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1. Introduction

Let G = (V,E) be a simple connected graph with vertex set V(G) = {1,2,...,n} and edge set E(G), where |V(G)| = n is the
order and |[E(G)| = m is the size of G. When i is adjacent to j, we denote this fact by i ~ j. For »; € V(G), the degree (= number
of first neighbors) of the vertex v; is denoted by d;. The minimum vertex degree is denoted by ¢, the maximum by A; and the
second maximum by A,. Assuming that the degrees are orderedasd; > d, > --- > d,, then Ay =d;, A, =d, and 6 = d,.. The
average degree of the neighbors of vertex i is m; = dlizj:jNidj. The eigenvalues of G are the eigenvalues of the adjacency matrix
A(G), given as 11(G) = /72(G) = ... = /n(G), where, 1,(G) is called the index of G. Consider D(G) as the diagonal matrix of ver-
tex degrees of G. The Laplacian matrix of G is L(G) = D(G) — A(G), its eigenvalues are as displayed as p,(G) > u,(G) =
... = Uy, 1(G) = u,(G) and p,(G) is the spectral radius of Laplacian matrix of graph G. Since L(G) and A(G) are well known,
there are many results on their spectra, (see [4,8,10-12,16,20,21,24]).

The matrix Q(G) = D(G) + A(G) was introduced in the classical book of Cvetkovi¢, Doob and Sachs on “Spectra of Graphs”
[6], but without a name being given to it at that time. Later it was called “quasi-Laplacian matrix” and more recently “sign-
less Laplacian” [3,5,13-15]. Let g, (G) be the spectral radius of Q(G). Since G is a connected graph then Q(G) is a nonnegative,
symmetric and irreducible matrix. Some researchers [25,27] have observed that

1 (G) < q4(G) (1)
and
2/1(G) < q,(G). (2)

These relations immediately imply that any lower bound on g, (G) is a valid lower bound on ¢, (G) and that doubling any
lower bound on Z;(G) also yields a valid lower bound on ¢, (G). A number of upper bounds on y, (G) given as functions of the
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degree and of the average degree of the neighbors of a vertex have been proposed in the literature. In [2,23], it was gathered
some of them and these bounds are

#(G) < H?EQ,X{M-}, (23] (3)
w:(G) < max{d; +my}, (22, (4)
14,(G) < r%x{d,- + \/d,-ml-}, 23,29, (5)
@) < max{\2agd +my} 19 6)
P 8dm
(G < max{d*d;&jm} 17,23) @)
i (G) < max{d +d;}, (1), 8)
{di + dj + (d1 — dj)2 + 4mim]~}
and 1, (G) < rrilsx 3 ,19,28]. 9)

In the above bounds (3),(4),(5) and (7),(8),(9) are valid for g, (G) (see [2,3,11,23,26]). In this paper, we obtain some new
and improved sharp upper bounds on it.

2. Sharp upper bounds for the spectral radius of the signless Laplacian matrix of a graph
We first list some known results which will be used in this paper.

Lemma 1 [18]. Let M be irreducible non-negative matrix. Then p(M) is an eigenvalue of M and there is a positive vector X such
that MX = p(M)X.

Lemma 2 [5]. Let M = (m;) be an n x n non-negative matrix and let R;(M) be the ith row sum of M, i.e., Ri(M) = Z,'L] m;(1 <
i< n). Then

min{R;(M) : 1 <i<n} < pM) <max{R(M):1<i<nj}. (10)
If M is irreducible, then each equality holds if and only if Ry =R, = --- =R,.

Theorem 3 [30]. Let A = (ay) be an n x n irreducible non-negative matrix. Then

noa M ?a;M;
S R bl 1<i<n}<p(/\)<max{q/%, 1<i<n}, (11)

where R; = Z}’L]a,»j, M; = Z};lainj, M; = % and p(A) denotes the spectral radius of A. Moreover, if A® is irreducible, then any
equality holds in (11) if and only if M} = M, = --- = M;; and if A? is reducible, then any equality holds in (11) if and only if there
exist the permutation matrix P such that

0 A
PAP" = ( )
AZ On—r

and My ;) = --- = Mgy, My,
tation matrix P.

)y == M:,(,l), where ¢ is a permutation on the set {1,2,...,n} which corresponds to the permu-

Corollary 4 [30]. Let A = (ay) be an n x n irreducible non-negative matrix. Then
min {M;: 1 <i<n} < pA) <max{M;:1<i<n}, (12)

where M; be as in Theorem 3. Then equality holds in (12) if and only if M} =M, = --- = M,

Corollary 5 [30]. Let A = (a;) be an n x n irreducible non-negative matrix. Then

min{\/l\z:lgign}gp(A)gmax{\/ﬁ,»:lgign}, (13)
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where M; be as in Theorem 3. Moreover, if A% is irreducible, then any equality holds in (13) if and only if Ry =R, = - -- = R,; and if
A? is reducible, then any equality holds in (13) if and only if there exist the permutation matrix P such that

0, A
PAP" = ( )
AZ On—r

and Rs1) = -+ = Ro(r), Rog+1) = -+ = Rg(n), Where o is a permutation on the set {1,2,...,n} which corresponds to the permuta-
tion matrix P.

Now we give our main results. Throughout this paper, G will denote a simple connected graph on n vertices unless stated
otherwise.

>

Theorem 6. Let b; € R*, 1 < i< n. Also let b} = b 2jjibyy i = bildi + b)), ¢ = %C’ and k; = d; + c}. Then

(a)

S

¢ (G) < max{ \| dik; + kg (14)
1<i<n Ci
If Q? is irreducible, then equality holds in (14) if and only if ky = ko = - -- = k, and if Q? is reducible, then equality holds in (14) if
and only if there exists the permutation matrix P such that
0,
PQ(G)P" = ( . )
Q Opr
With ksqy = Ke) = - = ko) and ko(ri1) = Ko(rs2) = - -+ = Kko(n), where o is a permutation on the set {1,2,...,n} which corre-
sponds to the permutation matrix P.
(b)
di +d; +/(d; — d;)* + 4b}b]
ql(c><ma_x{’ ity d) b | (15)
inj 2
with equality holds in (15) if and only if G is either a regular graph or a bipartite semi-regular graph.
(c)
6:(C) < max{ki}, (16)
with equality holds in (16) if and only if ky = ky = - - = kj,.
(d)
(d: + ¢
0.(0) <max{ @} (a7)
i<i<n b;
If Q? is irreducible, then the equality holds in (17) if and only if d, + by = d, + b}, = --- = d, + b),; and if Q* is reducible, then the
equality holds in (17) if and only if there exists the permutation matrix P such that
Or Q]
PQ(G)P" = ( )
© Q 0pr
with doa) + bl ) = do@) + byo) = -+ = dow + by and dogy1) + by y) = dogea) + by 0 = -+ = dow) + by, Where @ is a per-

mutation on the set {1,2,...,n} which corresponds to the permutation matrix P.

Proof. Let B = diag(b,,b,...,b,) be an n x n diagonal matrix. Consider the matrix B~'Q(G)B. Now the (i,j)th element of
B'Q(G)Bis
i ifi=],
pooifi~j,
0 otherwise.

It is easy to see that the inequality (14) holds from Theorem 3 as
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szaufd-i- Zb*b’

U jig~i
M; = dR+Z’R_— dici+> g _k‘C'
i~ bi bi Jii~i bi

and

n
ZGUM]' = diMi + Za,-ij = dl’;f(:l + Z%
j=1 Ji~i ! i !
Moreover, the proof of the second part of (a) is directly follows from Theorem 3.
Next, we prove that (15) holds. From Lemma 1, there exists a positive eigenvector X = (x1,x2,...,x,,)T of B’lQ(G)B
corresponding to q, (B’]Q(G)B . We can assume that one of the eigencomponents, say x;, is equal to 1 and the other
eigencomponents are less than'or equal to 1, i.e,, x; = 1 and x, < 1,1 < k < n. Also, let x; = max;{x; : k ~ i}. From

(B*Q(G)B)x = q,(G)X, (18)
we have
=di+— Zbkxk <di4+— Zka, (19)
lksz kek~i
and
q,(G)x; = dix; + Zbkxk dix; + Zbk (20)
kk~j kk~]

From (19) and (20), we have
0:(G)” = (di + d;)q, (G) + did; - ( Zbk> ( Zbk) <
‘kk~: JkkNJ

Thus we have

di+d;+/(di — d;)* + 4b)b,
A ..

Hence (15) holds.
Moreover, one can see easily that the equality holds in (15) for regular graph or for bipartite semiregular graph.
(16) and (17) with equality follow from Corollaries 4 and 5, respectively. The proof is complete. O

Remark 7. From Theorem 6, we have the following known results.

. Taking b; = 1 in (15), we have upper bound (8).
. Taking b; = d; in (15), we have upper bound (9).
. Taking b; = 1 in (16), we have upper bound (4).
. Taking b; = 1 in (17), we have upper bound (6).

AW N =

In particular, from Theorem 6, we have the following results.
Corollary 8. For a graph G, as depicted previously, the following inequalities hold:
() < max{ \/d(d + m) +5. ) 1)

E di[d;(d; + my) + sj]
. . Si i~
0(6) < maxd (44 g o)+ g

i(d;i +m;) @2)

and

Si
q:(G) < miax{di +m}7 (23)
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d4;(d; +mj)

i

where s; = 3.,
Proof. Taking b; = 1 and b; = d; in (14) and b; = d; in (16), respectively, we have the required results. [

Remark 9. Since Corollary 8 is a consequence of Theorem 6, it is easy to conclude that the equality conditions in (14) and
(16) are also hold.

Lemma 10 [7]. Let G be a connected graph. Then d + my; = d + my = --- = d,, + m, if and only if G is a regular graph or G is a
regular bipartite graph.

Theorem 11. Let G be a connected graph. Then
q,(G) < max{d +b;} (24)

and

d + d<2 T 4cic
0(G) < m,ax{’z’""}, (25)

where b e RY, b= blzjwbj, ¢ =hbi(di+b), ¢, = % Moreover, both the equality hold if and only if
di+b, =dy+by=---=d,+ b

Proof. Let X = (x1,xa,..., x,)" be an eigenvector corresponding to the eigenvalue g, (G) of B"'Q(G)B. We assume that one eig-
encomponent x; is equal to 1 and the other eigencomponents are less than or equal to 1, thatis,x; = 1 and 0 < x, < 1, for all k.
From the ith equation of (18), we have

0 (G = i+ 3

Ji~i b
ie. q,(G) =d; +bef. (26)
Ji~i

From above the first bound follows. Moreover, the equality holds in (24) if and only if d; + b; (1 < i < n) is a constant. Again
from the jth equation of (18),

q,(G )XJ*dXJJFZ

k:k~j J

kak

Multiplying both sides of (26) by q,(G) and substituting this value g, (G)x;, we get

@(G) = digy (G Z{ dijerkxk}}

Jg~i k:k~j

=diq,(G Z "xj bZZbkxk dig, (G +Zbdf+z:”asxj,xk\1

Ji~ ! jiikikng Jg~i Jg~i

b;(d; + b; !
= 4,4, (G) + ;% = 40:(0) + 5 (27)
from above the second bound follows.

Now suppose that the equality holds in (25). Then all inequalities in the above argument must be equalities. From
equality in (27), we get x; = 1 for all j such that j ~ i and x; = 1 for all k such that k ~ j and j ~ i. From this one can easily
show that x; = 1 for all i € V. Thus we have d; + b} =d; + b, =--- =d, + b),.

Conversely, one can easily see that the equality holds in (25) for dy + b} =dy + b5 =--- =dn +b,. O

Corollary 12. Let G be a connected graph. Then

d /d2 8d;m;b,
q,(G) < max{+—}, (28)

1<i<n 2
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f 1 b = . =1 .
where by =537 ;bj, b = ?;l_agfbl and m; = 337, d;.

Corollary 13. Let G be a connected graph. Then

{di + \/dz2 a4 i (4 + mf)}
: :

¢;(G) < max

1<i<n

The equality holds if and only if G is a regular graph or G is a regular bipartite graph.

Proof. Taking b; = d; in (25), the above bound follows. By Lemma 10 and Theorem 11, the above equality holds if and only if
G is a regular graph or G is a regular bipartite graph. O

Corollary 14. Let G be a connected graph. Then

1
0(G) < p;,g{d,- *7@2@}7 (29)

i~

with equality if and only if d; + ﬁzj:jwi\/d‘j (1 <i<n)isa constant.
Proof. Taking b; = \/d; in (24), the result follows. O
Remark 15. From the Cauchy-Schwarz inequality, it is easy to see that bound (29) is always better than bound (5).

Remark 16. From Theorem 11 and Corollary 12, respectively, we have the following known results:

1. Taking b; = 1 and b; = d; in (24), we have upper bounds (3) and (4).
2. Taking b; = 1 in (25) and (28), we have upper bound ( 7).

Let T" be the class of graphs H = (V,E) such that H is connected graph with V(H) = {1} uV; UV,
di=A, Vi={keN;:di=6}, Voa={k¢N;:dy=A}
and
(Ay — 0)(2A3 — Ay) = Ay — A,

The spectral radius of the signless Laplacian matrix of H € ' is given by:

Ay 426 — 1+ /(A — 26+ 1) + 4A,
qy(H) = 2A; = \/ 5 .

Denote by H, 14,, a connected graph with maximum degree n—1 and the second maximum degree A, such that
Ay, =6 <n—1 (6 is minimum vertex degree). Thus H,_1,4, is a (n — 1,A,)-semiregular graph with A, < n — 1. One can see
easily that the spectral radius of the signless Laplacian matrix of H,_1 a, is given by the following equation

@ — (n+2Ay —2)q, +2(n— 1)(A; — 1) = 0.

Thus the spectral radius of the signless Laplacian matrix of H,_1 4, is given by

424, — 2+ /(01— 24, +4(n—1)
a, = .
2

We now give another upper bound on the spectral radius of the signless Laplacian matrix of a graph.

Theorem 17. Let G be a connected graph with maximum degree A, and second maximum degree A,. Then

i~j

di+2d; — 1+ /(d; — 2d; + 1)* + 4d;
qlémaX{ ’ \/(2 b+ 1) } (30)

with equality holds in (30) if and only if G is isomorphic to a regular graph or G = H, 14, or G I.
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Proof. Let X = (x1,X2,...,%,)" be an eigenvector of Q(G) corresponding to an eigenvalue q,. We can assume that one eigen-
component x; is equal to 1 and the other eigencomponents are less than or equal to 1, thatis, x; = 1 and 0 < x, < 1, for all k.
We have

QGX=q,X (31)
Let x; = maXyx » iXx. From the ith equation of (31),
Gxi=dixi+ Y X, ie,q <di+d;. (32)

k:k~i

From the jth equation of (31),
GOx = dixi + > X,

kik~j
Le, qx <dix+ 1+ (dj - 1)x;,
ie, (g —2dj+1)x < 1. (33)

From (32) and (33), we get
(q; —di)(q —2dj + 1) < dj,

q} — (di +2d; — 1)q; + 2di(d; — 1) <0,

di+2d; — 1+ \/(d - 2d; + 1) + 4
- .

The first part of the proof is over.
Now suppose that equality holds in (30). Then all inequalities in the above argument must be equalities. In particular,
from (32) we get

q; <

X, = x; for all k, k ~ i.
Also from (33) we get
xe=x;forallk, k~j, k#iandi~j.

Let Vi = {k: x, = x;}. If V; # V(G) \ {i}, then there exist vertices p € V4, q ¢ V1, q # i such that p ~ q as G is connected.
Thus we have x; < x; as x; is the second maximum eigencomponent. For vertex p € V(G), from above, we must have
Xq = X;, a contradiction. Thus V; = V(G) \ {#;}. If x; = 1, then

¢ =2d;, i=12,....,n

Hence G is a regular graph.

Otherwise, x; < 1. Now we consider two cases (i) d; =n—1, (ii)d; <n — 1.

Case (i) : d; =n — 1. In this case vertex i is adjacent to all the remaining vertices in G. One can see easily that any two
vertices j and k in V(G) \ {i},d; = dy < n — 1. Thus we have Ay =d; =d3; =... =d; = . Hence G = H,_1 4,.

Case (ii) : d; <n— 1.Inthis case V; = {k € N;} and V, = V(G) \ (V; U {i}). One can see easily that any two vertices j and k
in Vq,d; = dy and also we have d; = d;, for r,s € V,. Moreover, we have

q; = di(1+x;), (34)

q]:Zdj—1+% je vy, (35)
J

and q; =2dy ke V,. (36)

From (34) and (36), we get d; >dy, k€ V,. From (35) and (36), we get di >d;, ke V,, jeV,. Thus we have
di = Ay, dy =A; and d; = 6,k € V, and j € V4. Moreover, (A; — 6)(2A; — A1) = Ay — A, by (34)-(36).

Hence GeT.

Conversely, one can see easily that the equality holds in (30) for regular graph or for H, 14, or for G,GeI'. O
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