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1. Introduction

Let A be an n× n nonnegative matrix. The spectral radius (alias Perron root) of A,
denoted by ρ(A), is the largest modulus of eigenvalues of A. See [2,8,13,16,18,21,22] for
some known properties of the spectral radius of nonnegative matrices.

In this paper, we also consider the spectral radius of some nonnegative matrices as-
sociated with a graph. Let G be a simple undirected graph with vertex set V (G) =
{v1, . . . , vn} and edge set E(G).

The adjacency matrix of G is the n × n matrix A(G) = (aij), where aij = 1 if
vivj ∈ E(G) and 0 otherwise [5]. For 1 � i � n, let di be the degree of vertex vi
in G. Let Deg(G) be the degree diagonal matrix diag(d1, . . . , dn). The signless Laplacian
matrix of G is the n× n matrix Q(G) = Deg(G) + A(G) [7]. The spectral radius of the
adjacency matrix has been studied extensively (see, e.g., [6,8,12,15,19]), and the spectral
radius of the signless Laplacian matrix has also received much attention (see, e.g., [8,11,
20,23]).

Suppose that G is connected. The distance matrix of G is the n × n matrix
D(G) = (dij), where dij is the distance between vertices vi and vj , i.e., the number
of edges of a shortest path connecting them, in G [9,14]. For 1 � i � n, the transmis-
sion Di of vertex vi in G is the sum of distances between vi and (other) vertices of G.
Let Tr(G) be the transmission diagonal matrix diag(D1, . . . , Dn). The distance signless
Laplacian matrix of G is the n×n matrix Q(G) = Tr(G)+D(G) [1]. The reciprocal dis-
tance matrix (alias Harary matrix) of G is the n×n matrix R(G) = (rij), where rij = 1

dij

for i �= j, and rii = 0 for 1 � i � n [14]. Some results have been obtained for the spectral
radius of these distance-based matrices of a connected graph (see, e.g., [8,24]).

Let A = (aij) be an n× n nonnegative matrix. For 1 � i � n, the i-th row sum of A
is ri(A) =

∑n
j=1 aij . Duan and Zhou [8] found upper and lower bounds for the spectral

radius of a nonnegative matrix using its row sums, and characterized the equality cases
if the matrix is irreducible. They also applied those bounds to the nonnegative matrices
associated with a graph as mentioned above.

For 1 � i � n and an n × n nonnegative matrix A = (aij) with ri(A) > 0, the
i-th average 2-row sum of A is defined as mi(A) =

∑n
k=1 aikrk(A)

ri(A) . For a graph G on n

vertices with di > 0, mi(A(G)) =
∑

vivj∈E(G) dj

di
, which is known as the average 2-degree

of vertex vi in G [3,17]. Huang and Weng [10] gave an upper bound for the spectral
radius of the adjacency matrix of a connected graph with at least two vertices using its
average 2-degrees (cf. Chen et al. [4]).

In this paper, we give sharp upper and lower bounds for the spectral radius of a
nonnegative matrix with all row sums positive using the average 2-row sums, and char-
acterize the equality cases if the matrix is irreducible. Then we compare these bounds
with those using the row sums presented in [8] by examples. We also apply these results
to various matrices associated with a graph as mentioned above. Some known results are
generalized and improved.
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2. Bounds for the spectral radius of nonnegative matrices

The following lemma is well known.

Lemma 2.1. (See [18, p. 24].) If A is an n× n nonnegative matrix, then

min
1�i�n

ri(A) � ρ(A) � max
1�i�n

ri(A).

Moreover, if A is irreducible, then either equality holds if and only if r1(A) = · · · = rn(A).

Let A = (aij) be an n × n nonnegative matrix with all row sums positive. Let U =
diag(r1(A), . . . , rn(A)) and B = (bij) = U−1AU . Obviously, bij = aijrj(A)

ri(A) for 1 �
i, j � n. Thus ri(B) =

∑n
k=1 bik =

∑n
k=1 aikrk(A)

ri(A) = mi(A) for 1 � i � n. By Lemma 2.1,
we have the following lemma.

Lemma 2.2. (See [18, pp. 27–28].) Let A be an n × n nonnegative matrix with all row
sums positive. Then

min
1�i�n

mi(A) � ρ(A) � max
1�i�n

mi(A).

Moreover, if A is irreducible, then either equality holds if and only if m1(A) = · · ·
= mn(A).

Theorem 2.1. Let A = (aij) be an n × n nonnegative matrix with all row sums positive
and with average 2-row sums m1 � · · · � mn. Let M be the largest diagonal element,
and N the largest off-diagonal element of A. Suppose that N > 0. Let b = max{ rj(A)

ri(A) :
1 � i, j � n}. For 1 � l � n, let

φl =
ml + M −Nb +

√
(ml −M + Nb)2 + 4Nb

∑l−1
i=1(mi −ml)

2 .

Then ρ(A) � φl for 1 � l � n. Moreover, if A is irreducible, then ρ(A) = φl for some l

with 1 � l � n if and only if m1 = · · · = mn, or for some t with 2 � t � l, A satisfies
the following conditions:

(i) aii = M for 1 � i � t− 1,
(ii) aik = N and rk(A)

ri(A) = b for 1 � i � n, 1 � k � t− 1 and k �= i,
(iii) mt = · · · = mn.

Proof. Let ri = ri(A) for 1 � i � n. Since mi � aii for 1 � i � n, we have m1 � M .
If l = 1, then φl = m1+M−Nb+|m1−M+Nb|

2 = m1, and thus the result follows immedi-
ately from Lemma 2.2.
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Suppose in the following that 2 � l � n.
Let U = diag(r1x1, . . . , rl−1xl−1, rl, . . . , rn), where xi � 1 is a variable to be deter-

mined later for 1 � i � l − 1. Let B = U−1AU . Obviously, A and B have the same
eigenvalues.

For 1 � i � l − 1, since aii � M , and aik � N , rk
ri

� b for k �= i, we have

ri(B) = 1
xi

(
l−1∑
k=1

aik
rk
ri
xk +

n∑
k=l

aik
rk
ri

)

= 1
xi

(
aii(xi − 1) +

∑
1�k�l−1

k �=i

aik
rk
ri

(xk − 1) +
n∑

k=1

aik
rk
ri

)

� 1
xi

(
M(xi − 1) + Nb

∑
1�k�l−1

k �=i

(xk − 1) + mi

)

with equality if and only if (a) and (b) hold: (a) xi = 1 or aii = M , (b) xk = 1, or
aik = N and rk

ri
= b, where 1 � k � l − 1 and k �= i.

For l � i � n, since mi � ml, and aik � N , rk
ri

� b for 1 � k � l − 1, we have

ri(B) =
l−1∑
k=1

aik
rk
ri
xk +

n∑
k=l

aik
rk
ri

=
l−1∑
k=1

aik
rk
ri

(xk − 1) +
n∑

k=1

aik
rk
ri

=
l−1∑
k=1

aik
rk
ri

(xk − 1) + mi

� Nb

l−1∑
k=1

(xk − 1) + ml

with equality if and only if (c) and (d) hold: (c) xk = 1, or aik = N and rk
ri

= b, where
1 � k � l − 1, (d) mi = ml.

From the definition of φl with 1 � l � n, we have φ2
l −(ml+M−Nb)φl+ml(M−Nb)−

Nb
∑l−1

k=1(mk − ml) = 0, i.e., Nb
∑l−1

k=1(mk − ml) = (φl − ml)(φl − M + Nb).
Note that Nb > 0. If

∑l−1
k=1(mk − ml) > 0, then φl > ml+M−Nb+|ml−M+Nb|

2 �
ml+M−Nb−(ml−M+Nb)

2 = M −Nb, and if m1 = · · · = ml, then since m1 � M , we have
φl = m1+M−Nb+|m1−M+Nb|

2 > m1+M−Nb−(m1−M+Nb)
2 = M−Nb. Thus φl−M+Nb > 0.

For 1 � i � l − 1, let xi = 1 + mi−ml

φl−M+Nb . Obviously, xi � 1 and

Nb
l−1∑

(xk − 1) =
Nb

∑l−1
k=1(mk −ml)

φl −M + Nb
= φl −ml.
k=1
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Thus, for 1 � i � l − 1,

ri(B) � 1
xi

(
Nb

l−1∑
k=1

(xk − 1) + (M −Nb)(xi − 1) + mi

)

=
(φl −ml) + (M −Nb) · mi−ml

φl−M+Nb + mi

1 + mi−ml

φl−M+Nb

= φl,

and for l � i � n,

ri(B) � Nb

l−1∑
k=1

(xk − 1) + ml = (φl −ml) + ml = φl.

By Lemma 2.1, ρ(A) = ρ(B) � max1�i�n ri(B) � φl.
Suppose that A is irreducible. Then B is also irreducible.
Suppose that ρ(A) = φl for some l with 2 � l � n. Then ρ(B) = max1�i�n ri(B) = φl.

By Lemma 2.1, r1(B) = · · · = rn(B) = φl, and thus from the above arguments, (a) and
(b) hold for 1 � i � l − 1, and (c) and (d) hold for l � i � n. If m1 = ml, then we have
from (d) that m1 = · · · = mn. Suppose that m1 > ml. Let t be the smallest integer such
that mt = ml, where 2 � t � l. For 1 � i � t− 1, since mi > ml, we have xi > 1. Now
(i) and (ii) follow from (a), (b) for 1 � i � l− 1 and (c) for l � i � n. From (d), we have
mt = · · · = ml = · · · = mn, and thus (iii) holds.

Conversely, if m1 = · · · = mn, then φl = m1 and by Lemma 2.2, ρ(A) = m1, and thus
ρ(A) = φl. If (i)–(iii) hold for some l and t with 2 � t � l � n, then (a) and (b) hold for
1 � i � l− 1, and (c) and (d) hold for l � i � n, implying that ri(B) = φl for 1 � i � n,
and thus by Lemma 2.1, ρ(A) = ρ(B) = φl. �

Let In and Jn be the n×n identity matrix and the n×n all-one matrix, respectively.
Under the notations and conditions of Theorem 2.1, for 1 � i � n, since aii � M ,

and aij � N , rj(A)
ri(A) � b for j �= i, we have

n∑
i=1

mi =
n∑

i=1

(
aii +

∑
1�j�n
j �=i

aij
rj(A)
ri(A)

)
�

n∑
i=1

(
M + Nb(n− 1)

)
= n(Nbn + M −Nb)

with equality if and only if aii = M for 1 � i � n, and aij = N , rj(A)
ri(A) = b for 1 � i, j � n

and i �= j, or equivalently, A = MIn + (N − M)Jn, implying that φ1 = · · · = φn. If
A �= MIn + (N −M)Jn, then

∑n
i=1 mi < n(Nbn + M −Nb).

Proposition 2.1. Under the notations and conditions of Theorem 2.1 with A �= MIn +
(N −M)Jn, let
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l = min
{
k:

k∑
i=1

mi < k(Nbk + M −Nb), 1 � k � n

}
.

Then min{φi: 1 � i � n} = φl.

Proof. Note that m1 � M . We have 2 � l � n.
From the expression of φk with 1 � k � n, we have φk � φk+1 if and only if

(mk −mk+1)

√√√√(mk −M + Nb)2 + 4Nb
k−1∑
i=1

(mi −mk)

� (mk −mk+1)(2Nbk + M −Nb−mk).

Note that

√√√√(mk −M + Nb)2 + 4Nb

k−1∑
i=1

(mi −mk) � 2Nbk + M −Nb−mk

if and only if
∑k

i=1 mi � k(Nbk+M −Nb). Thus, if
∑k

i=1 mi � k(Nbk+M −Nb), then
φk � φk+1, and if

∑k
i=1 mi < k(Nbk + M −Nb), then φk � φk+1.

For 1 � k � l− 1, by the choice of l, we have
∑k

i=1 mi � k(Nbk+M −Nb), and thus
φ1 � · · · � φl. For l � k � n, we are to show that

∑k
i=1 mi < k(Nbk+M−Nb) by induc-

tion on k. The case k = l has been done from the choice of l. Suppose that
∑k

i=1 mi <

k(Nbk + M − Nb) for some k with l � k � n − 1. Then mk < Nbk + M − Nb, which,
together with the fact that mk+1 � mk, implies that

∑k+1
i=1 mi < k(Nbk + M − Nb) +

(Nbk + M −Nb) < (k + 1)(Nb(k + 1) + M −Nb). Thus
∑k

i=1 mi < k(Nbk + M −Nb)
for l � k � n, and then φl � · · · � φn. Thus min{φi: 1 � i � n} = φl. �

Under the notations and conditions of Theorem 2.1, if A is symmetric, then conditions
(i)–(iii) hold if and only if conditions (i′) and (ii′) hold:

(i′) a11 = M and the off-diagonal elements of A in the first row and column are equal
to N ,

(ii′) r2(A) = · · · = rn(A).

This is because if t = 2, then since (i′) and (ii′) imply that m2 = · · · = mn, conditions
(i)–(iii) are equivalent to conditions (i′) and (ii′), and if t � 3, then since (i) and (ii)
imply that r1(A) = · · · = rt−1(A) = M + N(n− 1) and b = r2(A)

r1(A) = 1, we have r1(A) =
· · · = rn(A), and thus conditions (i)–(iii) are equivalent to A = MIn+(N−M)Jn, which
also satisfies conditions (i′) and (ii′).
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In [8], the following upper bound for the spectral radius was given.

Theorem 2.2. (See [8].) Let A be an n × n nonnegative matrix with row sums r1 � · · ·
� rn. Let M be the largest diagonal element, and N the largest off-diagonal element
of A. Suppose that N > 0. For 1 � l � n, let

Φl =
rl + M −N +

√
(rl −M + N)2 + 4N

∑l−1
i=1(ri − rl)

2 .

Then ρ(A) � Φl for 1 � l � n.

Consider

A1 =

⎛
⎜⎜⎜⎝

0 1 1 1
1 0 2 2
1 2 0 2
1 2 2 0

⎞
⎟⎟⎟⎠ .

In notations of Theorem 2.1, m1 = 5, m2 = m3 = m4 = 23
5 , M = 0, N = 2 and b = 5

3 ,
implying that φ1 = 5, φ2 = φ3 = φ4 = 4.7647, and thus ρ(A1) � 4.7647. Obviously,
A1 is permutation similar to

A′
1 =

⎛
⎜⎜⎜⎝

0 2 2 1
2 0 2 1
2 2 0 1
1 1 1 0

⎞
⎟⎟⎟⎠ ,

and thus ρ(A1) = ρ(A′
1). In notations of Theorem 2.2, for A′

1, we have r1 = r2 = r3 = 5,
r4 = 3, M = 0 and N = 2, implying that Φ1 = Φ2 = Φ3 = 5, Φ4 = 4.7720, and thus
ρ(A1) � 4.7720. The upper bound in Theorem 2.1 is smaller than that in Theorem 2.2
for A1.

Now consider

A2 =

⎛
⎜⎜⎜⎝

0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0

⎞
⎟⎟⎟⎠ .

In notations of Theorem 2.1, m1 = m2 = m3 = 3, m4 = 1, M = 0, N = 1 and b = 3,
implying that φ1 = φ2 = φ3 = 3, φ4 = 3.6904, and thus ρ(A2) � 3. Obviously, A2 is
permutation similar to

A′
2 =

⎛
⎜⎜⎜⎝

0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

⎞
⎟⎟⎟⎠ ,
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and thus ρ(A2) = ρ(A′
2). In notations of Theorem 2.2, for A′

2, we have r1 = 3, r2 =
r3 = r4 = 1, M = 0 and N = 1, implying that Φ1 = 3, Φ2 = 1.7321, Φ3 = 2.2361,
Φ4 = 2.6458, and thus ρ(A2) � 1.732. The upper bound in Theorem 2.1 is greater than
that in Theorem 2.2 for A2.

Theorem 2.3. Let A = (aij) be an n × n nonnegative matrix with all row sums positive
and with average 2-row sums m1 � · · · � mn. Let S be the smallest diagonal element,
and T the smallest off-diagonal element of A. Let c = min{ rj(A)

ri(A) : 1 � i, j � n}. Let

ψn =
mn + S − Tc +

√
(mn − S + Tc)2 + 4Tc

∑n−1
i=1 (mi −mn)

2 .

Then ρ(A) � ψn. Moreover, if A is irreducible, then ρ(A) = ψn if and only if m1 = · · ·
= mn, or T > 0 and for some t with 2 � t � n, A satisfies the following conditions:

(i) aii = S for 1 � i � t− 1,
(ii) aik = T and rk(A)

ri(A) = c for 1 � i � n, 1 � k � t− 1 and k �= i,
(iii) mt = · · · = mn.

Proof. Let ri = ri(A) for 1 � i � n. Note that mn � ann � S.
If T = 0, then ψn = mn, and thus the result follows immediately from Lemma 2.2.
Suppose in the following that T > 0.
Let U = diag(r1x1, . . . , rn−1xn−1, rn), where xi � 1 is a variable to be determined

later for 1 � i � n−1. Let B = U−1AU . Obviously, A and B have the same eigenvalues.
For 1 � i � n− 1, since aii � S, and aik � T , rk

ri
� c for k �= i, we have

ri(B) = 1
xi

(
aii(xi − 1) +

∑
1�k�n−1

k �=i

aik
rk
ri

(xk − 1) +
n∑

k=1

aik
rk
ri

)

� 1
xi

(
S(xi − 1) + Tc

∑
1�k�n−1

k �=i

(xk − 1) + mi

)

with equality if and only if (a) and (b) hold: (a) xi = 1 or aii = S, (b) xk = 1, or aik = T

and rk
ri

= c, where 1 � k � n− 1 and k �= i.
Similarly,

rn(B) =
n−1∑
k=1

ank
rk
rn

(xk − 1) +
n∑

k=1

ank
rk
rn

� Tc
n−1∑
k=1

(xk − 1) + mn

with equality if and only if (c) holds: (c) xk = 1, or ank = T and rk
rn

= c, where
1 � k � n− 1.
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From the definition of ψn, we have Tc
∑n−1

k=1(mk−mn) = (ψn−mn)(ψn−S+Tc). Note
that Tc > 0 and mn � S. If

∑n−1
k=1(mk −mn) > 0, then ψn > mn+S−Tc+|mn−S+Tc|

2 >
mn+S−Tc−(mn−S+Tc)

2 = S − Tc, and if m1 = · · · = mn, then ψn = mn � S > S − Tc.
Thus ψn − S + Tc > 0. For 1 � i � n− 1, let xi = 1 + mi−mn

ψn−S+Tc . Obviously, xi � 1 and

Tc
n−1∑
k=1

(xk − 1) =
Tc

∑n−1
k=1(mk −mn)

ψn − S + Tc
= ψn −mn.

Thus, for 1 � i � n− 1,

ri(B) � 1
xi

(
Tc

n−1∑
k=1

(xk − 1) + (S − Tc)(xi − 1) + mi

)

=
(ψn −mn) + (S − Tc) · mi−mn

ψn−S+Tc + mi

1 + mi−mn

ψn−S+Tc

= ψn,

and

rn(B) � Tc
n−1∑
k=1

(xk − 1) + mn = (ψn −mn) + mn = ψn.

By Lemma 2.1, ρ(A) = ρ(B) � min1�i�n ri(B) � ψn.
Suppose that A is irreducible. Then B is also irreducible.
Suppose that ρ(A) = ψn. Then ρ(B) = min1�i�n ri(B) = ψn. By Lemma 2.1, r1(B) =

· · · = rn(B) = ψn, and thus from the arguments above, (a) and (b) for 1 � i � n − 1
and (c) hold. If m1 > mn, then for 1 � i � t − 1 where t is the smallest integer with
mt = mn, we have mi > mn, implying that xi > 1, and thus (i)–(iii) follow from (a), (b)
for 1 � i � n− 1 and (c).

Conversely, if m1 = · · · = mn, then by Lemma 2.2, ρ(A) = mn = ψn. If (i)–(iii) hold
for some t with 2 � t � n, then (a), (b) for 1 � i � n − 1 and (c) hold, implying that
ri(B) = ψn for 1 � i � n, and thus by Lemma 2.1, ρ(A) = ρ(B) = ψn. �

Under the notations and conditions of Theorem 2.3, if A is symmetric, then conditions
(i)–(iii) hold if and only if conditions (i′) and (ii′) hold:

(i′) a11 = S and the off-diagonal elements of A in the first row and column are equal
to T ,

(ii′) r2(A) = · · · = rn(A).

In [8], the following lower bound for the spectral radius was given.
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Theorem 2.4. (See [8].) Let A be an n × n nonnegative matrix with row sums r1 � · · ·
� rn. Let S be the smallest diagonal element, and T the smallest off-diagonal element
of A. Let

Ψn =
rn + S − T +

√
(rn − S + T )2 + 4T

∑n−1
i=1 (ri − rn)

2 .

Then ρ(A) � Ψn.

For A1 as earlier, in notations of Theorem 2.3, m1 = 5, m2 = m3 = m4 = 23
5 , S = 0,

T = 1 and c = 3
5 , implying that ψ4 = 4.6458, and thus ρ(A1) � 4.6458. For A′

1, in
notations of Theorem 2.4, r1 = r2 = r3 = 5, r4 = 3, S = 0 and T = 1, implying that
Ψ4 = 4.1623, and thus ρ(A1) � 4.1623. Thus the lower bound in Theorem 2.3 is greater
than that in Theorem 2.4 for A1.

Now consider

A3 =

⎛
⎜⎜⎜⎝

0 1.9 1.9 1.9
2 0 2 2
2 2 0 2
4 2 2 0

⎞
⎟⎟⎟⎠ .

In notations of Theorem 2.3, we have m1 = 20
3 , m2 = m3 = 197

30 , m4 = 5.85, S = 0,
T = 1.9 and c = 0.7125, implying that ψ4 = 6.2506, and thus ρ(A3) � 6.2506. Obviously,
A3 is permutation similar to

A′
3 =

⎛
⎜⎜⎜⎝

0 2 2 4
2 0 2 2
2 2 0 2

1.9 1.9 1.9 0

⎞
⎟⎟⎟⎠ ,

and thus ρ(A3) = ρ(A′
3). In notations of Theorem 2.4, for A′

3, we have r1 = 8, r2 = r3 = 6,
r4 = 5.7, S = 0 and T = 1.9, implying that Ψ4 = 6.3665, and thus ρ(A3) � 6.3665. Thus
the lower bound in Theorem 2.3 is smaller than that in Theorem 2.4 for A3.

3. Spectral radius of adjacency and signless Laplacian matrices

Let G be an n-vertex graph without isolated vertices, where V (G) = {v1, . . . , vn}.
For 1 � i � n, recall that mi(A(G)) =

∑
vivj∈E(G) dj

di
is the average 2-degree of vertex vi

in G, and note that mi(Q(G)) = di +
∑

vivj∈E(G) dj

di
, which we call the signless Laplacian

average 2-degree of vertex vi in G. Let Δ and δ be respectively the maximal and minimal
degrees of G.
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The following result has been given by Huang and Weng [10] for a connected graph.

Theorem 3.1. Let G be a graph on n vertices without isolated vertices with average
2-degrees m1 � · · · � mn. Then for 1 � l � n,

ρ
(
A(G)

)
�

ml − Δ
δ +

√
(ml + Δ

δ )2 + 4Δ
δ

∑l−1
i=1(mi −ml)

2 .

Moreover, if G is connected, then equality holds if and only if m1 = · · · = mn.

Proof. We apply Theorem 2.1 to A(G). Since M = 0, N = 1 and b = Δ
δ , we have the

desired upper bound for ρ(A(G)). Suppose that G is connected. Then A(G) is irreducible
and symmetric. Thus the upper bound is attained if and only if either m1 = · · · = mn

or (if m1 > mn, then) A(G) satisfies the following conditions (a) and (b):

(a) the off-diagonal elements of A(G) in the first row and column are equal to 1,
(b) r2(A(G)) = · · · = rn(A(G)).

From (a), we have d1 = n − 1, and from (b) and by noting that m1 > mn, we have
d2 = · · · = dn < n − 1. If (a) and (b) hold, then for 2 � i � n, mi = (n−1)+(di−1)di

di
=

di + n−1−di

di
> di = m1, a contradiction. �

From Theorem 3.1, we have the following corollary.

Corollary 3.1. Let G be a graph on n vertices without isolated vertices with average
2-degrees m1 � · · · � mn. Then for 1 � l � n,

ρ
(
A(G)

)
�

ml − Δ
δ +

√
(ml + Δ

δ )2 + 4Δ
δ (l − 1)(m1 −ml)

2 .

Moreover, if G is connected, then equality holds if and only if m1 = · · · = mn.

Setting l = 2 in the previous corollary, we have the following result, which has been
given by Chen et al. [4] for a connected graph.

Corollary 3.2. Let G be a graph on n vertices without isolated vertices with average
2-degrees m1 � · · · � mn. Then

ρ
(
A(G)

)
�

m2 − Δ
δ +

√
(m2 − Δ

δ )2 + 4m1
Δ
δ

2 .

Moreover, if G is connected, then equality holds if and only if m1 = · · · = mn.
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Theorem 3.2. Let G be a graph on n vertices without isolated vertices with signless
Laplacian average 2-degrees m1 � · · · � mn. Then for 1 � l � n,

ρ
(
Q(G)

)
�

ml + Δ − Δ
δ +

√
(ml − Δ + Δ

δ )2 + 4Δ
δ

∑l−1
i=1(mi −ml)

2 .

Moreover, if G is connected, then equality holds if and only if m1 = · · · = mn or d1 =
n− 1 > d2 = · · · = dn.

Proof. We apply Theorem 2.1 to Q(G). Since M = Δ, N = 1 and b = Δ
δ , we have

the desired upper bound for ρ(Q(G)). Suppose that G is connected. Then Q(G) is
irreducible and symmetric. Thus the upper bound is attained if and only if either
m1 = · · · = mn or (if m1 > mn, then) Q(G) = (qij) satisfies the following conditions (a)
and (b):

(a) q11 = Δ and the off-diagonal elements of Q(G) in the first row and column are equal
to 1,

(b) r2(Q(G)) = · · · = rn(Q(G)),

or equivalently, either m1 = · · · = mn or (if m1 > mn, then) d1 = n − 1 > d2 = · · ·
= dn. �

We give an example showing that the second condition of the equality case in The-
orem 3.2 may occur. Let G be the graph obtained by adding two nonadjacent edges to
the 5-vertex star. Then

Q(G) =

⎛
⎜⎜⎜⎜⎜⎝

4 1 1 1 1
1 2 1 0 0
1 1 2 0 0
1 0 0 2 1
1 0 0 1 2

⎞
⎟⎟⎟⎟⎟⎠ .

By direct computation, ρ(Q(G)) = 5.5616. In notations of Theorem 3.2, m1 = 6, m2 =
m3 = m4 = m5 = 5, Δ = 4 and δ = 2. Let φl be the upper bound for ρ(Q(G)) in
Theorem 3.2, where 1 � l � 5. Then φ1 = 6 and φ2 = φ3 = φ4 = φ5 = 5.5616, implying
that ρ(Q(G)) = φ2 = · · · = φ5.

Let G be a graph such that its line graph LG has no isolated vertices. By upper
bounds for ρ(A(LG)) using the average 2-degrees of LG and the fact that ρ(Q(G)) =
2 + ρ(A(LG)), we may also have upper bounds for ρ(Q(G)) using the average 2-degrees
of LG (cf. [4]).
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4. Spectral radius of distance-based matrices

Let G be an n-vertex connected graph, where V (G) = {v1, . . . , vn}.
For 1 � i � n, mi(D(G)) =

∑n
j=1 dijDj

Di
, which we call the average 2-transmission of

vertex vi in G, and mi(Q(G)) = Di +
∑n

j=1 dijDj

Di
, which we call the signless Laplacian

average 2-transmission of vertex vi in G.
Let D be the diameter, which is the maximal distance between any two vertices, of G.

Let Ω and ω be respectively the maximal and minimal transmissions of G.

Theorem 4.1. Let G be a connected graph on n � 2 vertices with average 2-transmissions
m1 � · · · � mn. For 1 � l � n,

ρ
(
D(G)

)
�

ml −DΩ
ω +

√
(ml + DΩ

ω )2 + 4DΩ
ω

∑l−1
i=1(mi −ml)

2

with equality if and only if m1 = · · · = mn.

Proof. We apply Theorem 2.1 to D(G). Since M = 0, N = D and b = Ω
ω , the desired

upper bound for ρ(D(G)) follows, and it is attained if and only if either m1 = · · · = mn

or (if m1 > mn, then) D(G) satisfies the following conditions (a) and (b):

(a) the off-diagonal elements of D(G) in the first row and column are equal to D,
(b) r2(D(G)) = · · · = rn(D(G)).

Since there is at least an element 1 in each row of D(G), (a) implies that D = 1, and
thus G is the n-vertex complete graph, for which m1 > mn is impossible. �
Theorem 4.2. Let G be a connected graph on n � 2 vertices with average 2-transmissions
m1 � · · · � mn. Then

ρ
(
D(G)

)
�

mn − ω
Ω +

√
(mn + ω

Ω )2 + 4 ω
Ω

∑n−1
i=1 (mi −mn)

2

with equality if and only if m1 = · · · = mn or D1 = n− 1 < D2 = · · · = Dn.

Proof. We apply Theorem 2.3 to D(G). Since S = 0, T = 1 and c = ω
Ω , we have the

desired lower bound for ρ(D(G)), which is attained if and only if either m1 = · · · = mn

or (if m1 > mn, then) D(G) satisfies the following conditions (a) and (b):

(a) the off-diagonal elements of D(G) in the first row and column are equal to 1,
(b) r2(D(G)) = · · · = rn(D(G)),
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or equivalently, either m1 = · · · = mn or (if m1 > mn, then) D1 = n − 1 < D2 =
· · · = Dn. �

Let G be the 4-vertex star. Obviously, D(G) = A1 (as earlier in Section 2). By a direct
calculation, ρ(D(G)) is equal to the lower bound given in Theorem 4.2. This shows that
the second condition of the equality case in Theorem 4.2 may occur.

By similar arguments as for the distance matrix above, we have

Theorem 4.3. Let G be a connected graph on n � 2 vertices with signless Laplacian
average 2-transmissions m1 � · · · � mn. Then for 1 � l � n,

ρ
(
Q(G)

)
�

ml + Ω −DΩ
ω +

√
(ml −Ω + DΩ

ω )2 + 4DΩ
ω

∑l−1
i=1(mi −ml)

2

with equality if and only if m1 = · · · = mn.

Theorem 4.4. Let G be a connected graph on n � 2 vertices with signless Laplacian
average 2-transmissions m1 � · · · � mn. Then

ρ
(
Q(G)

)
�

mn + ω − ω
Ω +

√
(mn − ω + ω

Ω )2 + 4 ω
Ω

∑n−1
i=1 (mi −mn)

2

with equality if and only if m1 = · · · = mn.

Proof. We apply Theorem 2.3 to Q(G). Since S = ω, T = 1 and c = ω
Ω , we have the

desired lower bound for ρ(Q(G)), which is attained if and only if either m1 = · · · = mn

or (if m1 > mn, then) Q(G) = (θij) satisfies the following conditions (a) and (b):

(a) θ11 = ω and the off-diagonal elements of Q(G) in the first row and column are equal
to 1,

(b) r2(Q(G)) = · · · = rn(Q(G)).

From (a), we have D1 = n − 1, and from (b) and by noting that m1 > mn, we have
D2 = · · · = Dn > n − 1. If (a) and (b) hold, then for 2 � i � n, m1 = n − 1 + Di and
mi = Di + (n−1)+Di(Di−1)

Di
= 2Di + n−1−Di

Di
, and thus m1 −mi = n−1−Di− n−1−Di

Di
=

(n− 1 −Di)(1 − 1
Di

) < 0, a contradiction. �

For 1 � i � n, mi(R(G)) =

∑
1�j�n
j �=i

1
dij

Rj

Ri
where Ri = ri(R(G)) =

∑
1�j�n
j �=i

1
dij

,

which we call the reciprocal average 2-transmission of vertex vi in G.
Let R = max{Ri: 1 � i � n} and r = min{Ri: 1 � i � n}.
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Theorem 4.5. Let G be a connected graph on n � 2 vertices with reciprocal average
2-transmissions m1 � · · · � mn. For 1 � l � n,

ρ
(
R(G)

)
�

ml − R
r +

√
(ml + R

r )2 + 4R
r

∑l−1
i=1(mi −ml)

2

with equality if and only if m1 = · · · = mn.

Proof. We apply Theorem 2.1 to R(G). Since M = 0, N = 1 and b = R
r , we have the

desired upper bound for ρ(R(G)), which is attained if and only if either m1 = · · · = mn

or (if m1 > mn, then) R(G) satisfies the following conditions (a) and (b):

(a) the off-diagonal elements of R(G) in the first row and column are equal to 1,
(b) r2(R(G)) = · · · = rn(R(G)).

From (a), we have R1 = n − 1, and from (b) and by noting that m1 > mn, we have
R2 = · · · = Rn < n− 1. If (a) and (b) hold, then for 2 � i � n, mi = (n−1)+Ri(Ri−1)

Ri
=

Ri + n−1−Ri

Ri
> Ri = m1, a contradiction. �
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