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In a simple connected graph, the average 2-degree of a vertex is the average degree
of its neighbors. With the average 2-degree sequence and the maximum degree ratio of
adjacent vertices, we present a sharp upper bound of the spectral radius of the adjacency
matrix of a graph, which improves a result in [Y. H. Chen, R. Y. Pan and X. D. Zhang,
Two sharp upper bounds for the signless Laplacian spectral radius of graphs, Discrete
Math. Algorithms Appl. 3(2) (2011) 185–191].

Keywords: Graph; adjacency matrix; spectral radius; average 2-degree.

Mathematics Subject Classification: 05C50

1. Introduction

Let G = (V, E) be a simple connected graph with vertex set V (G), edge set E(G)
and n = |V (G)|. For any vertex v ∈ V (G), let dv denote the degree of v, define
the average 2-degree Mv of v to be the average degree of the neighbors of v. In
other words, Mv =

∑
u∼v du/dv, where u ∼ v means vertices u and v are adjacent.

Throughout the paper, label the vertices of G by 1, 2, . . . , n such that M1 ≥ M2 ≥
· · · ≥ Mn. Let A = (aij) be the adjacency matrix of G, a binary matrix of order
n such that for any pair i, j ∈ V (G), aij = 1 if and only if i, j are adjacent in
G. The spectral radius ρ(G) of G is the largest eigenvalue of its adjacency matrix;
this parameter has been studied by many authors [1, 2, 5–9, 11–13] and can be
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used to induce some other bounds such as the upper bounds of signless Laplacian
eigenvalues [3, 4].

The following theorem is well-known and referred as Perron–Frobenius Theo-
rem [10, Chap. 2].

Theorem 1.1. If B is a nonnegative irreducible n×n matrix with largest eigen-
value ρ(B) and row-sums r1, r2, . . . , rn, then

ρ(B) ≤ max
1≤i≤n

ri

with equality if and only if the row-sums of B are all equal.

In this paper, we pay attention to the upper bounds of spectral radius of graphs
in terms of the average 2-degree sequence. By setting B = U−1AU , where U = diag
(d1, d2, . . . , dn), the following fact is easily seen from Theorem 1.1.

Theorem 1.2.

ρ(G) ≤ M1

with equality if and only if M1 = M2 = · · · = Mn.

A graph for which equality holds in Theorem 1.2 is called pseudo-regular in [13].
In 2011 [3, Theorem 2.1], Chen, Pan and Zhang gave the following bound.

Theorem 1.3. Let a := max{di/dj | 1 ≤ i, j ≤ n}. Then

ρ(G) ≤ M2 − a +
√

(M2 + a)2 + 4a(M1 − M2)
2

,

with equality if and only if G is pseudo-regular.

We will show in Corollary 3.3 that Theorem 1.3 is indeed a generalization of
Theorem 1.2. Moreover, we give the following theorem to generalize Theorem 1.3.

Theorem 1.4. For any b ≥ max{di/dj | i ∼ j} and 1 ≤ � ≤ n,

ρ(G) ≤
M� − b +

√
(M� + b)2 + 4b

∑�−1
i=1 (Mi − M�)

2
,

with equality if and only if G is pseudo-regular.

Note that Theorem 1.3 is a special case of Theorem 1.4 by taking b = a and � = 2.
The proof of Theorem 1.4 is a subtle application of Perron–Frobenius Theorem. This
idea was previously employed in [9, 11]. Indeed, our proof is an edited version of
the proof of [9, Theorem 1.7].

We provide some examples of pseudo-regular graphs that are not regular in
Example 2.1. The lowest upper bound among the choices of b and � is investigated
in Sec. 3.

1450029-2



2nd Reading

February 20, 2014 16:23 WSPC/S1793-8309 257-DMAA 1450029

Spectral Radius and Average 2-Degree Sequence of a Graph

2. Proof of Theorem 1.4

Proof of Theorem 1.4. For each 1 ≤ i ≤ � − 1, let xi ≥ 1 be a variable to
be determined later. Let U = diag(d1x1, . . . , d�−1x�−1, d�, . . . , dn) be a diagonal
matrix of size n × n. Consider the matrix B = U−1AU . Note that A and B have
the same eigenvalues. Let r1, r2, . . . , rn be the row-sums of B. Then for 1 ≤ i ≤ �−1
we have

ri =
�−1∑
k=1

1
dixi

aikdkxk +
n∑

k=�

1
dixi

aikdk

=
1
xi

�−1∑
k=1

(xk − 1)aik
dk

di
+

1
xi

n∑
k=1

aik
dk

di

≤ b

xi


 �−1∑

k=1,k �=i

xk − (� − 2)


+

1
xi

Mi, (2.1)

since aikdk/di ≤ b. Similarly for � ≤ j ≤ n we have

rj =
�−1∑
k=1

xkajk
dk

dj
+

n∑
k=�

ajk
dk

dj

=
�−1∑
k=1

(xk − 1)ajk
dk

dj
+

n∑
k=1

ajk
dk

dj

≤ b

(
�−1∑
k=1

xk − (� − 1)

)
+ M�. (2.2)

Let

φ� =
M� − b +

√
(M� + b)2 + 4b

∑�−1
i=1 (Mi − M�)

2
.

For 1 ≤ i ≤ � − 1 let

xi = 1 +
Mi − M�

φ� + b
≥ 1. (2.3)

Then for 1 ≤ i ≤ � − 1 we have

ri ≤ b

xi


 �−1∑

k=1,k �=i

xk − (� − 2)


+

1
xi

Mi

=
b
∑�−1

k=1(Mk − M�) + φ�Mi + bM�

φ� + b + Mi − M�

=
1
4 [(M� − b)2 + (M� + b)2 + 4b

∑�−1
k=1(Mk − M�) − 2M2

� − 2b2 + 4bM�] + φ�Mi

φ� + b + Mi − M�
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=
φ2

� + φ�b − φ�M� + φ�Mi

φ� + b + Mi − M�

= φ�.

For � ≤ j ≤ n we have

ri ≤ b

(
�−1∑
k=1

xk − (� − 1)

)
+ M�

=
b
∑�−1

k=1(Mk − M�) + φ�M� + bM�

φ� + b

=
1
4 [4b

∑�−1
k=1(Mk −M�)+ 2M�

√
(M� + b)2 +4b

∑�−1
k=1(Mk −M�)+ 2M2

� +2bM�]

φ� + b

=
φ2

� + φ�b

φ� + b

= φ�.

Hence by Theorem 1.1,

ρ(G) = ρ(B) ≤ max
1≤i≤n

{ri} ≤ φ�.

The first part of Theorem 1.4 follows.
Suppose M1 = M2 = · · · = Mn. Then ρ(G) = M1 = φ� by Theorem 1.2. Hence

the equality in Theorem 1.4 follows.
To prove the necessary condition, suppose ρ(G) = φ�. Applying Theorem 1.1

and the inequalities in (2.1) and (2.2), φ� = ρ(G) ≤ max1≤i≤n ri ≤ φ�. Hence
r1 = r2 = · · · = rn = φ�, and the equalities in (2.1) and (2.2) hold. In particular,

b = aik
dk

di
(2.4)

for any 1 ≤ i ≤ n and 1 ≤ k ≤ � − 1 with xk − 1 > 0, and M� = Mn. We consider
three cases:

(1) Suppose M1 = M�: Clearly M1 = Mn.
(2) Mt−1 > Mt = M� for some 3 ≤ t ≤ �: Then xk > 1 for 1 ≤ k ≤ t − 1 by (2.3).

Hence by (2.4)

b = a12
d2

d1
= a21

d1

d2
= 1,

and di = n − 1 for all i = 1, 2, . . . , n. This implies that G is regular, a contra-
diction.

(3) M1 > M2 = M�: Then x1 > 1 by (2.3). Hence by (2.4), b = ai1d1/di for
2 ≤ i ≤ n. Hence d1 = n− 1 and d2 = d3 = · · · = dn = (n− 1)/b. Then (n− 1)/
b = M1 > M2 = Mn = (n − 1)/b − 1 + b. This implies b < 1, a contradiction.

This completes the proof of the theorem.
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Example 2.1. The graphs in Figs. 1–3 are pseudo-regular but not regular. In
particular, the graph in Fig. 3 has a cycle Ck of k vertices, and shares each vertex
of Ck with a triangle K3.

An interesting problem could be characterizing all the nonregular pseudo-regular
graphs.

Fig. 1. Graph with Mi = 2.

Fig. 2. Graph with Mi = 3.

Fig. 3. Graphs with Mi = 3.
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3. The Shape of the Sequence φ1, φ2, . . . , φn

Given a decreasing sequence M1 ≥ M2 ≥ · · · ≥ Mn of positive integers, consider
the functions

φ�(x) =
M� − x +

√
(M� + x)2 + 4x

∑�−1
i=1 (Mi − M�)

2
for x ∈ [1,∞). Note that φ�(b) is the upper bound of ρ(G) in Theorem 1.4.

The following proposition shows that the smaller the b in Theorem 1.4 is, the
lower the upper bound of ρ(G) reaches.

Proposition 3.1. For any 1 ≤ � ≤ n, φ�(x) is increasing on [1,∞).

Proof. For convenience, let

S =
�−1∑
i=1

(Mi − M�).

To show that φ�(x) is increasing on [1,∞), it is sufficient to show that the derivative
of φ�(x) is nonnegative. This follows from the following equivalent steps.

φ′
�(x) ≥ 0

⇔ − 1 +
M� + x + 2S√

(M� + x)2 + 4Sx
≥ 0

⇔ M� + x + 2S√
(M� + x)2 + 4Sx

≥ 1

⇔ (M� + x + 2S)2 ≥ (M� + x)2 + 4Sx

⇔ 4SM � + 4S2 ≥ 0.

Note that for 1 ≤ s ≤ n−1, Ms = Ms+1 implies φs(x) = φs+1(x). We adopt the
same viewpoint as [9, Proposition 3.1] to describe when the bound gets improved
throughout the sequence φ1(x), φ2(x), . . . , φn(x) in the following proposition.

Proposition 3.2. Suppose Ms > Ms+1 for some 1 ≤ s ≤ n− 1, and let the symbol
� denote > or =. Then

φs(x) � φs+1(x) if and only if
s∑

i=1

Mi � xs(s − 1).

Proof. Consider the following equivalent relations step by step.

φs(x) > φs+1(x)

⇔ Ms − Ms+1 +

√√√√(Ms + x)2 + 4x

s−1∑
i=1

(Mi − Ms)
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>

√√√√(Ms+1 + x)2 + 4x

s∑
i=1

(Mi − Ms+1)

⇔
√√√√(Ms + x)2 + 4x

s−1∑
i=1

(Mi − Ms) > 2xs − (Ms + x)

⇔ (Ms + x)2 + 4x

s∑
i=1

(Mi − Ms) > 4x2s2 − 4xs(Ms + x) + (Ms + x)2

⇔
s∑

i=1

Mi > xs(s − 1),

where the third relation is obtained from the second by taking square on both
sides, simplifying it, and deleting the common term Ms − Ms+1. Note that even if
2xs− (Ms + x) < 0 in the third relation, squaring both sides would be proper since

then
√

(Ms + x)2 + 4x
∑s−1

i=1 (Mi − Ms) ≥ |Ms + x| ≥ |2xs − (Ms + x)|. Similarly,
note that if

∑s
i=1 Mi = xs(s − 1), then Ms ≤ xs and 2xs − (Ms + x) ≥ 0. Hence

φs(x) = φs+1(x) (3.1)

⇔
√√√√(Ms + x)2 + 4x

s−1∑
i=1

(Mi − Ms) = 2xs − (Ms + x)

⇔ (Ms + x)2 + 4x
s∑

i=1

(Mi − Ms) = 4x2s2 − 4xs(Ms + x) + (Ms + x)2

⇔
s∑

i=1

Mi = xs(s − 1).

The following corollary shows that Theorem 1.3 is an improvement of
Theorem 1.2.

Corollary 3.3. For any x ∈ [1,∞), φ2(x) ≤ M1 with equality if and only if
M2 =M1.

Proof. If M2 = M1 then φ2(x) = M2 ≤ M1. Suppose M2 < M1. Choose s = 1 and
the symbol � to be > in Proposition 3.2,

M1 = φ1(x) > φ2(x).

Choosing b = max{di/dj | i ∼ j}, by Proposition 3.2 with s = 2 and x = b, if
M2 > M3 and M1 + M2 > 2b, then φ2(b) > φ3(b). This is a case when Theorem 1.4
is truly an improvement of Theorem 1.3.
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Fig. 4. Graph with φ2 > φ3.

Example 3.4. For the graph in Fig. 4, M1 = M2 = 4, M3 = 7/2, b = 4/3,
φ1(b) = φ2(b) = 4, φ3(b) � 3.762 and ρ(G) = 1 +

√
7 � 3.646.

Note that φ1(x) = M1 ≥ φ2(x) by Corollary 3.3, and for 2 ≤ t ≤ n − 1,∑t
i=1 Mi < xt(t − 1) implies Mt < x(t − 1), and hence

∑t+1
i=1 Mi < xt(t − 1) +

x(t− 1) < xt(t + 1). This implies that the sequence φ1(x), φ2(x), . . . , φn(x) is com-
posed by two parts. The first part is decreasing and the second part is increasing. In
particular, if we choose x = M1, M2 > M3, s = 2 and � to be > in Proposition 3.2,
then M1 + M2 ≯ 2M1 = xs(s − 1), so φ2(M1) ≤ φ3(M1). Hence φ2(M1) is smallest
among φ1(M1), φ2(M1), . . . , φn(M1).
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