
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=glma20

Linear and Multilinear Algebra

ISSN: 0308-1087 (Print) 1563-5139 (Online) Journal homepage: http://www.tandfonline.com/loi/glma20

On sharp bounds for spectral radius of
nonnegative matrices

Hongying Lin & Bo Zhou

To cite this article: Hongying Lin & Bo Zhou (2017) On sharp bounds for spectral
radius of nonnegative matrices, Linear and Multilinear Algebra, 65:8, 1554-1565, DOI:
10.1080/03081087.2016.1246514

To link to this article:  https://doi.org/10.1080/03081087.2016.1246514

Published online: 20 Oct 2016.

Submit your article to this journal 

Article views: 327

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=glma20
http://www.tandfonline.com/loi/glma20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/03081087.2016.1246514
https://doi.org/10.1080/03081087.2016.1246514
http://www.tandfonline.com/action/authorSubmission?journalCode=glma20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=glma20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/03081087.2016.1246514
http://www.tandfonline.com/doi/mlt/10.1080/03081087.2016.1246514
http://crossmark.crossref.org/dialog/?doi=10.1080/03081087.2016.1246514&domain=pdf&date_stamp=2016-10-20
http://crossmark.crossref.org/dialog/?doi=10.1080/03081087.2016.1246514&domain=pdf&date_stamp=2016-10-20


LINEAR ANDMULTILINEAR ALGEBRA, 2017
VOL. 65, NO. 8, 1554–1565
https://doi.org/10.1080/03081087.2016.1246514

On sharp bounds for spectral radius of nonnegative matrices

Hongying Lin, Bo Zhou

School of Mathematical Sciences, South China Normal University, Guangzhou, P.R. China

ABSTRACT

We give sharp upper and lower bounds for the spectral radius of a
nonnegativematrixwith positive row sumsusing average 3-row sums,
compare these bounds with the existing bounds using the average 2-
row sums by examples, and apply them to the adjacency matrix and
the signless Laplacian matrix of a digraph or a graph.
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1. Introduction

LetA = (aij) be an n×n nonnegative matrix. The spectral radius ofA, denoted by ρ(A), is
the largest modulus of the eigenvalues ofA. It is well known that ρ(A) is an eigenvalue ofA
(see [1]). The spectral radius of a nonnegative matrix has been studied extensively, see, e.g.
[1–8]. In dynamical systems or graph theory, one would like to compute the spectral radius
of a nonnegative matrix. For example, the topological entropy, one of the main invariants
of a topological dynamical system which tells us how chaotic the system is, can often be
computed as a logarithm of the spectral radius of a certain nonnegative matrix.[9]

For 1 ≤ i ≤ n, ri(A) = ∑n
j=1 aij is called the ith row sum of A, and Mi(A) =∑n

j=1 aijrj(A) is called the ith 2-row sum of A. For 1 ≤ i ≤ n with ri(A) > 0, let mi(A) =
Mi(A)
ri(A) =

∑n
j=1 aijrj(A)
ri(A) , which is known as the ith average 2-row sum of A (see [7]), and let

si(A) =
∑n

j=1 aijMj(A)
ri(A) =

∑n
j=1

∑n
k=1 aijajkrk(A)
ri(A) , which we call the ith average 3-row sum of A

(see [8]). Zhang and Li [8] gave sharp upper and lower bounds for the spectral radius of a
nonnegative matrix with positive row sums using maximum andminimum average 3-row
sums, respectively, see Lemma 2.3 below.

In this paper, we also consider the spectral radius of some nonnegative matrices
associated with a digraph (with no multiple arcs or loops) or a simple graph.

Let
−→
G be a digraph with vertex set V(

−→
G ) = {v1, . . . , vn}. For vi, vj ∈ V(G), the arc

from vi to vj is denoted by (vi, vj), and vi is called the initial vertex of this arc. Let d+
i be the

out-degree of vi in
−→
G , i.e. the number of arcs with initial vertex vi. The adjacency matrix
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LINEAR ANDMULTILINEAR ALGEBRA 1555

of
−→
G is the n × nmatrix A(

−→
G ) = (aij), where aij = 1 if there is an arc from vi to vj and 0

otherwise. The signless Laplacianmatrix of
−→
G is the n×nmatrixQ(

−→
G ) = D(

−→
G )+A(

−→
G ),

where D(
−→
G ) is the out-degree diagonal matrix diag(d+

1 , . . . , d
+
n ). The spectral radius of

the adjacency matrix of a digraph has been studied extensively, see, e.g. [8,10–12]. The
spectral radius of the signless Laplacian matrix of a digraph has been studied in [13].

LetG be a graphwith vertex setV(G) = {v1, . . . , vn}. If we replace each edge vivj ofG by
two arcs (vi, vj) and (vj, vi), then we obtain a digraph G̃. The adjacency matrix and signless
Laplacian matrix of G̃ are called the adjacency matrix and signless Laplacian matrix of G,
respectively. The spectral radii of the adjacency matrix and the signless Laplacian matrix
of a graph have received much attention, see, e.g. [14–17].

In this paper, we give sharp upper and lower bounds for the spectral radius of a
nonnegative matrix with positive row sums using average 3-row sums, and characterize
the equality cases if the matrix is irreducible. We compare those bounds with the existing
bounds using the average 2-row sums by examples, and also apply those bounds to the
adjacency matrix and the signless Laplacian matrix of a digraph or a graph.

2. Bounds for the spectral radius of nonnegativematrices

We first give several lemmas that will be used.

Lemma 2.1 [5]: Let A be an n × n nonnegative matrix. Then

min
1≤i≤n

ri(A) ≤ ρ(A) ≤ max
1≤i≤n

ri(A).

Moreover, if A is irreducible, then either equality holds if and only if r1(A) = · · · = rn(A).

For positive integers s and t, let 0s×t be the s × t zero matrix, and let 0s = 0s×s.

Lemma 2.2 [8]: Let A be an n × n irreducible nonnegative matrix. Then A2 is reducible if
and only if there exists a permutation matrix P such that

PAP� =
(
0s A1
A2 0n−s

)
.

Moreover, A2A1 and A1A2 are irreducible, and ρ(A1A2) = ρ(A2).

Lemma 2.3 [8]: Let A be an n × n nonnegative matrix with positive row sums. Then

min
1≤i≤n

√
si(A) ≤ ρ(A) ≤ max

1≤i≤n

√
si(A).

Moreover, if A is irreducible, then either equality holds if and only if m1(A) = · · · =
mn(A) when A2 is irreducible, and there is a permutation matrix P such that PAP� =(
0r A1
A2 0n−r

)
, mσ(1)(A) = · · · = mσ(r)(A), and mσ(r+1)(A) = · · · = mσ(n)(A) when

A2 is reducible, where σ is a permutation on the set {1, . . . , n} which corresponds to the
permutation matrix P.

Next we give a sharp upper bound for the spectral radius of a nonnegative matrix.
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1556 H. LIN AND B. ZHOU

Theorem 2.1: Let A = (aij) be an n × n nonnegative matrix with positive row sums
r1, . . . , rn and with average 3-row sums s1 ≥ · · · ≥ sn. Let M be the largest diagonal
element, and N the largest off-diagonal element of A. Let b = max

{
ri
rj : 1 ≤ i, j ≤ n

}
and

θ = M2 +N2(n− 1)− 2MNb− (n− 2)N2b. Suppose that N > 0 and s1 ≥ θ if b = 1, and
s1 > θ if b > 1. For 1 ≤ l ≤ n, let

�l = sl + θ +
√
(sl − θ)2 + 4(2MN + (n − 2)N2)b

∑l−1
k=1 (sk − sl)

2
.

Then ρ(A) ≤ √
�l . Moreover, if A is irreducible, then ρ(A) = √

�l for some 1 ≤ l ≤ n if
and only if one of the following conditions holds:

(i) if l = 1, then m1(A) = · · · = mn(A) when A2 is irreducible, and PAP� =(
0r A1
A2 0n−r

)
for some permutation matrix P with mσ(1)(A) = · · · = mσ(r)(A)

and mσ(r+1)(A) = · · · = mσ(n)(A) when A2 is reducible, where σ is a permutation
on the set {1, . . . , n} which corresponds to the permutation matrix P;

(ii) if 2 ≤ l ≤ n, then s1 = · · · = sn.

Proof: If l = 1, then�l = s1+θ+|s1−θ |
2 = s1, and thus the result follows immediately from

Lemma 2.3.
Suppose that 2 ≤ l ≤ n.
If b = 1, then r1 = · · · = rn, and thus by definition, we have s1 = · · · = sn. Since

s1 ≥ θ , we have�l = �1 = s1+θ+|s1−θ |
2 = s1. By Lemma 2.1, ρ(A) = r1 = √

s1 = √
�l .

Suppose that b > 1.
Let U = diag(x1r1, . . . , xl−1rl−1, rl , . . . , rn), where xi ≥ 1 is a variable to be determined

later for 1 ≤ i ≤ l − 1. Let B = U−1A2U . Obviously, A2 and B have the same eigenvalues.
Then ρ(A) = √

ρ(A2) = √
ρ(B).

For 1 ≤ i ≤ l − 1, since aii ≤ M, rkri ≤ b for 1 ≤ k ≤ l − 1 and k �= i, and aij ≤ N for
1 ≤ j ≤ n and j �= i, we have

ri(B) = ri(U−1A2U)

= 1
rixi

l−1∑
k=1

rkxk
n∑

j=1

aijajk + 1
rixi

n∑
k=l

rk
n∑

j=1

aijajk

= 1
xi

⎛⎝ l−1∑
k=1

n∑
j=1

aijajk
rk
ri
(xk − 1)+ 1

ri

n∑
k=1

n∑
j=1

aijajkrk

⎞⎠
= 1

xi

⎛⎜⎝ ∑
1≤k≤l−1

k �=i

n∑
j=1

aijajk
rk
ri
(xk − 1)+

n∑
j=1

aijaji(xi − 1)+ 1
ri

n∑
j=1

aij
n∑

k=1

ajkrk

⎞⎟⎠
= 1

xi

⎡⎢⎣ ∑
1≤k≤l−1

k �=i

⎛⎜⎝aiiaik + aikakk +
∑
1≤j≤n
j �=i,k

aijajk

⎞⎟⎠ rk
ri
(xk − 1)
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LINEAR ANDMULTILINEAR ALGEBRA 1557

+
⎛⎜⎝aiiaii +

∑
1≤j≤n
j �=i

aijaji

⎞⎟⎠ (xi − 1)+ si

⎤⎥⎦
≤ 1

xi

⎛⎜⎝ ∑
1≤k≤l−1

k �=i

(
2MN + (n − 2)N2) b(xk − 1)+ (M2 + (n − 1)N2)(xi − 1)+ si

⎞⎟⎠
= 1

xi

((
2MN + (n − 2)N2) b l−1∑

k=1

(xk − 1)

+(M2 + (n − 1)N2 − 2MNb − (n − 2)N2b)(xi − 1)+ si

)

with equality when xk > 1 for 1 ≤ k ≤ l − 1 only if (a) holds: (a) akk = M, aij = N for
1 ≤ j ≤ n with j �= i.

For l ≤ i ≤ n, since si ≤ sl , aii ≤ M, rk
ri ≤ b for 1 ≤ k ≤ l − 1, and aij ≤ N for

1 ≤ j ≤ n and j �= i, we have

ri(B) = ri(U−1A2U)

= 1
ri

l−1∑
k=1

n∑
j=1

aijajkrkxk + 1
ri

n∑
k=l

n∑
j=1

aijajkrk

=
l−1∑
k=1

n∑
j=1

aijajk
rk
ri
(xk − 1)+

n∑
j=1

aij
ri

n∑
k=1

ajkrk

=
l−1∑
k=1

⎛⎜⎝aiiaik + aikakk +
∑
1≤j≤n
j �=i,k

aijajk

⎞⎟⎠ rk
ri
(xk − 1)+ si

≤
l−1∑
k=1

(
2MN + (n − 2)N2) b(xk − 1)+ sl

= (
2MN + (n − 2)N2) b l−1∑

k=1

(xk − 1)+ sl

with equality when xk > 1 for 1 ≤ k ≤ l − 1 only if (b) and (c) hold: (b) aii = akk = M,
aij = N for 1 ≤ j ≤ n and j �= i; (c) si = sl .

For 1 ≤ l ≤ n, from the expression of�l , we have

�2
l −�l(sl + θ)+ slθ − (2MN + (n − 2)N2)b

l−1∑
k=1

(sk − sl) = 0,

and thus

(2MN + (n − 2)N2)b
l−1∑
k=1

(sk − sl) = (�l − sl)(�l − θ).
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If
∑l−1

k=1 (sk − sl) > 0, then�l > sl+θ+|sl−θ |
2 ≥ sl+θ−(sl−θ)

2 = θ , and otherwise, s1 = · · · =
sl , and since s1 − θ > 0, we have �l = �1 = s1+θ+|s1−θ |

2 = s1 > θ . For 1 ≤ i ≤ l − 1, let
xi = 1 + si−sl

�l−θ . Obviously, xi ≥ 1 and

(2MN + (n − 2)N2)b
l−1∑
k=1

(xk − 1) = (2MN + (n − 2)N2)b
∑l−1

k=1 (sk − sl)
�l − θ

= �l − sl.

Thus for 1 ≤ i ≤ l − 1,

ri(B) ≤ �l − sl + (M2 + (n − 1)N2 − 2MNb − (n − 2)N2b) · si−sl
�l−θ + si

1 + si−sl
�l−θ

= �l ,

and for l ≤ i ≤ n,
ri(B) ≤ �l − sl + sl = �l.

Now by Lemma 2.1, ρ(A) = √
ρ(B) ≤ √

max1≤i≤n ri(B) ≤ √
�l .

Suppose that A is irreducible. Suppose that ρ(A) = √
�l for some l with 2 ≤ l ≤ n.

Then ρ(B) = max1≤i≤n ri(B) = �l .
If A2 is irreducible, then so is B. By Lemma 2.1, r1(B) = · · · = rn(B) = �l , and thus

from the above arguments, (a) holds for 1 ≤ i ≤ l − 1, and (b) and (c) hold for l ≤ i ≤ n.
Suppose that s1 > sl . Let t be the smallest integer such that st = sl , where 2 ≤ t ≤ l. For
1 ≤ k ≤ t − 1, since sk > sl , we have xk > 1. From (a) and (b), we have aii = M and
aij = N for 1 ≤ i, j ≤ n with j �= i, and thus r1 = · · · = rn = M + (n − 1)N , implying
that b = 1, a contradiction. Then s1 = sl , and thus we have from (c) that s1 = · · · = sn.

Suppose that A2 is reducible. Then by Lemma 2.2, there is a permutation matrix P

such that PAP� =
(
0s A1
A2 0n−s

)
, where A2A1 and A1A2 are irreducible, and ρ(A2A1) =

ρ(A1A2) = ρ(A2). LetW = PUP�. Obviously,W is a diagonal matrix.We partitionW as

W =
(

W1 0s×(n−s)
0(n−s)×s W2

)
. Let Y1 = W−1

1 A1A2W1 and Y2 = W−1
2 A2A1W2. Obviously,

Y1 and Y2 are irreducible. Then

PBP� = PU−1P�
(

A1A2 0s×(n−s)
0(n−s)×s A2A1

)
PUP� =

(
Y1 0s×(n−s)

0(n−s)×s Y2

)
.

By Lemma 2.1,

ρ(Y1) ≤ max
1≤i≤s

ri(Y1) ≤ max
1≤i≤n

ri(PBP�) = max
1≤i≤n

ri(B) = �l.

Note that ρ(Y1) = ρ(A1A2) = ρ(A2) = ρ(B) = �l . Thus ρ(Y1) = max1≤i≤s ri(Y1) =
�l . Since Y1 is irreducible, r1(Y1) = · · · = rs(Y1) = �l . Similarly, we have r1(Y2) = · · · =
rn−s(Y2) = �l . Thus r1(PBP�) = · · · = rn(PBP�) = �l , i.e. r1(B) = · · · = rn(B) = �l .
By above argument, we have s1 = · · · = sn.

Conversely, if s1 = · · · = sn, then�l = sl for 1 ≤ l ≤ n and by Lemma 2.1, ρ(B) = s1,
and thus ρ(A) = √

ρ(B) = √
�l .
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In [7], the following upper bound for the spectral radius was given.
Theorem 2.2: Let A = (aij) be an n × n nonnegative matrix with positive row sums
r1, . . . , rn and with average 2-row sums m1 ≥ · · · ≥ mn. Let M be the largest diagonal
element, and N the largest off-diagonal element of A. Let b = max

{
ri
rj : 1 ≤ i, j ≤ n

}
.

Suppose that N > 0. For 1 ≤ l ≤ n, Let

�l = ml + M − Nb +
√
(ml − M + Nb)2 + 4Nb

∑l−1
k=1 (mk − ml)

2
.

Then ρ(A) ≤ �l . Moreover,if A is irreducible, then ρ(A) = �l for some l with 1 ≤ l ≤ n
if and only if m1 = · · · = mn, or for some t with 2 ≤ t ≤ n, aii = M for 1 ≤ i ≤ t − 1,
aik = N and rk

ri = b for 1 ≤ i ≤ n for 1 ≤ k ≤ t − 1 with k �= i, and mt = · · · = mn.
Consider

A1 =

⎛⎜⎜⎝
3 1 2 1
1 3 1 1
1 1 2 2
1 1 1 2

⎞⎟⎟⎠ .
In notation of Theorem 2.1, s1 = 267

7 ≈ 38.1429, s2 = 36, s3 = 104
3 ≈ 34.6667, s4 = 173

5 =
34.6, M = 3, N = 2, b = 7

5 , and θ = −7, implying that
√
�1 ≈ 6.176,

√
�2 ≈ 6.1117,√

�3 ≈ 6.13846 and
√
�4 ≈ 6.1429, and thus ρ(A1) ≤ 6.1117. In notation of Theorem

2.2, m1 = 44
7 ≈ 6.2857, m2 = 6, m3 = 35

6 ≈ 5.833, m4 = 29
5 = 5.8, M = 3, N = 2, and

b = 7
5 , implying that �1 ≈ 6.2857, �2 ≈ 6.1348, �3 ≈ 6.1258 and �4 ≈ 6.139, and thus

ρ(A1) ≤ 6.1258. The upper bound in Theorem 2.1 is smaller than the one in Theorem 2.2.
Consider

A2 =

⎛⎜⎜⎝
5 3 3 3
4 3 3 3
4 3 3 3
4 3 3 3

⎞⎟⎟⎠ .
In notation of Theorem 2.1, s1 = 178, s2 = s3 = s4 = 2305

13 ≈ 177.3077, M = 5, N = 4,
b = 14

13 , and θ = − 59
13 , implying that

√
�1 ≈ 13.3417,

√
�2 = √

�3 = √
�4 ≈ 13.3268,

and thus ρ(A2) ≤ 13.3268. In notation of Theorem 2.2, m1 = 187
14 ≈ 13.3571, m2 =

m3 = m4 = 173
13 ≈ 13.3077, M = 5, N = 4 and b = 14

13 , implying that �1 = 187
14 ,

�2 = �3 = �4 = 7 + √
40, and thus ρ(A2) ≤ 7 + √

40. Note that a11 = 5, ai1 = 4 and
r1
ri = 14

13 for 2 ≤ i ≤ 4, and m2 = m3 = m4. Thus ρ(A2) = �2 = 7 + √
40 ≈ 13.3246.

The upper bound in Theorem 2.2 is smaller than (but very close to) the one in Theorem
2.1.

The above examples show that in general the upper bounds in Theorems 2.1 and 2.2 are
incomparable.

Next we give a sharp lower bound for the spectral radius of a nonnegative matrix.
Theorem 2.3: Let A = (aij) be an n × n nonnegative matrix with positive row sums
r1, . . . , rn and with average 3-row sums s1 ≥ · · · ≥ sn. Let S be the smallest diagonal
element, and T the smallest off-diagonal element of A. Let c = min

{
ri
rj : 1 ≤ i, j ≤ n

}
and

γ = S2 + (n − 1)T2 − 2STc − (n − 2)T2c. Suppose that sn > γ . Let
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1560 H. LIN AND B. ZHOU

φn =
sn + γ +

√
(sn − γ )2 + 4(2ST + (n − 2)T2)c

∑n−1
k=1 (sk − sn)

2
.

Then ρ(A) ≥ √
φn. Moreover, if A is irreducible, then ρ(A) = √

φn if and only if one of the
following conditions holds:

(i) if T = 0, then m1(A) = · · · = mn(A) when A2 is irreducible, and PAP� =(
0r A1
A2 0n−r

)
for some permutation matrix P with mσ(1)(A) = · · · = mσ(r)(A) and

mσ(r+1)(A) = · · · = mσ(n)(A) when A2 is reducible, where σ is a permutation on
the set {1, . . . , n} which corresponds to the permutation matrix P;

(ii) if T > 0, then s1 = · · · = sn.

Proof: If T = 0, then φn = sn, and thus the result follows immediately from Lemma 2.3.
Suppose in the following that T > 0.
Let U = diag(x1r1, . . . , xn−1rn−1, rn), where xi ≥ 1 is a variable to be determined later

for 1 ≤ i ≤ n − 1. Let B = U−1A2U . Obviously, A2 and B have the same eigenvalues.
Then ρ(A) = √

ρ(A2) = √
ρ(B).

For 1 ≤ i ≤ n − 1, since aii ≥ S, rkri ≥ c for 1 ≤ k ≤ n − 1 and k �= i, and aij ≥ T for
1 ≤ j ≤ n and j �= i, we have

ri(B) = 1
xi

⎡⎢⎣ ∑
1≤k≤n−1

k �=i

⎛⎜⎝aiiaik + aikakk +
∑
1≤j≤n
j �=i,k

aijajk

⎞⎟⎠ rk
ri
(xk − 1)

+
⎛⎜⎝aiiaii +

∑
1≤j≤n
j �=i

aijaji

⎞⎟⎠ (xi − 1)+ si

⎤⎥⎦
≥ 1

xi

⎛⎜⎝ ∑
1≤k≤n−1

k �=i

(
2ST + (n − 2)T2) c(xk − 1)+ (S2 + (n − 1)T2)(xi − 1)+ si

⎞⎟⎠
= 1

xi

((
2ST + (n − 2)T2) c n−1∑

k=1

(xk − 1)

+ (S2 + (n − 1)T2 − 2STc − (n − 2)T2c)(xi − 1)+ si

)

with equality when xk > 1 for 1 ≤ k ≤ n − 1 only if (a) holds: (a) akk = S, ajk = T for
1 ≤ j ≤ n with j �= k.

Similarly, we have

rn(B) ≥
n−1∑
k=1

(
2ST + (n − 2)T2) c(xk − 1)+ sn

= (
2ST + (n − 2)T2) c n−1∑

k=1

(xk − 1)+ sn
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with equality xk > 1 for 1 ≤ k ≤ n − 1 only if (b) holds: (b) ann = akk = S and anj = T
for 1 ≤ j ≤ n − 1.

From the expression of φn, we have φn ≥ sn+γ+|sn−γ |
2 = sn > γ . For 1 ≤ i ≤ n − 1, let

xi = 1 + si−sn
φn−γ . Obviously, xi ≥ 1 and

(2ST + (n − 2)T2)c
n−1∑
k=1

(xk − 1) = (2ST + (n − 2)T2)c
∑n−1

k=1 (sk − sn)
φn − γ

= φn − sn.

Thus for 1 ≤ i ≤ n − 1,

ri(B) ≥ φn − sn + (S2 + (n − 1)T2 − 2STc − (n − 2)T2c) · si−sn
φn−γ + si

1 + si−sn
φn−γ

= φn,

and

rn(B) ≥ φn − sn + sn = φn.

Hence, by Lemma 2.1, ρ(A) ≥ √
ρ(B) ≥ √

min1≤i≤n ri(B) ≥ √
φn.

Suppose that A is irreducible. If ρ(A) = √
φn, then ρ(B) = min1≤i≤n ri(B) = φn, and

thus by similar arguments as in the proof of Theorem 2.1, we have s1 = · · · = sn.
Conversely, if s1 = · · · = sn, then φn = sn and by Lemma 2.1, ρ(B) = sn = φn, and

thus ρ(A) = √
ρ(B) = √

φn.

In [7], the following lower bound for the spectral radius was given.
Theorem 2.4: Let A = (aij) be an n × n nonnegative matrix with positive row sums
r1, . . . , rn and with average 2-row sums m1 ≥ · · · ≥ mn. Let S be the smallest diagonal
element, and T the smallest off-diagonal element of A. Let c = min

{
rj
ri : 1 ≤ i, j ≤ n

}
. Let

ψn =
mn + S − Tc +

√
(mn − S + Tc)2 + 4Tc

∑n−1
k=1 (mk − mn)

2
.

Then ρ(A) ≥ ψn. Moreover, if A is irreducible, then ρ(A) = ψn if and only if m1 = · · · =
mn, or T > 0 and for some t with 2 ≤ t ≤ n, aii = S for 1 ≤ i ≤ t − 1, aik = T and rk

ri = c
for 1 ≤ i ≤ n for 1 ≤ k ≤ t − 1 with k �= i, and mt = · · · = mn.

Consider

A3 =

⎛⎜⎜⎝
4 2 1 1
2 1 3 3
3 3 1 3
3 3 3 1

⎞⎟⎟⎠ .
In notation of Theorem 2.3, s1 = 257

3 ≈ 85.6667, s2 = s3 = 829
10 = 82.9, s4 = 79, S = 1,

T = 1, c = 4
5 , and γ = 4

5 , implying that
√
φ4 ≈ 8.89, and thus ρ(A3) ≥ 8.89. Obviously,

A3 is permutation similar to

Μαρία
Highlight
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A′
3 =

⎛⎜⎜⎝
1 3 3 2
3 1 3 3
3 3 1 3
2 1 1 4

⎞⎟⎟⎠ ,

and then ρ(A′
3) = ρ(A3). In notation of Theorem 2.4, m1 = 85

9 ≈ 9.4444, m2 = m3 =
91
10 = 9.1,m4 = 35

4 = 8.75, S = 1, T = 1, and c = 4
5 , implying thatψ4 ≈ 8.8785, and thus

ρ(A′
3) ≥ 8.8785. The lower bound in Theorem 2.3 is larger than the one in Theorem 2.4.

Consider

A4 =

⎛⎜⎜⎝
1 5 3 3
3 4 4 4
3 4 4 4
3 4 4 4

⎞⎟⎟⎠ .
In notation of Theorem 2.3, s1 = 851

4 = 212.75, s2 = s3 = s4 = 1041
5 = 208.2, S = 1,

T = 3, c = 4
5 , and γ = 44

5 , implying that
√
φ4 ≈ 14.4434, and thus ρ(A3) ≥ 14.4443.

In notation of Theorem 2.4, m1 = 59
4 = 14.75, m2 = m3 = m4 = 72

5 = 14.4, S = 1,
T = 3, and c = 4

5 , implying that ψ4 = 13+√
253

2 , and thus ρ(A4) ≥ 13+√
253

2 . Note
that a11 = 1, ai1 = 3 and r1

ri = 4
5 for 2 ≤ i ≤ 4, and m2 = m3 = m4. We have

ρ(A4) = 13+√
253

2 ≈ 14.45299. The lower bound in Theorem 2.4 is larger than (but very
close to) the one in Theorem 2.3.

The above examples show that in general the lower bounds in Theorems 2.3 and 2.4 are
incomparable.

3. Applications

In this section, we consider the applications of Theorems 2.1 and 2.3 to some matrices
associated to digraphs and graphs.

First we consider digraphs.
Let

−→
G be an n-vertex digraph with δ+ > 0, where V(

−→
G ) = {v1, . . . , vn} and δ+ is the

minimum out-degree of
−→
G . Let �+ be the maximum out-degree of

−→
G . For 1 ≤ i ≤ n,

mi(A(
−→
G )) =

∑
(vi ,vj)∈E(

−→
G ) d

+
j

d+
i

, which is known as the average 2-out-degree of vertex vi in

−→
G , and si(A(

−→
G )) =

∑
(vi ,vj)∈E(

−→
G )
∑
(vj ,vk)∈E(

−→
G ) d

+
k

d+
i

, which we call the average 3-out-degree of

vertex vi in
−→
G .

A digraph
−→
G is bipartite if V(

−→
G ) = X ∪ Y , X ∩ Y = ∅, and the arc set is a subset of

(X × Y) ∪ (Y × X). Here X and Y are the partite sets.
Corollary 3.1: Let

−→
G be a digraph on n vertices with minimum out-degree δ+ > 0 and

average 3-out-degrees s1 ≥ · · · ≥ sn. Let θ = n − 1 − (n−2)�+
δ+ . Then for 1 ≤ l ≤ n,

ρ(A(
−→
G )) ≤

√√√√ sl + θ +
√
(sl − θ)2 + 4(n−2)�+

δ+
∑l−1

k=1 (sk − sl)

2
.

Moreover, if
−→
G is strongly connected, equality holds for some 1 ≤ l ≤ n if and only if

−→
G

is a non-bipartite digraph with equal average 2-out-degrees or
−→
G is a bipartite digraph in



LINEAR ANDMULTILINEAR ALGEBRA 1563

which vertices in the same partite set have equal average 2-out-degrees when l = 1, and
s1 = · · · = sn when 2 ≤ l ≤ n.

Proof: In the notation of Theorem 2.1, M = 0, N = 1 and b = �+
δ+ . If b = 1, then

s1 = · · · = sn, and thus s1 ≥ 1 = θ . If b > 1, then b ≥ n−1
n−2 and θ ≤ 0, from which

we have s1 > θ . If
−→
G is strongly connected, then A(

−→
G ) is irreducible, and by Lemma

2.2, (A(
−→
G ))2 is irreducible if and only if

−→
G is not bipartite. Thus the result follows from

Theorem 2.1.

For 1 ≤ i ≤ n,mi(Q(
−→
G )) = d+

i + 1
d+
i

∑
(vi ,vj)∈E(−→G ) d

+
j , which is known as the signless

Laplacian average 2-out-degree of vertex vi in G, and

si(Q(
−→
G )) = d+

i
2 +

∑
(vi ,vj)∈E(−→G )

d+
j + 1

d+
i

∑
(vi ,vj)∈E(−→G )

⎛⎜⎝d+
j
2 +

∑
(vj ,vk)∈E(−→G )

d+
k

⎞⎟⎠ ,

which we call the signless Laplacian average 3-out-degree of vertex vi in
−→
G .

Corollary 3.2: Let
−→
G be a digraph on n vertices with minimum out-degree δ+ > 0 and

signless Laplacian average 3-out-degrees s1 ≥ · · · ≥ sn. Let θ = (�+)2+(n−1)− 2(�+)2
δ+ −

(n−2)�+
δ+ . Then for 1 ≤ l ≤ n,

ρ(Q(
−→
G )) ≤

√√√√ sl + θ +
√
(sl − θ)2 + 4(2�+ + n − 2)�+

δ+
∑l−1

k=1 (sk − sl)

2
.

Moreover, if
−→
G is strongly connected, equality holds for some 1 ≤ l ≤ n if and only if

−→
G

has equal signless Laplacian average 2-out-degrees when l = 1, and s1 = · · · = sn when
2 ≤ l ≤ n.

Proof: In the notation of Theorem 2.1, M = �+, N = 1 and b = �+
δ+ . If b = 1, then

s1 = · · · = sn and s1 ≥ (�+ −1)2 = θ . If b > 1, then b ≥ n−1
n−2 , and thus θ < 0, fromwhich

we have s1 > θ . If
−→
G is strongly connected, thenQ(

−→
G ) and (Q(

−→
G ))2 are irreducible. Thus

the result follows from Theorem 2.1,

Next we consider graphs.
Let G be an n-vertex graph without isolated vertices, where V(G) = {v1, . . . , vn}. Let

� and δ be the maximum and minimum degree of G, respectively. For 1 ≤ i ≤ n,

mi(A(G)) =
∑

vivj∈E(G) dj
di , which is known as the average 2-degree of vertex vi in G, and

si(A(G)) =
∑

vivj∈E(G)
∑

vjvk∈E(G) dk
di , which we call the average 3-degree of vertex vi in G.

By Corollary 3.1, we have
Corollary 3.3: Let G be a graph on n vertices without isolated vertices with average 3-
degrees s1 ≥ · · · ≥ sn. Let θ = n − 1 − (n − 2)�

δ
. Then for 1 ≤ l ≤ n,

ρ(A(G)) ≤

√√√√ sl + θ +
√
(sl − θ)2 + 4(n−2)�

δ

∑l−1
k=1 (sk − sl)

2
.
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Moreover, if G is connected, then equality holds for some 1 ≤ l ≤ n if and only if G is a
non-bipartite graph with equal average 2-degrees or G is a bipartite graph in which vertices
in the same partite set have equal average 2-degrees when l = 1, and s1 = · · · = sn when
2 ≤ l ≤ n.

Let H be a graph obtained by attaching one pendant vertex to each pendant vertex of
a 4-vertex star. It is easy seen that each vertex of H has the same average 3-degree 4. By
Corollary 3.3, ρ(H) = 2.

For 1 ≤ i ≤ n, mi(Q(G)) = di + 1
di

∑
vivj∈E(G) dj, which is known as the signless

Laplacian average 2-degree of vertex vi in G, and

si(Q(G)) = d2i +
∑

vivj∈E(G)
dj +

∑
vivj∈E(G)

(
d2j +∑

vjvk∈E(G) dk
)

di
,

which we call the signless Laplacian average 3-degree of vertex vi in G.
By Corollary 3.2, we have

Corollary 3.4: Let G be a graph on n vertices without isolated vertices with signless
Laplacian average 3-degrees s1 ≥ · · · ≥ sn. Let θ = �2 + (n − 1) − 2�2

δ
− �(n−2)

δ
.

Then for 1 ≤ l ≤ n,

ρ(Q(G)) ≤

√√√√ sl + θ +
√
(sl − θ)2 + 4(2�+ n − 2)�

δ

∑l−1
k=1 (sk − sl)

2
.

Moreover, if G is connected, the equality holds for some 1 ≤ l ≤ n if and only if G has equal
signless Laplacian average 2-degrees when l = 1, and s1 = · · · = sn when 2 ≤ l ≤ n.

The 5-vertex star S5 is an irregular graph with the same signless Laplacian average
3-degree 25 for each vertex. By Corollary 3.4, ρ(S5) = 5.

4. Remarks

In the literature, upper and lower bounds have been obtained for the spectral radius of a
nonnegative matrix using row sums and average 2-row sums. For a nonnegative matrix
with positive row sums, maximum and minimum average 3-row sums have been used,
respectively, to give upper and lower bounds for the spectral radius in [8]. In this paper, we
give sharp upper and lower bounds for the spectral radius using average 3-row sums, and
characterize the equality cases if the matrix is irreducible. Even in form, these bounds are
different from the ones using the average 2-row sums.[7] Finally, these bounds are applied
to the adjacency matrix and the signless Laplacian matrix of a digraph or a graph.
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