎥⎥⎦
.

It follows that P1(k) = PH
1 (k) and P2(k) = PT

2 (k). Consequently, the optimal feedback gain {K∗
1 ,K∗

2} can be computed
according to (11) as

K∗
1 =

[
0.0463 + 0.0962j 0.1140 + 0.1205j 0.6384 + 0.6279j − 0.7529 − 0.4637j − 0.0112 − 0.0584j

]
,

K∗
2 =

[
0.0463 − 0.0962j 0.1140 − 0.1205j 0.6384 − 0.6279j − 0.2122 − 0.0036j − 0.0112 + 0.0584j

]
.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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Finally, for simulation purpose, we choose the initial condition[
𝜉T(0)
𝜉T(−1)

]
=
[

4 1 −8 −6 9
4 4 8 −6 10

]
.

The state trajectories of the closed-loop system are recorded in Figure 2 from which we can observe the asymptotic stability
of the closed-loop system.

5 CONCLUSION

This paper has studied linear optimal control (LQR) of discrete-time complex-valued linear systems. Firstly, an iterative
algorithm was proposed to solve the associated bimatrix Riccati equation introduced in our early study. The convergence of
the algorithm was proven. Then, the LQR problem for the antilinear system, which is a special case of the complex-valued
linear system, was carefully studied and three different solutions were obtained, namely, bimatrix Riccati equation–based
solution, anti-Riccati equation–based solution, and normal Riccati equation–based solution. Relationships among these
three different solutions are revealed. The bimatrix Riccati equation–based approach was then used to solve the LQR
problem of linear time-delay systems with one-step state delay, and an illustrative example demonstrated the effectiveness
of the proposed approach.
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APPENDIX

BIMATRIX AND ITS PROPERTIES

Let ({A1,A2} + {B1,B2})x = {A1,A2}x + {B1,B2}x and {A1,A2}{B1,B2}x = {A1,A2}({B1,B2}x). We denote {A1,A2} =

{B1,B2} ∈ {Cn×m,Cn×m} if {A1,A2}x = {B1,B2}x,∀x ∈ Cm. Then, the bimatrix has some properties1:

{A1,A2}{B1,B2} ={A1B1 + A#
2B2,A#

1B2 + A2B1}, (A1)
{A1,A2} + {A3,A4} ={A1 + A3,A2 + A4},

and ({A1,A2}{A3,A4}){A5,A6} = {A1,A2}({A3,A4}{A5,A6}). We say that {A1,A2} ∈ {Cn×m,Cn×m} is a zero bimatrix
(denoted by n×m) if {A1,A2}x = 0n×1 for any x ∈ Cm. If n = m, we say that {A1,A2} is a square bimatrix. A square
bimatrix {A1,A2} is an identity bimatrix (denoted by n) if {A1,A2}x = x, ∀x ∈ Cn. We have shown that1

{A1,A2} =n ⇐⇒ (A1,A2) = (In, 0n×n) ,
{A1,A2} =n×m ⇐⇒ (A1,A2) = (0n×m, 0n×m). (A2)

The power of the square bimatrix {A1,A2}, denoted by {A1,A2}i with i ∈ Z+, can be defined recursively as {A1,A2}i =
{A1,A2}{A1,A2}i−1 with {A1,A2}0 = n, according to (A1).

For a square bimatrix {A1,A2}, if there exists another square bimatrix {A3,A4} such that {A1,A2}{A3,A4} =
{A3,A4}{A1,A2} = n, then {A3,A4} is called the inverse bimatrix of {A1,A2} and is denoted by {A3,A4} = {A1,A2}−1.
A square bimatrix {A1,A2} is invertible if and only if

{A1,A2}≜ ≜

[A1 A#
2

A2 A#
1

]
is invertible.1 Moreover, {A1,A2}−1 = {A3,A4}, where1

[
A3
A4

]
= ({A1,A2}≜)−1

[
In

0n×n

]
.

Therefore, {A1, 0n×n} is invertible if and only if A1 is nonsingular, and {0n×n,A2} is invertible if and only if A2 is non-
singular. Moreover, {A1, 0n×n}−1 = {A−1

1 , 0n×n} and {0n×n,A2}−1 = {0n×n,A−#
2 }.1 From (A2), the norm of a bimatrix

{A1,A2} ∈ {Cn×m,Cn×m} can be defined as

||{A1,A2}|| = ||A1|| + ||A2||.

https://doi.org/10.1002/oca.2554
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The conjugate-transpose of the bimatrix {A1,A2} ∈ {Cn×m,Cn×m} is defined as1

{A1,A2}H ≜
{

AH
1 ,AT

2
}
=
{

AH
1 ,A#H

2
}
.

The square bimatrix {P1,P2} ∈ {Cn×n,Cn×n} is said to be Hermite if 1

{P1,P2} = {P1,P2}H =
{

PH
1 ,PT

2
}
. (A3)

A bimatrix {P1,P2} is said to be (semi)positive definite (denoted by {P1,P2} > (≥ )0), if it is a square Hermite bimatrix
and, for any x ∈ Cn, Re(xH{P1,P2}x) > (≥ )0,∀x ≠ 0.1 It has been shown in our other work1 that {P1,P2} is (semi)positive
definite if and only if {P1,P2}⋄ > (≥ )0. It can be readily shown that {P1,P2} ≥ {Q1,Q2} > 0 implies {P1,P2}−1 ≤

{Q1,Q2}−1, and, for any {A1,A2},

{A1,A2}H{P1,P2}{A1,A2} ≥ {A1,A2}H{Q1,Q2}{A1,A2}.

For given matrices A,B,C,D with appropriate dimensions and A,C and C−1 + DA−1B are invertible, the well-known
Sherman-Morrison-Woodbury formula holds true23

(A + BCD)−1 = A−1 − A−1B
(

C−1 + DA−1B
)−1DA−1. (A4)

The following lemma extends this identity to the bimatrix case. The proof is straightforward and is omitted.

Lemma 3. Let {A1,A2}, {B1,B2}, {C1,C2}, and {D1,D2} be some given bimatrices with appropriate dimensions. Assume
that {A1,A2}, {C1,C2} and {C1,C2}−1 − {D1,D2}{A1,A2}−1{B1,B2} are all invertible. Then,

({A1,A2} + {B1,B2}{C1,C2}{D1,D2})−1

={A1,A2}−1 − {A1,A2}−1{B1,B2}({C1,C2}−1

+ {D1,D2}{A1,A2}−1{B1,B2})−1{D1,D2}{A1,A2}−1.
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