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Abstract

The spectral radius ρ(A) of a matrix A is the maximum modulus of the eigenvalues. We present bounds on ρ(A) that
are often tighter and are applicable to a larger class of nonnegative matrices than previously reported. The bounds are
particularly suited to matrices which are sparse.

We complete the paper by applying these bounds to digraphs, deriving the associated equality conditions which
relate to the outdegree regularity of the digraph. Finally, we show that the equality conditions may be achieved only
for very specific values of the digraph’s spectral radius.
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1. Introduction

Let A = (ai j), 1 ≤ i, j ≤ n be an n × n nonnegative matrix. The eigenvalues of A are the complex roots of the
characteristic equation det(A − µI) = 0. The set of distinct eigenvalues is called the spectrum of A, denoted σ(A) =

{µ1, . . . , µm}, and the spectral radius (or Perron root in this context) of A is the real number ρ(A) = max {|µ| : µ ∈ σ(A)}.
Recall that for a nonnegative matrix A, the spectral radius is an eigenvalue; that is, ρ(A) ∈ σ(A) (see [1, p. 503]).

In this paper, we derive several new bounds on the spectral radius of nonnegative matrices which we then use to
bound the spectral radius of a large class of digraphs. Our results generalize those found in Zhang & Li [2], Kolotilina
[3], Xu & Xu [4], and Güngör & Das [5]. With respect to the bounds of Liu [6], we find new equality conditions when
they are applied to digraphs. (For a survey of prior work on the spectral radius of digraphs, see Brualdi [7].)

The nonnegative n× n matrix A, with n ≥ 2, is said to be reducible if there exists a permutation matrix P such that
PAPT =

( X Y
0 Z

)
where X and Z are square submatrices. Otherwise, A is said to be irreducible.

Let ri(A) denote the sum of the elements along the ith row of A; that is ri(A) =
∑n

j=1 ai j for i ∈ {1, . . . , n}. The
following two classical results bound the spectral radius.

Theorem 1.1 (Frobenius). Let A = (ai j) be an n×n nonnegative matrix with spectral radius ρ(A) and row sums ri(A),
i ∈ {1, . . . , n}. Then

min
i

ri(A) ≤ ρ(A) ≤ max
i

ri(A). (1)

Moreover, if A is an irreducible matrix, then equality holds on either side (and hence both sides) of (1) if and only if
all row sums of A are equal.

Proof. See Minc [8, pp. 24–26].

Theorem 1.2 (See [1, 2]). Let A be an n × n nonnegative matrix with spectral radius ρ(A) and x = (x1, . . . , xn)T be a
positive column vector. Then

min
1≤i≤n

[
(Ax)i

xi

]
≤ ρ(A) ≤ max

1≤i≤n

[
(Ax)i

xi

]
. (2)

Moreover, if A is an irreducible matrix, then equality holds on either side (and hence both sides) of (2) if and only if
the vector x is an eigenvector of A corresponding to ρ(A).
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In the following section, we present new bounds, along with equality conditions, on the spectral radius of general
nonnegative matrices. We further refine the equality conditions in Section 3 and then apply these bounds and equality
conditions to general digraphs in Section 4, illustrating them with a detailed example.

2. Bounds on the Spectral Radius of Nonnegative Matrices

In this section, we characterize the spectral radius of nonnegative matrices with nonzero row sums. It is well
known [4, 6] that deleting the zero rows and their corresponding columns (i.e., the columns having the same indices
as the zero rows) leaves unaffected the nonzero entries in the spectrum of a matrix. Since the column removal may
reveal new all-zero rows, this process may have to be applied multiple times to finally produce a matrix with nonzero
row sums. Once this is achieved, the bounds of this section may be applied to the reduced matrix.

Let A = (ai j) be an n × n matrix. We denote the (i, j)th entry of matrix Ak by a(k)
i j , noting that a(0)

i j = δi j, where δi j

is the Kronecker delta. Let ri(Ak) denote the sum of the ith row of Ak, that is, ri(Ak) =
∑n

j=1 a(k)
i j . Using the fact that,

for any n × n matrix B, the row sums of the product AB are given by

ri(AB) =

n∑
j=1

n∑
k=1

ai jb jk =

n∑
j=1

ai jr j(B), (3)

one can derive additional useful row-sum expressions such as ri(Ak) =
∑n

j=1 a(k−t)
i j r j(At), for all 0 ≤ t ≤ k. We will make

frequent use of the column vector x = (r1(Ak), . . . , rn(Ak))T and the diagonal matrix D = diag(r1(Ak), . . . , rn(Ak)), for
some integer k ≥ 0. Then,

(At x)i =

n∑
j=1

a(t)
i j r j(Ak) = ri(At+k) (4)

and, assuming that the row sums of Ak are nonzero,

ri(D−1AtD) =

∑n
j=1 a(t)

i j r j(Ak)

ri(Ak)
=

ri(At+k)
ri(Ak)

, (5)

for any t ≥ 0 and all i ∈ {1, . . . , n}. Also, as Liu [6] remarked, if the row sums of a nonnegative matrix A are nonzero,
then so are the row sums of Ak, for k ≥ 0. We now prove a theorem that provides a generalization of the bounds in Xu
& Xu [4]. We will need the following two lemmas, the first of which is well known.

Lemma 2.1. Let A be an n × n nonnegative matrix with spectral radius ρ(A). If AL is irreducible, for some L > 0,
then A is also irreducible and the positive eigenvectors of A and AL agree up to a scale factor.

Lemma 2.2. Let A be an n × n matrix with spectral radius ρ(A) , 0. If, for some k ≥ 0, x = (r1(Ak), . . . , rn(Ak))T is
an eigenvector of A corresponding to ρ(A), then so is y = (r1(Ak+1), . . . , rn(Ak+1))T , and y = ρ(A)x.

Proof. Since (Ax)i =
∑n

j=1 ai jr j(Ak) = ri(Ak+1) = yi for all i ∈ {1, . . . , n}, then Ax = y = ρ(A)x.

Theorem 2.3. Let A be an n × n nonnegative matrix with spectral radius ρ(A) and nonzero row sums. Then, for any
integers M > 0, N ≥ 0, and k ≥ 0,

min
1≤i≤n
1≤ j≤n


 ri

(
Ak+M

)
r j

(
Ak+N

)
ri(Ak) r j(Ak)


1

M+N

: a(M)
i j > 0

 ≤ ρ(A) ≤ max
1≤i≤n
1≤ j≤n


 ri

(
Ak+M

)
r j

(
Ak+N

)
ri(Ak) r j(Ak)


1

M+N

: a(M)
i j > 0

 . (6)

Moreover, if AM+N is an irreducible matrix, then equality holds in either side (and hence both sides) of (6) if and only
if x = (r1(Ak), . . . , rn(Ak))T is an eigenvector of A.
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Proof. Define the invertible diagonal matrix D = diag(r1(Ak), . . . , rn(Ak)). Since AM+N and D−1AM+N D are similar
matrices, we have

ρ(AM+N) = ρ(D−1AM+N D) ≤ max
1≤i≤n

ri

(
D−1AM+N D

)
(7)

where the inequality in (7) follows from Theorem 1.1. The row sums in (7) can be formulated as

ri

((
D−1AMD

) (
D−1AN D

))
=

n∑
j=1

(
D−1AMD

)
i j

r j

(
D−1AN D

)
(8)

≤ ri

(
D−1AMD

)
max

j

{
r j

(
D−1AN D

)
: a(M)

i j > 0
}

(9)

= max
j

{
ri

(
D−1AMD

)
r j

(
D−1AN D

)
: a(M)

i j > 0
}
, (10)

where (8) follows from (3). The restricted maximizations in (9) and (10) make use of the fact that the sparsity patterns
(i.e., the locations of its nonzero entries) of AM and D−1AMD are the same.

Applying (5) to the factors in the product in (10), with t = M and t = N, respectively, we conclude that

ρ(A)M+N = ρ(AM+N) ≤ max
1≤i≤n
1≤ j≤n

 ri

(
Ak+M

)
r j

(
Ak+N

)
ri(Ak) r j(Ak)

: a(M)
i j > 0

 .
The proof of the lower bound in (6) is completely analogous.

We now show the equality condition, assuming that AM+N is irreducible. If equality holds in the upper bound of
(6), then (7) must also hold with equality. Then, by the equality condition of Theorem 1.1 applied to D−1AM+N D,
we conclude that, in fact, ρ(D−1AM+N D) = ri

(
D−1AM+N D

)
, for all i ∈ {1, . . . , n}. Referring to (5), we know that

ri

(
D−1AM+N D

)
= (AM+N x)i/xi, for all i, where x = (r1(Ak), . . . , rn(Ak))T . This shows that x is a positive eigenvector

of AM+N . Now we apply Lemma 2.1 to show that x is an eigenvector of A, as desired.
Conversely, suppose that x = (r1(Ak), . . . , rn(Ak))T is an eigenvector of A. Then Lemma 2.2 implies ρ(A)t =

ri(Ak+t)/ri(Ak), for all i ∈ {1, . . . , n} and t ≥ 0. This shows that both the upper and lower bounds in (6) hold with
equality.

Remark 2.1. The nonzero row-sum assumption is not required for k = 0.

The bounds of Xu & Xu [4] are a special case of Theorem 2.3, where k = M = N = 1. As another special case, in
which N = 0, we recover the following bounds due to Liu [6].

Corollary 2.4 (Liu [3, 6]). For any integer L > 0,

min
1≤i≤n

 ri

(
Ak+L

)
ri(Ak)


1/L

≤ ρ(A) ≤ max
1≤i≤n

 ri

(
Ak+L

)
ri(Ak)


1/L

. (11)

Since the new bounds of Theorem 2.3 depend upon the sparsity pattern of AM , they may produce sharper bounds
than the bounds of Liu when critical entries of A are zero. However, from the proof of Theorem 2.3 it is clear that
Corollary 2.4 with L = M + N is at least as tight as Theorem 2.3. Nevertheless, in some applications it may be
prohibitively complex to compute ri(AM+N+k) for Corollary 2.4 as opposed to examining the sparsity pattern of AM

and computing ri(AM+k) and ri(AN+k) as required by Theorem 2.3.
Next, we briefly generalize bounds of a similar form developed by Kolotilina [3, §5].

Theorem 2.5. Let A = (ai j) be an n × n nonnegative matrix with spectral radius ρ(A) and row sums r1(A), . . . , rn(A),
all nonzero. Then

min
1≤i≤n
1≤ j≤n

 rαi (Ak+L)r1−α
j (Ak+L)

rαi (Ak)r1−α
j (Ak)

: a(L)
i j > 0

 ≤ ρ(AL) ≤ max
1≤i≤n
1≤ j≤n

 rαi (Ak+L)r1−α
j (Ak+L)

rαi (Ak)r1−α
j (Ak)

: a(L)
i j > 0

 (12)

for any integer L ≥ 1 and α such that 0 ≤ α ≤ 1.
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Proof. We apply the bounds

min
1≤i≤n
1≤ j≤n

[
rαi (A)r1−α

j (A) : ai j > 0
]
≤ ρ(A) ≤ max

1≤i≤n
1≤ j≤n

[
rαi (A)r1−α

j (A) : ai j > 0
]
,

which were proved in Kolotilina [3, §5], to D−1ALD, where the matrix D = diag(r1(Ak), . . . , rn(Ak)).

Remark 2.2. Note that (12) with α = 0.5 is equivalent to (6) with L = M = N.

Since ρ(AT ) = ρ(A), the theorems and corollaries of this section and the previous may be restated in terms of the
column sums and the left eigenvectors of A.

3. Further Equality Conditions on the Spectral Radius Bounds

In this section we develop alternative equality conditions for (6) by generalizing the proofs in Zhang & Li [2, §2].
Like Zhang & Li, we divide the equality conditions for these bounds into two cases corresponding to whether AM+N

is irreducible or reducible. We address the former first, which readily follows from (4).

Corollary 3.1 (to Theorem 2.3). If AM+N is an irreducible matrix, then equality holds on either side (and hence both
sides) of (6) if and only if ρ(A) = ri(Ak+1)/ri(Ak) for all i ∈ {1, . . . , n}.

The case in which AM+N is reducible requires some background concerning imprimitive matrices, which we review
next. A nonnegative irreducible matrix A having only one eigenvalue with a modulus equal to ρ(A) is said to be
primitive. If a nonnegative irreducible matrix A has h > 1 eigenvalues with modulus ρ(A), it is said to be imprimitive
or a cyclic matrix, and h is known as the index of imprimitivity.

Lemma 3.2 (See [9, §3.4].). Let A be an n × n irreducible nonnegative matrix with index of imprimitivity equal to h.
Let L > 0 be an integer and r be the greatest common divisor (gcd) of h and L. Then AL is reducible if and only if
r > 1. In general there is a permutation matrix P that symmetrically permutes AL to the block diagonal matrix

PALPT =


C1 0 · · · 0
0 C2 · · · 0
...

...
. . .

...
0 0 · · · Cr

 , (13)

where each C` matrix is an n` × n` irreducible nonnegative matrix. Furthermore, for r > 1, P also symmetrically
permutes A to form

PAPT =



0 A12 0 · · · 0
0 0 A23 · · · 0
...

...
...

. . .
...

0 0 0 · · · Ar−1,r
Ar,1 0 0 · · · 0


, (14)

where the all-zero submatrices along the diagonal are square and of order n1, . . . , nr, respectively. When (14) holds
with r > 1, we say that A is r-cyclic. The block (i.e., submatrix) A`,m is n` × nm, for all ` ∈ {1, . . . , r} and m =

(` mod r) + 1. Moreover,

C1 =
[
A12A23 · · · Ar−1,rAr,1

](L/r)

C2 =
[
A23A34 · · · Ar,1A12

](L/r)

. . .

Cr =
[
Ar,1A12 · · · Ar−2,r−1Ar−,1r

](L/r) ,

and ρ(AL) = ρ(C1) = · · · = ρ(Cr).
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Remark 3.1. Note that for a given matrix, its r value may vary depending on the specified value of L, since r =

gcd(h, L).

Recall from Perron-Frobenius theory that each square nonnegative matrix A has at least one nonnegative eigen-
vector x , 0, such that Ax = ρ(A)x [1, p. 503]. If A is irreducible, such an eigenvector x is necessarily positive and
unique up to a positive scale factor. If A is reducible, it may have a positive eigenvector, or even multiple linearly
independent positive eigenvectors associated with ρ(A). In the case of the reducible matrix AL of Lemma 3.2, having
eigenvalue ρ(AL) with an algebraic multiplicity equal to r, there are r linearly independent positive eigenvectors of AL

corresponding to ρ(AL), a fact which we utilize to prove the next theorem.

Theorem 3.3. Let A be an n×n irreducible nonnegative matrix with spectral radius ρ(A), index of imprimitivity equal
to h, and nonzero row sums. Let M > 0, N ≥ 0, and k ≥ 0 be integers and r = gcd(h,M + N). If AM+N is reducible
(r > 1), then equality holds on either side (and hence both sides) of (6) if and only if

ri(Ak+1)
ri(Ak)

= cm(i), (15)

for all i ∈ {1, . . . , n}, where the ith row of A has been assigned to the `th block, ` ∈ {1, . . . , r}, using the mapping
` = m(i) according to (13) and (14), and c` is a constant for the `th block. Moreover, ρ(A)r =

∏r
`=1 c`.

Proof. Let x = (r1(Ak), . . . , rn(Ak))T . Without loss of generality we will assume that A is in the form of (14) and AM+N

is in block diagonal form (13), where each C` is n` × n` and irreducible. Let x be divided into r subvectors, such that
x = (wT

1 , . . . ,w
T
r )T and the `th subvector w` has n` elements.

If either equality holds in (6), then by applying Lemma 3.2 and Theorem 1.2 block-by-block, it can be shown that
x is a positive eigenvector of AM+N . Now, we show thatX =

{
(g1wT

1 , . . . , grwT
r )T : g1, . . . , gr ∈ R+

}
, is the complete set

of positive eigenvectors of AM+N , where R+ is the set of real, positive numbers. If we evaluate y in AM+Ny = ρ(AM+N)y,
where y ∈ X, it readily reduces to g`C`w` = ρ(AM+N)g`w` or simply C`w` = ρ(AM+N)w`, for all ` ∈ {1, . . . , r} due to
the block diagonal form of AM+N . Since C` is irreducible, w` is the unique positive eigenvector of C`, up to a positive
scale factor, for all ` ∈ {1, . . . , r}. Hence, there can be no other positive eigenvectors of AM+N beyond set X.

Since A is irreducible, it must have a unique (up to a scale factor) positive eigenvector that we shall call y′.
Additionally, y′ is in the set X, because every eigenvector of A must also be an eigenvector of AM+N . For the first
block, with 1 ≤ i ≤ n1, we find

ri(Ak+1)
ri(Ak)

=
(Ax)i

xi
=

(A12w2)i

(w1)i
=
ρ(A)g1 (w1)i

g2 (w1)i
= ρ(A)

g1

g2
, (16)

where we take g1, . . . , gr to be real, positive constants that depend upon y′. Note that (16) is constant within the first
block. The other blocks (1 < ` ≤ r) follow similarly, confirming (15).

Conversely, suppose that (15) is true for all i ∈ {1, . . . , n}. Then, for the first block (` = 1), using (3), (4), and (15),
we see that

ri(Ak+L)
ri(Ak)

=

∑n
j=1 a(L−1)

i j r j(Ak+1)

ri(Ak)
=

c1
∑n

j=1 a(L−1)
i j r j(Ak)

ri(Ak)
= · · · =

c1c2 · · · cL ri(Ak)
ri(Ak)

= c1c2 · · · cL,

for all 1 ≤ i ≤ n1 and 1 ≤ L ≤ r. For values of L greater than r the indexing of c` must wrap around to 1. Thus, for
the ith row, which is in block m(i), we have

ri(Ak+M)
ri(Ak)

=

m(i)+M−1∏
`=m(i)

c[(`−1) mod r]+1 and
ri(Ak+N)
ri(Ak)

=

m(i)+N−1∏
`=m(i)

c[(`−1) mod r]+1, (17)

for all i ∈ {1, . . . , n}. Recognize that the values of (17) are still dependent on the row index i. Next, we limit our
consideration of (17) to rows i and j, respectively, such that a(M)

i j > 0 as in (6). Thus, row j is in block m( j), where
m( j) = [(m(i)+M−1) mod r]+1. Therefore, forming the product of the row-sum ratios in (17), with such a restriction,
results in row-sum ratios in the right-hand side of (6) that are independent of i and, hence, equality is true on both
sides of (6) with ρ(A)r =

∏r
`=1 c`.
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4. Bounds Applied to Digraphs

In this section, we cast the results of previous sections in graph-theoretic terms and derive further equality condi-
tions related to the integrality of the adjacency matrix. We first review some basic concepts and terminology related
to digraphs. (For a more complete treatment, we refer the reader to Minc [8, §4.3] and Brualdi & Ryser [9, chap. 3].)
Let G = (V, E) be a directed graph, or digraph, with a nonempty set of n vertices, V = {v1, ..., vn}, and a collection
E of directed edges or arcs. The digraph is called simple if it contains no self-loops or multiarcs. In contrast to the
results of Zhang & Li [2], Xu & Xu [4], and Güngör & Das [5] which we generalize below, our results are not limited
to simple digraphs.

The adjacency matrix A(G) of any digraph G is the nonnegative matrix whose (i, j)th entry ai j is the number of
arcs directed from vertex vi to vertex v j in G. The spectral radius ρ(G) of digraph G is defined to be the spectral
radius of A(G). In a digraph G, a directed walk is an alternating sequence of vertices and arcs from vi to v j in G such
that every arc in the sequence is preceded by its initial vertex and is followed by its terminal vertex. The length of a
directed walk is the number of arcs in the sequence. The number of distinct directed walks from vi to v j of length k in
G is equal to the (i, j)th entry of A(G)k and is denoted by Wk(i, j). The digraph G is strongly connected if and only if
A(G) is irreducible. A strongly connected digraph G is also characterized by an index of imprimitivity h(G) which is
equal to the index of imprimitivity of A(G). Furthermore, a digraph G is classified as cyclically r-partite when r > 1
and r divides h(G); see, for example, Brualdi & Ryser [9, §3.4].

The outdegree d+
i of vertex vi ∈ V in the digraph G = (V, E) is defined to be the number of arcs in E with initial

vertex vi. Thus, the outdegree of vertex vi is equal to the ith row sum of the adjacency matrix A(G). This concept can
be generalized to the k-outdegree dk+

i , which is the number of directed walks of length k with starting vertex vi. That
is, dk+

i ,
∑n

j=1 Wk(i, j) for any k > 0 and d0+
i , 1.

A vertex vi with no outgoing arcs (i.e., d+
i = 0) is known as a sink. Sinks correspond to zero rows in A(G). Thus,

the results of Sections 2 and 3 directly apply to general digraphs without sinks. The first theorem in this section
bounds the spectral radii of these digraphs, while the final corollary will show that equality in the bounds may only
be achieved for very limited values of ρ(G).

We need to introduce terminology to capture the equality conditions of Section 3 in a digraph context. With respect
to Corollary 3.1, we will call digraph G = (V, E) average κ-outdegree regular if

dκ+i

d(κ−1)+
i

= c, for all vi ∈ V,

where κ ≥ 1. Thus for κ = 2 our definition matches that of Zhang & Li. If G is cyclically r-partite, the set of vertices
V may be partitioned into r disjoint subsets V = V1 ∪ V2 ∪ · · · ∪ Vr according to (14). With respect to Theorem 3.3,
we will call digraph G average κ-outdegree r-quasiregular if G is cyclically r-partite and

dκ+i

d(κ−1)+
i

= c j, for all vi ∈ V j

and all j ∈ {1, . . . , r}, where κ ≥ 1. To be cyclically r-partite, all arcs joining vertices in V j either initiate in
V[( j−2) mod r]+1 or terminate in V( j mod r)+1. Thus for r = 2, this condition degenerates to the bipartite-semiregular
condition of Zhang & Li. For κ = 1, we suggest dropping the word “average” from these two new terms to be
consistent with prior terminology.

Now we are ready to formulate the equality conditions of Theorem 2.3 in digraph terms.

Theorem 4.1. Let G = (V, E) be a digraph with spectral radius ρ(G), n vertices, and no sinks. Then, for any integers
M > 0, N ≥ 0, and k ≥ 0,

min
1≤i≤n
1≤ j≤n


d(k+M)+

i d(k+N)+
j

dk+
i dk+

j


1

N+M

: WM(i, j) > 0

 ≤ ρ(G) ≤ max
1≤i≤n
1≤ j≤n


d(k+M)+

i d(k+N)+
j

dk+
i dk+

j


1

N+M

: WM(i, j) > 0

 . (18)

Moreover, if G is strongly connected, then equality in (18) holds if and only if G is average (k + 1)-outdegree regular
or average (k+1)-outdegree r-quasiregular or both, where r = gcd(N + M, h(G)) and h(G) is the index of imprimitivity
of G.
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Proof. We apply Theorem 2.3 to the adjacency matrix A(G) to yield (18). Corollary 3.1 and Theorem 3.3 justify the
equality conditions.

Remark 4.1. In practice, one will likely apply (18) with M = 1, for simplicity in its evaluation. When M = 1, the
condition that WM(i, j) > 0 is equivalent to {vi, v j} ∈ E.

As a corollary, we find the following new equality conditions on the bounds of Liu.

Corollary 4.2. For any integer L > 0 and r = gcd(L, h(G)), the following bounds are satisfied with the same equality
conditions as Theorem 4.1,

min
1≤i≤n

d(k+L)+
i

dk+
i

1/L

≤ ρ(G) ≤ max
1≤i≤n

d(k+L)+
i

dk+
i

1/L

. (19)

The following lemma presents another useful result from Liu [6] that we will use shortly. It shows that, when
indexed by k, the upper and lower bounds of (11) and (19) form monotonically non-increasing and non-decreasing
sequences, respectively.

Lemma 4.3 (Liu [6, Theorem 3.3]). Let A be an n × n nonnegative matrix with nonzero row sums. Then, for any
integer L > 0,

min
1≤ j≤n

 r j

(
Ak+L

)
r j(Ak)

 ≤ ri

(
Ak+1+L

)
ri(Ak+1)

≤ max
1≤ j≤n

 r j

(
Ak+L

)
r j(Ak)

 ,
for all k ≥ 0 and i ∈ {1, . . . , n} .

Lemma 4.4. Let c be a rational number and d be a nonzero, finite real number. If the sequence {d · c j}∞j=0 contains
only integers, then c is also an integer.

Proof. Let c = p/q, where p and q > 0 are coprime integers. Since d · p j/q j is an integer, d is a multiple of q j, which
cannot hold for all j ≥ 0 unless q = 1.

Theorem 4.5. Let G be a strongly connected digraph. If equality holds in (19) for G and some k = t, then equality
holds for all k ≥ t and ρ(G) is the rth root of an integer, where r = gcd(L, h(G)).

Proof. Lemma 4.3 proves the first part by showing that the bounds are monotonic in k. In the case that AL is irreducible
(r = 1) and equality holds in (19), then by Corollary 3.1, c = ρ(G) is a rational number and d( j+t)+

i = dt+
i ρ(G) j holds

for all j ≥ 0 and all i ∈ {1, . . . , n}. Since the k-outdegree dk+
i of any vertex is integral, then by Lemma 4.4, ρ(G) is an

integer. In the case that AL is reducible (r > 1) and equality holds in (19), then by Theorem 3.3, ρ(G)r is a rational
number and d(r j+t)+

i = dt+
i ρ(G)r j holds for all j ≥ 0 and all i ∈ {1, . . . , n}. Thus, ρ(G)r is an integer.

Corollary 4.6. Let G be a strongly connected digraph. If equality holds in (18) for G and some M > 0, N ≥ 0, and
k ≥ 0, then ρ(G) is the rth root of an integer, where r = gcd(M + N, h(G)).

Proof. As discussed in Section 2, the bounds of Corollary 2.4 with L = M + N are at least as tight as the bounds of
Theorem 2.3. Therefore, with respect to the upper bounds,

ρ(G)M+N ≤ max
1≤i≤n

d(k+M+N)+
i

dk+
i

 ≤ max
1≤i≤n
1≤ j≤n

d(k+M)+
i d(k+N)+

j

dk+
i dk+

j

: WM(i, j) > 0

 . (20)

Assuming equality holds on the right side of (18), then equality holds throughout (20), and we may apply Theorem 4.5.

Just as deleting the zero rows and their corresponding columns preserved the spectral radius in Section 2, the
removal of any sinks from the digraph G leaves ρ(G) undisturbed. Thus, this simple modification allows us to extend
the bounds of this section to general digraphs. Additionally, removing sources from the digraph may tighten the
bounds.
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Figure 1: Digraph G1 having adjacency matrix A(G1)

Example 4.1. The order-5 example presented in [4] and [5] provides a useful illustration. Given the digraph G1 =

(V, E) shown in Fig. 1, we find the 5 × 5 adjacency matrix to be

A(G1) =


0 0 0 1 1
1 0 1 1 0
1 1 0 0 0
0 0 1 0 1
0 1 1 0 0

 .
The spectral radius of G1 is ρ(G1) ≈ 2.193399638. First, we examine Corollary 4.2. Table 1 shows the quantities
corresponding to each vertex vi ∈ V needed to evaluate (19), for all values of (k, L) such that L + k ≤ 4. The minimum
and maximum of each, shown on the right side of the table, form the bounds on ρ(G1). The bounds corresponding

Table 1: Intermediate Computations and Bounds of Corollary 4.2 for all (k, L), such that L + k ≤ 4.

(k, L) Parameters i = 1 i = 2 i = 3 i = 4 i = 5 min max

d+
i (0, 1) 2 3 2 2 2 2 3√

d2+
i (0, 2) 2 2.4495 2.2361 2 2.2361 2 2.4495

d2+
i /d1+

i (1, 1) 2 2 2.5 2 2.5 2 2.5

3

√
d3+

i (0, 3) 2.0801 2.3513 2.1544 2.1544 2.2240 2.0801 2.3513√
d3+

i /d1+
i (1, 2) 2.1213 2.0817 2.2361 2.2361 2.3452 2.0817 2.3452

d3+
i /d2+

i (2, 1) 2.25 2.1667 2 2.5 2.2 2 2.5

4

√
d4+

i (0, 4) 2.1407 2.3206 2.1657 2.1407 2.1899 2.1407† 2.3206
3

√
d4+

i /d1+
i (1, 3) 2.1898 2.1302 2.2240 2.1898 2.2572 2.1302 2.2572†√

d4+
i /d2+

i (2, 2) 2.2913 2.1985 2.0976 2.2913 2.1448 2.0976 2.2913

d4+
i /d3+

i (3, 1) 2.3333 2.2308 2.2 2.1 2.0909 2.0909 2.3333

to (k, L) = (1, 2) are the tightest of the bounds here for L + k ≤ 3. When extended to L + k = 4, the bounds using
(k, L) = (0, 4) and (1, 3) yield the tightest lower and upper bounds, respectively, as indicated with a “†”.

Theorem 4.1, with M = 1, yields the bounds shown in Table 2. In three of four cases the bounds of Theorem 4.1
with N = 1 produced tighter bounds than Corollary 4.2 with L = 1. Also, the bounds indicated with a “‡” are tighter
than the bounds of the first table for the same maximum order of outdegree computed.

Finally, we show the Kolotilina-based bounds of Theorem 2.5 in Table 3. Since we limited Theorem 4.1 to the
case where M = 1 in order to keep the sparsity pattern determination simple, in evaluating bounds of Theorem 2.5
we limit consideration of L to 1. In Table 3 we have used an “*” to indicate which bounds are independent of the
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Table 2: Lower and Upper Bounds on ρ(G1) from Theorem 4.1 with M=1.

(k,N) L.B. on ρ(G1) U.B. on ρ(G1)

(0, 1) 2 2.4495
(0, 2) 2 2.4662
(1, 1) 2 2.5
(0, 3) 2.0598 2.3403‡
(1, 2) 2.0801 2.3208‡
(2, 1) 2.0817 2.3717
(0, 4) 2.1118 2.3116
(1, 3) 2.1407 2.2900
(2, 2) 2.1204 2.2774
(3, 1) 2.0954 2.2815

Table 3: Lower and Upper Bounds on ρ(G1) from Theorem 2.5 with L=1.

k L.B. on ρ(G1) U.B. on ρ(G1)

0 2* 2.4495@α = 0.50
1 2* 2.5000*
2 2.0801@α = 0.50 2.3602@α = 0.55
3 2.0993@α = 0.92 2.2611@α = 0.70

α parameter. The best lower bounds of Theorem 4.1 were equal to those produced by Corollary 4.2 but tighter than
those produced by Theorem 2.5. Also, Theorem 4.1 produced tighter upper bounds compared with either Theorem 2.5
or Corollary 4.2 when the maximum order of outdegree was limited to three. However, Theorem 4.1 produced the
loosest upper bounds when the maximum order of outdegree was relaxed to four.

We have generally found that the best set of parameters depends on the digraph selected. For digraphs that are
sparser than G1, the advantages of Theorems 4.1 and 2.5 will be even more evident.

We note that the bipartite condition (i.e., cyclically r-partite with r = 2) was sometimes unmentioned in prior
work when defining the “semiregular” digraph property [10]. Its necessity is apparent in this example. The digraph
G1 might be outdegree semiregular and average 2-outdegree semiregular by some definitions, but it is not bipartite
and hence does not meet the bounds with equality.

5. Conclusions

We have generalized the bounds and equality conditions of several prior works regarding the spectral radius of
nonnegative matrices and digraphs. Much of the earlier work applied to irreducible matrices and strongly-connected
simple digraphs. We have generalized these to a larger set of bounds and a more general set of digraphs. Finally, we
have shown that the equality conditions of the bounds, when applied to strongly connected digraphs, may only be met
when the spectral radius is the rth root of an integer.
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