
Swarm Intelligence

1
Adopted from Thiemo Krink

The need for new Computing Techniques

2

The need for new Computing Techniques

3

Hard Problems

4

Hard Problems

5

Hard Problems

6

Alternatives

7

Artificial Networks

8

Evolutionary Computation

9

Evolutionary Computation

10

Evolutionary Computation

11

Bio-Computing

12

Applications

13

Limitations

14

Swarm Intelligence

15

Swarm Intelligence

16

Swarm Intelligence

17

Model Examples

18

Model Examples

19

Ants

20

Self-Organization

21

Self-Organization

22

Self-Organization

23

Ant Foraging

24

Ant Foraging

25

Ant Foraging

26

Ant Foraging

27

Ant Foraging

28

Ant Foraging

29

Characteristics of Self-Organization

30

Termites Simulation

31

Termites Simulation

32

Honey Bees Nest Building

33

Honey Bees Nest Building

34

Honey Bees Nest Building

35

Honey Bees Nest Building

36

Honey Bees Nest Building

37

Honey Bees Nest Building

38

Honey Bees Nest Building

39

Honey Bees Nest Building

40

Stigmergy

41

Stigmergy in Spiders

42

Stigmergy

43

Motivation

44

Principles

45

Particle Swarm Optimization
(PSO)

46
Adopted from Mohammed Al-Alaw & Qiangfu Zhao

Introduction

47

• Inspired by the flocking and schooling patterns of birds and fish.

• Imagine a flock of birds circling over an area where they can smell a hidden source of
food.

• The one who is closest to the food chirps the loudest and the other birds swing around in
his direction.

• If any of the other circling birds comes closer to the target than the first, it chirps louder
and the others veer over toward him.

• This tightening pattern continues until one of the birds happens upon the food.

Introduction

48

Introduction

49

• Particle Swarm Optimization (PSO) was invented by Russell Eberhart and James
Kennedy in 1995.

• Originally, these two started out developing computer software simulations of birds
flocking around food sources

• They realized how well their algorithms worked on optimization problems.

• Over a number of iterations, a group of variables have their values adjusted closer
to the member whose value is closest to the target at any given moment.

• It's an algorithm that's simple and easy to implement.

Introduction

50

• In computer science, Particle Swarm Optimization (PSO) is a computational method
that optimizes a problem by iteratively trying to improve a candidate solution with
regard to a given measure of quality (This is the stopping Condition).

• PSO optimizes a problem by having a population of candidate solutions, (known as
particles), and moving these particles around in the search-space

• It moves according to simple mathematical formulae over the particle's position
(Current DATA ex: x,y,z, etc…) and velocity (indicating how much the Data can be
changed).

Introduction

51

• The algorithm was simplified and it was observed to be performing optimization
(first it was not intended to be used in this manner).

• PSO is a metaheuristic as it makes few or no assumptions about the problem
being optimized and can search very large spaces of candidate solutions.

• However, metaheuristics such as PSO do not guarantee an optimal solution is ever
found.

Introduction

52

• Each particle's movement is influenced by its local best known position but, is also
guided toward the best known positions in the search-space

• The best positions are updated as better positions when they are found by other
particles

• This is expected to move the swarm toward the best solutions.

Introduction

53

A few common population topologies (neighborhoods).

(A) Single-sighted. (B) Ring topology. (C) Fully connected topology. (D)

Isolated,

Introduction

54

• PSO does not use the gradient of the problem being optimized, which means PSO
does not require that the optimization problem be differentiable as is required by
classic optimization methods

• To find a local minimum of a function using gradient descent, one takes steps
proportional to the negative of the gradient (or of the approximate gradient) of the
function at the current point and quasi-newton methods.

• PSO can therefore also be used on optimization problems that are partially irregular,
noisy, change over time, etc., i.e. ,they are used for real time & data analysis &
applications.

The Algorithm

55

• The algorithm keeps track of three global variables:
• Target value or condition
• Global best (gBest) value indicating which particle's data is currently closest to

the Target

• Stopping value indicating when the algorithm should stop if the Target isn't found

• Each particle consists of:
• Data representing a possible solution
• A Velocity value indicating how much the data can be changed
• A personal best (pBest) value indicating the closest the particle's Data has ever

come to the Target

The Algorithm

56

• The particles' data could be anything. In the flocking birds example above, the data
would be the X, Y, Z coordinates of each bird.

• The individual coordinates of each bird would try to move closer to the coordinates
of the bird which is closer to the food's coordinates (gBest).

• If the data is a pattern or sequence, then individual pieces of the data would be
manipulated until the pattern matches the target pattern.

The Algorithm

57

• The velocity value is calculated according to how far an individual's data is from the

target. The further it is, the larger the velocity value.

• In the birds example, the individuals furthest from the food would make an effort to

keep up with the others by flying faster toward the gBest bird.

• If the data is a pattern or sequence, the velocity would describe how different the

pattern is from the target, and thus, how much it needs to be changed to match the

target (making it similar to Neural Networks).

The Algorithm

58

• Each particle's pBest value only indicates the closest the data has ever come to the

target since the algorithm started.

• The gBest value only changes when any particle's pBest value comes closer to the

target than gBest.

• Through each iteration of the algorithm, gBest gradually moves closer and closer to

the target until one of the particles reaches the target.

• It's also common to see PSO algorithms using population topologies, or

"neighborhoods", which can be smaller, localized subsets of the global best value.

The Algorithm

59

• Neighborhoods can involve two or more particles which are predetermined to act

together, or subsets of the search space that particles happen into during testing.

• The use of neighborhoods often help the algorithm to avoid getting stuck in local

minima.

• Neighborhood definitions and how they're used have different effects on the

behavior of the algorithm.

The Algorithm

60

• Stopping Conditions:

• Terminate when a maximum number of iterations, or FEs, has been exceeded

• Terminate when an acceptable solution has been found

• Terminate when no improvement is observed over a number of iterations

• Terminate when the normalized swarm radius is close to zero

The Algorithm

61

The Algorithm

62

The Algorithm

63

The Algorithm

64

The Algorithm

65

The Algorithm

66

The Algorithm

67

The Algorithm

68

• Approaches to update the inertia weight
• Random adjustments, where a different inertia weight is randomly selected at

each iteration, e.g., ∼ N(0.72, σ) where σ is small enough to ensure that w
(inertia weight) is not predominantly greater than one

• Linear decreasing where an initially large inertia weight (usually 0.9) is

linearly decreased to a small value (usually 0.4)

• Nonlinear decreasing, where an initially large value decreases nonlinearly to a

small value

• Fuzzy adaptive inertia, where the inertia weight is dynamically adjusted on the

basis of fuzzy sets and rules

Visualization and Examples

69

https://pypi.org/project/swarmlib/

https://nathanrooy.github.io/posts/2016-08-17/simple-particle-
swarm-optimization-with-python/

Ant Colony Optimization
(ACO)

70
Adopted from Michael Herrmann

Introduction

71

Introduction

72

Introduction

73

Artificial Ant Systems

74

Example in TSP

75

Example in TSP

76

Example in TSP

77

Probability Rule

78

Pheromone

79

Pheromone

80

Algorithm

81

The ACO Algorithm

82

Applications

83

Performance

84

Bin Packing Problems

85

Solving the BPP

86

Applying ACO to the BPP

87

Pheromone Matrix

88

Building Solutions

89

Pheromone Updating

90

Evaluation Function

91

Local Search

92

Setting the Parameters

93

Applying ACO to Optimization

94

Considerations

95

Vehicle Routing

96

Vehicle Routing

97

The ACO Algorithm

98

http://thiagodnf.github.io/aco-simulator/#

Artificial Bee Colony
(ABC)

99
Adopted from Ahmed Fouad Ali

Metaheuristics

100

Introduction

101

• Artificial Bee Colony (ABC) is one of the most recently defined algorithms by Dervis
Karaboga in 2005, motivated by the intelligent behavior of honey bees.

• Since 2005, D. Karaboga and his research group have studied on ABC algorithm and
its applications to real world-problems.

Main Idea

102

• The ABC algorithm is a swarm based meta-heuristics algorithm.

• It based on the foraging behavior of honey bee colonies.

• The artificial bee colony contains three groups:

• Scouts
• Onlookers
• Employed bees

Algorithm

103

• The ABC generates a randomly distributed initial population of SN solutions (food
source positions), where SN denotes the size of population.

• Each solution xi (i = 1, 2, ..., SN) is a D-dimensional vector.

• After initialization, the population of the positions (solutions) is subjected to
repeated cycles, C = 1, 2, ...,MCN, of the search processes of the employed bees, the
onlooker bees and scout bees.

Algorithm

104

• An employed bee produces a modification on the position (solution) in her memory
depending on the nectar amount (fitness value) of the new source (new solution).

• Provided that the nectar amount of the new one is higher than that of the previous
one, the bee memorizes the new position and forgets the old one.

• After all employed bees complete the search process, they share the nectar
information of the food sources and their position information with the onlooker bees
on the dance area.

Algorithm

105

• An onlooker bee evaluates the nectar information taken from all employed bees and
chooses a food source with a probability related to its nectar amount.

• As in the case of the employed bee, it produces a modification on the position in its
memory and checks the nectar amount of the candidate source.

• Providing that its nectar is higher than that of the previous one, the bee memorizes
the new position and forgets the old one.

Algorithm

106

• An artificial onlooker bee chooses a food source depending on the probability value
associated with that food source, pi,

• fiti is the fitness value of the solution i
• SN is the number of food sources which is equal to the number of employed bees

(BN).

Algorithm

107

• In order to produce a candidate food position from the old one in memory, the ABC
uses the following expression

• where k ∈ {1, 2,..., SN} and j ∈ {1, 2,...,D} are randomly chosen indexes.

• k is determined randomly, it has to be different from i.

• φi,j is a random number between [-1, 1].

Algorithm

108

• The food source of which the nectar is abandoned by the bees is replaced with a
new food source by the scouts.

• In ABC, providing that a position can not be improved further through a
predetermined number of cycles, which is called “limit” then that food source is
assumed to be abandoned.

Algorithm

109

Control Parameters

110

• Swarm size

• Employed bees (50% of swarm)

• Onlookers (50% of swarm)

• Scouts (1)

• Limit

• Dimension

Pros and Cons

111

• Advantages
• Few control parameters
• Fast convergence
• Both exploration & exploitation

• Disadvantages
• Search space limited by initial solution (normal distribution sample should use in

initialize step)

Example

112

Consider the optimization problem as follows:

Minimize f (x) = x2
1 + x2

2 -5≤x1,x2≤5

Control Parameters of ABC Algorithm are set as:

 Colony size, CS = 6

 Limit for scout, L = (CS*D)/2 = 6

Dimension of the problem, D = 2

Example

113

First, we initialize the positions of 3 food sources (CS/2) of employed bees, randomly
using uniform distribution in the range (-5, 5).

x = 1.4112 -2.5644
 0.4756 1.4338
 -0.1824 -1.0323

f(x) values are: 8.5678
 2.2820
 1.0990

Example

114

Initial fitness vector is:
0.1045
0.3047
0.4764

Example

115

Maximum fitness value is 0.4764, the quality of the best food source.

Cycle=1
Employed bees phase
• 1st employed bee

with this formula, produce a new solution.
k=1 k is a random selected index.
j=0 j is a random selected index.

Example

116

Φ = 0.8050 Φ is randomly produced number in the range [-1, 1].

υ0= 2.1644 -2.5644

Calculate f(υ0) and the fitness of υ0.
f(υ0) = 11.2610 and the fitness value is 0.0816.

Apply greedy selection between x0 and υ0

0.0816 < 0.1045, the solution 0 couldn’t be improved, increase its trial counter.

Example

117

2nd employed bee

with this formula produce a new solution.

k=2 k is a random selected solution in the neighborhood of i.
j=1 j is a random selected dimension of the problem.

Φ = 0.0762 Φ is randomly produced number in the range [-1, 1].

υ1= 0.4756 1.6217
Calculate f(υ1) and the fitness of υ1.
f(υ1) = 2.8560 and the fitness value is 0.2593.

Apply greedy selection between x1 and υ1
0.2593 < 0.3047, the solution 1 couldn’t be improved, increase its trial counter.

Example

118

3rd employed bee

with this formula produce a new solution.
k=0 //k is a random selected solution in the neighborhood of i.
j=0 //j is a random selected dimension of the problem.

Φ = -0.0671 // Φ is randomly produced number in the range [-1, 1].

υ2= -0.0754 -1.0323

Calculate f(υ2) and the fitness of υ2.
f(υ2) = 1.0714 and the fitness value is 0.4828.

Apply greedy selection between x2 and υ2.
0.4828 > 0.4764, the solution 2 was improved, set its trial counter as 0 and replace the
solution x2 with υ2.

Example

119

x =
1.4112 -2.5644
0.4756 1.4338
-0.0754 -1.0323

f(x) values are:
8.5678
2.2820
1.0714

fitness vector is:
0.1045
0.3047
0.4828

Example

120

Calculate the probability values p for the solutions x by means of their fitness values by
using the formula;

p = 0.1172
 0.3416
 0.5412

Example

121

Onlooker bees phase
Produce new solutions υi for the onlookers from the solutions xi selected
depending on pi and evaluate them.

1st onlooker bee
 i=2
υ2= -0.0754 -2.2520

Calculate f(υ2) and the fitness of υ2.
f(υ2) = 5.0772 and the fitness value is 0.1645.
Apply greedy selection between x2 and υ2

0.1645 < 0.4828, the solution 2 couldn’t be improved, increase its trial counter.

Example

122

2nd onlooker bee
i=1

υ1= 0.1722 1.4338

Calculate f(υ1) and the fitness of υ1.
f(υ1) = 2.0855 and the fitness value is 0.3241.

Apply greedy selection between x1 and υ1
0.3241 > 0.3047, the solution 1 was improved, set its trial counter as 0 and replace the
solution x1 with υ1.

Example

123

x =
1.4112 -2.5644
0.1722 1.4338
-0.0754 -1.0323

f(x) values are
8.5678
2.0855
1.0714

fitness vector is:
0.1045
0.3241
0.4828

Example

124

3rd onlooker bee
 i=2
υ2= 0.0348 -1.0323

Calculate f(υ2) and the fitness of υ2.
f(υ2) = 1.0669 and the fitness value is 0.4838.
Apply greedy selection between x2 and υ2

0.4838 > 0.4828, the solution 2 was improved, set its trial counter as 0 and replace the
solution x2 with υ2.

Example

125

x =
1.4112 -2.5644
0.1722 1.4338
0.0348 -1.0323

f(x) values are
8.5678
2.0855
1.0669

fitness vector is:
0.1045
0.3241
0.4838

Example

126

Memorize best
Best = 0.0348 -1.0323
Scout bee phase
Trial Counter =
1
0
0

There is no abandoned solution since L = 6
If there is an abandoned solution (the solution of which the trial counter value is higher
than L = 6);

Generate a new solution randomly to replace with the
abandoned one.
Cycle = Cycle+1
The procedure is continued until the termination criterion is attained.

Resources

127

https://abc.erciyes.edu.tr/

Cuckoo Search Algorithm

128
Adopted from Ahmed Fouad Ali

Introduction

129

• A method of global optimization based on the behavior of cuckoos was proposed by
Yang & Deb (2009).

• The original “cuckoo search (CS) algorithm” is based on the idea of the following:

• How cuckoos lay their eggs in the host nests.

• How, if not detected and destroyed, the eggs are hatched to chicks by the hosts.

• How a search algorithm based on such a scheme can be used to find the global
optimum of a function.

Behaviour

130

• The CS was inspired by the obligate brood parasitism of some cuckoo species by
laying their eggs in the nests of host birds.

• Some cuckoos have evolved in such a way that female parasitic cuckoos can imitate
the colors and patterns of the eggs of a few chosen host species.

• This reduces the probability of the eggs being abandoned and, therefore, increases
their reproductivity .

Behaviour

131

• If host birds discover the eggs are not their own, they will either throw them away
or simply abandon their nests and build new ones.

• Parasitic cuckoos often choose a nest where the host bird just laid its own eggs.

• In general, the cuckoo eggs hatch slightly earlier than their host eggs.

Behaviour

132

• Once the first cuckoo chick is hatched, his first instinct action is to evict the host
eggs by blindly propelling the eggs out of the nest.

• This action results in increasing the cuckoo chick’s share of food provided by its host
bird.

• Moreover, studies show that a cuckoo chick can imitate the call of host chicks to gain
access to more feeding opportunity.

Characteristics

133

• Each egg in a nest represents a solution, and a cuckoo egg represents a new solution.

• The aim is to employ the new and potentially better solutions (cuckoos) to replace
not-so-good solutions in the nests.

• In the simplest form, each nest has one egg.

• The algorithm can be extended to more complicated cases in which each nest has
multiple eggs representing a set of solutions

Characteristics

134

• The CS is based on three idealized rules:
• Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest

• The best nests with high quality of eggs (solutions) will carry over to the next
generations

• The number of available host nests is fixed, and a host can discover an alien egg
with probability p ϵ [0,1] .

• In this case, the host bird can either throw the egg away or abandon the nest to
build a completely new nest in a new location.

Lѐvy Flights

135

• In nature, animals search for food in a random or quasi-random manner.

• Generally, the foraging path of an animal is effectively a random walk because the
next move is based on both the current location/state and the transition probability
to the next location.

• The chosen direction implicitly depends on a probability, which can be modelled
mathematically.

Lѐvy Flights

136

• A Lévy flight is a random walk in which the step-lengths are distributed according to
a heavy-tailed probability distribution.

• After a large number of steps, the distance from the origin of the random walk
tends to a stable distribution.

Algorithm

137

Steps

138

The following steps describe the main concepts of Cuckoo
search algorithm

Step1. Generate initial population of n host nests.

(𝑎𝑖,𝑟𝑖) : a candidate for optimal parameters

Steps

139

Step2. Lay the egg (𝑎𝑘′,𝑏𝑘′) in the k nest.

 K nest is randomly selected.
 Cuckoo’s egg is very similar to host egg.

Where

𝑎𝑘′=𝑎𝑘+𝑅𝑎𝑛𝑑𝑜𝑚𝑤𝑎𝑙𝑘 (Lѐvy flight) 𝑎𝑘
𝑟𝑘′=𝑟𝑘+𝑅𝑎𝑛𝑑𝑜𝑚𝑤𝑎𝑙𝑘 (Lѐvy flight) 𝑟𝑘

Steps

140

Step3. Compare the fitness of cuckoo’s egg with the fitness of the host egg.

• Root Mean Square Error (RMSE)

Steps

141

Step4. If the fitness of cuckoo’s egg is better than host egg, replace the egg in nest k by
cuckoo’s egg.

Steps

142

Step5. If host bird notice it, the nest is abandoned and new one is built (p <0.25) (to
avoid local optimization)

Iterate steps 2 to 5 until termination criterion satisfied

Applications

143

• Engineering optimization problems

• NP hard combinatorial optimization problems

• Data fusion in wireless sensor networks

• Nanoelectronic technology based operation-amplifier (OP-AMP)

• Train neural network

• Manufacturing scheduling

• Nurse scheduling problem

Evolutionary Computation

144
Adopted from Madhu, Natraj, Bhavish, Sanjay & Antoine CORNUÉJOLS - Christine Martin

Introduction

145

• Evolution is the change in the inherited traits of a population from one generation to
the next.

• Natural selection leading to better and better species

Introduction

146

• Survival of the fittest.
• Change in species is due to change in genes over reproduction or/and due to

mutation.

• An Example showing the concept of survival of the fittest and reproduction over
generations.

Introduction

147

• Mimicking natural evolution to evolve better « solutions »
• Generation of successive populations with survival and reproduction of the fittests
• Using mutation and cross-over as reproduction operators
• Genotype vs. Phenotype
• A kind of generalized optimization method
• A population of “solutions” : size
• Reproduction operators
• Selection of the fittests

History

148

• “Evolutionary computing”
• I. Rechenberg in the 60s.
• Optimization on real valued domains

• Genetic algorithms
• John Holland, “Adaptation in Natural and Artificial Systems”, 1975.
• Bit representation / Schema theorem / Problem-Solving method

• Genetic Programming
• John Koza, First book on Genetic Programming, 1992.
• Programs represented as trees

Evolutionary Computation

149

• Evolutionary Computation (EC) refers to computer-based problem solving systems
that use computational models of evolutionary process.

• Terminology:
• Chromosome – It is an individual representing a candidate solution of the

optimization problem.
• Population – A set of chromosomes.
• Gene – It is the fundamental building block of the chromosome, each gene in a

chromosome represents each variable to be optimized. It is the smallest unit of
information.

• Objective: To find a best possible chromosome to a given optimization problem.

Evolutionary Algorithm

150

Let t = 0 be the generation counter;
create and initialize a population P(0);

repeat
 Evaluate the fitness, f(xi), for all xi belonging to P(t);
 Perform cross-over to produce offspring;
 Perform mutation on offspring;
 Select population P(t+1) of new generation;
 Advance to the new generation, i.e. t = t+1;
until stopping condition is true;

Evolutionary Algorithm

151

Begin

Initialize population

Optimum
Solution?

T=T+1

Selection

Crossover

Mutation

N

Evaluate Solutions

Y

Stop

T =0

Genetic Algorithms

152

• GA emulate genetic evolution.
• A GA has distinct features:

• A string representation of chromosomes.
• A selection procedure for initial population and for off-spring creation.
• A cross-over method and a mutation method.
• A fitness function be to minimized.
• A replacement procedure.
• Parameters that affect GA are initial population, size of the population,

selection process and fitness function.

Genetic Algorithms

153

Natural Evolution Evolutionary Computation

Population Pool of solutions

Individual Solution to a problem

Fitness of an individual Quality of a solution

Chromosome Encoding of a solution

Gene Part of the encoding

Reproduction Mutation and/or crossover

Anatomy

154

Representation

155

Various encoding schemes

Bit strings

Strings of values

Real value

tree

Chromosome 1 1 1 0 1 0 1 1 0 0 0 1

Chromosome 2 1 0 0 1 0 1 1 1 0 0 0

… …

Chromosome 1 1 5 3 6 0 1 2 7 3 0 8

Chromosome 2 9 2 4 1 8 3 2 6 2 1 0

… …

Initialization

156

• N individuals generally randomly generated
• N is domain-dependent

• Often in [~50 - ~1000]

Fitness Function

157

• Evaluates the quality of the solution
• E.g. z-value in function optimization
• Length of the circuit in the travelling salesman problem
• Time before falling down in the inverse pole

• Beware of its cost
• Keep values in memory

Selection

158

• Selection is a procedure of picking parent chromosome to produce off-spring.
• Types of selection:

• Random Selection – Parents are selected randomly from the population.
• Proportional Selection – probabilities for picking each chromosome is calculated

as:
 P(xi) = f(xi)/Σf(xj) for all j

• Rank Based Selection – This method uses ranks instead of absolute fitness
values.

P(xi) = (1/β)(1 – er(xi))

Wheel Selection

159

• Let i = 1, where i denotes chromosome index;
• Calculate P(xi) using proportional selection;
• sum = P(xi);
• choose r ~ U(0,1);

while sum < r do
 i = i + 1; i.e. next chromosome
 sum = sum + P(xi);
end
return xi as one of the selected parent;
repeat until all parents are selected

Wheel Selection

160

The probability of selecting an individual is proportional to its fitness

Fitness Probability of selection

Wheel Selection

161

The probability of selecting an individual is proportional to its rank

Fitness Probability of selection
according to fitness

Probability of selection
according to rank

Tournament

162

• Selection by fitness or rank implies the evaluation of the fitness of all individuals
• Selection by tournament avoids this

• If n individuals must be selected (within a population of size N)
• Organize n tournaments, each between m < N randomly chosen individuals

(m controls the selective pressure)
• Select the best individual / or select the best and second best / or …

Reproduction

163

• Reproduction is a processes of creating new chromosomes out of chromosomes in
the population.

• Parents are put back into population after reproduction.
• Cross-over and Mutation are two parts in reproduction of an off-spring.

• Cross-over : It is a process of creating one or more new individuals through the
combination of genetic material randomly selected from two or parents.

Crossover

164

• Uniform cross-over : where corresponding bit positions are randomly exchanged
between two parents.

• One point : random bit is selected and entire sub-string after the bit is swapped.
• Two point : two bits are selected and the sub-string between the bits is swapped.

Uniform
Cross-over

One point
Cross-over

Two point
Cross-over

Parent1
Parent2

00110110
11011011

00110110
11011011

00110110
11011011

Off-spring1
Off-spring2

01110111
10011010

00111011
11010110

01011010
10110111

Mutation

165

• Mutation procedures depend upon the representation schema of the chromosomes.
• This is to prevent falling all solutions in population into a local optimum.
• For a bit-vector representation:

• random mutation : randomly negates bits
• in-order mutation : performs random mutation between two randomly selected bit

position.

Random
Mutation

In-order
Mutation

Before mutation 1110010011 1110010011

After mutation 1100010111 1110011010

Operators

166

• Assure trade-off between

• Exploitation
• Preserve best individuals and explore nearby locations

• Mutation is exploitation oriented

• Small steps but brings new alleles

• Exploration
• Search unexplored regions for possible good candidates

• Crossover is exploration oriented

• Large steps but does not bring new alleles

Introduction

167

Introduction

168

Replacements

169

▪ Selection of m parents

• By fitness / rank / tournament / …

▪ Generation of l children

• Mutation / crossover / copy

• And selection of the best

▪ Completion to N

• Elimination of the worst individuals and copy of others

Strategies

170

1. Completely replace the previous population

(called (m,l) replacement)

• Risk: loosing the good individuals of previous

population

2. Draw the N new individuals from the selected m parents

and l children (called (m + l) replacement)

3. Steady state

• Select a sub-population and make replacement for this

sub-population only (possibility of parallel and

asynchronous process

Example

171

• Problem: finding Argmax of x2 over {0,…,31}
• GA approach

• Representation: binary code (e.g. 0 1 1 0 1 <-> 13)
• Population size = 4
• Operators

• Single-point crossover
• Mutation

• Roulette wheel selection according to fitness
• Random initialization of the population

A more complex
optimization problem

Example

172

Selection

Example

173

Crossover

Example

174

Mutation

TSP

175

• The traveling salesman problem is difficult to solve by traditional genetic algorithms
because of the requirement that each node must be visited exactly once.

• One way to solve this problem is by introducing more operators. Example in
simulated annealing.

• The idea is to change the encoding pattern of chromosomes such that GA meta-
heuristic can still be applicable.

• Transfer the TSP from a permutation problem into a priority assignment problem.

TSP

176

1000 steps

Population = 16

TSP

177

A solution: the “2-opt mutation”

Optimizing Sorting

178

• Normal sorting algorithms do not take into account the characteristics of the
architecture and the nature of the input data

• Different sorting techniques are best suited for different types of input

Optimizing Sorting

179

• For example radix sort is the best algorithm to use when the standard deviation of
the input is high as there will be less cache misses (Merge Sort better in other cases
etc)

• The objective is to create a composite sorting algorithm

• The composite sorting algorithm evolves from the use of a Genetic Algorithm (GA)

Optimizing Sorting

180

• Sorting Primitives – these are the building blocks of our composite sorting algorithm

• Partitioning

• Divide by Value (DV) (Quicksort)
• Divide by Position (DP) (Merge Sort)
• Divide by Radix (DR) (Radix Sort)

Optimizing Sorting

181

• Branch by Size (BS) : this primitive is used to select different sorting paths based on
the size of the partition

• Branch by Entropy (BE): this primitive is used to select different paths based on the
entropy of the input

Optimizing Sorting

182

• The efficiency of radix sort increases with standard deviation of the input

• A measure of this is calculated as follows.

• We scan the input set and compute the number of keys that have a particular value
for each digit position.

• For each digit the entropy is calculated as Σi –Pi * log Pi where Pi = ci/N where ci =
number of keys with value ‘i’ in that digit and N is the total number of keys

Optimizing Sorting

183

New offspring are generated using random single point crossovers

Optimizing Sorting

184

1. Change the values of the parameters of the sorting and selection primitives

2. Exchange two subtrees

3. Add a new subtree. This kind of mutation is useful where more partitioning is
needed along a path of the tree

4. Remove a subtree

Optimizing Sorting

185

Fitness Function

186

• We are searching for a sorting algorithm that performs well over all possible inputs
hence the average performance of the tree is its base fitness

• Premature convergence is prevented by using ranking of population rather than
absolute performance difference between trees enabling exploring areas outside
the neighbourhood of the highly fit trees

Results

187

GA - Advantages

188

1. Because only primitive procedures like "cut" and "exchange" of strings are used for
generating new genes from old, it is easy to handle large problems simply by using
long strings.

2. Because only values of the objective function for optimization are used to select
genes, this algorithm can be robustly applied to problems with any kinds of
objective functions, such as nonlinear, indifferentiable, or step functions;

3. Because the genetic operations are performed at random and also include
mutation, it is possible to avoid being trapped by local-optima.

Conclusions

189

• Evolutionary Algorithms are heavily used in the search of solution spaces in many
NP-Complete problems

• NP-Complete problems like Network Routing, TSP and even problems like Sorting
are optimized by the use of Genetic Algorithms as they can rapidly locate good
solutions, even for difficult search spaces.

Fuzzy Systems

190
Adopted from Debasis Samanta

Introduction

191

Introduction

192

Introduction

193

Introduction

194

Introduction

195

Introduction

196

Phases

197

System

198

System

199

System

200

Mapping

201

Fuzzy Sets

202

Fuzzy Sets

203

Fuzzy Sets

204

Fuzzy Sets

205

Fuzzy Sets

206

Fuzzy Sets

207

Fuzzy Sets

208

Examples

209

Fuzzy Sets

210

Fuzzy Sets

211

Fuzzy Sets

212

Fuzzy Sets

213

Fuzzy Sets

214

Fuzzy Sets

215

Fuzzy Sets

216

Fuzzy Sets

217

Fuzzy Sets

218

Fuzzy Sets

219

Fuzzy Sets

220

Fuzzy Sets

221

Fuzzy Sets

222

Fuzzy Sets

223

Fuzzy Sets

224

Fuzzy vs Probability

225

Prediction vs Forecasting

226

Membership Functions

227

Membership Functions

228

Membership Functions

229

Membership Functions

230

Membership Functions

231

Membership Functions

232

Membership Functions

233

Membership Functions

234

Membership Functions

235

Membership Functions

236

Membership Functions

237

Operations

238

Operations

239

Operations

240

Operations

241

Operations

242

Operations

243

Operations

244

Operations

245

Operations

246

Operations

247

Operations

248

Types

249

Mamdani Fuzzy Model

250

Mamdani Fuzzy Model

251

Mamdani Fuzzy Model

252

Mamdani Fuzzy Model

253

Mamdani Fuzzy Model

254

Mamdani Fuzzy Model

255

Mamdani Fuzzy Model

256

Mamdani Fuzzy Model

257

Mamdani Fuzzy Model

258

Mamdani Fuzzy Model

259

Mamdani Fuzzy Model

260

Mamdani Fuzzy Model

261

Mamdani Fuzzy Model

262

Mamdani Fuzzy Model

263

Mamdani Fuzzy Model

264

Mamdani Fuzzy Model

265

Mamdani Fuzzy Model

266

Mamdani Fuzzy Model

267

Mamdani Fuzzy Model

268

Mamdani Fuzzy Model

269

Mamdani Fuzzy Model

270

Mamdani Fuzzy Model

271

Mamdani Fuzzy Model

272

Mamdani Fuzzy Model

273

Mamdani Fuzzy Model

274

Sugeno Fuzzy Inference

275

Sugeno Fuzzy Inference

276

Sugeno Fuzzy Inference

277

Sugeno Fuzzy Inference

278

Sugeno Fuzzy Inference

279

Sugeno Fuzzy Inference

280

Sugeno Fuzzy Inference

281

Sugeno Fuzzy Inference

282

Sugeno Fuzzy Inference

283

Sugeno Fuzzy Inference

284

Sugeno Fuzzy Inference

285

Sugeno Fuzzy Inference

286

Sugeno Fuzzy Inference

287

Sugeno Fuzzy Inference

288

Sugeno Fuzzy Inference

289

Building a Fuzzy System

290

Building a Fuzzy System

291

Building a Fuzzy System

292

Building a Fuzzy System

293

Building a Fuzzy System

294

Building a Fuzzy System

295

Building a Fuzzy System

296

Building a Fuzzy System

297

Create Fuzzy Rules

298

Create Fuzzy Rules

299

Create Fuzzy Rules

300

Evaluation and Tuning

301

Evaluation and Tuning

302

Evaluation and Tuning

303

Evaluation and Tuning

304

	Slide 1: Swarm Intelligence
	Slide 2: The need for new Computing Techniques
	Slide 3: The need for new Computing Techniques
	Slide 4: Hard Problems
	Slide 5: Hard Problems
	Slide 6: Hard Problems
	Slide 7: Alternatives
	Slide 8: Artificial Networks
	Slide 9: Evolutionary Computation
	Slide 10: Evolutionary Computation
	Slide 11: Evolutionary Computation
	Slide 12: Bio-Computing
	Slide 13: Applications
	Slide 14: Limitations
	Slide 15: Swarm Intelligence
	Slide 16: Swarm Intelligence
	Slide 17: Swarm Intelligence
	Slide 18: Model Examples
	Slide 19: Model Examples
	Slide 20: Ants
	Slide 21: Self-Organization
	Slide 22: Self-Organization
	Slide 23: Self-Organization
	Slide 24: Ant Foraging
	Slide 25: Ant Foraging
	Slide 26: Ant Foraging
	Slide 27: Ant Foraging
	Slide 28: Ant Foraging
	Slide 29: Ant Foraging
	Slide 30: Characteristics of Self-Organization
	Slide 31: Termites Simulation
	Slide 32: Termites Simulation
	Slide 33: Honey Bees Nest Building
	Slide 34: Honey Bees Nest Building
	Slide 35: Honey Bees Nest Building
	Slide 36: Honey Bees Nest Building
	Slide 37: Honey Bees Nest Building
	Slide 38: Honey Bees Nest Building
	Slide 39: Honey Bees Nest Building
	Slide 40: Honey Bees Nest Building
	Slide 41: Stigmergy
	Slide 42: Stigmergy in Spiders
	Slide 43: Stigmergy
	Slide 44: Motivation
	Slide 45: Principles
	Slide 46: Particle Swarm Optimization (PSO)
	Slide 47: Introduction
	Slide 48: Introduction
	Slide 49: Introduction
	Slide 50: Introduction
	Slide 51: Introduction
	Slide 52: Introduction
	Slide 53: Introduction
	Slide 54: Introduction
	Slide 55: The Algorithm
	Slide 56: The Algorithm
	Slide 57: The Algorithm
	Slide 58: The Algorithm
	Slide 59: The Algorithm
	Slide 60: The Algorithm
	Slide 61: The Algorithm
	Slide 62: The Algorithm
	Slide 63: The Algorithm
	Slide 64: The Algorithm
	Slide 65: The Algorithm
	Slide 66: The Algorithm
	Slide 67: The Algorithm
	Slide 68: The Algorithm
	Slide 69: Visualization and Examples
	Slide 70: Ant Colony Optimization (ACO)
	Slide 71: Introduction
	Slide 72: Introduction
	Slide 73: Introduction
	Slide 74: Artificial Ant Systems
	Slide 75: Example in TSP
	Slide 76: Example in TSP
	Slide 77: Example in TSP
	Slide 78: Probability Rule
	Slide 79: Pheromone
	Slide 80: Pheromone
	Slide 81: Algorithm
	Slide 82: The ACO Algorithm
	Slide 83: Applications
	Slide 84: Performance
	Slide 85: Bin Packing Problems
	Slide 86: Solving the BPP
	Slide 87: Applying ACO to the BPP
	Slide 88: Pheromone Matrix
	Slide 89: Building Solutions
	Slide 90: Pheromone Updating
	Slide 91: Evaluation Function
	Slide 92: Local Search
	Slide 93: Setting the Parameters
	Slide 94: Applying ACO to Optimization
	Slide 95: Considerations
	Slide 96: Vehicle Routing
	Slide 97: Vehicle Routing
	Slide 98: The ACO Algorithm
	Slide 99: Artificial Bee Colony (ABC)
	Slide 100: Metaheuristics
	Slide 101: Introduction
	Slide 102: Main Idea
	Slide 103: Algorithm
	Slide 104: Algorithm
	Slide 105: Algorithm
	Slide 106: Algorithm
	Slide 107: Algorithm
	Slide 108: Algorithm
	Slide 109: Algorithm
	Slide 110: Control Parameters
	Slide 111: Pros and Cons
	Slide 112: Example
	Slide 113: Example
	Slide 114: Example
	Slide 115: Example
	Slide 116: Example
	Slide 117: Example
	Slide 118: Example
	Slide 119: Example
	Slide 120: Example
	Slide 121: Example
	Slide 122: Example
	Slide 123: Example
	Slide 124: Example
	Slide 125: Example
	Slide 126: Example
	Slide 127: Resources
	Slide 128: Cuckoo Search Algorithm
	Slide 129: Introduction
	Slide 130: Behaviour
	Slide 131: Behaviour
	Slide 132: Behaviour
	Slide 133: Characteristics
	Slide 134: Characteristics
	Slide 135: Lѐvy Flights
	Slide 136: Lѐvy Flights
	Slide 137: Algorithm
	Slide 138: Steps
	Slide 139: Steps
	Slide 140: Steps
	Slide 141: Steps
	Slide 142: Steps
	Slide 143: Applications
	Slide 144: Evolutionary Computation
	Slide 145: Introduction
	Slide 146: Introduction
	Slide 147: Introduction
	Slide 148: History
	Slide 149: Evolutionary Computation
	Slide 150: Evolutionary Algorithm
	Slide 151: Evolutionary Algorithm
	Slide 152: Genetic Algorithms
	Slide 153: Genetic Algorithms
	Slide 154: Anatomy
	Slide 155: Representation
	Slide 156: Initialization
	Slide 157: Fitness Function
	Slide 158: Selection
	Slide 159: Wheel Selection
	Slide 160: Wheel Selection
	Slide 161: Wheel Selection
	Slide 162: Tournament
	Slide 163: Reproduction
	Slide 164: Crossover
	Slide 165: Mutation
	Slide 166: Operators
	Slide 167: Introduction
	Slide 168: Introduction
	Slide 169: Replacements
	Slide 170: Strategies
	Slide 171: Example
	Slide 172: Example
	Slide 173: Example
	Slide 174: Example
	Slide 175: TSP
	Slide 176: TSP
	Slide 177: TSP
	Slide 178: Optimizing Sorting
	Slide 179: Optimizing Sorting
	Slide 180: Optimizing Sorting
	Slide 181: Optimizing Sorting
	Slide 182: Optimizing Sorting
	Slide 183: Optimizing Sorting
	Slide 184: Optimizing Sorting
	Slide 185: Optimizing Sorting
	Slide 186: Fitness Function
	Slide 187: Results
	Slide 188: GA - Advantages
	Slide 189: Conclusions
	Slide 190: Fuzzy Systems
	Slide 191: Introduction
	Slide 192: Introduction
	Slide 193: Introduction
	Slide 194: Introduction
	Slide 195: Introduction
	Slide 196: Introduction
	Slide 197: Phases
	Slide 198: System
	Slide 199: System
	Slide 200: System
	Slide 201: Mapping
	Slide 202: Fuzzy Sets
	Slide 203: Fuzzy Sets
	Slide 204: Fuzzy Sets
	Slide 205: Fuzzy Sets
	Slide 206: Fuzzy Sets
	Slide 207: Fuzzy Sets
	Slide 208: Fuzzy Sets
	Slide 209: Examples
	Slide 210: Fuzzy Sets
	Slide 211: Fuzzy Sets
	Slide 212: Fuzzy Sets
	Slide 213: Fuzzy Sets
	Slide 214: Fuzzy Sets
	Slide 215: Fuzzy Sets
	Slide 216: Fuzzy Sets
	Slide 217: Fuzzy Sets
	Slide 218: Fuzzy Sets
	Slide 219: Fuzzy Sets
	Slide 220: Fuzzy Sets
	Slide 221: Fuzzy Sets
	Slide 222: Fuzzy Sets
	Slide 223: Fuzzy Sets
	Slide 224: Fuzzy Sets
	Slide 225: Fuzzy vs Probability
	Slide 226: Prediction vs Forecasting
	Slide 227: Membership Functions
	Slide 228: Membership Functions
	Slide 229: Membership Functions
	Slide 230: Membership Functions
	Slide 231: Membership Functions
	Slide 232: Membership Functions
	Slide 233: Membership Functions
	Slide 234: Membership Functions
	Slide 235: Membership Functions
	Slide 236: Membership Functions
	Slide 237: Membership Functions
	Slide 238: Operations
	Slide 239: Operations
	Slide 240: Operations
	Slide 241: Operations
	Slide 242: Operations
	Slide 243: Operations
	Slide 244: Operations
	Slide 245: Operations
	Slide 246: Operations
	Slide 247: Operations
	Slide 248: Operations
	Slide 249: Types
	Slide 250: Mamdani Fuzzy Model
	Slide 251: Mamdani Fuzzy Model
	Slide 252: Mamdani Fuzzy Model
	Slide 253: Mamdani Fuzzy Model
	Slide 254: Mamdani Fuzzy Model
	Slide 255: Mamdani Fuzzy Model
	Slide 256: Mamdani Fuzzy Model
	Slide 257: Mamdani Fuzzy Model
	Slide 258: Mamdani Fuzzy Model
	Slide 259: Mamdani Fuzzy Model
	Slide 260: Mamdani Fuzzy Model
	Slide 261: Mamdani Fuzzy Model
	Slide 262: Mamdani Fuzzy Model
	Slide 263: Mamdani Fuzzy Model
	Slide 264: Mamdani Fuzzy Model
	Slide 265: Mamdani Fuzzy Model
	Slide 266: Mamdani Fuzzy Model
	Slide 267: Mamdani Fuzzy Model
	Slide 268: Mamdani Fuzzy Model
	Slide 269: Mamdani Fuzzy Model
	Slide 270: Mamdani Fuzzy Model
	Slide 271: Mamdani Fuzzy Model
	Slide 272: Mamdani Fuzzy Model
	Slide 273: Mamdani Fuzzy Model
	Slide 274: Mamdani Fuzzy Model
	Slide 275: Sugeno Fuzzy Inference
	Slide 276: Sugeno Fuzzy Inference
	Slide 277: Sugeno Fuzzy Inference
	Slide 278: Sugeno Fuzzy Inference
	Slide 279: Sugeno Fuzzy Inference
	Slide 280: Sugeno Fuzzy Inference
	Slide 281: Sugeno Fuzzy Inference
	Slide 282: Sugeno Fuzzy Inference
	Slide 283: Sugeno Fuzzy Inference
	Slide 284: Sugeno Fuzzy Inference
	Slide 285: Sugeno Fuzzy Inference
	Slide 286: Sugeno Fuzzy Inference
	Slide 287: Sugeno Fuzzy Inference
	Slide 288: Sugeno Fuzzy Inference
	Slide 289: Sugeno Fuzzy Inference
	Slide 290: Building a Fuzzy System
	Slide 291: Building a Fuzzy System
	Slide 292: Building a Fuzzy System
	Slide 293: Building a Fuzzy System
	Slide 294: Building a Fuzzy System
	Slide 295: Building a Fuzzy System
	Slide 296: Building a Fuzzy System
	Slide 297: Building a Fuzzy System
	Slide 298: Create Fuzzy Rules
	Slide 299: Create Fuzzy Rules
	Slide 300: Create Fuzzy Rules
	Slide 301: Evaluation and Tuning
	Slide 302: Evaluation and Tuning
	Slide 303: Evaluation and Tuning
	Slide 304: Evaluation and Tuning

