
Secure Operating Systems

Nikos Tziritas

Memory Management

• CPU accesses data from main memory via a
transaction on the memory bus

• Completing a memory access may take many
cycles of the CPU clock. In such cases, the
processor normally needs to stall.

• A remedy to the aforementioned problem
(CPU stall) is to add fast memory between the
CPU and main memory. This memory is called
cache.

Legal addresses

• The operating system must make sure that
each process has a separate memory space.

• Therefore there is a range of legal addresses
that each process may access.

• The operating system provides the
aforementioned protection of memory
addresses through :
– base register (smallest legal address)

– limit register (the size of the range)

Hardware address protection

Virtual vs Physical Address Space

• An address generated by the CPU is referred
to as a virtual address

• An address seen by the memory unit is
referred to as a physical address

• The set of all virtual addresses generated by a
program is a virtual address space. The set of
all physical addresses corresponding to these
virtual addresses is a physical address space

Runtime Memory Mapping

• The runtime mapping from virtual to physical
addresses is done by a hardware device called
the Memory-Management Unit (MMU)

• We illustrate this mapping with a simple MMU
scheme that is a generalization of the base-
register scheme. The base register in this
scheme is called relocation register

Dynamic Relocation

Swapping

Paging

• Paging is a memory-management scheme that
permits the physical address of a process to be
noncontiguous.

• Paging avoids external fragmentation
(memory space broken into little pieces)

Paging – Basic Method (1)

• Breaking physical memory into fixed-sized
blocks called frames.

• Breaking virtual memory into blocks of the
same size called pages.

• The backing store is divided into fixed-sized
blocks that are of the same size as the
memory frames

Paging – Basic Method (2)

• Every address generated by CPU is divided
into two parts:
– Page number (p)

– Page offset (d)

• The page number is used as an index into a
page table. The page table contains the base
address of each page in physical memory. This
base address is combined with the page offset
to define the physical memory.

Paging Hardware

Paging Model (page table per process)

Page number and offset

The size of the virtual address space is 2m and a
page size is 2n addressing units (words). The
high-order m-n bits of logical address designate
the page number and the n low-order bits
designate the page offset.

Example

Consider n=2 and m=4. Our physical memory is
32 bytes (8 pages).

Example (cont.)

Example (cont.)

According to the page table shown in the previous
slide we have that:

• Virtual address 0 is represented as (0000) page 0,
offset 0. The page table maps page 0 to frame 5,
which means that address 0 maps to physical
address 20 [=5*4+0].

• Virtual address 4 is represented (0100) as page 1,
offset 0. The page table maps page 1 to frame 6,
which means that address 4 maps to physical
address 24[=6*4+0]

Translation Look-aside Buffer (TLB)

TLB Example

• The percentage of times that a particular page
number is found in TLB is called hit-ratio.

• Consider that the hit ratio is 80%, the TLB search
costs 20 ns, while the main memory search costs
100 ns. To access the desired byte in memory
costs:
– 120 ns in case of success

– 220 ns in case of failure

• Therefore, the effective memory-access time is
0.80*120+0.20*220=140 ns

Memory protection

Shared pages

Hierarchical Paging

• Consider a 32-bit logical address space, with 4
KB (212) page size, then a page table may
consist of up to 1 million entries (232/ 212).
Assuming that each entry consists of 4 bytes,
each process may need up to 4MB of physical
address.

Hierarchical paging

Hash paged table

Inverted Page Table

• Each process has an associated page table.
The table has one entry for each page the
process is using. This results in millions of
entries for each page table.

• To solve the aforementioned problem, we can
use an inverted page table. An inverted page
table has one entry for each real page of
memory. Each entry consists of the process-id
and page number.

Inverted Page Table

Virtual memory

Transfer of paged memory to
contiguous disk space

Page table when some pages are not
in main memory

Handling a Page Fault

Demand Paging

Performance of Demand Paging

• Let p be the probability of a page fault. We
would expect p to be close to zero. The
effective access time becomes:

(1-p)*mem_acc_time+p*(page_fault_time)

Need for Page Replacement

Page Replacement

FIFO page-replacement

7 7

0

7

0

1

2

0

1

2

3

1

4

3

0

2

3

0

4

2

0

4

2

3

0

2

3

0

1

3

0

1

2

7

1

2

7

0

2

7

0

1

LRU Page Replacement

Non Uniform Memory Access (NUMA)

• In systems with multiple CPUs, a given CPU
can access some sections of main memory
faster than it can access others.

• The performance differences are caused by
how CPUs and memory are interconnected
within the system.

• Systems in which memory accesses times vary
significantly are known as non-uniform
memory access (NUMA) systems.

