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The discrete algebraic Riccati equation has wide applications, especially in networked systems and optimal control systems. In this
paper, according to the damped Newton method, two iterative algorithms with a stepsize parameter is proposed to solve the
discrete algebraic Riccati equation, one of which is an extension of Algorithm (4.1) in Dai and Bai (2011). A numerical example
demonstrates the convergence effect of the presented algorithm.

1. Introduction and Preliminaries

The discrete algebraic Riccati equation plays an impor-
tant part in engineering, such as optimal control systems
[1], modified filtering [2, 3], and networked systems
[4-7]. Consider the following discrete-time linear
system:

x(k+1) = Ax (k) + Bu(k), (1)

where x (k) € R" is the state variable, u (k) € R” is the input
variable, B € R™" is the input matrix, and A € R™" is the
system matrix and is always invertible [8]. The optimal state
feedback controller of (1) is

u* (k) = ~(G + B'PB) ' B"PAx (k) 2)

which minimizes the quadratic performance index of (1) and
is closely related to the discrete algebraic Riccati equation
(DARE):

P=A"PA- A"PB(G+B'PB) 'B'PA+Q  (3)

where Q € R is semipositive definite, G € R™" is positive
definite, and P € R™" is the positive definite solution of the
DARE (3). Let R = BG™'BT >0. According to the matrix
identity,

(X '+vz) ' =X-XY(I+2ZXY)'ZX, ()
equation (3) can be transformed into
P=A"(P'+R) A+ Q (5)

Due to the wide applications of the DARE, many works
have been proposed to discuss the DARE. Various bounds
and solutions about the DARE have been provided, such as
upper and lower solution bounds [9-14], bounds about sum
and product of eigenvalues [15, 16], determinant of the
solution [17], and the existence of the solution [18-21].
However, in an optimal control system, we often need to
compute the solution of the DARE to find the optimal state
teedback controller which minimizes the quadratic perfor-
mance index. It is very difficult to solve the DARE, especially
when the dimensions of the coefficient matrices are high. So,
many researchers provide a lot of iterative methods to solve
this equation. Komaroft present a fixed-point iterative al-
gorithm that needs to compute twice matrix inversion at
each step [22]. By Newton’s method, Guo derived the
maximal symmetric solution of the DARE in [23]. The
structure-preserving doubling algorithms are discussed in
[24-27]. The Schur method is adopted to solve algebraic
Riccati equations [28]. Recently, Dai and Bai propose an
iterative algorithm that partially avoids computing the
matrix inversions by making use of the Schulz iteration [29].
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In Section 2, we propose two iterative algorithms with a
stepsize parameter to solve the DARE by the damped
Newton method. One of the iterative algorithms is an ex-
tension of Algorithm 4.1 in [29]. Numerical example is given
in Section 3 to demonstrate the convergence effect of our
algorithms.

We first introduce some symbol conventions. R denotes
the real number field. R™™ denotes the set of n x m real
matrices. For X = (x;;) € R™, let XT, X1 IXl, and
Amin (X) denote the transpose, inverse, spectral norm, and
the minimal eigenvalue of the matrix X, respectively. The
inequality X > ( >)0 means X is a symmetric positive (semi-)
definite matrix; and the inequality X > (> )Y means X — Y is
a symmetric positive (semi-) definite matrix. The identity
matrix with appropriate dimensions is represented by I.

Lemma 1 (see [30]). If A, B € R™" are symmetric positive
definite matrices, then

A>B, ifandonlyif B '>A"" (6)

Lemma 2 (see [31]). Let C and P be Hermitian matrices of
the same order and let P> 0. Then,

CPC+P '>2C. (7)

Lemma 3 (see [32]). Let SandT be symmetric positive
definite matrices. Then,

ISi=IT|, if S=T=0. (8)

2. Improved Iterative Algorithms for Solving
the DARE

To find the positive definite solution of the DARE (5), Dai
and Bai, in [29], proposed an algorithm that partially avoids
computing the matrix inversion as follows.

Algorithm 1 (see [29]). Take Y,=(Q '+R)"'. For
k=0,1,2,---, compute

{ P, =ATY, A+ Q,

Vi = (1=0)Y, +t[2Y, - Y (P + R)Y,],

About Algorithms 2 and 3, we have the following results.

Theorem 1. Let P_ be the positive definite solution of the
DARE (5) and Q> 0. The iterative sequences {P.} and {Y }
are generated by Algorithm 2 with t € (0, 1]; then,

Py<P,<P,<.--, lim P,=P_
k—00
-1 -1 (14)
Yo<Y,<Y,<-,  lim Y, =(PZ'+R) .

k—00
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{ Pry = ATYkA +Q, 9)

Vi = Y (21 = (Pl + R)Y)).

In this section, we propose two iterative algorithms to
solve the DARE (5), which are motivated by the damped
Newton method [33] and the methods in [34, 35]. Let us
recall the damped Newton method to find the root of
F(Z)=Z7Z'-B:

Zk+1 :Zk+tZk(I—BZk) = (1 +t)Zk—tZkBZk, (10)

where t > 0 is a stepsize parameter. If the initial matrix is near
the solution of the problem, the unit stepsize t = 1 can be
accepted in the local Newton method. However, it is not
suitable to choose ¢ = 1 if the initial matrix is far from the
solution of the problem [33].

The DARE (5) can be translated into F(P) = 0, where

F(P)=[A"(P-Qa™] (P +R). (11)

Let Z=A"T(P-Q)A 'and B = P! + R. Then, to find
the root of F (P) is equivalent to find the root of F (Z), we can
solve the DARE (5) by constructing an iterative scheme.

According to (10), we present the following iterative algo-
rithms for the DARE (5).

Algorithm 2

Step l:set Py =Q, Y, = (Q 7! + R !and t>0.
Step 2: compute

{Yk+1 =(1-1)Y +t[2Y, - Y (P + R)Y,], (12)
P =ATY, A+ Q, k=0,1,2,---.
Algorithm 3
Step 1:set Yy = (Q' +R)"!, Py =Q and ¢t >0.
Step 2: compute
(13)

k=0,1,2,---.

Proof. We first prove P, and Y, are monotone increasing by
induction. Since P_ is positive definite solution of DARE (5),
then

p_=A"(P"+R) A+ Q (15)

Thus, P_>Q.

(i) Since
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Y, = (1-1)Y,+t[2Y, - Yo (P! + R)Y,]
= (1-1)Y,+t[2Y, - Yo(Q ' + R)Y,]
= (1-1)Y, +t[2Y, - Y]
=Y,

then by Lemma 1, we obtain
P,=A"Y, A+Q=A"Y,A+Q
=A"(Q'+R) A+ Q,

<A"(P7'+R) A+ Q
-p.

From (17), we also obtain P, >Q = P,; then,

P_>P >P,,

(16)

(17)

(18)

(19)

Yo=Y, =(Q'+R) '<(P{'+R) '<(P"'+R) .

By Lemma 2 and (20), we have

Y, = (1-1)Y, +¢[2Y, =Y, (P]' + R)Y ]
<(1-tY, +t(P' +R)"
<(-0(P/ +R) " +#(P{'+R)"
=(P{'+R) '<(P+R)

By (20) and Lemma 1, we obtain

Y, = (1-8)Y, +t[2Y, -V (P]' + R)Y]

> (1-1)Y, +t[2Y, -Y,(Q ' +R)Y,]

= (1-1)Y, +t[2Y, - Y]
=Y,

thereby,
T
P,=A"Y,A+Q
>A"Y A+Q=P,.

By (21), we obtain

(20)

(21)

(22)

(23)

3
P,=A"Y,A+Q
<A"(P'+R) A+ Q (24)
<A"(P?+R) 'A+Q=P..
Thus, from the above-mentioned proof, we have
Py<P,<P,<P, Y,=Y,
» . B (25)
<Y,<(P{' +R) <(P_' +R)
(ii) Assume that
P <P;<- <P, Y., <Y,<(P +R)
(26)

<(P?+R), i=12-.k

From (26), we get Y.< (P!, +R)'< (P! +R);
then,

Y'>P' +R (27)
Thus,
-1
Y = (1= )Y, +t[2Y, - V(P + R)Y,]
> (1= )Y, +t[2Y, - Y, Y'Y, ] (28)
> (1 - t)Yk + tYk = Yk’

Yig =1 -0Y; + t[ZYk - Yk(P;1 + R)Yk]

<(1-t)Y+ (P +R)

1 -1 1 -1 (29)
<(1-t)(P' +R)  +t(P.' +R)
<(P' +R) '<(P+R) ",
By (28) and (29), we have
P = ATYk+1A +Q (30)
>A"Y, A+Q=P,
T
P, =AY, A+Q
T(p-1 -1 (31)
<A"(P'+R) A+Q=P.
So, we obtain
Pe<Piy <P, Yi<Vi, <(Pi'+R)"
(32)

<(P'+R) k=012,

Thus, the proof of induction is completed. Moreover, as
P, and Y, are monotone increasing and they are bounded,
then lim P, and lim Y, exist. Taking limits in Algo-
rithm*™%2 giveés "® lim Y, = (P! +R)"! and
lim P, =P koo O

—>00
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Theorem 2. Let P_ be the positive definite solution of the
DARE (5). After k steps of iteration for Algorithm 2, we have
II =Y, (Pt + R)l <& then,

|AT(P' +R) A+ Q- P <e|P - Q).

Proof. According to (15), we have
AT(P7'+R) 'A=P_-Q (34)

(33) Then, by Algorithm 2, Lemma 3, and (34), we obtain

|A7 (P +R) A+ Q- Py = A" (e +R) A~ ATY, 4|

=“AT[(P,;1 +R)" —Yk]A’

- “AT [1-v(P +R)|(P' + R)ilA"

-1 T(p-1 -1 35
[r-vi(pe - R [AT(B 4 R) 4 o
-1 T(p-1 -1
< -vi R )
-1
=|r-vi(P +R)| - |P-- Q]
<o -0l
because of P, <P._. Example 1. Consider the discrete system (1) with
As th? Proof method is similar to Theor.em 1, we l%st the 227 013 0.12 0.1
monotonicity and convergence of Algorithm 3 without
proof. 0 | 013 234 012 005
0.11 -0.17 1.9 0.03
Theorem 3. Let P_ be thfe posz:tive definite solution of the 0.0l 007 0.02 11
DARE (5) and Q> 0. The iterative sequences {P;} and {Y }
are generated by Algorithm 3 with t € 0,1] and start from L15 0 001 0
Y,=(Q! +R)7! and P, = Q; then, P, is monotone in- 0 08 0 0
creasing and converges to P_, and Y. is monotone increasing B=
and converges to (P~' +R)™". 0 004 09 O (36)
0.02 0 0 1.8
Remark 1. For Algorithms 2 and 3, we find the steps of 012 0 01 0
iteration for Algorithm 2 are less than Algorithm 3 and the
convergence speed of the Algorithm 2 is faster than Algo- | 0 2200
rithm 3 from the numerical examples. Therefore, in the Q= 01 0 14 0
following example, we only discuss the superiority and ef-
fectiveness of Algorithm 2. 0 0 0 07
G=1I

3. Numerical Examples

In this section, we present the following numerical example
to show the effectiveness of our results. We also discuss the
performance of Algorithm 2 with different t values. The
whole process is carried out on Matlab 7.1 and the precision
is 107°,

In [29], Dai and Bai choose the starting matrix
Y, = (Q ' +R)"'. After 17 steps of iteration, the required
precision is derived, and the residual [|AT (P~! + R 'A+
Q- P| is 2.0754e — 009.

For Algorithm 2, we choose P, = Q,Y, = (Q"' +R)"!
and give the steps of iteration and the residual as Table 1 with
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TaBLE 1: Numerical results.

t Iterations Residual t  Iterations Residual
0.6 35 9.0186e-009 1.2 10 5.6438e - 009
0.8 24 5.4562¢—-009 1.3 12 9.2094e - 009
09 20 4.7874e—-009 1.5 18 9.4721e - 009
1 17 2.0754e—-009 1.8 40 8.6619¢ — 009
1.1 14 1.0160e—009 2.0 104 9.1141e- 009
10
@ - -
1001 T Te-esg - ]
*\\@\
Lo
1072 *\\ “a J
—_— \\ \S\
< 4{ N
5 o
% 107 \\ ‘o i
=4 \* \@\
107} N LN ]
| o
\\ Q\
1078} . o
9]
10710 L L L L L L L L

2 4 6 8 100 12 14 16 18
Iteration steps

-e- Algorithm 1
-+~ Algorithm 2

FiGURE 1: The relationship between iteration step and residual.

a different parameter t when the process is stopped under the
required precision. When ¢ is near 1, we find that the steps of
iteration are less than [29]. Especially, when ¢ = 1.2, it only
needs 10 steps for Algorithm 2 to converge to the iterative
solution:

3.3299 -0.3120 0.5202 0.1433

—-0.3120 9.6394 -0.1292 0.1904
P, = (37)
0.5202 -0.1292 4.9731 0.0820

0.1433 0.1904 0.0820 0.9962

with the residual AT (P"'+R) 'A+Q-P| =5.6438e—
009, and Algorithm 2 has faster convergence speed than
Algorithm 1 from Figure 1. Moreover, from Table 1, we see
that Algorithm 2 is more efficient when ¢ > 1. Although we
only prove the convergence of Algorithm 2 when t € 0, 1], in

this paper, Algorithm 2 works well in practical computation
when £ > 1.
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