
Ensemble Models

1
Adopted from Piyush Rai

Simple Models

2

New Approach

3

Bagging

4

Bagging

5

Random Forests

6

Boosting

7

AdaBoost

8

AdaBoost Example

9

AdaBoost Example

10

AdaBoost Example

11

AdaBoost Example

12

AdaBoost Example

13

Second Example

14

Second Example

15

Second Example

16

Second Example

17

Second Example

18

Second Example

19

Second Example

20

Second Example

21

Second Example

22

Comments

23

Comparison

24

Reinforcement Learning

25
Adopted from Fei-Fei Li, Justin Johnson, Serena Yeung

Introduction

26

Introduction

27

Introduction

28

Introduction

29

Introduction

30

Introduction

31

Introduction

32

Passive vs Active Learning

33

• Passive learning
• The agent imply watches the world

going by and tries to learn the
utilities of being in various states

• Active learning
• The agent not simply watches, but

also acts

Passive Learning

34

Markov Decision Process

35

Markov Decision Process

36

Markov Decision Process

37

Markov
Decision
Process

Markov
Chain

Example

38

Example

39

Optimal Policy

40

Value Function

41

Q-function

42

Q-function

43

Solution

44

Policy Iteration Algorithm

45

Exploration - Exploitation

46

Exploration of unknown states and actions to gather new information

Exploitation of learned states and actions to maximize the cumulative

reward

 ε-greedy search:

Explore – with probability ε choose uniformly one action among
all possible actions.

Exploit – with probability 1-ε choose the best action.

Start with a high ε and gradually decrease it in order initiate exploitation

once enough exploration.

Probabilistic Search

47

Move from exploration to exploitation using

   
 1

exp , /
|

exp , /A
b

Q s a T
P a s

Q s b T

  
   

   
 

exp ,
|

exp ,b A

Q s a
P a s

Q s b




Choose action a according to probability

Start with a large T and gradually decrease it.

T large, exploration | 1/ (constant) P a s A 

T small, better actions  exploitation.

Deep Q-learning

48

Deep Q-learning

49

Training

50

Deep Q-learning

51

Deep Q-learning

52

Deep Q-learning

53

Deep Q-learning

54

Deep Q-learning

55

Deep Q-learning

56

Deep Q-learning

57

Deep Q-learning

58

Deep Q-learning

59

Swarm Intelligence

60
Adopted from Thiemo Krink

The need for new Computing Techniques

61

The need for new Computing Techniques

62

Hard Problems

63

Hard Problems

64

Hard Problems

65

Alternatives

66

Artificial Networks

67

Evolutionary Computation

68

Evolutionary Computation

69

Evolutionary Computation

70

Bio-Computing

71

Applications

72

Limitations

73

Swarm Intelligence

74

Swarm Intelligence

75

Swarm Intelligence

76

Model Examples

77

Model Examples

78

Ants

79

Self-Organization

80

Self-Organization

81

Self-Organization

82

Ant Foraging

83

Ant Foraging

84

Ant Foraging

85

Ant Foraging

86

Ant Foraging

87

Ant Foraging

88

Characteristics of Self-Organization

89

Termites Simulation

90

Termites Simulation

91

Honey Bees Nest Building

92

Honey Bees Nest Building

93

Honey Bees Nest Building

94

Honey Bees Nest Building

95

Honey Bees Nest Building

96

Honey Bees Nest Building

97

Honey Bees Nest Building

98

Honey Bees Nest Building

99

Stigmergy

100

Stigmergy in Spiders

101

Stigmergy

102

Motivation

103

Principles

104

Particle Swarm Optimization
(PSO)

105
Adopted from Mohammed Al-Alaw & Qiangfu Zhao

Introduction

106

• Inspired by the flocking and schooling patterns of birds and fish.

• Imagine a flock of birds circling over an area where they can smell a hidden source of
food.

• The one who is closest to the food chirps the loudest and the other birds swing around in
his direction.

• If any of the other circling birds comes closer to the target than the first, it chirps louder
and the others veer over toward him.

• This tightening pattern continues until one of the birds happens upon the food.

Introduction

107

Introduction

108

• Particle Swarm Optimization (PSO) was invented by Russell Eberhart and James
Kennedy in 1995.

• Originally, these two started out developing computer software simulations of birds
flocking around food sources

• They realized how well their algorithms worked on optimization problems.

• Over a number of iterations, a group of variables have their values adjusted closer
to the member whose value is closest to the target at any given moment.

• It's an algorithm that's simple and easy to implement.

Introduction

109

• In computer science, Particle Swarm Optimization (PSO) is a computational method
that optimizes a problem by iteratively trying to improve a candidate solution with
regard to a given measure of quality (This is the stopping Condition).

• PSO optimizes a problem by having a population of candidate solutions, (known as
particles), and moving these particles around in the search-space

• It moves according to simple mathematical formulae over the particle's position
(Current DATA ex: x,y,z, etc…) and velocity (indicating how much the Data can be
changed).

Introduction

110

• The algorithm was simplified and it was observed to be performing optimization
(first it was not intended to be used in this manner).

• PSO is a metaheuristic as it makes few or no assumptions about the problem
being optimized and can search very large spaces of candidate solutions.

• However, metaheuristics such as PSO do not guarantee an optimal solution is ever
found.

Introduction

111

• Each particle's movement is influenced by its local best known position but, is also
guided toward the best known positions in the search-space

• The best positions are updated as better positions when they are found by other
particles

• This is expected to move the swarm toward the best solutions.

Introduction

112

A few common population topologies (neighborhoods).
(A) Single-sighted. (B) Ring topology. (C) Fully connected topology. (D)
Isolated,

Introduction

113

• PSO does not use the gradient of the problem being optimized, which means PSO
does not require that the optimization problem be differentiable as is required by
classic optimization methods

• To find a local minimum of a function using gradient descent, one takes steps
proportional to the negative of the gradient (or of the approximate gradient) of the
function at the current point and quasi-newton methods.

• PSO can therefore also be used on optimization problems that are partially irregular,
noisy, change over time, etc., i.e. ,they are used for real time & data analysis &
applications.

The Algorithm

114

• The algorithm keeps track of three global variables:
• Target value or condition
• Global best (gBest) value indicating which particle's data is currently closest to

the Target

• Stopping value indicating when the algorithm should stop if the Target isn't found

• Each particle consists of:
• Data representing a possible solution
• A Velocity value indicating how much the data can be changed
• A personal best (pBest) value indicating the closest the particle's Data has ever

come to the Target

The Algorithm

115

• The particles' data could be anything. In the flocking birds example above, the data
would be the X, Y, Z coordinates of each bird.

• The individual coordinates of each bird would try to move closer to the coordinates
of the bird which is closer to the food's coordinates (gBest).

• If the data is a pattern or sequence, then individual pieces of the data would be
manipulated until the pattern matches the target pattern.

The Algorithm

116

• The velocity value is calculated according to how far an individual's data is from the
target. The further it is, the larger the velocity value.

• In the birds example, the individuals furthest from the food would make an effort to
keep up with the others by flying faster toward the gBest bird.

• If the data is a pattern or sequence, the velocity would describe how different the
pattern is from the target, and thus, how much it needs to be changed to match the
target (making it similar to Neural Networks).

The Algorithm

117

• Each particle's pBest value only indicates the closest the data has ever come to the
target since the algorithm started.

• The gBest value only changes when any particle's pBest value comes closer to the
target than gBest.

• Through each iteration of the algorithm, gBest gradually moves closer and closer to
the target until one of the particles reaches the target.

• It's also common to see PSO algorithms using population topologies, or
"neighborhoods", which can be smaller, localized subsets of the global best value.

The Algorithm

118

• Neighborhoods can involve two or more particles which are predetermined to act
together, or subsets of the search space that particles happen into during testing.

• The use of neighborhoods often help the algorithm to avoid getting stuck in local
minima.

• Neighborhood definitions and how they're used have different effects on the
behavior of the algorithm.

The Algorithm

119

• Stopping Conditions:

• Terminate when a maximum number of iterations, or FEs, has been exceeded

• Terminate when an acceptable solution has been found

• Terminate when no improvement is observed over a number of iterations

• Terminate when the normalized swarm radius is close to zero

The Algorithm

120

The Algorithm

121

The Algorithm

122

The Algorithm

123

The Algorithm

124

The Algorithm

125

The Algorithm

126

The Algorithm

127

• Approaches to update the inertia weight
• Random adjustments, where a different inertia weight is randomly selected at

each iteration, e.g., N(0.72, σ) where σ is small enough to ensure that w
(inertia weight) is not predominantly greater than one

• Linear decreasing where an initially large inertia weight (usually 0.9) is
linearly decreased to a small value (usually 0.4)

• Nonlinear decreasing, where an initially large value decreases nonlinearly to a
small value

• Fuzzy adaptive inertia, where the inertia weight is dynamically adjusted on the
basis of fuzzy sets and rules

Visualization and Examples

128

https://pypi.org/project/swarmlib/

https://nathanrooy.github.io/posts/2016-08-17/simple-particle-
swarm-optimization-with-python/

Ant Colony Optimization
(ACO)

129
Adopted from Michael Herrmann

Introduction

130

Introduction

131

Introduction

132

Artificial Ant Systems

133

Example in TSP

134

Example in TSP

135

Example in TSP

136

Probability Rule

137

Pheromone

138

Pheromone

139

Algorithm

140

The ACO Algorithm

141

Applications

142

Performance

143

Bin Packing Problems

144

Solving the BPP

145

Applying ACO to the BPP

146

Pheromone Matrix

147

Building Solutions

148

Pheromone Updating

149

Evaluation Function

150

Local Search

151

Setting the Parameters

152

Applying ACO to Optimization

153

Considerations

154

Vehicle Routing

155

Vehicle Routing

156

The ACO Algorithm

157

http://thiagodnf.github.io/aco-simulator/#

Artificial Bee Colony
(ABC)

158
Adopted from Ahmed Fouad Ali

Metaheuristics

159

Introduction

160

• Artificial Bee Colony (ABC) is one of the most recently defined algorithms by Dervis
Karaboga in 2005, motivated by the intelligent behavior of honey bees.

• Since 2005, D. Karaboga and his research group have studied on ABC algorithm and
its applications to real world-problems.

Main Idea

161

• The ABC algorithm is a swarm based meta-heuristics algorithm.

• It based on the foraging behavior of honey bee colonies.

• The artificial bee colony contains three groups:

• Scouts
• Onlookers
• Employed bees

Algorithm

162

• The ABC generates a randomly distributed initial population of SN solutions (food
source positions), where SN denotes the size of population.

• Each solution xi (i = 1, 2, ..., SN) is a D-dimensional vector.

• After initialization, the population of the positions (solutions) is subjected to
repeated cycles, C = 1, 2, ...,MCN, of the search processes of the employed bees, the
onlooker bees and scout bees.

Algorithm

163

• An employed bee produces a modification on the position (solution) in her memory
depending on the nectar amount (fitness value) of the new source (new solution).

• Provided that the nectar amount of the new one is higher than that of the previous
one, the bee memorizes the new position and forgets the old one.

• After all employed bees complete the search process, they share the nectar
information of the food sources and their position information with the onlooker bees
on the dance area.

Algorithm

164

• An onlooker bee evaluates the nectar information taken from all employed bees and
chooses a food source with a probability related to its nectar amount.

• As in the case of the employed bee, it produces a modification on the position in its
memory and checks the nectar amount of the candidate source.

• Providing that its nectar is higher than that of the previous one, the bee memorizes
the new position and forgets the old one.

Algorithm

165

• An artificial onlooker bee chooses a food source depending on the probability value
associated with that food source, pi,

• fiti is the fitness value of the solution i
• SN is the number of food sources which is equal to the number of employed bees

(BN).

Algorithm

166

• In order to produce a candidate food position from the old one in memory, the ABC
uses the following expression

• where k {1, 2,..., SN} and j {1, 2,...,D} are randomly chosen indexes.

• k is determined randomly, it has to be different from i.

• φi,j is a random number between [-1, 1].

Algorithm

167

• The food source of which the nectar is abandoned by the bees is replaced with a
new food source by the scouts.

• In ABC, providing that a position can not be improved further through a
predetermined number of cycles, which is called “limit” then that food source is
assumed to be abandoned.

Algorithm

168

Control Parameters

169

• Swarm size

• Employed bees (50% of swarm)

• Onlookers (50% of swarm)

• Scouts (1)

• Limit

• Dimension

Pros and Cons

170

• Advantages
• Few control parameters
• Fast convergence
• Both exploration & exploitation

• Disadvantages
• Search space limited by initial solution (normal distribution sample should use in

initialize step)

Example

171

Consider the optimization problem as follows:

Minimize f (x) = x2
1 + x2

2 -5≤x1,x2≤5

Control Parameters of ABC Algorithm are set as:

Colony size, CS = 6

Limit for scout, L = (CS*D)/2 = 6

Dimension of the problem, D = 2

Example

172

First, we initialize the positions of 3 food sources (CS/2) of employed bees, randomly
using uniform distribution in the range (-5, 5).

x = 1.4112 -2.5644
0.4756 1.4338
-0.1824 -1.0323

f(x) values are: 8.5678
2.2820
1.0990

Example

173

Initial fitness vector is:
0.1045
0.3047
0.4764

Example

174

Maximum fitness value is 0.4764, the quality of the best food source.

Cycle=1
Employed bees phase
• 1st employed bee

with this formula, produce a new solution.
k=1 k is a random selected index.
j=0 j is a random selected index.

Example

175

Φ = 0.8050 Φ is randomly produced number in the range [-1, 1].

υ0= 2.1644 -2.5644

Calculate f(υ0) and the fitness of υ0.
f(υ0) = 11.2610 and the fitness value is 0.0816.

Apply greedy selection between x0 and υ0

0.0816 < 0.1045, the solution 0 couldn’t be improved, increase its trial counter.

Example

176

2nd employed bee

with this formula produce a new solution.

k=2 k is a random selected solution in the neighborhood of i.
j=1 j is a random selected dimension of the problem.

Φ = 0.0762 Φ is randomly produced number in the range [-1, 1].

υ1= 0.4756 1.6217
Calculate f(υ1) and the fitness of υ1.
f(υ1) = 2.8560 and the fitness value is 0.2593.

Apply greedy selection between x1 and υ1
0.2593 < 0.3047, the solution 1 couldn’t be improved, increase its trial counter.

Example

177

3rd employed bee

with this formula produce a new solution.
k=0 //k is a random selected solution in the neighborhood of i.
j=0 //j is a random selected dimension of the problem.

Φ = -0.0671 // Φ is randomly produced number in the range [-1, 1].

υ2= -0.0754 -1.0323

Calculate f(υ2) and the fitness of υ2.
f(υ2) = 1.0714 and the fitness value is 0.4828.

Apply greedy selection between x2 and υ2.
0.4828 > 0.4764, the solution 2 was improved, set its trial counter as 0 and replace the
solution x2 with υ2.

Example

178

x =
1.4112 -2.5644
0.4756 1.4338
-0.0754 -1.0323

f(x) values are:
8.5678
2.2820
1.0714

fitness vector is:
0.1045
0.3047
0.4828

Example

179

Calculate the probability values p for the solutions x by means of their fitness values by
using the formula;

p = 0.1172
0.3416
0.5412

Example

180

Onlooker bees phase
Produce new solutions υi for the onlookers from the solutions xi selected
depending on pi and evaluate them.

1st onlooker bee
i=2
υ2= -0.0754 -2.2520

Calculate f(υ2) and the fitness of υ2.
f(υ2) = 5.0772 and the fitness value is 0.1645.
Apply greedy selection between x2 and υ2

0.1645 < 0.4828, the solution 2 couldn’t be improved, increase its trial counter.

Example

181

2nd onlooker bee
i=1

υ1= 0.1722 1.4338

Calculate f(υ1) and the fitness of υ1.
f(υ1) = 2.0855 and the fitness value is 0.3241.

Apply greedy selection between x1 and υ1
0.3241 > 0.3047, the solution 1 was improved, set its trial counter as 0 and replace the
solution x1 with υ1.

Example

182

x =
1.4112 -2.5644
0.1722 1.4338
-0.0754 -1.0323

f(x) values are
8.5678
2.0855
1.0714

fitness vector is:
0.1045
0.3241
0.4828

Example

183

3rd onlooker bee
i=2
υ2= 0.0348 -1.0323

Calculate f(υ2) and the fitness of υ2.
f(υ2) = 1.0669 and the fitness value is 0.4838.
Apply greedy selection between x2 and υ2

0.4838 > 0.4828, the solution 2 was improved, set its trial counter as 0 and replace the
solution x2 with υ2.

Example

184

x =
1.4112 -2.5644
0.1722 1.4338
0.0348 -1.0323

f(x) values are
8.5678
2.0855
1.0669

fitness vector is:
0.1045
0.3241
0.4838

Example

185

Memorize best
Best = 0.0348 -1.0323
Scout bee phase
Trial Counter =
1
0
0

There is no abandoned solution since L = 6
If there is an abandoned solution (the solution of which the trial counter value is higher
than L = 6);

Generate a new solution randomly to replace with the
abandoned one.
Cycle = Cycle+1
The procedure is continued until the termination criterion is attained.

Resources

186

https://abc.erciyes.edu.tr/

Cuckoo Search Algorithm

187
Adopted from Ahmed Fouad Ali

Introduction

188

• A method of global optimization based on the behavior of cuckoos was proposed by
Yang & Deb (2009).

• The original “cuckoo search (CS) algorithm” is based on the idea of the following:

• How cuckoos lay their eggs in the host nests.

• How, if not detected and destroyed, the eggs are hatched to chicks by the hosts.

• How a search algorithm based on such a scheme can be used to find the global
optimum of a function.

Behaviour

189

• The CS was inspired by the obligate brood parasitism of some cuckoo species by
laying their eggs in the nests of host birds.

• Some cuckoos have evolved in such a way that female parasitic cuckoos can imitate
the colors and patterns of the eggs of a few chosen host species.

• This reduces the probability of the eggs being abandoned and, therefore, increases
their reproductivity .

Behaviour

190

• If host birds discover the eggs are not their own, they will either throw them away
or simply abandon their nests and build new ones.

• Parasitic cuckoos often choose a nest where the host bird just laid its own eggs.

• In general, the cuckoo eggs hatch slightly earlier than their host eggs.

Behaviour

191

• Once the first cuckoo chick is hatched, his first instinct action is to evict the host
eggs by blindly propelling the eggs out of the nest.

• This action results in increasing the cuckoo chick’s share of food provided by its host
bird.

• Moreover, studies show that a cuckoo chick can imitate the call of host chicks to gain
access to more feeding opportunity.

Characteristics

192

• Each egg in a nest represents a solution, and a cuckoo egg represents a new solution.

• The aim is to employ the new and potentially better solutions (cuckoos) to replace
not-so-good solutions in the nests.

• In the simplest form, each nest has one egg.

• The algorithm can be extended to more complicated cases in which each nest has
multiple eggs representing a set of solutions

Characteristics

193

• The CS is based on three idealized rules:
• Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest

• The best nests with high quality of eggs (solutions) will carry over to the next
generations

• The number of available host nests is fixed, and a host can discover an alien egg
with probability p ϵ [0,1] .

• In this case, the host bird can either throw the egg away or abandon the nest to
build a completely new nest in a new location.

Lѐvy Flights

194

• In nature, animals search for food in a random or quasi-random manner.

• Generally, the foraging path of an animal is effectively a random walk because the
next move is based on both the current location/state and the transition probability
to the next location.

• The chosen direction implicitly depends on a probability, which can be modelled
mathematically.

Lѐvy Flights

195

• A Lévy flight is a random walk in which the step-lengths are distributed according to
a heavy-tailed probability distribution.

• After a large number of steps, the distance from the origin of the random walk
tends to a stable distribution.

Algorithm

196

Steps

197

The following steps describe the main concepts of Cuckoo
search algorithm

Step1. Generate initial population of n host nests.

(,) : a candidate for optimal parameters

Steps

198

Step2. Lay the egg (′, ′) in the k nest.

K nest is randomly selected.
Cuckoo’s egg is very similar to host egg.

Where

′= + (Lѐvy flight)
′= + (Lѐvy flight)

Steps

199

Step3. Compare the fitness of cuckoo’s egg with the fitness of the host egg.

• Root Mean Square Error (RMSE)

Steps

200

Step4. If the fitness of cuckoo’s egg is better than host egg, replace the egg in nest k by
cuckoo’s egg.

Steps

201

Step5. If host bird notice it, the nest is abandoned and new one is built (p <0.25) (to
avoid local optimization)

Iterate steps 2 to 5 until termination criterion satisfied

Applications

202

• Engineering optimization problems

• NP hard combinatorial optimization problems

• Data fusion in wireless sensor networks

• Nanoelectronic technology based operation-amplifier (OP-AMP)

• Train neural network

• Manufacturing scheduling

• Nurse scheduling problem

Evolutionary Computation

203
Adopted from Madhu, Natraj, Bhavish, Sanjay & Antoine CORNUÉJOLS - Christine Martin

Introduction

204

• Evolution is the change in the inherited traits of a population from one generation to
the next.

• Natural selection leading to better and better species

Introduction

205

• Survival of the fittest.
• Change in species is due to change in genes over reproduction or/and due to

mutation.

• An Example showing the concept of survival of the fittest and reproduction over
generations.

Introduction

206

• Mimicking natural evolution to evolve better « solutions »
• Generation of successive populations with survival and reproduction of the fittests
• Using mutation and cross-over as reproduction operators
• Genotype vs. Phenotype
• A kind of generalized optimization method
• A population of “solutions” : size
• Reproduction operators
• Selection of the fittests

History

207

• “Evolutionary computing”
• I. Rechenberg in the 60s.
• Optimization on real valued domains

• Genetic algorithms
• John Holland, “Adaptation in Natural and Artificial Systems”, 1975.
• Bit representation / Schema theorem / Problem-Solving method

• Genetic Programming
• John Koza, First book on Genetic Programming, 1992.
• Programs represented as trees

Evolutionary Computation

208

• Evolutionary Computation (EC) refers to computer-based problem solving systems
that use computational models of evolutionary process.

• Terminology:
• Chromosome – It is an individual representing a candidate solution of the

optimization problem.
• Population – A set of chromosomes.
• Gene – It is the fundamental building block of the chromosome, each gene in a

chromosome represents each variable to be optimized. It is the smallest unit of
information.

• Objective: To find a best possible chromosome to a given optimization problem.

Evolutionary Algorithm

209

Let t = 0 be the generation counter;
create and initialize a population P(0);

repeat
Evaluate the fitness, f(xi), for all xi belonging to P(t);
Perform cross-over to produce offspring;
Perform mutation on offspring;
Select population P(t+1) of new generation;
Advance to the new generation, i.e. t = t+1;

until stopping condition is true;

Evolutionary Algorithm

210

Begin

Initialize population

Optimum
Solution?

T=T+1

Selection

Crossover

Mutation

N

Evaluate Solutions

Y

Stop

T =0

Genetic Algorithms

211

• GA emulate genetic evolution.
• A GA has distinct features:

• A string representation of chromosomes.
• A selection procedure for initial population and for off-spring creation.
• A cross-over method and a mutation method.
• A fitness function be to minimized.
• A replacement procedure.
• Parameters that affect GA are initial population, size of the population,

selection process and fitness function.

Genetic Algorithms

212

Evolutionary ComputationNatural Evolution

Pool of solutionsPopulation

Solution to a problemIndividual

Quality of a solutionFitness of an individual

Encoding of a solutionChromosome

Part of the encodingGene

Mutation and/or crossoverReproduction

Anatomy

213

Representation

214

Various encoding schemes

Bit strings

Strings of values

Real value

tree

1 1 0 1 0 1 1 0 0 0 1Chromosome 1

1 0 0 1 0 1 1 1 0 0 0Chromosome 2

……

1 5 3 6 0 1 2 7 3 0 8Chromosome 1

9 2 4 1 8 3 2 6 2 1 0Chromosome 2

……

Initialization

215

• N individuals generally randomly generated
• N is domain-dependent

• Often in [~50 - ~1000]

Fitness Function

216

• Evaluates the quality of the solution
• E.g. z-value in function optimization
• Length of the circuit in the travelling salesman problem
• Time before falling down in the inverse pole

• Beware of its cost
• Keep values in memory

Selection

217

• Selection is a procedure of picking parent chromosome to produce off-spring.
• Types of selection:

• Random Selection – Parents are selected randomly from the population.
• Proportional Selection – probabilities for picking each chromosome is calculated

as:
P(xi) = f(xi)/Σf(xj) for all j

• Rank Based Selection – This method uses ranks instead of absolute fitness
values.

P(xi) = (1/β)(1 – er(xi))

Wheel Selection

218

• Let i = 1, where i denotes chromosome index;
• Calculate P(xi) using proportional selection;
• sum = P(xi);
• choose r ~ U(0,1);

while sum < r do
i = i + 1; i.e. next chromosome
sum = sum + P(xi);

end
return xi as one of the selected parent;
repeat until all parents are selected

Wheel Selection

219

The probability of selecting an individual is proportional to its fitness

Fitness Probability of selection

Wheel Selection

220

The probability of selecting an individual is proportional to its rank

Fitness Probability of selection
according to fitness

Probability of selection
according to rank

Tournament

221

• Selection by fitness or rank implies the evaluation of the fitness of all individuals
• Selection by tournament avoids this

• If n individuals must be selected (within a population of size N)
• Organize n tournaments, each between m < N randomly chosen individuals

(m controls the selective pressure)
• Select the best individual / or select the best and second best / or …

Reproduction

222

• Reproduction is a processes of creating new chromosomes out of chromosomes in
the population.

• Parents are put back into population after reproduction.
• Cross-over and Mutation are two parts in reproduction of an off-spring.

• Cross-over : It is a process of creating one or more new individuals through the
combination of genetic material randomly selected from two or parents.

Crossover

223

• Uniform cross-over : where corresponding bit positions are randomly exchanged
between two parents.

• One point : random bit is selected and entire sub-string after the bit is swapped.
• Two point : two bits are selected and the sub-string between the bits is swapped.

Two point
Cross-over

One point
Cross-over

Uniform
Cross-over

00110110
11011011

00110110
11011011

00110110
11011011

Parent1
Parent2

01011010
10110111

00111011
11010110

01110111
10011010

Off-spring1
Off-spring2

Mutation

224

• Mutation procedures depend upon the representation schema of the chromosomes.
• This is to prevent falling all solutions in population into a local optimum.
• For a bit-vector representation:

• random mutation : randomly negates bits
• in-order mutation : performs random mutation between two randomly selected bit

position.

In-order
Mutation

Random
Mutation

11100100111110010011Before mutation

11100110101100010111After mutation

Operators

225

• Assure trade-off between

• Exploitation
• Preserve best individuals and explore nearby locations

• Mutation is exploitation oriented

• Small steps but brings new alleles

• Exploration
• Search unexplored regions for possible good candidates

• Crossover is exploration oriented

• Large steps but does not bring new alleles

Introduction

226

Introduction

227

Replacements

228

 Selection of m parents

• By fitness / rank / tournament / …

 Generation of l children

• Mutation / crossover / copy

• And selection of the best

 Completion to N

• Elimination of the worst individuals and copy of others

Strategies

229

1. Completely replace the previous population
(called (m,l) replacement)

• Risk: loosing the good individuals of previous
population

2. Draw the N new individuals from the selected m parents
and l children (called (m + l) replacement)

3. Steady state

• Select a sub-population and make replacement for this
sub-population only (possibility of parallel and
asynchronous process

Example

230

• Problem: finding Argmax of x2 over {0,…,31}
• GA approach

• Representation: binary code (e.g. 0 1 1 0 1 <-> 13)
• Population size = 4
• Operators

• Single-point crossover
• Mutation

• Roulette wheel selection according to fitness
• Random initialization of the population

A more complex
optimization problem

Example

231

Selection

Example

232

Crossover

Example

233

Mutation

TSP

234

• The traveling salesman problem is difficult to solve by traditional genetic algorithms
because of the requirement that each node must be visited exactly once.

• One way to solve this problem is by introducing more operators. Example in
simulated annealing.

• The idea is to change the encoding pattern of chromosomes such that GA meta-
heuristic can still be applicable.

• Transfer the TSP from a permutation problem into a priority assignment problem.

TSP

235

1000 steps

Population = 16

TSP

236

A solution: the “2-opt mutation”

Optimizing Sorting

237

• Normal sorting algorithms do not take into account the characteristics of the
architecture and the nature of the input data

• Different sorting techniques are best suited for different types of input

Optimizing Sorting

238

• For example radix sort is the best algorithm to use when the standard deviation of
the input is high as there will be less cache misses (Merge Sort better in other cases
etc)

• The objective is to create a composite sorting algorithm

• The composite sorting algorithm evolves from the use of a Genetic Algorithm (GA)

Optimizing Sorting

239

• Sorting Primitives – these are the building blocks of our composite sorting algorithm

• Partitioning
• Divide by Value (DV) (Quicksort)
• Divide by Position (DP) (Merge Sort)
• Divide by Radix (DR) (Radix Sort)

Optimizing Sorting

240

• Branch by Size (BS) : this primitive is used to select different sorting paths based on
the size of the partition

• Branch by Entropy (BE): this primitive is used to select different paths based on the
entropy of the input

Optimizing Sorting

241

• The efficiency of radix sort increases with standard deviation of the input

• A measure of this is calculated as follows.

• We scan the input set and compute the number of keys that have a particular value
for each digit position.

• For each digit the entropy is calculated as Σi –Pi * log Pi where Pi = ci/N where ci =
number of keys with value ‘i’ in that digit and N is the total number of keys

Optimizing Sorting

242

New offspring are generated using random single point crossovers

Optimizing Sorting

243

1. Change the values of the parameters of the sorting and selection primitives

2. Exchange two subtrees

3. Add a new subtree. This kind of mutation is useful where more partitioning is
needed along a path of the tree

4. Remove a subtree

Optimizing Sorting

244

Fitness Function

245

• We are searching for a sorting algorithm that performs well over all possible inputs
hence the average performance of the tree is its base fitness

• Premature convergence is prevented by using ranking of population rather than
absolute performance difference between trees enabling exploring areas outside
the neighbourhood of the highly fit trees

Results

246

GA - Advantages

247

1. Because only primitive procedures like "cut" and "exchange" of strings are used for
generating new genes from old, it is easy to handle large problems simply by using
long strings.

2. Because only values of the objective function for optimization are used to select
genes, this algorithm can be robustly applied to problems with any kinds of
objective functions, such as nonlinear, indifferentiable, or step functions;

3. Because the genetic operations are performed at random and also include
mutation, it is possible to avoid being trapped by local-optima.

Conclusions

248

• Evolutionary Algorithms are heavily used in the search of solution spaces in many
NP-Complete problems

• NP-Complete problems like Network Routing, TSP and even problems like Sorting
are optimized by the use of Genetic Algorithms as they can rapidly locate good
solutions, even for difficult search spaces.

Fuzzy Systems

249
Adopted from Debasis Samanta

Introduction

250

Introduction

251

Introduction

252

Introduction

253

Introduction

254

Introduction

255

Phases

256

System

257

System

258

System

259

Mapping

260

Fuzzy Sets

261

Fuzzy Sets

262

Fuzzy Sets

263

Fuzzy Sets

264

Fuzzy Sets

265

Fuzzy Sets

266

Fuzzy Sets

267

Examples

268

Fuzzy Sets

269

Fuzzy Sets

270

Fuzzy Sets

271

Fuzzy Sets

272

Fuzzy Sets

273

Fuzzy Sets

274

Fuzzy Sets

275

Fuzzy Sets

276

Fuzzy Sets

277

Fuzzy Sets

278

Fuzzy Sets

279

Fuzzy Sets

280

Fuzzy Sets

281

Fuzzy Sets

282

Fuzzy Sets

283

Fuzzy vs Probability

284

Prediction vs Forecasting

285

Membership Functions

286

Membership Functions

287

Membership Functions

288

Membership Functions

289

Membership Functions

290

Membership Functions

291

Membership Functions

292

Membership Functions

293

Membership Functions

294

Membership Functions

295

Membership Functions

296

Operations

297

Operations

298

Operations

299

Operations

300

Operations

301

Operations

302

Operations

303

Operations

304

Operations

305

Operations

306

Operations

307

Types

308

Mamdani Fuzzy Model

309

Mamdani Fuzzy Model

310

Mamdani Fuzzy Model

311

Mamdani Fuzzy Model

312

Mamdani Fuzzy Model

313

Mamdani Fuzzy Model

314

Mamdani Fuzzy Model

315

Mamdani Fuzzy Model

316

Mamdani Fuzzy Model

317

Mamdani Fuzzy Model

318

Mamdani Fuzzy Model

319

Mamdani Fuzzy Model

320

Mamdani Fuzzy Model

321

Mamdani Fuzzy Model

322

Mamdani Fuzzy Model

323

Mamdani Fuzzy Model

324

Mamdani Fuzzy Model

325

Mamdani Fuzzy Model

326

Mamdani Fuzzy Model

327

Mamdani Fuzzy Model

328

Mamdani Fuzzy Model

329

Mamdani Fuzzy Model

330

Mamdani Fuzzy Model

331

Mamdani Fuzzy Model

332

Mamdani Fuzzy Model

333

Sugeno Fuzzy Inference

334

Sugeno Fuzzy Inference

335

Sugeno Fuzzy Inference

336

Sugeno Fuzzy Inference

337

Sugeno Fuzzy Inference

338

Sugeno Fuzzy Inference

339

Sugeno Fuzzy Inference

340

Sugeno Fuzzy Inference

341

Sugeno Fuzzy Inference

342

Sugeno Fuzzy Inference

343

Sugeno Fuzzy Inference

344

Sugeno Fuzzy Inference

345

Sugeno Fuzzy Inference

346

Sugeno Fuzzy Inference

347

Sugeno Fuzzy Inference

348

Building a Fuzzy System

349

Building a Fuzzy System

350

Building a Fuzzy System

351

Building a Fuzzy System

352

Building a Fuzzy System

353

Building a Fuzzy System

354

Building a Fuzzy System

355

Building a Fuzzy System

356

Create Fuzzy Rules

357

Create Fuzzy Rules

358

Create Fuzzy Rules

359

Evaluation and Tuning

360

Evaluation and Tuning

361

Evaluation and Tuning

362

Evaluation and Tuning

363

