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Abstract: In this article, we determine upper and lower bounds for the spectral radius of nonnegative
matrices. Introducing the notion of average 4-row sum of a nonnegative matrix, we extend various existing
formulas for spectral radius bounds. We also refer to their equality cases if the matrix is irreducible, and we
present numerical examples to make comparisons among them. Finally, we provide an application to
special matrices such as the generalized Fibonacci matrices, which are widely used in applied mathematics
and computer science problems.
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1 Introduction

The problem of bounding the largest in magnitude eigenvalue, the spectral radius, of a nonnegative matrix
has been encountered in several branches of applied mathematics and computer science such as graph
theory, probability, cryptography, and even biology with applications to various stochastic and dynamic
processes (e.g., rumor, disease, information spread). For instance, the epidemic threshold in a real-world
network has been shown to be inversely proportional to the spectral radius of the adjacency matrix, thus the
principal eigenvalue serves as a measure to quantify the robustness against virus propagation [1].

In this work, we develop lower and upper bounds for the spectral radius of a nonnegative matrix
generalizing upon existing formulations [2–7]. Our framework introduces the 4-row sums and the average
4-row sums of the matrix to accommodate alternative bounded regions for the spectral radius. In addition,
equality cases of the bounds are characterized for nonnegative and irreducible matrices. We elaborate on
the specific results after providing the necessary notation next.

Let �� ( )m n, be the algebra of ×m n real matrices, where the case =m n is specified by �� ( )n . We
recall that ��( ) ( )= ∈

=
A aij i j

n
n, 1 is nonnegative when each ≥a 0ij , denoted by ≥A 0. Similarly, A is positive

whenever each >a 0ij , denoted by >A 0. The matrix A is irreducible if and only if ( )+ >
−I A 0n 1 . We define

the spectral radius of A by

( ) {∣ ∣ ( )}= ∈ρ A λ λ σ Amax : ,

where ( )σ A denotes the set of eigenvalues of A [8].



* Corresponding author: Maria Adam, Department of Computer Science and Biomedical Informatics, University of Thessaly,
2-4 Papasiopoulou str., P.O. 35131 Lamia, Greece, e-mail: madam@dib.uth.gr
Aikaterini Aretaki: Department of Mathematics, University of Thessaly, 3rd km P.E.O. Lamia-Athina, P.O. 35100 Lamia, Greece,
e-mail: kathy@uth.gr

Special Matrices 2022; 10: 308–326

Open Access. © 2022 Maria Adam and Aikaterini Aretaki, published by De Gruyter. This work is licensed under the Creative
Commons Attribution 4.0 International License.

https://doi.org/10.1515/spma-2022-0165
mailto:madam@dib.uth.gr
mailto:kathy@uth.gr


For ≤ ≤i k n1 , , ( ) = ∑
=

r A ai j
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are called the ith 2-row sum and the ith average 2-row sum of A, respectively [6,7]. The quantities
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are called the ith 3-row sum and the ith average 3-row sum of A, respectively [6].
Motivated by the expressions of ( ) ( )M A m A,i i in (1.1) and ( ) ( )S A s A,i i in (1.2), we introduce the ith 4-row

sum of A defined by
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and the ith average 4-row sum of A defined by the ratio
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Then, we notice that
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where ( )aij
k denotes the ( )i j, th element of the power of the matrix Ak for =k 2, 3, 4. Moreover, the following

extreme entries of the matrix A will be used: its largest diagonal and off-diagonal elements,

{ } { }= =

≤ ≤ ≤ ≤

≠

μ a ν amax and max ,
i n

ii
i j n
i j

ij
1 1 , (1.5)

respectively, as well as its smallest diagonal and off-diagonal elements,

{ } { }= =

≤ ≤ ≤ ≤

≠

ζ a η amin and min ,
i n

ii i j n
i j

ij
1 1 , (1.6)

respectively.
This article is organized as follows. In Section 2, we establish upper bounds for the spectral radius of a

nonnegative matrix by using its average 4-row sums. Likewise, Section 3 presents a lower bound. The
equality cases are discussed in both sections whenever the matrix is irreducible. Numerical examples are
also displayed to compare among all existing formulas in [2,5–7]. They illustrate that the proposed bounds
are shown to be tighter in some cases. Finally, in Section 4, we apply the previous bounds to the generalized
k-Fibonacci matrix.

2 Upper bound for the spectral radius of nonnegative matrices

In this section, we investigate some upper bounds for the spectral radius ( )ρ A of a nonnegative matrix A,
generalizing upon established results [5–7]. Adopting the techniques used therein, we obtain new expres-
sions for the upper bound of ( )ρ A . The following arguments will be used in our results.
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Proposition 2.1. Let �� ( )∈A n , ≥A 0 and ��( ) ( )( )
= ∈

=
A aij i j

n
n

3 3
, 1 . Let μ ν, be the largest diagonal and off-

diagonal elements of A and ζ η, be the smallest diagonal and off-diagonal elements of A, respectively.
Consider

( )( ) ( ) ( )= − − + − + = + −α n n ν n μν μ α α ν μ1 2 3 1 ,1
3 2 3

2 1
3 (2.1)

and

( )( ) ( ) ( )= − − + − + = + −β n n η n ζη ζ β β η ζ1 2 3 1 , .1
3 2 3

2 1
3 (2.2)

Then, for ≤ ≤i n1 holds

( )
≤ ≤β a α ,ii1

3
1 (2.3)

and for ≠i j,
( )

≤ ≤β a α .ij2
3

2 (2.4)

Right-hand side equalities hold only if =a μii and =a νij , for all = …i j n, 1, , , with ≠j i, while equalities at the
left side hold only if =a ζii and =a ηij , for all = …i j n, 1, , , with ≠j i.

Proof. Obviously, for ≤ ≤i n1 , the diagonal elements of A2 can be bounded from above
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where equality holds only if =a μii and =a νik for = …i k n, 1, , with ≠k i. Moreover, for = …i j n, 1, , with
≠j i the off-diagonal elements of A2 are bounded from above
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where equality holds when = =a a μii jj and =a νij for = …i j n, 1, , with ≠j i.
Likewise, if we use the elements ζ η, from (1.6), then the diagonal and off-diagonal elements of A2 are

bounded from below

( ) ( )( ) ( )
≥ + − ≥ + −a ζ n η a ζη n η1 , 2 2 ,ii ij

2 2 2 2 2 (2.7)

with equalities when = =a a ζii jj and =a ηij for = …i j n, 1, , with ≠j i.
Substituting (2.5) and (2.6) into the diagonal elements of A3, the following inequality arises
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It is apparent that equality holds when =a μii and =a νik for = …i k n, 1, , with ≠k i. Analogously, sub-
stituting both (2.5) and (2.6) into the off-diagonal elements of A3, the following inequality arises
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Equality holds when =a μii and =a νik for = …i k n, 1, , with ≠k i.
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Similar arguments apply for the lower bounds of the diagonal and off-diagonal elements of A3 with
respect to the quantities ζ η, . In particular, by (2.7),
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which reduce to equalities when =a ζii and =a ηij for = …i j n, 1, , with ≠j i. □

The next lemma demonstrates well-established bounds for ( )ρ A , and since it will be used in the proof of
our results, it is stated herein for the sake of completeness.

Lemma 2.2. [8,9] Let �� ( )∈A n , ≥A 0 with ith row sum ( )r Ai , = …i n1, , and let μ be the largest diagonal
element of A. Then, ( ) ≥ρ A μ and

{ ( )} ( ) { ( )}≤ ≤

≤ ≤ ≤ ≤

r A ρ A r Amin max .
i n

i
i n

i
1 1

If A is also irreducible, then either equality holds if and only if ( ) ( )= ⋯=r A r An1 .

The next lemma is derived as an immediate consequence of Corollary 3.1 and Theorem 3.3. in ref. [4].

Lemma 2.3. Let �� ( )∈A n , ≥A 0 with row sums ( ) >r A 0i , ≤ ≤i n1 . Then,
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Let also A be irreducible.
(i) If A3 is irreducible, then either equality holds if and only if ( ) ( )= ⋯=m A m An1 .
(ii) If A3 is reducible, then either equality holds if and only if there is a permutation matrix P such that
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where the sets { }…j j, , n1 1
, { }…

+ +
j j, ,n n n11 1 2 , { }…

+ +
j j, ,n n n11 2 form a partition of { }… n1, , corresponding to

the permutation matrix P.

Next we state and prove the main result in this section.

Theorem 2.4. Let �� ( )∈A n , ≥A 0 with row sums ( ) >r A 0i for all = …i n1, , , and average 4-row sums
( ) ( ) ( )≥ ≥⋯≥w A w A w An1 2 . Let μ ν, be the largest diagonal and off-diagonal elements of A, respectively, with

>ν 0. Denote by ( )

( ){ }= ≤ ≤b i j nmax : 1 ,r A
r A

j

i
, and = −γ α bα1 2 with α α,1 2 given by (2.1). Assuming ( ) ≥w A γ1 ,

when =b 1, and ( ) >w A γ1 , when >b 1, let

( ( ) )= + + ℓ = …ℓ ℓ ℓZ w A γ Δ n1
2

, 1, , , (2.8)
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( ( ) ) ( ( ) ( ))∑= − + −ℓ ℓ
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ℓw A γ bα w A w AΔ 4 .
j
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2
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(2.9)

Then,

( ) { }≤ ≤ ℓ ≤ℓρ A Z nmin : 1 .3 (2.10)
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Proof. To simplify the exposition of our calculations, we let ( )=r r Ai i and ( )=w w Ai i for ≤ ≤i n1 . Consider
ℓ = 1 in (2.8); then from the assumption >w γ1 and (2.9) arises

( ∣ ∣) ( )= + + − = + + − =Z w γ w γ w γ w γ w1
2

1
2

,1 1 1 1 1 1

and the result follows immediately from Lemma 2.3.
Consider ≤ ℓ ≤ n2 . If =b 1, then = ⋯=r rn1 clearly implies that = ⋯=w wn1 . Hence, = =ℓ ℓZ w w1 for any

ℓ and by Lemma 2.3, ( ) = = ℓρ A w Z13 3 . If >b 1, then let ( )= … …ℓ− ℓ− ℓU r x r x r rdiag , , , , , n1 1 1 1 be an ×n n
diagonal matrix, where ≥x 1j is a variable to be determined later for ≤ ≤ ℓ −j1 1 and let =

−B U A U1 3 . Due to

similarity, A3 and B have the same eigenvalues; hence, ( ) ( ) ( )= =ρ A ρ A ρ B33 3 .
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By (1.4), the right part of the inequalities in (2.3)–(2.4), ≤ br
r

j

i
for ≤ ≤ ℓ −j1 1 and ≠j i and the definition

= −γ α bα1 2, the equality in (2.11) is formulated as follows:
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Analogously for ℓ ≤ ≤i n, we use the equality in (1.4), the inequality in (2.4), as well as the assumptions
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Now, to construct the variable xj for = … ℓ −j 1, 2, , 1 and ℓ = … n2, , , we consider the real roots of the
quadratic equations:
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In particular, the trinomials in (2.15) have discriminant
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Similarly, for ℓ ≤ ≤i n and ≤ ≤ ℓ −j1 1, we substitute the relations (2.18) and (2.17) into the inequality
(2.14), which can be written as follows:
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Thus, for ≤ ℓ ≤ n2 and ≤ ≤i n1 , the inequalities (2.19) and (2.20) verify ( ) ≤ ℓr B Zi and by Lemma 2.2,
( ) ( ) { ( )}= ≤ ≤≤ ≤ ℓρ A ρ B r B Zmax i n i

3
1 . Thereby, the validity of (2.10) follows readily. □
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Remark 1.

(i) For ≤ ≤ ℓ −i j1 , 1, with ≠j i, inequality (2.12) is given by equality if and only if = =x x 1i j or = br
r

j

i
and

( )
=a αii

3
1, ( )

=a αij
3

2 when >x 1i and >x 1j .

(ii) For ℓ ≤ ≤i n, ≤ ≤ ℓ −j1 1, inequality (2.14) is given by equality if and only if = ℓw wi and =x 1j or = br
r

j

i

and ( )
=a αij

3
2 when >x 1j .

Due to Proposition 2.1, ( )
=a αii

3
1 and ( )

=a αij
3

2 are satisfied whenever =a μii and =a νij for all ≤ ≤i j n1 , ,

with ≠j i.

The inequality (2.10) proved in Theorem 2.4 is in fact strict. If we take into account Remark 1 and Lemma
2.3, then an equality for the spectral radius of a nonnegative and irreducible matrix is derived as shown in
the following proposition.

Proposition 2.5. Let �� ( )∈A n , ≥A 0 be irreducible and let the quantities ℓμ ν γ Z, , , , b with >b 1 and

( ) ( )r A w A,i i , = …i n1, , satisfy the notations and assumptions of Theorem 2.4. Then, ( ) = ℓρ A Z3 for some
ℓ = … n1, , if and only if one of the following holds:

(i) For ℓ = 1, ( ) ( )= ⋯=m A m An1 , if A3 is irreducible, otherwise,
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=PAP
A

A
A

0 0
0 0

0 0

T
n

n

1

2

3

1

2 , for some permutation

matrix P such that ( ) ( )= ⋯=m A m Aj jn1 1
, ( ) ( )= ⋯=

+ +

m A m Aj jn n n1 1 1 2
, ( ) ( )= ⋯=

+ +

m A m Aj jn n n1 2 1 , where

{ }…j j, , n1 1
, { }…

+ +
j j, ,n n n11 1 2 , { }…

+ +
j j, ,n n n11 2 form a partition of { }… n1, , corresponding to P.

(ii) For ℓ = … n2, , , ( ) ( )= ⋯=w A w An1 .

Proof.
(i) For ℓ = 1, the result is an immediate consequence of Lemma 2.3.

(ii) For ℓ = … n2, , , we first suppose that ( ) = ℓρ A Z3 with irreducible matrix ≥A 0 and we consider

= ≥
−B U A U 01 3 , as constructed in the proof of Theorem 2.4. We then distinguish among two cases:

(a) If ≥A 03 is irreducible, then B is also irreducible with ( ) ( ) { ( )}= = ≤ ≤ℓ ≤ ≤Z ρ A ρ B r Bmax i n i
3

1

( ) { ( )}⇒ = =ℓ ≤ ≤ ℓZ ρ B r B Zmax i n i1 . By Lemma 2.2, ( ) ( )= ⋯= = ℓr B r B Zn1 and thus, inequalities (2.12)
and (2.14) degenerate to equalities. If ( ) ( )> ℓw A w A1 , we consider the smallest integer ≤ ≤ ℓt2 such
that ( ) ( )= ℓw A w At . Clearly, ( ) ( )> ℓw A w Ai for integers ≤ ≤ −i t1 1, which implies that >x 1i . There-
fore, condition (i) of Remark 1 yields =a μii and =a νij for ≤ ≤i j n1 , , ≠i j, which results in

( ) ( ) ( )= ⋯= = + −r A r A μ n ν1n1 . But then, we have the absurdity =b 1. Hence, ( ) ( )= ℓw A w A1 and
by case (ii) in Remark 1, we have ( ) ( )= ⋯=w A w An1 .

(b) If A3 is reducible, and so is B, there is a permutation matrix P such that

= ⊕ ⊕PA P C C CT3
1 2 3

with irreducible matrices Cj, =j 1, 2, 3 and ( ) ( )=ρ A ρ Cj3 [4]. Clearly,

( )= ⊕ ⊕ = ⊕ ⊕
−PBP D C C C D B B B ,T 1

1 2 3 1 2 3

where =D PUPT is diagonal and ≥B 0j , =j 1, 2, 3 are ×n nj j irreducible matrices with ( ) ( )=ρ B ρ Cj j .
By Lemma 2.2,

( ) ( ) ( ) { ( )} { ( )} ( ) { ( )}= = = ≤ ≤ = ⇒ =ℓ

≤ ≤ ≤ ≤

ℓ

≤ ≤

Z ρ B ρ A ρ B r B r B Z ρ B r Bmax max maxj
i n

i j
i n

i j
i n

i j
3

1 1 1j j

and since �� ( )∈Bj nj is irreducible for any =j 1, 2, 3, we have ( ) ( )= ⋯= = ℓr B r B Zj n j1 j for any
=j 1, 2, 3. Due to permutational similarity, ( ) ( )= ⋯= = ℓr B r B Zn1 and (2.11) and (2.12) are equalities.

Following the same arguments as previously, we conclude ( ) ( )= ⋯=w A w An1 .

314  Maria Adam and Aikaterini Aretaki



For the converse statement, if ( ) ( )= ⋯=w A w An1 , we substitute into (2.8) and then, we obtain ( )= =ℓ ℓZ w A
( )w A1 for ≤ ℓ ≤ n1 . Evidently, by Lemma 2.3, ( ) ( ) ( ) ( )= = = =≤ ≤ ≤ ≤ ℓ ℓρ A w A w A w A Zmax mini n i i n i1 13 3 3 3 ,

≤ ℓ ≤ n1 . □

We compare the results stated in Theorem 2.4 to other established upper bounds at the next example.

Example 2.6. Consider the matrices

⎛

⎝

⎜

⎜
⎜

⎞

⎠

⎟

⎟
⎟

=A

3 1 1 0
0 3 1 1
2 2 0 0
0 0 0 1

and

⎛

⎝

⎜

⎜

⎜

⎜

⎞

⎠

⎟

⎟

⎟

⎟

=B

0 5 0 0 5 0
0 0 0 2 0 2
0 5 0 0 5 0
4 0 4 0 0 0
0 0 0 2 0 2
4 0 4 0 0 0

with spectral radii

( ) =ρ A 4.2924 and ( ) =ρ B 6.8399, respectively.
(i) Clearly, the (positive) row sums of matrix A are ( ) ( ) ( ) ( )= = = =r A r A r A r A5, 4, 11 2 3 4 and its average

4-row sums are ( ) =w A 1011 , ( ) =w A 66.42 , ( ) =w A 96.53 , ( ) =w A 14 . To apply Theorem 2.4, we permute the
second and third rows and columns of A taking the matrix

⎛

⎝

⎜

⎜
⎜

⎞

⎠

⎟

⎟
⎟

=Â

0 2 2 0
1 3 1 0
1 0 3 1
0 0 0 1

,

with =μ 3, =ν 2, ( ) =r Â 41 , ( ) ( )= =r A r Aˆ ˆ 52 3 , ( ) =r Â 14 , = >b 5 1, = − ⋅ = −γ 183 5 182 727, and ( ) =w Â 1011 ,
( ) =w Â 96.52 , ( ) =w Â 66.43 , ( ) =w Â 14 . Obviously, the assumptions of Theorem 2.4 are ensured, and we can

compute the quantities ℓZ given by (2.8), which are =Z 1011 , =Z 101.4432 , =Z 134.72463 , =Z 245.20644 .
Then, ( ) ( )= ≤ =ρ A ρ Â 101 4.6573 .

(ii) We consider the irreducible matrix B whose power B3 is reducible, and we take the permuta-
tion matrix P associated to the row-partition { } { } { }1, 3 , 2, 5 , 4, 6 . Then, for ℓ = 1, we obtain =P BPT

⎛

⎝

⎜

⎜

⎜

⎜

⎞

⎠

⎟

⎟

⎟

⎟

0 0 5 5 0 0
0 0 5 5 0 0
0 0 0 0 2 2
0 0 0 0 2 2
4 4 0 0 0 0
4 4 0 0 0 0

such that ( ) ( )= =m B m B 41 3 , ( ) ( )= =m B m B 82 5 , and ( ) ( )= =m B m B 104 6 . Clearly,

Proposition 2.5 holds, which implies that ( ) ( )= = = =ρ B Z w B 320 6.83991 13 3 3 .
Table 1 displays a comparison among upper bounds for ( )ρ A and ( )ρ B computed by the different

formulations presented in [2,7,11,15]. As one may observe, the upper bound for the spectral radius ( )ρ A
computed by the expression of Theorem 2.4 appears to be a refinement, since it is sharper compared to the
other values. Moreover, the exact value of ( )ρ B coincides with the quantity in Proposition 2.5.

Table 1: Comparison among different formulae of upper bounds for the spectral radius

Theorems for upper bounds Value for A Value for B

Duan and Zhou [5, Theorem 2.1] 5.0000 9.3899
Xing and Zhou [7, Theorem 2.1] 4.9671 10.0000
Lin and Zhou [6, Theorem 2.1] 4.7323 8.9443
Adam et al. [2, Theorem 4] 4.8173 17.5000
Theorem 2.4–Proposition 2.5 4.6570 6.8399
Spectral radius 4.2924 6.8399
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3 Lower bound for the spectral radius of nonnegative matrices

In this section, we obtain a new result on the lower bound for the spectral radius of nonnegative matrices.

Theorem 3.1. Let �� ( )∈A n , ≥A 0 with row sums ( ) >r A 0i for all = …i n1, , , and average 4-row sums
( ) ( ) ( )≥ ≥⋯≥ >w A w A w A 0n1 2 . Let ζ η, be the smallest diagonal and off-diagonal elements of A, respectively.

Denote by
( )

( ){ }= ≤ ≤q i j nmin : 1 ,r A
r A

j

i
, and = −δ β qβ1 2, where β β,1 2 are given by (2.2). Consider ( ) >w A δn

and

( ( ) )= + +z w A δ1
2

Δ ,n n n (3.1)

where

( ( ) ) ( ( ) ( ))∑= − + −

=

−

w A δ qβ w A w AΔ 4 .n n
j

n

j n
2

2
1

1

(3.2)

Then,

( ) ≥ρ A z .n3 (3.3)

Proof. To simplify the exposition of our calculations, we let ( )=m m Ai i , and ( )=w w Ai i for ≤ ≤i n1 .
If =η 0, by (2.2), = − =δ β qβ ζ1 2

3 arises, and then, the equality (3.1) leads to =z wn n due to >w δn ; the
result follows immediately from the monotonicity of the sequence of { }

=
wi i

n
1 and Lemma 2.3. Consequently,

in what follows, we assume >η 0.
Let ( )= … − −U r x r x r x rdiag , , , ,n n n1 1 2 2 1 1 be an ×n n diagonal matrix, where ≥x 1j for ≤ ≤ −j n1 1 is a

variable to be determined later and let =
−B U A U1 3 . Due to similarity, A3 and B have the same eigenvalues;

hence, ( ) ( ) ( )= =ρ A ρ A ρ B33 3 .
For ≤ ≤ −i n1 1, we derive

( )

⎛

⎝

⎜

⎜
⎜

⎞

⎠

⎟

⎟
⎟

⎛

⎝

⎜

⎜
⎜

⎞

⎠

⎟

⎟
⎟

⎛

⎝

⎜

⎜
⎜

⎞

⎠

⎟

⎟
⎟

⎛

⎝

⎜

⎜
⎜

( ) ( )

⎞

⎠

⎟

⎟
⎟

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

∑ ∑

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

= + = + +

= + + − +

= + − + −

= + − + −

=

−

=

≠

−

=

≠

−

= =

−

=

≠

−

= =

≠

−

= =

≠

−

r B a
r x
rx

a r
rx x

a
r x
r

a x a r
r

x
a

r x
r

a x a
r
r

a
r
r

a r
r

x
a

r x
r

a
r
r

a
r
r

a x a

x
a

r
r

a
r
r

x a x

1

1

1

1 1 1 .

i
j

n

ij
j j

i i
in

n

i i i j
j i

n

ij
j j

i
ii i in

n

i

i j
j i

n

ij
j j

i
ii i

j

n

ij
j

i j

n

ij
j

i
in

n

i

i j
j i

n

ij
j j

i j

n

ij
j

i j
j i

n

ij
j

i
ii i ii

i j

n

ij
j

i j
j i

n

ij
j

i
j ii i

1

1
3 3

1

1
3 3 3

1

1
3 3

1

3

1

1
3 3

1

1
3

1

3

1

1
3 3 3

1

3

1

1
3 3

Combining the equality in (1.4) and the left part of the inequalities in (2.3)–(2.4) with the assumption ≥ qr
r

j

i
for ≤ ≤ −j n1 1 and ≠j i and the definition = −δ β qβ1 2, the latter equality is formulated as follows:

( )

⎛

⎝

⎜

⎜
⎜

( ) ( )

⎞

⎠

⎟

⎟
⎟

⎛

⎝
⎜

( ) ( )
⎞

⎠
⎟∑ ∑≥ + − + − = + − + −

=

≠

−

=

−

r B
x

w qβ x β x
x

w qβ x δ x1 1 1 1 1 1 .i
i

i
j
j i

n

j i
i

i
j

n

j i2
1

1

1 2
1

1
(3.4)
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Furthermore, for =i n, we have

( )

( ) ( )

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

∑ ∑ ∑ ∑

∑ ∑ ∑

∑

= + + −

= − + = − +

≥ − +

=

−

=

−

= =

−

=

−

= =

−

=

−

r B a
r x
r

a a
r x
r

a
r
r

a
r
r

a
r
r

x a
r
r

a
r
r

x w

qβ x w

1 1

1 .

n
j

n

nj
j j

n
nn

j

n

nj
j j

n j

n

nj
j

n j

n

nj
j

n

j

n

nj
j

n
j

j

n

nj
j

n j

n

nj
j

n
j n

j

n

j n

1

1
3 3

1

1
3

1

3

1

1
3

1

1
3

1

3

1

1
3

2
1

1

(3.5)

Now, it is easy to prove that the following quadratic equation:

( ) ( )∑− + + − − =

=

−

z w δ z δw qβ w w 0n n n n
j

n

j n
2

2
1

1

(3.6)

has real roots, since its discriminant

( )
⎛

⎝
⎜

( )
⎞

⎠
⎟

( ) ( )∑ ∑≡ + − − − = − + −

=

−

=

−

w δ δw qβ w w w δ qβ w wΔ 4 4n n n
j

n

j n n
j

n

j n
2

2
1

1
2

2
1

1

is a positive number, due to ≥β 02 , >c 0, and the monotonicity of the sequence { }
=

wi i
n

1 of positive numbers.
Hence, the quadratic equation in (3.6) has a positive real root

( )= + +z w δ1
2

Δ ,n n n (3.7)

which is used in the construction of

= +

−

−

⇔ − =

−

−

x
w w
z δ

x
w w
z δ

1 1 ,j
j n

n
j

j n

n
(3.8)

for ≤ ≤ −j n1 1. If ( )∑ − >
=

− w w 0j
n

j n1
1 , it is clear by relation (3.7) that ( ∣ ∣) (> + + − ≥ + −z w δ w δ w δn n n n

1
2

1
2

( ))− =w δ δn , otherwise, = ⋯= >w w δn1 and (3.7) yields ( ∣ ∣) ( ( ))= + + − > + − − =z w δ w δ w δ w δn n n n n
1
2

1
2

δ. Both cases ensure − ≥x 1 0j in (3.8).
Moreover, from (3.6), we derive

( ) ( ) ( )( )∑ − = − + + = − −

=

−

qβ w w z w δ z w δ z δ z w .
j

n

j n n n n n n n n2
1

1
2 (3.9)

For ≤ ≤ −i j n1 , 1, substitute ( )∑ −
=

−qβ w wj
n

j n2 1
1 from (3.9) and − ≥x 1 0j from (3.8) into the inequality (3.4),

which can be written as follows:

⎜ ⎟

( )
⎛

⎝
⎜

( ) ( )
⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

( )( ) ( ) ⎞

⎠

( ) ( )( ) ( )

( )

( )( ) ( )

( )

( ) ( )

( )

∑

∑

≥ + − + −

= +

−

−

+

−

−

= +

− −

−

+

−

−

=

− + − − + −

−

=

− + − + −

−

=

− + −

−

=

−

=

−

r B
x

w qβ x δ x

x
w qβ

w w
z δ

δ w w
z δ

x
w z δ z w

z δ
δ w w

z δ
w z δ z δ z w δ w w

x z δ
z δ z w w δ w w

x z δ
z z δ z w w

x z δ

1 1 1

1

1

i
i

i
j

n

j i

i
i

j

n
j n

n

i n

n

i
i

n n n

n

i n

n

i n n n n i n

i n

n n i n i n

i n

n n n i n

i n

2
1

1

2
1

1

(3.10)
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( )

( )

( )

( )

=

− + −

−

=

− + −

−

=
− + −

−

z z δ w w
x z δ

z z δ w w
z δ

z .

n n i n

i n

n n i n
z δ w w

z δ n
n

n i n

n

Moreover, substitute −x 1j from (3.8) and ( )∑ −
=

−qβ w wj
n

j n2 1
1 from (3.9) into the inequality (3.5), which gives

( )
( )( )

∑≥ +

−

−

= +

− −

−

=

=

−

r B w qβ
w w
z δ

w z δ z w
z δ

z .n n
j

n
j n

n
n

n n n

n
n2

1

1

(3.11)

Hence, for all ≤ ≤i n1 , the inequalities (3.10) and (3.11) confirm ( ) ≥r B zi n. By Lemma 2.2, ( ) ( )= ≥ρ A ρ B3

{ ( )} ≥≤ ≤ r B zmin i n i n1 , verifying the validity of (3.3). □

Remark 2.

(i) For ≤ ≤ −i j n1 , 1, with ≠j i inequality (3.4) is given by equality if and only if = =x x 1i j or = qr
r

j

i
and

( )
=a βii

3
1,

( )
=a βij

3
2 when >x 1i and >x 1j .

(ii) For ≤ ≤i n1 and ≤ ≤ −j n1 1 inequality (3.5) is given by equality if and only if =x 1j or = qr
r

j

i
and

( )
=a βii

3
1,

( )
=a βnj

3
2 when >x 1j .

Due to Proposition 2.1, ( )
=a βii

3
1 and

( )
=a βij

3
2 are satisfied whenever =a ζii and =a ηij for all ≤ ≤i j n1 , ,

with ≠j i.

Using Remark 2, Theorem 3.1 can be reduced to the next proposition, which yields the equality cases of
the lower bound for the spectral radius of nonnegative and irreducible matrices.

Proposition 3.2. Let �� ( )∈A n , ≥A 0 be irreducible and let the quantities ζ η δ z, , , n, q, with >q 1 and
( ) ( )r A w A,i i , = …i n1, , satisfy the notations and assumptions of Theorem 3.1. Then, ( ) =ρ A zn3 if and only if
one of the following holds:

(i) If =η 0, then ( ) ( )= ⋯=m A m An1 , if A3 is irreducible, otherwise,
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=PAP
A

A
A

0 0
0 0

0 0

T
n

n

1

2

3

1

2 , for some permu-

tation matrix P such that ( ) ( )= ⋯=m A m Aj jn1 1
, ( ) ( )= ⋯=

+ +

m A m Aj jn n n1 1 1 2
, ( ) ( )= ⋯=

+ +

m A m Aj jn n n1 2 1 , where

{ }…j j, , n1 1
, { }…

+ +
j j, ,n n n11 1 2 , { }…

+ +
j j, ,n n n11 2 form a partition of { }… n1, , corresponding to P.

(ii) If >η 0, ( ) ( )= ⋯=w A w An1 .

At the next example, we test the lower bound for the spectral radius proved in Theorem 3.1 compared to
the ones stated in [2,5–7].

Example 3.3. Consider matrices

⎛

⎝

⎜

⎜
⎜

⎞

⎠

⎟

⎟
⎟

=A

6 2 2 2
0 2 2 1
2 2 0 2
2 2 2 0

and B as in Example 2.6 with spectral radii ( ) =ρ A 8 and

( ) =ρ B 6.8399, respectively.
(i) The (positive) row sums of matrix A are ( ) =r A 121 , ( ) =r A 52 , ( ) ( )= =r A r A 63 4 and its average 4-row

sums are ( ) =w A 590.33331 , ( ) =w A 293.62 , ( ) ( )= =w A w A 476.66673 4 . If we permute the second and fourth
rows and columns of A, then we take

⎛

⎝

⎜

⎜
⎜

⎞

⎠

⎟

⎟
⎟

͠
=A

6 2 2 2
2 0 2 2
2 2 0 2
0 1 2 2

,
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with = = =ζ η δ 0, =q 0.4167, and ( )͠ =w A 590.33331 , ( ) ( )͠ ͠
= =w A w A 476.66672 3 , ( )͠ =w A 293.64 . Obviously,

the assumptions of Theorem 3.1 are ensured and ( )͠= =z w A 293.6n 4 given by (3.1). Then, ( ) ( )͠= ≥ρ A ρ A
=293.6 6.64643 .

(ii) The irreducible matrix B with =η 0 and B3 reducible infers that ( ) ( )= =m B m B 41 3 , ( ) =m B2
( ) =m B 85 , and ( ) ( )= =m B m B 104 6 . Apparently, Proposition 3.2 holds and the spectral radius of B is

identified with ( ) = = = =ρ B z w 320 6.83996 63 3 3 .
Table 2 records the lower bounds for ( )ρ A and ( )ρ B computed by the formulations presented in [2,5–7].

As observed, the lower bound for ( )ρ A given by Theorem 3.1 is sharper than the other values and ( )ρ B
equals the quantity in Proposition 3.2.

4 Application on generalized Fibonacci matrices

This section is devoted to applications of Theorems 2.4 and 3.1 and also of the formulations in [5–7] to
special matrices associated with the Fibonacci sequence. This famous sequence has grown over the years
into a vital tool for applied mathematics and computer science, with various applications to certain sorting
algorithms and maximal network flow problems. For instance, in graph theory, the problem of enumerating
all perfect matchings in a bipartite graph is closely related to generalized Fibonacci numbers [10,11].

We consider a generalization of the Fibonacci sequence called the generalized k-step Fibonacci

sequence abbreviated by �( ( )){ }
… ∈f c c c, , ,n

k
k n1 2 with respect to ≥k 2 real numbers > … ≥c c c0, , , 0k1 2 . For

every >n k, the nth generalized k-Fibonacci number is defined recursively as a linear combination of the
preceding k terms

{ } { } { } { } { }
∑= = + + ⋯+

=

− − − −
f c f c f c f c f ,n

k

j

k

j n j
k

n
k

n
k

k n k
k

1
1 1 2 2 (4.1)

with initial values { } { }
= ⋯= =f f 1k

k
k

1 , [12,13]. We notice that for =k 2, the sequence �( ( )){ }
∈f 1, 1n n

2 reduces to
the classical Fibonacci sequence, and for =k 3, we obtain the Tribonacci sequence �( ( )){ }

∈f 1, 1, 1n n
3 ,

followed by the Tetranacci sequencewith =k 4, and so on.Now, let the vector { } { } { } { }
( )= ⋯ ∈

− − +
f f fFn

k
n

k
n

k
n k

k T
1 1

�� ( )k,1 , ≥k 2 and >n k with { }
= ( ⋯ )F 1 1 1k

k T to gather the initial values of the sequence, then the general-
ized k-Fibonacci sequence in (4.1) can be also defined by the recurrence relation:

( ){ } { }
= …

−
Q c cF F, , ,n

k
k k n

k
1 1 (4.2)

associated with the generalized k-Fibonacci matrix

��( ) ⎛

⎝

⎞

⎠
( )… = ∈ = ( ⋯ )

− −

−Q c c
c

I c c
c

c, , 0 , .k k
k

k k
k k1

1 1,1
1 1 (4.3)

Observe that by an inductive argument, (4.2) may lead to ( ){ } { }
= …

−Q c cF F, ,n
k

k
n k

k k
k

1 .
The matrix ( )…Q c c, ,k k1 has been widely used in the design of many encryption/decryption algorithms,

which aim to provide secure and robust schemes of minimum vulnerability to attack. Due to the interesting

Table 2: Comparison among several formulae of lower bounds for the spectral radius

Theorems for lower bounds Values for A Values for B

Duan and Zhou [5, Theorem 2.3] 5.0000 4.0000
Xing and Zhou [7, Theorem 2.3] 5.6000 4.0000
Lin and Zhou [6, Theorem 2.3] 6.2290 5.6569
Adam et al. [2, Theorem 10] 5.7652 3.2000
Theorem 3.1–Proposition 3.2 6.6464 6.8399
Spectral radius 8.0000 6.8399
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properties, it enjoys (see [12–15]), and it leads to faster implementations reducing the time as well as
the space complexity of the security process. Most notably, it is an irreducible and primitive matrix with
a simple (without multiplicity) and unique eigenvalue of maximum magnitude, its spectral radius

( ( ))… >ρ Q c c, , 0k k1 .
In [11], the authors located ( ( ))…ρ Q 1, ,1k outside the unit disk, especially lying between ( )−

− /k2 1 1 2 and
2. The current section aims to investigate and present different bounding regions for the spectral radius

( ( ))…ρ Q c c, ,k k1 , by applying formulas that use and extend the row and average row sums of nonnegative

matrices. In the remainder of this work, we assume ≥c 1i for all = …i k1, , and we denote = ∑
=

C ci
k

i1 and
( )≔ …Q Q c c, ,k k k1 for reasons of simplicity. The assumption ≥c 1i , = …i k1, , verifies the ordering of the row

sums of Qk

( ) ( ) ( ) ( )= > = = ⋯= =C r Q r Q r Q r Q 1,k k k k k1 2 3 (4.4)

which combined with Lemma 2.2 clearly derives that ( )≤ ≤ρ Q C1 k . Due to the relation (4.4), we can
immediately apply Duan and Zhou’s formulae in [5] to bound ( )ρ Qk , which lead to the following result.

Proposition 4.1. Let ≥k 2 nonnegative real numbers … ≥c c c, , , 1k1 2 and denote by { }=
≤ ≤

ν cmax i k i2 .
(i) If ≥k 3, then

( ) ⎛
⎝

⎞
⎠

( )≤ ≤

+ −

+

− +

+ −ρ Q c ν c ν ν C1 1
2

1
2

1 .k
1 1

2
(4.5)

(ii) If =k 2, then

( ) ⎛
⎝

⎞
⎠

+ ≤ ≤

+ −

+

+ −

+c c ρ Q c c c c c1
2

1
2

.1 2 2
1 2 1 2

2

2
2

Proof. The lower bound for ( )ρ Qk is computed by applying Theorem 2.2 in [5]

⎜ ⎟
⎛

⎝

⎞

⎠

⎧
⎨⎩

∑=

+ −

+

− +

− + =

+ =

≥
=

ψ r ζ η r ζ η ηkr η r
c c k

k2 2
, 2

1, 3,k
k k

k
j

k

j

2

1

1 2

where ( )≔ >r r Q 0k k k is the kth row sum of Qk, ≥k 2 satisfying (4.4). Note that the minimum diagonal and
off diagonal elements of Qk for =k 2 are =ζ 0, =η 1, respectively, whereas for ≥k 3 are = =ζ η 0.

Now, the upper bound for ( )ρ Qk is derived applying Theorem 2.1 in [5]. Therefore, ( ) {≤ ≤ℓρ Q Ψmin : 1k
}ℓ ≤ k , where

⎛
⎝

⎞
⎠

⎧

⎨

⎩

⎛
⎝

⎞
⎠

( )

∑=

+ −

+

− +

− ℓ +

=

ℓ =

+ −

+

− +

+ − ℓ ≠

ℓ

ℓ ℓ

ℓ

=

ℓr μ ν r μ ν ν r ν r

C
c ν c ν ν C

Ψ
2 2

, 1
1

2
1

2
1 , 1,

j
j

2

1

1 1
2

since = ≥μ c 11 and { }= ≥
≤ ≤

ν cmax 1i k i2 are the largest diagonal and off-diagonal elements of Qk, respec-
tively. Finally, we obtain the desired upper bound for ( )ρ Qk , due to the inequality

( ) ( )
+ −

+ − + + − <

c ν c ν ν C C1
2

1
2

1 4 1 . □1
1

2

We notice that the vector ( )Qm k with components ( )m Qi k , = …i k1, , as in (1.1) can be written as
follows:

��( ) ( )= ∈
−Q D Q Em ,k k k k k

1 2
,1 (4.6)
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where the diagonal matrix ��( ) ( )= … ∈D Cdiag , 1, ,1k k and �� ( )∈Ek k,1 is the vector with all entries
equal to 1. Consequently,

( )
⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝

⎞
⎠

( )

( ) ( ) ( )

∑ ∑= + = + −

=

= = ⋯= =

= =

m Q
C

c c c c
C

m Q C
m Q m Q m Q

1 1 1 1 ,

,
1.

k
j

k

j
j

k

j

k

k k k k

1 1
1 2

1

2

3 4

(4.7)

We utilize Xing and Zhou’s formulae in [7] to bound ( )ρ Qk , thus yielding the next statement. In what
follows, we consider ≥k 3, since the spectral radius of Qk for =k 2 can be easily computed.

Proposition 4.2. Let ≥k 3 nonnegative real numbers … ≥c c c, , , 1k1 2 and { }=
≤ ≤

ν cmax i k i2 . Then,

( ) { }͠ ͠ ͠
≤ ≤ρ Q1 min Ψ , Ψ , Ψ ,k 1 2 3 (4.8)

where

( )
⎛
⎝

⎞
⎠

( )( )

( ) ( )( )

͠

͠

͠

=

=

+ − −

+ − + + − −

=

+ −

+ − + + + −

C
c νC c

C
νC ν C c C

c νC c νC ν C c C

Ψ ,

Ψ
1 2

2
1
2

1 4 1 ,

Ψ 1
2

1
2

1 4 1 .

C

1

2
1

1
1

2
1

3
1

1
2

1

Proof. Evidently, ( )< <m Q C1 k1 arises from (4.7), which verifies

( ) ( ) ( ) ( ) ( )> > = = ⋯=m Q m Q m Q m Q m Q .k k k k k k2 1 3 4 (4.9)

Before applying the formulae treated in [7], we need to permute Qk for its average 2-row sums to be

decreasingly ordered. Consider the permutation matrix ��

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

( )=
⋮

⋯

∈

−

P
I

0 1 0
1 0
0 k

k1
2

and ͠
=Q P Q Pk k

T
1 1 .

Then, the average 2-row sums of Q͠k are the entries of the vector ( ) ( )͠
= =Q P Qm mk k1

( ) ( ) ( ) ( )( ⋯ )m Q m Q m Q m Qk k k k k
T

2 1 3 , which by (4.9), verify ( ) ( ) ( ) ( )͠ ͠ ͠ ͠
> > = ⋯= =m Q m Q m Q m Q 1.k k k k k1 2 3

The lower bound for ( ) ( )͠
=ρ Q ρ Qk k given by [7, Theorem 2.3] is expressed as follows:

⎜ ⎟

( ) ⎛

⎝

( ) ⎞

⎠

( ( ) ( ))
͠ ͠

͠ ͠͠
∑=

+ −

+

− +

+ − =

=

−

ψ m Q ζ qη m Q ζ qη qη m Q m Q
2 2

1,k
k k k k

j

k

j k k k

2

1

1

since the minimum diagonal and off diagonal elements of Q͠k for ≥k 3 are = =ζ η 0. Also, =q
{ ( ) ( )}͠ ͠

{ }/ = = /≤ ≤ r Q r Q C Cmin min , , 1 1i j k j k i k C1 ,
1 .

The desired upper bounds are derived applying [7, Theorem 2.1]. Therefore, ( ) { }͠
≤ ≤ ℓ ≤ℓρ Q kmin Ψ : 1k ,

where

⎜ ⎟

( ) ⎛

⎝

( ) ⎞

⎠

( ( ) ( ))
͠ ͠

͠ ͠͠
∑=

+ −

+

− +

+ −ℓ

ℓ ℓ

=

ℓ−

ℓ

m Q μ bν m Q μ bν bν m Q m QΨ
2 2

.k k

j
j k k

2

1

1

Note that =μ c1 and { }=
≤ ≤

ν cmax i k i2 are the largest diagonal and off-diagonal elements of Q͠k, respectively,
and { ( ) ( )}͠ ͠

{ }= / = =≤ ≤b r Q r Q C Cmax max , , 1i j k j k i k C1 ,
1 . □
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Analogously to (4.6) and according to the definition (1.2), the vector

( ) ( )

⎛

⎝

⎜

⎜

⎜

⎜
⎜

⎞

⎠

⎟

⎟

⎟

⎟
⎟
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⋯

⋯

⋯

⋱ ⋱ ⋱

⋯
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−

Q D Q E D Q D Q

c c
C

c
C

c
C

C
Qs m m

0 0 0
0 1 0 0
0 0
0 0 1 0

k k k k k k k k

k k

k
1 3 1

1
2 1

(4.10)

has entries the average 3-row sums of Qk, that is,

( )
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⎝
⎜

( )
⎞

⎠
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( )⎛
⎝

⎞
⎠

( )

( )

( ) ( ) ( )

∑ ∑ ∑

∑ ∑

= + + + = + + − + =

= + = + −

=

= = ⋯= =

= = =

= =

s Q
C

c c c c c c c c c
C

s
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s Q s Q s Q

1 1 1 1 ,
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k

j
j

k

j

k
j

k

j
j

k

j

k

k k k k

1 1
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2
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1
2 3

1
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1 2 1

2 1
1 2

1 1

3

4 5

(4.11)

In the following proposition, we apply Lin and Zhou’s statements in [6] to derive lower and upper bounds
for ( )ρ Qk .

Proposition 4.3. Let ≥k 3 nonnegative real numbers … ≥c c c, , , 1k1 2 , { }=
≤ ≤

ν cmax i k i2 and assume >C
( )

( ) ( )

+ + −

+ + + −

c c k ν
ν c k ν

2
1 2 1 2

1
2

1 2

1 2 .

(i) If ≥k 4, then we have

( ) { }≤ ≤

≤ℓ≤

ℓρ Q1 min Ψ̂ ,k
k1

(4.12)

where

( )

⎧

⎨
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⎩
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C c C

C λ C λ λ c C C if c c c C

s λ s λ λ C c C C s otherwise

s λ s λ λ C c C C s if c c c C
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λ λ λ C C c s
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Ψ̂

1
2

4 1 ,

1
2

4 1 ,

Ψ̂

1
2

4 1 2 ,

1
2

4 1 ,

Ψ̂ Ψ̂ 1
2

1 1 4 1 2 1 ,k

1 1

2

1 1
2

2 1 1
2

1 2

1 1 1 1
2

2 1 1

3

1 1 1 1
2

2 1 1 1
2

1 2

1 1
2

2 1 1

4 1 1
2

2 1 1

with s1 given by (4.11) and ( ) ( )= − + −λ c ν λ C11 1
2

2 , ( )= + −λ c ν k ν2 22 1
2.

(ii) If =k 3, then

( ) { }≤ ≤ψ ρ Qˆ min Ψ̂ , Ψ̂ , Ψ̂ ,3 3 1 2 3 (4.13)

where
⎧

⎨
⎩

=

+ + + <

+ +

−

+ +ψ c c c if c c

c c c otherwise
ˆ ,

, .

c c
c c c

3
1
2

1 2 1
2

3

1 2 3

3 1
2

1 2 3

Proof. Initially, we study the ordering of the quantities ( )s Qi k in (4.11) for = … ≥i k1, , 3 by distinguishing
among two cases:

(i) Assume + + <c c c C1
2

1 2 , then ( )( )< + + − + <c c c C1 1 1C1
2

1 2
1 implies

( ) ( ) ( ) ( ) ( )> > > = ⋯= =s Q s Q s Q s Q s Q 1.k k k k k k2 3 1 4 (4.14)
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Consider the permutation matrix ⎜ ⎟
⎛

⎝

⎞

⎠
=

−

− −

P
P

I
0

0
k

k k
2

3, 3

3,3 3
with

⎛

⎝
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⎠
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0 1 0
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=Q P Q Pk k

T
2 2 . Then

( ) ( ) ( ) ( ) ( ) ( ) ( )= = ( ⋯ )Q P Q s Q s Q s Q s Q s Qs sk k k k k k k k
T

2 2 3 1 4 has entries the average 3-row sums,
which satisfy (4.14). Thus, we verify
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(ii) On the other hand, if + + ≥c c c C1
2
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1 . Moreover,
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1 1 1 1 1
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1 1 0 1 .
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1 1
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2

The validity of the last inequality leads to the inequalities

( ) ( ) ( ) ( ) ( )> ≥ > = ⋯= =s Q s Q s Q s Q s Q 1.k k k k k k2 1 3 4 (4.15)

Take P1 as in the proof of Proposition 4.2, then ( ) ( ) ( )͠
= = =Q P Q P P Qs s sk k

T
k1 1 1

( ) ( ) ( ) ( ) ( )( ⋯ )s Q s Q s Q s Q s Qk k k k k k
T

2 1 3 4
is such that (4.15) holds. Apparently,

( ) ( ) ( ) ( ) ( )͠ ͠ ͠ ͠ ͠
> ≥ > = ⋯= =s Q s Q s Q s Q s Q 1.k k k k k k1 2 3 4

For ≥k 3, either cases (i) or (ii) may hold. In both occurrences, the permuted matrices Qk or Q͠k have the
same maximum and minimum diagonal and off-diagonal elements, namely, =μ c1, { }= ≤ ≤ν cmax i k i2 ,

= =ζ η 0 and also = >b C 1, =q C
1 . The hypothesis ( )

( ) ( )
>

+ + −

+ + + −

C c c k ν
ν c k ν

1
1 2 1 2

1 1
2 2

1 2 ensures the assumptions

 ( ) ( ) ( ) ( )͠ ͠
= = + − > = = > =s Q s Q c C C c λ s Q s Q θand 1 0k k k k k k1 1 1 1 1 1

made in Theorems 2.1 and 2.3 in [6]. Then,
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−

ψ s θ s θ ζηq k η q s sˆ
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2 2k
k k

j

k

j k
1 1

2
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(4.16)

yields the lower bounds
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⎞
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c c c

C
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C c c
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1 2 1
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3

Likewise, the relation

⎛

⎝

⎞

⎠
( ( ) ) ( )∑=

+

+

−

+ + − −ℓ

ℓ ℓ

=

ℓ−

ℓ

s λ s λ μνb k ν b s sΨ̂
2 2

2 2 ,
j

j
1 1

2
2

1

1
(4.17)

where ( )≔ℓ ℓs s Qk or ( )͠
≔ℓ ℓs s Qk depending on whether case (i) or (ii) is used, derives the desired upper

bounds ℓΨ̂ , ≤ ℓ ≤ k1 . Therefore,

( ) ( ) ( ) { }͠
≤ = = ≤ ≤ ℓ ≤ℓψ ρ Q ρ Q ρ Q kˆ min Ψ̂ : 1 . □k k k k
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Finally, following similar notation as previously discussed, we can express our new quantity (1.3) by
the vector

��( ) ( ) ( )= = ∈
− −Q D Q E D Q D Qw s ,k k k k k k k k k

1 4 1
,1 (4.18)

with components the average 4-row sums of Qk
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(4.19)

Proposition 4.4. Let ≥k 3 real numbers … ≥c c c, , , 1k1 2 and { }= ≤ ≤ν cmax i k i2 . Assume ( )
+ >

− +

+ + +

1ν c
c c c α C

1 11 3
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1 2
,
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3. Then,
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Proof. First, we investigate the ordering of the quantities ( )w Qi k in (4.19) for = … ≥i k1, , 3. It is immediate
to have ( ) ( ) ( ) ( ) ( )> > > = ⋯= =w Q w Q w Q w Q w Q 1k k k k k k2 3 4 5 , so we will show ( ) ( )>w Q w Qk k2 1 . Indeed
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⎝

⎞
⎠

( )⎛
⎝

⎞
⎠

[ ( )]⎛
⎝

⎞
⎠

( )⎛
⎝

⎞
⎠

( )⎛
⎝

⎞
⎠

( )

∑

∑

= + + − +

= + + − + + + − +

> + + − + + + + − +

= + + − + + + + + + − +

> + + − + + + + − + =

=

=

w Q c c c c
C

C

c c c c
C

c c c c
C

C

c c c c
C

c c c c c
C

c c c c
C

c c c c c c c c c
C

c c c c
C

c c c c c
C

w Q

1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1 ,

k
j

k

j

j

k

j

k

2
1

1
2

1 2

1 1
2

1 2
2

1
2

1 2

1 1
2

1 2 2 3 1
2

1 2

1 1
2

1 2 1
2

2 1 2 2
2

3 1
2

1 2

1 1
2

1 2 1 2 1 2 3 1
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since ≥c 1j for all = …j k1, , . Therefore, for ≥k 3, we deduce

( ) { ( ) ( )} { ( ) ( )} ( ) ( ) ( )> > > > = ⋯=w Q w Q w Q w Q w Q w Q w Q w Qmax , min , .k k k k k k k k k2 1 3 1 3 4 5

Next we distinguish among two cases for ( )w Qk1 and ( )w Qk3 :

(i) If ( ) ( )≥w Q w Qk k1 3 , we employ ͠
=Q P Q Pk k

T
1 1 as in the proof of Proposition 4.2. Then, ( ) ( )͠

= =Q P Qw wk k1

( ) ( ) ( ) ( ) ( )( ⋯ )w Q w Q w Q w Q w Qk k k k k k
T

2 1 3 4 such that

( ) ( ) ( ) ( ) ( )͠ ͠ ͠ ͠ ͠
> ≥ > = ⋯=w Q w Q w Q w Q w Q .k k k k k k1 2 3 4

(ii) If ( ) ( )<w Q w Qk k1 3 , we employ  =Q P Q Pk k
T

2 2 as in the proof of Proposition 4.3. Then, ( ) ( )= =Q P Qw wk k2

( ) ( ) ( ) ( ) ( )( ⋯ )w Q w Q w Q w Q w Qk k k k k k
T

2 3 1 4 such that

    ( ) ( ) ( ) ( ) ( )> > > = ⋯=w Q w Q w Q w Q w Q .k k k k k k1 2 3 4

Note that for both of the aforementioned cases, we have =μ c1, { }= ≤ ≤ν cmax j k j2 , = =ζ η 0, and = >b C 1,
=q C

1 . The assumptions of Theorems 2.4 and 3.1 are satisfied whether

 ( ) ( ) ( ) ( )͠ ͠
> > = > > =w Q γ w Q δ w Q γ w Q δand 0, or and 0.k k k k k k1 1

Clearly, both inequalities concerning wk are true, so we need to check for w1. In this setting,

( ) ( ) ( )( )

( ) ( )⎛
⎝

⎞
⎠

( )

= − − − < + + + − ⇔

− > − − + + + − ⇔

− +

+ + +

+ >

γ C α C ν c C c c c C

ν c c c c α
C

ν c
c c c α C

1 1

1 1 1 1 1 1 ,

1
3

1
2

1 2

1
3

1
2

1 2
1

3

1
2

1 2

which is true by hypothesis. Thus, the desired bounds for ( ) ( ) ( )͠
= =ρ Q ρ Q ρ Qk k k are derived by applying

Theorems 2.4 and 3.1. □

Note that if we apply Lemma 2.3, we may obtain the next bounds for the spectral radius of the general-
ized k-Fibonacci matrix

( ) ( )( )≤ ≤ + + + −ρ Q C c c c C1 1 .k 1
2

1 23 (4.21)

In the following example, we make a comparison among all bounds discussed in this section for the
spectral radius of a generalized k-Fibonacci matrix.

Example 4.5. Let the generalized 4-Fibonacci matrix

⎛

⎝

⎜

⎜⎜

⎞

⎠

⎟

⎟⎟

=Q

12 1 1 1
1 0 0 0
0 1 0 0
0 0 1 0

4 with spectral radius ( ) =ρ Q4

12.0901 and =C 15, =ν 1. Obviously, the assumption of Proposition 4.4 is ensured, and then we obtain
( ) =w Q 2,2131 4 , ( ) =w Q 1783.672 4 , ( ) =w Q 1833 4 , and ( ) =w Q 154 4 . In a addition, =α 1,842 and = −γ 5,823 .

Then, ( )= =Z w Q 2,2131 1 4 , =Z 2194.142 , =Z 3250.173 , and =Z 3437.354 .
In Table 3, we list the lower and upper bounds for ( )ρ Q4 obtained by applying the formulae presented in

this section. We observe that the upper bound obtained by Proposition 4.4 (our proposed formula) is the

Table 3: Comparison among different (lower and upper) bounds for the spectral radius

Bounds for ρ Q4( ) Lower value Upper value

Proposition 4.1 1 12.2450
Proposition 4.2 1 14.5880
Proposition 4.3 1 13.4245
Proposition 4.4 2.4662 12.9944
Relation (4.21) 1 13.0315
Spectral radius 12.0901
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second nearest estimate to ( )ρ Q4 and the lower bound obtained by the same Proposition, although far from
( )ρ Q4 , it has been improved to a certain degree compared to all the other lower bounds that are equal to 1.

Conflict of interest statement: Authors state no conflict of interest.
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