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• Passive learning
• The agent imply watches the world 

going by and tries to learn the 
utilities of being in various states

• Active learning
• The agent not simply watches, but 

also acts 
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Exploration - Exploitation
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Exploration of unknown states and actions to gather new information 

Exploitation of learned states and actions to maximize  the cumulative 

reward

 ε-greedy search:

Explore – with probability ε choose uniformly one action among 
all possible actions.

Exploit – with probability 1-ε choose the best action.

Start with a high ε and gradually decrease it in order initiate exploitation 

once enough exploration. 
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Move from exploration to exploitation using
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Swarm Intelligence

60
Adopted from Thiemo Krink



The need for new Computing Techniques

61



The need for new Computing Techniques

62



Hard Problems

63



Hard Problems

64



Hard Problems

65



Alternatives

66



Artificial Networks

67



Evolutionary Computation

68



Evolutionary Computation

69



Evolutionary Computation

70



Bio-Computing 

71



Applications 

72



Limitations

73



Swarm Intelligence

74



Swarm Intelligence

75



Swarm Intelligence

76



Model Examples

77



Model Examples

78



Ants

79



Self-Organization

80



Self-Organization

81



Self-Organization

82



Ant Foraging

83



Ant Foraging

84



Ant Foraging

85



Ant Foraging

86



Ant Foraging

87



Ant Foraging

88



Characteristics of Self-Organization

89



Termites Simulation 

90



Termites Simulation 

91



Honey Bees Nest Building

92



Honey Bees Nest Building

93



Honey Bees Nest Building

94



Honey Bees Nest Building

95



Honey Bees Nest Building

96



Honey Bees Nest Building

97



Honey Bees Nest Building

98



Honey Bees Nest Building

99



Stigmergy

100



Stigmergy in Spiders

101



Stigmergy

102



Motivation

103



Principles

104



Particle Swarm Optimization
(PSO)
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Adopted from Mohammed Al-Alaw & Qiangfu Zhao
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• Inspired by the flocking and schooling patterns of birds and fish.

• Imagine a flock of birds circling over an area where they can smell a hidden source of 
food.

• The one who is closest to the food chirps the loudest and the other birds swing around in 
his direction.

• If any of the other circling birds comes closer to the target than the first, it chirps louder 
and the others veer over toward him. 

• This tightening pattern continues until one of the birds happens upon the food. 
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• Particle Swarm Optimization (PSO) was invented by Russell Eberhart and James 
Kennedy in 1995. 

• Originally, these two started out developing computer software simulations of birds 
flocking around food sources

• They realized how well their algorithms worked on optimization problems.

• Over a number of iterations, a group of variables have their values adjusted closer 
to the member whose value is closest to the target at any given moment.

• It's an algorithm that's simple and easy to implement.
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• In computer science, Particle Swarm Optimization (PSO) is a computational method 
that optimizes a problem by iteratively trying to improve a candidate solution with 
regard to a given measure of quality (This is the stopping Condition).

• PSO optimizes a problem by having a population of candidate solutions, (known as 
particles), and moving these particles around in the search-space

• It moves according to simple mathematical formulae over the particle's position
(Current DATA ex: x,y,z, etc… ) and velocity (indicating how much the Data can be 
changed). 
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• The algorithm was simplified and it was observed to be performing optimization 
(first it was not intended to be used in this manner).

• PSO is a metaheuristic as it makes few or no assumptions about the problem 
being optimized and can search very large spaces of candidate solutions. 

• However, metaheuristics such as PSO do not guarantee an optimal solution is ever 
found. 
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• Each particle's movement is influenced by its local best known position but, is also 
guided toward the best known positions in the search-space

• The best positions are updated as better positions when they are found by other 
particles

• This is expected to move the swarm toward the best solutions.
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A few common population topologies (neighborhoods).
(A) Single-sighted. (B) Ring topology. (C) Fully connected topology. (D) 
Isolated, 
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• PSO does not use the gradient of the problem being optimized, which means PSO 
does not require that the optimization problem be differentiable as is required by 
classic optimization methods 

• To find a local minimum of a function using gradient descent, one takes steps 
proportional to the negative of the gradient (or of the approximate gradient) of the 
function at the current point and quasi-newton methods. 

• PSO can therefore also be used on optimization problems that are partially irregular, 
noisy, change over time, etc., i.e. ,they are used for real time & data analysis & 
applications.



The Algorithm

114

• The algorithm keeps track of three global variables:
• Target value or condition
• Global best (gBest) value indicating which particle's data is currently closest to 

the Target

• Stopping value indicating when the algorithm should stop if the Target isn't found

• Each particle consists of:
• Data representing a possible solution
• A Velocity value indicating how much the data can be changed
• A personal best (pBest) value indicating the closest the particle's Data has ever 

come to the Target
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• The particles' data could be anything. In the flocking birds example above, the data 
would be the X, Y, Z coordinates of each bird.

• The individual coordinates of each bird would try to move closer to the coordinates 
of the bird which is closer to the food's coordinates (gBest).

• If the data is a pattern or sequence, then individual pieces of the data would be 
manipulated until the pattern matches the target pattern.
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• The velocity value is calculated according to how far an individual's data is from the 
target. The further it is, the larger the velocity value.

• In the birds example, the individuals furthest from the food would make an effort to 
keep up with the others by flying faster toward the gBest bird.

• If the data is a pattern or sequence, the velocity would describe how different the 
pattern is from the target, and thus, how much it needs to be changed to match the 
target (making it similar to Neural Networks).



The Algorithm

117

• Each particle's pBest value only indicates the closest the data has ever come to the 
target since the algorithm started.

• The gBest value only changes when any particle's pBest value comes closer to the 
target than gBest.

• Through each iteration of the algorithm, gBest gradually moves closer and closer to 
the target until one of the particles reaches the target.

• It's also common to see PSO algorithms using population topologies, or 
"neighborhoods", which can be smaller, localized subsets of the global best value. 
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• Neighborhoods can involve two or more particles which are predetermined to act 
together, or subsets of the search space that particles happen into during testing.

• The use of neighborhoods often help the algorithm to avoid getting stuck in local 
minima.

• Neighborhood definitions and how they're used have different effects on the 
behavior of the algorithm.
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• Stopping Conditions:

• Terminate when a maximum number of iterations, or FEs, has been exceeded

• Terminate when an acceptable solution has been found

• Terminate when no improvement is observed over a number of iterations

• Terminate when the normalized swarm radius is close to zero
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• Approaches to update the inertia weight
• Random adjustments, where a different inertia weight is randomly selected at 

each iteration, e.g., N(0.72, σ) where σ is small enough to ensure that w 
(inertia weight) is not predominantly greater than one

• Linear decreasing where an initially large inertia weight (usually 0.9) is 
linearly decreased to a small value (usually 0.4) 

• Nonlinear decreasing, where an initially large value decreases nonlinearly to a 
small value

• Fuzzy adaptive inertia, where the inertia weight is dynamically adjusted on the 
basis of fuzzy sets and rules
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https://pypi.org/project/swarmlib/

https://nathanrooy.github.io/posts/2016-08-17/simple-particle-
swarm-optimization-with-python/
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The ACO Algorithm
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http://thiagodnf.github.io/aco-simulator/#
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Adopted from Ahmed Fouad Ali



Metaheuristics
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Introduction
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• Artificial Bee Colony (ABC) is one of the most recently defined algorithms by Dervis
Karaboga in 2005, motivated by the intelligent behavior of honey bees.

• Since 2005, D. Karaboga and his research group have studied on ABC algorithm and 
its applications to real world-problems. 
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• The ABC algorithm is a swarm based meta-heuristics algorithm.

• It based on the foraging behavior of honey bee colonies.

• The artificial bee colony contains three groups: 

• Scouts
• Onlookers
• Employed bees



Algorithm

162

• The ABC generates a randomly distributed initial population of SN solutions (food 
source positions), where SN denotes the size of population. 

• Each solution xi (i = 1, 2, ..., SN) is a D-dimensional vector. 

• After initialization, the population of the positions (solutions) is subjected to 
repeated cycles, C = 1, 2, ...,MCN, of the search processes of the employed bees, the 
onlooker bees and scout bees. 
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• An employed bee produces a modification on the position (solution) in her memory 
depending on the nectar amount (fitness value) of the new source (new solution). 

• Provided that the nectar amount of the new one is higher than that of the previous 
one, the bee memorizes the new position and forgets the old one. 

• After all employed bees complete the search process, they share the nectar 
information of the food sources and their position information with the onlooker bees 
on the dance area. 
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• An onlooker bee evaluates the nectar information taken from all employed bees and 
chooses a food source with a probability related to its nectar amount.

• As in the case of the employed bee, it produces a modification on the position in its 
memory and checks the nectar amount of the candidate source. 

• Providing that its nectar is higher than that of the previous one, the bee memorizes 
the new position and forgets the old one.
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• An artificial onlooker bee chooses a food source depending on the probability value 
associated with that food source, pi,

• fiti is the fitness value of the solution i
• SN is the number of food sources which is equal to the number of employed bees 

(BN).
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• In order to produce a candidate food position from the old one in memory, the ABC 
uses the following expression

• where k {1, 2,..., SN} and j {1, 2,...,D} are randomly chosen indexes.

• k is determined randomly, it has to be different from i. 

• φi,j is a random number between [-1, 1].
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• The food source of which the nectar is abandoned by the bees is replaced with a 
new food source by the scouts.

• In ABC, providing that a position can not be improved further through a 
predetermined number of cycles, which is called “limit” then that food source is 
assumed to be abandoned. 
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Control Parameters
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• Swarm size

• Employed bees (50% of swarm)

• Onlookers (50% of swarm)

• Scouts (1)

• Limit

• Dimension
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• Advantages
• Few control parameters
• Fast convergence
• Both exploration & exploitation

• Disadvantages
• Search space limited by initial solution (normal distribution sample should use in 

initialize step)
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Consider the optimization problem as follows:

Minimize f (x) = x2
1 + x2

2 -5≤x1,x2≤5

Control Parameters of ABC Algorithm are set as:

Colony size, CS = 6

Limit for scout, L = (CS*D)/2 = 6

Dimension of the problem, D = 2
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First, we initialize the positions of 3 food sources (CS/2) of employed bees, randomly 
using uniform distribution in the range (-5, 5).

x = 1.4112     -2.5644
0.4756     1.4338
-0.1824    -1.0323

f(x) values are:    8.5678
2.2820
1.0990
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Initial fitness vector is:
0.1045
0.3047
0.4764
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Maximum fitness value is 0.4764, the quality of the best food source.

Cycle=1
Employed bees phase
• 1st employed bee

with this formula, produce a new solution.
k=1     k is a random selected index.
j=0      j is a random selected index.
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Φ = 0.8050   Φ is randomly produced number in the range [-1, 1].

υ0= 2.1644     -2.5644

Calculate f(υ0) and the fitness of υ0.
f(υ0) = 11.2610 and the fitness value is 0.0816.

Apply greedy selection between x0 and υ0

0.0816 < 0.1045, the solution 0 couldn’t be improved, increase its trial counter.
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2nd employed bee

with this formula produce a new solution.

k=2  k is a random selected solution in the neighborhood of i.
j=1   j is a random selected dimension of the problem.

Φ = 0.0762   Φ is randomly produced number in the range [-1, 1].

υ1= 0.4756   1.6217
Calculate f(υ1) and the fitness of υ1.
f(υ1) = 2.8560 and the fitness value is 0.2593.

Apply greedy selection between x1 and υ1
0.2593 < 0.3047, the solution 1 couldn’t be improved, increase its trial counter.
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3rd employed bee

with this formula produce a new solution.
k=0 //k is a random selected solution in the neighborhood of i.
j=0 //j is a random selected dimension of the problem.

Φ = -0.0671 // Φ is randomly produced number in the range [-1, 1].

υ2= -0.0754   -1.0323

Calculate f(υ2) and the fitness of υ2.
f(υ2) = 1.0714 and the fitness value is 0.4828.

Apply greedy selection between x2 and υ2.
0.4828 > 0.4764, the solution 2 was improved, set its trial counter as 0 and replace the 
solution x2 with υ2.
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x =
1.4112      -2.5644
0.4756       1.4338
-0.0754     -1.0323

f(x) values are:
8.5678
2.2820
1.0714

fitness vector is:
0.1045
0.3047
0.4828
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Calculate the probability values p for the solutions x by means of their fitness values by 
using the formula;

p = 0.1172
0.3416
0.5412
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Onlooker bees phase
Produce new solutions υi for the onlookers from the solutions xi selected
depending on pi and evaluate them.

1st onlooker bee
i=2
υ2= -0.0754     -2.2520

Calculate f(υ2) and the fitness of υ2.
f(υ2) = 5.0772 and the fitness value is 0.1645.
Apply greedy selection between x2 and υ2

0.1645 < 0.4828, the solution 2 couldn’t be improved, increase its trial counter.



Example

181

2nd onlooker bee
i=1

υ1= 0.1722    1.4338

Calculate f(υ1) and the fitness of υ1.
f(υ1) = 2.0855 and the fitness value is 0.3241.

Apply greedy selection between x1 and υ1
0.3241 > 0.3047, the solution 1 was improved, set its trial counter as 0 and replace the 
solution x1 with υ1.
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x =
1.4112     -2.5644
0.1722     1.4338
-0.0754   -1.0323

f(x) values are
8.5678
2.0855
1.0714

fitness vector is:
0.1045
0.3241
0.4828
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3rd onlooker bee
i=2
υ2= 0.0348   -1.0323

Calculate f(υ2) and the fitness of υ2.
f(υ2) = 1.0669 and the fitness value is 0.4838.
Apply greedy selection between x2 and υ2

0.4838 > 0.4828, the solution 2 was improved, set its trial counter as 0 and replace the 
solution x2 with υ2.
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x =
1.4112     -2.5644
0.1722     1.4338
0.0348    -1.0323

f(x) values are
8.5678
2.0855
1.0669

fitness vector is:
0.1045
0.3241
0.4838
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Memorize best
Best = 0.0348    -1.0323
Scout bee phase
Trial Counter =
1
0
0

There is no abandoned solution since L = 6
If there is an abandoned solution (the solution of which the trial counter value is higher 
than L = 6);

Generate a new solution randomly to replace with the
abandoned one.
Cycle = Cycle+1
The procedure is continued until the termination criterion is attained.
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https://abc.erciyes.edu.tr/



Cuckoo Search Algorithm
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Adopted from Ahmed Fouad Ali
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• A method of global optimization based on the behavior of cuckoos was proposed by 
Yang & Deb (2009).

• The original “cuckoo search (CS) algorithm”  is based on the idea of the following:

• How cuckoos lay their eggs in the host nests.

• How, if not detected and destroyed, the eggs are hatched to chicks by the hosts. 

• How a search algorithm based on such a scheme can be used to find the global 
optimum of a function.
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• The CS was inspired by the obligate brood parasitism of some cuckoo species by 
laying their eggs in the nests of host birds. 

• Some cuckoos have evolved in such a way that female parasitic cuckoos can imitate 
the colors and patterns of the eggs of a few chosen host species. 

• This reduces the probability of the eggs being abandoned and, therefore, increases 
their reproductivity . 
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• If host birds discover the eggs are not their own, they will either throw them away 
or simply abandon their nests and build new ones.

• Parasitic cuckoos often choose a nest where the host bird just laid its own eggs. 

• In general, the cuckoo eggs hatch slightly earlier than their host eggs. 



Behaviour
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• Once the first cuckoo chick is hatched, his first instinct action is to evict the host 
eggs by blindly propelling the eggs out of the nest.

• This action results in increasing the cuckoo chick’s share of food provided by its host 
bird.

• Moreover, studies show that a cuckoo chick can imitate the call of host chicks to gain 
access to more feeding opportunity.
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• Each egg in a nest represents a solution, and a cuckoo egg represents a new solution. 

• The aim is to employ the new and potentially better solutions (cuckoos) to replace 
not-so-good solutions in the nests.

• In the simplest form, each nest has one egg. 

• The algorithm can be extended to more complicated cases in which each nest has 
multiple eggs representing a set of solutions
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• The CS is based on three idealized rules:
• Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest

• The best nests with high quality of eggs (solutions) will carry over to the next 
generations

• The number of available host nests is fixed, and a host can discover an alien egg 
with probability p ϵ [0,1] .

• In this case, the host bird can either throw the egg away or abandon the nest to 
build a completely new nest in a new location.
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• In nature, animals search for food in a random or quasi-random manner. 

• Generally, the foraging path of an animal is effectively a random walk because the 
next move is based on both the current location/state and the transition probability 
to the next location. 

• The chosen direction implicitly depends on a probability, which can be modelled 
mathematically. 
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• A Lévy flight is a random walk in which the step-lengths are distributed according to 
a heavy-tailed probability distribution. 

• After a large number of steps, the distance from the origin of the random walk 
tends to a stable distribution.
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Steps
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The following steps describe the main concepts of  Cuckoo 
search algorithm 

Step1. Generate initial population of n host nests. 

( , ) : a candidate for optimal parameters 
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Step2. Lay the egg ( ′, ′) in the k nest. 

K nest is randomly selected. 
Cuckoo’s egg is very similar to host egg.

Where 

′= + (Lѐvy flight) 
′= + (Lѐvy flight) 
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Step3. Compare the fitness of cuckoo’s egg  with the fitness of the host egg.

• Root Mean Square Error (RMSE) 
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Step4. If the fitness of cuckoo’s egg is better than host egg, replace the egg in nest k by 
cuckoo’s egg. 
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Step5. If host bird notice it, the nest is abandoned and new one is built (p <0.25) (to 
avoid local optimization)

Iterate steps 2 to 5 until termination criterion satisfied
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• Engineering optimization problems

• NP hard combinatorial optimization problems

• Data fusion in wireless sensor networks

• Nanoelectronic technology based operation-amplifier (OP-AMP)

• Train neural  network

• Manufacturing scheduling

• Nurse scheduling problem



Evolutionary Computation
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Adopted from Madhu, Natraj, Bhavish, Sanjay & Antoine CORNUÉJOLS  - Christine Martin
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• Evolution is the change in the inherited traits of a population from one generation to 
the next.

• Natural selection leading to better and better species 
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• Survival of the fittest.
• Change in species is due to change in genes over reproduction or/and due to 

mutation.

• An Example showing the concept of survival of the fittest and reproduction over
generations.
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• Mimicking natural evolution to evolve better « solutions »
• Generation of successive populations with survival and reproduction of the fittests
• Using mutation and cross-over as reproduction operators
• Genotype  vs.  Phenotype
• A kind of generalized optimization method
• A population of “solutions” : size
• Reproduction operators
• Selection of the fittests
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• “Evolutionary computing” 
• I. Rechenberg in the 60s.
• Optimization on real valued  domains

• Genetic algorithms
• John Holland, “Adaptation in Natural and Artificial Systems”, 1975.
• Bit representation / Schema theorem / Problem-Solving method

• Genetic Programming
• John Koza, First book on Genetic Programming, 1992.
• Programs represented as trees
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• Evolutionary Computation (EC) refers to computer-based problem solving systems 
that use computational models of evolutionary process.

• Terminology:
• Chromosome – It is an individual representing a candidate solution of the 

optimization problem.
• Population – A set of chromosomes.
• Gene – It is the fundamental building block of the chromosome, each gene in a 

chromosome represents each variable to be optimized. It is the smallest unit of 
information.

• Objective: To find a best possible chromosome to a given optimization problem.



Evolutionary Algorithm
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Let t = 0 be the generation counter;
create and initialize a population P(0);

repeat
Evaluate the fitness, f(xi), for all xi belonging to P(t);
Perform cross-over to produce offspring;
Perform mutation on offspring;
Select population P(t+1) of new generation;
Advance to the new generation, i.e. t = t+1;

until stopping condition is true;



Evolutionary Algorithm
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Begin

Initialize population

Optimum 
Solution?

T=T+1

Selection

Crossover

Mutation

N

Evaluate Solutions

Y

Stop

T =0
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• GA emulate genetic evolution.
• A GA has distinct features:

• A string representation of chromosomes.
• A selection procedure for initial population and for off-spring creation.
• A cross-over method and a mutation method.
• A fitness function be to minimized.
• A replacement procedure.
• Parameters that affect GA are initial population, size of the population, 

selection process and fitness function.
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Evolutionary ComputationNatural Evolution

Pool of solutionsPopulation

Solution to a problemIndividual

Quality of a solutionFitness of an individual

Encoding of a solutionChromosome

Part of the encodingGene

Mutation and/or crossoverReproduction
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Various encoding schemes 

Bit strings

Strings of values

Real value

tree

1 1 0 1 0 1 1 0 0 0 1Chromosome 1

1 0 0 1 0 1 1 1 0 0 0Chromosome 2

……

1 5 3 6 0 1 2 7 3 0 8Chromosome 1

9 2 4 1 8 3 2 6 2 1 0Chromosome 2

……
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• N individuals generally randomly generated
• N is domain-dependent

• Often in [~50 - ~1000]



Fitness Function
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• Evaluates the quality of the solution
• E.g.   z-value in function optimization
• Length of the circuit in the travelling salesman problem
• Time before falling down in the inverse pole

• Beware of its cost
• Keep values in memory
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• Selection is a procedure of picking parent chromosome to produce off-spring.
• Types of selection:

• Random Selection – Parents are selected randomly from the population.
• Proportional Selection – probabilities for picking each chromosome is calculated 

as:
P(xi) = f(xi)/Σf(xj) for all j

• Rank Based Selection – This method uses ranks instead of absolute fitness 
values.

P(xi) = (1/β)(1 – er(xi))
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• Let i = 1, where i denotes chromosome index;
• Calculate P(xi) using proportional selection;
• sum = P(xi);
• choose r ~ U(0,1);

while sum < r do
i = i + 1; i.e. next chromosome
sum = sum + P(xi);

end
return xi as one of the selected parent;
repeat until all parents are selected
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The probability of selecting an individual is proportional to its fitness

Fitness Probability of selection
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The probability of selecting an individual is proportional to its rank

Fitness Probability of selection
according to fitness

Probability of selection
according to rank
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• Selection by fitness or rank implies the evaluation of the fitness of all individuals
• Selection by tournament avoids this

• If n individuals must be selected  (within a population of size N)
• Organize n tournaments, each between m < N randomly chosen individuals

(m controls the selective pressure)
• Select the best individual / or select the best and second best / or …
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• Reproduction is a processes of creating new chromosomes out of chromosomes in 
the population.

• Parents are put back into population after reproduction.
• Cross-over and Mutation are two parts in reproduction of an off-spring.

• Cross-over : It is a process of creating one or more new individuals through the 
combination of genetic material randomly selected from two or parents.
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• Uniform cross-over : where corresponding bit positions are randomly exchanged 
between two parents.

• One point : random bit is selected and entire sub-string after the bit is swapped.
• Two point : two bits are selected and the sub-string between the bits is swapped.

Two point
Cross-over

One point
Cross-over

Uniform 
Cross-over

00110110
11011011

00110110
11011011

00110110
11011011

Parent1
Parent2

01011010
10110111

00111011
11010110

01110111
10011010

Off-spring1
Off-spring2
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• Mutation procedures depend upon the representation schema of the chromosomes.
• This is to prevent falling all solutions in population into a local optimum.
• For a bit-vector representation:

• random mutation : randomly negates bits
• in-order mutation : performs random mutation between two randomly selected bit 

position.

In-order
Mutation

Random
Mutation

11100100111110010011Before mutation

11100110101100010111After mutation
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• Assure trade-off between 

• Exploitation 
• Preserve best individuals and explore nearby locations

• Mutation is exploitation oriented

• Small steps but brings new alleles

• Exploration
• Search unexplored regions for possible good candidates

• Crossover is exploration oriented

• Large steps but does not bring new alleles
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 Selection of m parents

• By fitness / rank / tournament / …

 Generation of l children

• Mutation / crossover / copy

• And selection of the best

 Completion to N

• Elimination of the worst individuals and copy of others
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1. Completely replace the previous population 
(called (m,l) replacement)

• Risk: loosing the good individuals of previous 
population

2. Draw the N new individuals from the selected m parents 
and l children  (called (m + l) replacement)

3. Steady state

• Select a sub-population and make replacement for this 
sub-population only (possibility of parallel and 
asynchronous process
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• Problem: finding Argmax of x2 over {0,…,31}
• GA approach

• Representation: binary code   (e.g. 0 1 1 0 1 <-> 13)
• Population size = 4
• Operators

• Single-point crossover
• Mutation

• Roulette wheel selection according to fitness
• Random initialization of the population

A more complex 
optimization problem
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Selection
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Crossover
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Mutation
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• The traveling salesman problem is difficult to solve by traditional genetic algorithms 
because of the requirement that each node must be visited exactly once.

• One way to solve this problem is by introducing more operators. Example in 
simulated annealing. 

• The idea is to change the encoding pattern of chromosomes such that GA meta-
heuristic can still be applicable. 

• Transfer the TSP from a permutation problem into a priority assignment problem.
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1000 steps

Population = 16
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A solution: the “2-opt mutation”
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• Normal sorting algorithms do not take into account the characteristics of the 
architecture and the nature of the input data

• Different sorting techniques are best suited for different types of input
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• For example radix sort is the best algorithm to use when the standard deviation of 
the input is high as there will be less cache misses (Merge Sort better in other cases 
etc)

• The objective is to create a composite sorting algorithm

• The composite sorting algorithm evolves from the use of a Genetic Algorithm (GA)
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• Sorting Primitives – these are the building blocks of our composite sorting algorithm

• Partitioning
• Divide by Value (DV) (Quicksort)
• Divide by Position (DP) (Merge Sort)
• Divide by Radix (DR) (Radix Sort)
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• Branch by Size (BS) : this primitive is used to select different sorting paths based on 
the size of the partition

• Branch by Entropy (BE): this primitive is used to select different paths based on the 
entropy of the input
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• The efficiency of radix sort increases with standard deviation of the input

• A measure of this is calculated as follows. 

• We scan the input set and compute the number of keys that have a particular value 
for each digit position. 

• For each digit the entropy is calculated as Σi –Pi * log Pi where Pi = ci/N where ci = 
number of keys with value ‘i’ in that digit and N is the total number of keys
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New offspring are generated using random single point crossovers
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1. Change the values of the parameters of the sorting and selection primitives

2. Exchange two subtrees

3. Add a new subtree. This kind of mutation is useful where more partitioning is 
needed along a path of the tree

4. Remove a subtree
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• We are searching for a sorting algorithm that performs well over all possible inputs 
hence the average performance of the tree is its base fitness

• Premature convergence is prevented by using ranking of population rather than 
absolute performance difference between trees enabling exploring areas outside 
the neighbourhood of the highly fit trees
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1. Because only primitive procedures like "cut" and "exchange" of strings are used for 
generating new genes from old, it is easy to handle large problems simply by using 
long strings.

2. Because only values of the objective function for optimization are used to select 
genes, this algorithm can be robustly applied to problems with any kinds of 
objective functions, such as nonlinear, indifferentiable, or step functions;

3. Because the genetic operations are performed at random and also include 
mutation, it is possible to avoid being trapped by local-optima.
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• Evolutionary Algorithms are heavily used in the search of solution spaces in many 
NP-Complete problems

• NP-Complete problems like Network Routing, TSP and even problems like Sorting 
are optimized by the use of Genetic Algorithms as they can rapidly locate good 
solutions, even for difficult search spaces. 
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Adopted from Debasis Samanta
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