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Abstract

Boolean control networks (BCNs) are recently attracting considerable interest as computational models for genetic and cellular
networks. Addressing control-theoretic problems in BCNs may lead to a better understanding of the intrinsic control in
biological systems, as well as to developing suitable protocols for manipulating biological systems using exogenous inputs. We
introduce two definitions for controllability of a BCN, and show that a necessary and sufficient condition for each form of
controllability is that a certain nonnegative matrix is irreducible or primitive, respectively. Our analysis is based on a result
that may be of independent interest, namely, a simple algebraic formula for the number of different control sequences that
steer a BCN between given initial and final states in a given number of time steps, while avoiding a set of forbidden states.
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1 Introduction

A Boolean network (BN) is a discrete-time dynamic sys-
tem with Boolean state-variables. BNs have been stud-
ied extensively as models for simple artificial neural net-
works (see, e.g. Hassoun (1995)), where each neuron re-
alizes a threshold function that attains the values zero
or one. BNs have also been used for modeling interac-
tions between simple agents and studying the emergence
of social consensus (see, e.g. Green et al. (2007)).

BNs are currently attracting considerable interest as
models for biological systems. The underlying assump-
tion is that certain biological variables can be approx-
imated as having just two possible levels of operation
(i.e., ON and OFF). Kauffman (1969) modeled a gene
as a binary device, and studied the behavior of large,
randomly constructed nets of these binary genes. He re-
lated the behavior of these random nets to various cel-
lular control processes including cell differentiation. The
key idea being to view each stable attractor of the BN
as representing one possible cell type.

BNs seem especially suitable for modeling genetic regu-
lation networks where the ON (OFF) state corresponds
to the transcribed (quiescent) state of the gene. There
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are several other motivations for using BNs in this con-
text, including the fact that many metabolic and genetic
networks demonstrate some form of bi-stability (Huang
(2002)). Specific examples of genetic regulation networks
modeled using BNs include: the cell cycle regulatory net-
work of the budding yeast (Li et al. (2004)); control of
the mammalian cell cycle (Faure et al. (2006)); the yeast
transcriptional network (Kauffman et al. (2003)); the
network controlling the segment polarity genes in the
fly Drosophila melanogaster (Albert and Othmer (2003);
Chaves et al. (2005)); the ABC network determining flo-
ral organ cell fate in Arabidopsis (Espinosa-Soto et al.
(2004); Chaos et al. (2006)).

BNs have also been used for modeling various cellular
processes. In this context, the two possible logic states
may represent the open/closed state of an ion channel,
basal/high activity of an enzyme, two possible confor-
mational states of a protein, etc. Examples include a de-
tailed model for the complex cellular signaling network
controlling stomatal closure in plants (Li et al. (2006));
and a model of the molecular pathway between two neu-
rotransmitter systems, the dopamine and glutamate re-
ceptors (Gupta et al. (2007)). Szallasi and Liang (1998)
discuss the use of BNs in modeling carcinogenesis and
for analyzing the effect of therapeutic intervention (see
also Kauffman (1971)).

Despite their simplicity, BNs seem to provide an efficient
tool for modeling large-scale biological networks (Born-
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holdt (2008)). These models are able to reproduce the
main characteristics of the biological dynamics: attrac-
tors of the BN correspond to stationary biological states;
large attraction basins indicate robustness of the biolog-
ical state; etc.

Modeling using BNs requires only coarse-grained qual-
itative information (e.g., an interaction between two
genes is either excitatory or inhibitory). Many other
models, for example, those based on differential equa-
tions, require knowledge of numerous parameter values
(e.g., rate constants). For a general exposition on vari-
ous approaches for modeling gene regulation networks,
see Bolouri (2008).

Modeling a biological system involves considerable un-
certainty. This is due to the noise and perturbations that
affect the biological system, and inaccuracies of the mea-
suring equipment. One approach for tackling this uncer-
tainty is by using Probabilistic Boolean Networks (PBNs)
(Shmulevich et al. (2002b,a)). These may be viewed as a
collection of BNs combined with a probabilistic switch-
ing rule determining which network is active at each time
instant.

BNs with (binary) inputs are referred to as Boolean Con-
trol Networks (BCNs). For example, a binary input may
represent whether a certain medicine is administered or
not at each time step. PBNs with inputs were used to
design and analyze therapeutic intervention strategies.
The idea here is to find a control sequence that steers
the network from an undesirable location to a desirable
one. For example, from a location corresponding to a
diseased state of the biological system to a location cor-
responding to a healthy state. In the context of PBNs,
this type of problems can be cast as stochastic optimal
control problems, and solved numerically using dynamic
programming (Datta et al. (2010); Liu et al. (2010)).

Daizhan Cheng and his colleagues developed an alge-
braic state-space representation (ASSR) of BCNs. This
representation proved quite useful for studying BCNs
in a control-theoretic framework. Examples include the
analysis of disturbance decoupling (Cheng (2011)), con-
trollability and observability (Cheng and Qi (2009)), re-
alization theory (Cheng et al. (2010)), and more (Cheng
and Qi (2010a,b); Cheng (2009)). See the recent mono-
graph by Cheng et al. (2011) for a detailed presentation.

Let Ij denote the j × j identity matrix. In the ASSR
of a BCN with n state variables, the state vector x(k)
is a column of I2n for any time k. Similarly, the input
vector u(k) is a column of I2m , where m is the number
of input variables. In other words, both x(k) and u(k)
are canonical vectors.

Here we use the ASSR to address the following question.
Given states a, b, an integer k > 0, and a set of undesir-

able states C, let l(k; a, b, C) denote the number of differ-
ent control sequences that steer the BCN from x(0) = a
to x(k) = b, while avoiding any state in C. We derive a
simple algebraic expression for l(k; a, b, C). We introduce
two definitions for controllability of a BCN, and use the
expression for l(k; a, b, C) and the Perron-Frobenius the-
ory of nonnegative matrices to derive a simple necessary
and sufficient condition for each form of controllability.

Some related work includes the following. Akutsu et al.
(2007) showed that control problems for BCNs are in
general NP-hard. Langmead and Jha (2009) noted that
for many instances of BCNs control problems can be
addressed efficiently using model checking. The control-
lability of BCNs has been addressed in (Cheng and Qi
(2009)). An extension to BCNs with time-delays is de-
scribed in Li and Sun (2011). However, these papers de-
fine controllability with respect to a fixed initial condi-
tion. Our definition, which is motivated by the defini-
tion of controllability in linear systems theory, is differ-
ent and more global in nature. One of the anonymous
reviewers of this brief pointed out to us that a formula
for l(k; a, b, ∅), and its implications for controllability
analysis, already appeared in the recent paper by Zhao
et al. (2010). We further develop these ideas by relating
controllability to the Perron-Frobenius theory of non-
negative matrices.

It is not difficult to show that a BCN is a Boolean
switched system switching between 2m possible subsys-
tems. Our work is motivated by the variational analysis
of continuous-time switched systems (see Margaliot
(2006); Margaliot and Branicky (2009); Sharon and
Margaliot (2007); Margaliot and Liberzon (2006)). This
approach was also extended to analyze discrete-time
switched systems (see Barabanov (2005); Monovich
and Margaliot (2011a,b) and the references therein).
Recently, we considered a Mayer-type optimal control
problem for single and multi-input BCNs, and derived
a necessary condition for optimality in the form of a
maximum principle (Laschov and Margaliot (2011a,b)).

2 Boolean control networks

Let S = {True,False}. A BCN is a discrete-time logical
dynamic control system in the form

x1(k + 1) = f1(x1(k), . . . , xn(k), u1(k), . . . , um(k)),
... (1)

xn(k + 1) = fn(x1(k), . . . , xn(k), u1(k), . . . , um(k)),

where the state variables xi and the controls ui take
values in S, and fi : Sn+m → S.
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Example 1. Consider the three-state, one-input BCN

x1(k + 1) = x2(k),
x2(k + 1) = x3(k), (2)
x3(k + 1) = u(k) ∨ [x2(k) ∧ x3(k)].

3 Algebraic representation of BCNs

Control-theoretic problems for BCNs are best addressed
in the ASSR (see Cheng et al. (2011)). This is based on
the semi-tensor product (STP) of matrices.

Recall that the Kronecker product (see, e.g. (Bernstein,
2005, Ch. 7)) of two matrices A ∈ Rm×n and B ∈ Rp×q

is the (mp)×(nq) matrix: A⊗B =




a11B · · · a1nB
...

. . .
...

am1B · · · amnB


 .

Given two positive integers a, b, let lcm(a, b) denote the
least common multiple of a and b, e.g. lcm(6, 8) = 24.
Definition 1. The STP of A ∈ Rm×n and B ∈ Rp×q is

AnB = (A⊗ Iα/n)(B ⊗ Iα/p),

where α = lcm(n, p).
Remark 1. Note that (A⊗Iα/n) ∈ R(mα/n)×α and (B⊗
Iα/p) ∈ Rα×(qα/p), so (AnB) ∈ R(mα/n)×(qα/p).
Remark 2. If n = p, then AnB = (A⊗ I1)(B⊗ I1) =
AB, so we recover the standard matrix product. Thus, the
STP is a generalization of the standard matrix product
that provides a way to multiply two matrices with arbi-
trary dimensions. Intuitively, this is based on first mod-
ifying A, B to two matrices (A ⊗ Iα/n), (B ⊗ Iα/p) of
compatible dimensions, and then calculating their stan-
dard matrix product.
Example 2. If a, b ∈ R2, then

an b = (a⊗ I2)(b⊗ I1)

=
[
a1b1 a1b2 a2b1 a2b2

]T

.

The STP is associative: An (BnC) = (AnB)nC, and
distributive: (A + B)nC = (AnC) + (B nC) (Cheng
and Dong (2003)).

Let ei
n denote the ith column of In. Represent the

Boolean values True, False by e1
2, e2

2, respectively. Then
any Boolean function of n variables f : Sn → S can be
equivalently represented as a mapping f̄ : {e1

2, e
2
2}n →

{e1
2, e

2
2}. With some abuse of notation, we identify f̄

with f . In other words, from here on a Boolean vari-
able xi is always a vector in {e1

2, e
2
2}.

The STP can be used to provide an ASSR for BCNs.

Theorem 1. (Cheng and Qi (2010b)) Consider the
BCN (1) with xi, ui ∈ {e1

2, e
2
2}. Denote x(k) =

x1(k)n· · ·nxn(k) and u(k) = u1(k)n· · ·num(k). There
exists a unique matrix L ∈ {0, 1}2n×2n+m

such that

x(k + 1) = Ln u(k)n x(k). (3)

The matrix L is called the transition matrix of the BCN.

For algorithms that convert between the representations
(1) and (3), see Cheng and Qi (2010a, 2009).
Remark 3. To explain the intuition behind this repre-
sentation, consider a BCN with n = 2 and m = 1.
Then (3) becomes x(k +1) = Lnu1(k)nx1(k)nx2(k).
To simplify the notation, we omit from here on the de-

pendence on k. Let x1 =
[
p p̄

]T

, x2 =
[
q q̄

]T

, and u1 =
[
v v̄

]T

. Then

u1 n x1 n x2 =
[
vpq vpq̄ vp̄q vp̄q̄ v̄pq v̄pq̄ v̄p̄q v̄p̄q̄

]T

.

Thus, u n x includes all the possible minterms of the
input and state variables. The equation x(k + 1) = L n
u(k)n x(k) amounts to a description of (every minterm
of) the next state in terms of the current state and inputs.

Note that since u(k) = u1(k)n · · ·num(k), with ui(k) ∈
{e1

2, e
2
2}, u(k) ∈ {e1

2m , . . . , e2m

2m}. For example, if m = 3,
u1(k) = e1

2, u2(k) = e2
2, and u3(k) = e2

2, then u(k) = e4
8.

Example 3. Consider the BCN in Example 1. Here n =
3 and m = 1, so x(k) = x1(k)nx2(k)nx3(k). Applying
the algorithm described in Cheng and Qi (2009) yields
the transition matrix

L =
[
e1
8 e3

8 e5
8 e7

8 e1
8 e3

8 e5
8 e7

8 e1
8 e4

8 e6
8 e8

8 e1
8 e4

8 e6
8 e8

8

]
,

(4)
To demonstrate the equivalence of (2) and (3), consider
for example the case x1(k) = x2(k) = x3(k) = False,
and u(k) = True. Then (2) yields

x1(k +1) = x2(k +1) = False, x3(k +1) = True. (5)

In the ASSR, this corresponds to xi(k) = e2
2, and u(k) =

e1
2, so u(k)n x(k) = e1

2 n e2
2 n e2

2 n e2
2 = e8

16, and

x(k + 1) = Ln u(k)n x(k)
= Le8

16

= e7
8. (6)

Writing x1(k + 1) =
[
p p̄

]T

, x2(k + 1) =
[
v v̄

]T

,
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and x3(k + 1) =
[
w w̄

]T

yields

x(k + 1) =
[
pvw pvw̄ pv̄w pv̄w̄ p̄vw p̄vw̄ p̄v̄w p̄v̄w̄

]T

,

so (6) yields p̄ = v̄ = w = 1. Thus, x1(k+1) = e2
2, x2(k+

1) = e2
2, x3(k + 1) = e1

2, and this agrees with (5).

The next section describes our main results. For a ma-
trix M , M > 0 means that every entry of M is positive,
and similarly for other inequalities.

4 Main results

Consider the problem of designing a control sequence
that steers the BCN between two states, while avoid-
ing certain forbidden states. This seems relevant to
biological systems, as some states may correspond to
unfavorable or dangerous situations. Fix an arbitrary
integer k > 0. Let Uk denote the set of all the se-
quences {u(0), . . . , u(k−1)}, with u(i) ∈ {e1

2m , . . . , e2m

2m}.
For a, b ∈ {e1

2n , . . . , e2n

2n} and a set of undesirable
states C, let l(k; a, b, C) denote the number of dif-
ferent control sequences that steer the BCN (3)
from x(0) = a to x(k) = b, while avoiding C (i.e.
x(i) 6∈ C for i = 0, 1, . . . , k.). Since (3) is time-
invariant, l(k; a, b, C) is the number of different control
sequences that steer the BCN from a to b in k time-
steps, while avoiding C.

Let |C| denote the cardinality of C. Let 1r denote the
column vector of length r with all entries equal to 1, and
let Q = L n 12m . By Definition 1, Q = (L ⊗ I1)(12m ⊗
I2n), so Q ∈ R2n×2n

. The next result provides a simple
algebraic expression for l(k; a, b, C).
Theorem 2. Suppose that the states in C are ei1

2n , . . . , eiz
2n

where z = |C|. Let QC be the matrix obtained from Q
by substituting zeros in the rows and columns with in-
dexes i1, . . . , iz. Then

l(k; a, b, C) = bT (QC)ka. (7)

Remark 4. A similar result for the particular case C =
∅ (i.e. QC = Q) recently appeared in (Zhao et al. (2010)).
Proof. By induction on k. Consider the case k = 1.
Let s = l(1; a, b, C). If a ∈ C or b ∈ C, then clearly s = 0.
Since in QC either the row corresponding to b or the col-
umn corresponding to a is zero, bT QCa = 0. So in this
case, l(1; a, b, C) = bT QCa. Now suppose that a 6∈ C
and b 6∈ C. Let w1, . . . , ws be the different control se-
quences steering (3) from x(0) = a to x(1) = b, i.e.

b = Ln wi(0)n a, i ∈ {1, . . . , s}. (8)

Since each control value is a column of I2m , there exist

t = 2m− s different control sequences vj ∈ U1 such that

b 6= Ln vj(0)n a, j ∈ {1, . . . , t}. (9)

Note that the term on the right-hand side of this inequal-
ity must be a column of I2n . Therefore, multiplying (8)
and (9) from the left by bT yields

1 = bT Ln wi(0)n a, i ∈ {1, . . . , s},
0 = bT Ln vj(0)n a, j ∈ {1, . . . , t}.

Since each of the control values is a different column
of I2m , summing up this set of s+t = 2m equations yields

s = bT n Ln 12m n a = bT Qa.

We conclude that when a 6∈ C and b 6∈ C, l(1; a, b, C) =
bT Qa. Since in this case bT Qa = bT QCa, l(1; a, b, C) =
bT QCa. This proves (7) for k = 1. For the induction
step, consider

bT (QC)k+1a = (ej
2n)T (QC)k+1ei

2n

= ((QC)kQC)ji

=
2n∑

p=1

((QC)k)jp(QC)pi

=
2n∑

p=1

(ej
2n)T ((QC)k)ep

2n(ep
2n)T QCei

2n .

Applying the induction hypothesis yields bT (QC)k+1a =∑2n

p=1 l(k; ep
2n , b, C)l(1; a, ep

2n , C). This is the sum, over
all possible states p, of the product of (1) the number of
control sequences that steer from a to ep

2n in one time
step (while avoiding C); and (2) the number of control
sequences that steer from ep

2n to b in k time steps (while
avoiding C). But this is just the number of control se-
quences that steer from a to b in k + 1 time steps (while
avoiding C).
Example 4. Consider the three-state, one-input BCN
in Example 1, with xi(0) = False. Fig. 1 depicts the pos-
sible trajectories of this BCN up to time k = 3. Each
node corresponds to a possible value of x(i) at time i ∈
{0, 1, 2, 3}. Here n = 3, m = 1, L is given by (4),
and x(0) = e8

8. A calculation yields

Q =
[
2e1

8 e3
8 + e4

8 e5
8 + e6

8 e7
8 + e8

8 2e1
8 e3

8 + e4
8

e5
8 + e6

8 e7
8 + e8

8

]
, (10)

so

bT Qa = 2b1(a1 + a5) + b3(a2 + a6) + b4(a2 + a6)
+ b5(a3 + a7) + b6(a3 + a7) + b7(a4 + a8) + b8(a4 + a8).
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e8
8

e8
8

e1
8

e5
8 e6

8

e7
8

u = e1
2 u = e2

2

x(3)

x(2)

x(1)

x(0)

e1
8 e3

8 e7
8e5

8 e6
8 e8

8e4
8

e8
8e7

8

Fig. 1. Trajectories of the BCN. Each node depicts the value
of x(i) for either u(i − 1) = e1

2 (solid line) or u(i − 1) = e2
2

(dashed line).

In particular, bT Qe8
8 = b7+b8, and bT Qe5

8 = 2b1. Thm. 2
implies that l(1; e8

8, e
i
8, ∅) is equal to one [zero] if i ∈ {7, 8}

[otherwise]. Also, l(1; e5
8, e

i
8, ∅) is equal to two [zero] if i =

1 [otherwise]. This agrees with the trajectories depicted
in Fig. 1.

A calculation yields bT Q3e8
8 = bT

[
2 0 1 1 1 1 1 1

]T

,

so l(3; e8
8, e

i
8, ∅) equals two for i = 1; zero for i = 2; and

one, otherwise. Again, this agrees with Fig. 1.

Now suppose that C = {e7
8}, i.e. e7

8 is an undesirable
state. QC is obtained from Q by substituting zeros in
row 7 and column 7, i. e.

QC =
[
2e1

8 e3
8 + e4

8 e5
8 + e6

8 e8
8 2e1

8 e3
8 + e4

8 08 e8
8

]
,

where 08 denotes a column vector of 8 zeros. Then
(ei

8)
T Q3

Ce8
8 is 1 for i = 8 and zero, otherwise, so the num-

ber of control sequences steering x(0) = e8
8 to x(3) = ei

8,
while avoiding e7

8, is one for i = 8 and zero, otherwise.
This agrees with the trajectories depicted in Fig. 1.

For C = ∅, QC = Q and the interpretation of Qk
C in

Thm. 2 implies the following.
Corollary 1. For any k > 0, the sum of the elements in
any column of Qk is 2mk.
Proof. The sum of the elements in column i of Qk is∑2n

j=1(e
j
2n)T Qkei

2n . By Thm. 2 this is the number of dif-
ferent control sequences steering x(0) = ei

2n to some vec-
tor in {e1

2n , . . . , e2n

2n} in k time steps. But this is just the
total number of different control sequences of length k,
i.e. 2mk.

Thm. 2 has important applications for the controllability
of BCNs.
Definition 2. Given a set of undesirable states C (that
may be empty), we say that the BCN (3) is controllable
if for any a, b ∈ ({e1

2n , . . . , e2n

2n} \ C
)

there exist k ≥ 0
and a control u ∈ Uk that steers the BCN from x(0) = a
to x(k) = b, while avoiding C.

Note that k here may depend on a, b. It is clear that
controllability implies that for any a and b, k(a, b) ≤ 2n,
since the total number of different states is 2n.

We use the Perron-Frobenius theory of nonnegative ma-
trices to derive a necessary and sufficient condition for
controllability. We recall the following definitions (see
e.g. (Horn and Johnson, 1985, Ch. 8)).
Definition 3. A matrix M ∈ Rn×n, with n ≥ 2, is
said to be reducible if there exists a permutation matrix
P ∈ {0, 1}n×n, and an integer r with 1 ≤ r ≤ n− 1 such
that

PT MP =

[
B C

0 D

]
, (11)

where B ∈ Rr×r, D ∈ R(n−r)×(n−r), C ∈ Rr×(n−r) and
0 ∈ R(n−r)×r is a zero matrix. A matrix is said to be
irreducible if it is not reducible.
Theorem 3. (Berman and Plemmons, 1987, Ch. 2)
Suppose that A ∈ Rn×n is nonnegative. Then A is irre-
ducible if and only if for any i, j ∈ {1, . . . , n} there exists
an integer k ≥ 1 such that (Ak)ij > 0.

Let Q̃C denote the matrix obtained from Q by deleting
the rows and columns with indexes i1, . . . , iz. Note that
Q̃C ∈ Rq×q, with q = 2n − |C|. Arguing as in the proof
of Thm. 2 and using Thm. 3 yields the following result.
Theorem 4. The BCN (3) is controllable if and only
if Q̃C is irreducible.

Note that we cannot use the matrix QC here. Indeed,
if C 6= ∅, then QC includes at least one row and one col-
umn of zeros so it is always reducible. This is reasonable,
as clearly there is no control steering the system to one of
the states in C. The use of Q̃C overcomes this problem.
Example 5. Consider the BCN in Example 4. Suppose
that C = {e7

8}. Q̃C is obtained from Q by deleting the
seventh row and the seventh column, i. e.

Q̃C =
[
2e1

7 e3
7 + e4

7 e5
7 + e6

7 e7
7 2e1

7 e3
7 + e4

7 e7
7

]
.

It is well-known that a nonnegative matrix A ∈ Rn×n is
irreducible if and only if (In + A)n−1 > 0 (Berman and
Plemmons, 1987, Ch. 1). Since (I7 + Q̃C)6 includes zero
entries, Q̃C is reducible, and we conclude that the BCN
is not controllable for C = {e7

8}. Indeed, Fig. 1 shows
that in this case there is no control steering e8

8 to any
state b 6= e8

8.

Recall that if a linear control system of dimension n is
controllable, then any initial condition can be steered to
any final condition in n time-steps (Kailath (1980)). This
motivates the following stronger notion of controllability.
Definition 4. Given a set of undesirable states C (that
may be empty), we say that the BCN (3) is k fixed-time
controllable if for any a, b ∈ ({e1

2n , . . . , e2n

2n} \ C
)

there

5

Μαρία
Highlight



exists a control u ∈ Uk that steers the BCN from x(0) = a
to x(k) = b, while avoiding C.

To motivate this definition, consider a biological system
composed of several identical parts, each part modeled
using the same BCN. For example, the biological sys-
tem is a multi-cellular organism, and the identical BCNs
model the cell-cycle. We may be interested in applying
a control to every part of the system in order to syn-
chronize all the parts, say, steering all the parts to the
same desired state b at the same final time. If the BCN
is k fixed-time controllable, then this can be done, as
there exists a control sequence ui ∈ Uk that steers part
number i from its (arbitrary) initial state xi(0) to b in
exactly k time-steps.

Arguing as in the proof of Thm. 2 yields the following
result.
Theorem 5. The BCN (3) is k fixed-time controllable
if and only if (Q̃C)k > 0.

Again, we use known results from the Perron-Frobenius
theory to derive a necessary and sufficient condition for
k fixed-time controllability.
Theorem 6. (Horn and Johnson, 1985, Ch. 8) A non-
negative matrix A ∈ Rn×n is called primitive if there
exists an integer j ≥ 1 such that Aj > 0. In this case, the
smallest such j is called the index of primitivity of A, de-
noted γ(A). If A is primitive, then γ(A) ≤ n2 − 2n + 2.

Let q = 2n − |C|. Combining Thm. 6 with Thm. 5 and
recalling that Q̃C ∈ Rq×q yields the following result.
Corollary 2. If the matrix Q̃C is primitive, then

γ(Q̃C) ≤ q2 − 2q + 2 (12)

and the BCN (3) is γ(Q̃C) fixed-time controllable. If Q̃C

is not primitive, then the BCN is not k fixed-time con-
trollable for any k.

The link between k fixed-time controllability and prim-
itivity of Q̃C implies the following result.
Corollary 3. If a BCN is k fixed-time controllable, then
it is p fixed-time controllable for any p ≥ k.
Proof. k fixed-time controllability implies that Q̃k

C > 0.
Assume that there exist i, j such that (Q̃k+1

C )ij = 0.
Thus, the multiplication of row i of Q̃k

C and column j

of Q̃C is zero. Since Q̃k
C > 0 and Q̃C ≥ 0, this implies

that every entry in column j of Q̃C is zero. But then
clearly Q̃k

C cannot be positive. This contradiction shows
that Q̃k

C > 0 implies that Q̃k+1
C > 0.

The bound (12) cannot be improved in general. How-
ever, under additional assumptions on A it is possible
to derive tighter bounds for γ(A) (see e.g. (Berman and
Plemmons, 1987, Ch. 2)).

Example 6. For C = ∅, consider the controllability of
the three-state, one-input BCN

x1(k + 1) =[x̄1(k) ∧ x̄2(k) ∧ x̄3(k)] ∨ [x1(k) ∧ x3(k)]
∨ [x1(k) ∧ x2(k)],

x2(k + 1) =[x̄2(k) ∧ x̄3(k)] ∨ [x2(k) ∧ x3(k)], (13)
x3(k + 1) =[x2(k) ∧ x̄3(k)] ∨ [x̄2(k) ∧ x̄3(k) ∧ [u(k) ∨ x1(k)]].

The ASSR is given by n = 3, m = 1, and

L =
[
e2
8 e3

8 e4
8 e5

8 e6
8 e7

8 e8
8 e1

8 e2
8 e3

8 e4
8 e5

8 e6
8 e7

8 e8
8 e2

8

]
,

and Q = Ln
[
1 1

]T

yields

Q =
[
2e2

8 2e3
8 2e4

8 2e5
8 2e6

8 2e7
8 2e8

8 e1
8 + e2

8

]
.

A calculation yields Qi 6> 0, i ∈ {1, . . . , 49}, and Q50 >
0, so the BCN is k fixed-time controllable for any k ≥ 50,
but not for any k < 50. Note that in this case the bound
in (12) is γ(Q) ≤ 26 − 24 + 2 = 50.

Fig. 2 depicts the trajectories of this BCN. Let s(k; a)
denote the number of different states that are reachable
at time k starting from x(0) = a. It is easy to see from
Fig. 2 that s(k; e1

8) = 1 for k ∈ {1, . . . , 7}, s(k; e1
8) = 2

for k ∈ {8, . . . , 14}, and so on. Therefore, s(k; e1
8) = 8

if and only if k ≥ 50. In other words, 50 is the minimal
value such that starting from x(0) = e1

8, any state can be
reached at time k.

e3
8 e5

8

e6
8

e7
8

e8
8

e1
8

e2
8

e4
8

Fig. 2. Trajectories of the BCN in Example 6. A solid [dashed]
line denotes the transition corresponding to u(k) = e1

2

[u(k) = e2
2].

5 Conclusion

Controllability analysis in biological systems modeled
using BCNs may reveal how the structure and organi-
zation of the system guarantee the property of control-
lability. Also, when the controls represent inputs that

6



may be manipulated from the outside world (e.g. the ad-
ministration of a drug), then controllability analysis is
of course a preliminary step to control synthesis.

Using Cheng’s ASSR, we derived a simple formula for
the number of different control sequences that steer a
BCN between two given states in a given number of time-
steps, while avoiding a set of forbidden states. We used
this to derive a necessary and sufficient condition for two
forms of controllability in terms of known results from
the Perron-Frobenius theory.

Perron-Frobenius theory and graph-theoretic arguments
play an important role in the analysis of discrete-time
positive switched systems (see e.g. Fornasini and Valcher
(2011) and the references therein). We believe that com-
bining ideas from these fields with the special, canonical
structure of BCNs may lead to further progress in the
control-theoretic analysis of BCNs.
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