
Regression
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Adopted from ‘Statistics for Business and Economics’



Models
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• Representation of some phenomenon
• Mathematical model is a mathematical expression of some 

phenomenon
• Often describe relationships between variables
• Types

• Deterministic models
• Probabilistic models



Deterministic Models
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• Hypothesize exact relationships

• Suitable when prediction error is negligible

• Example: force is exactly mass times acceleration
• F = m·a



Probabilistic Models
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Hypothesize two components
Deterministic
Random error

Example: sales volume (y) is 10 times advertising spending (x) + 
random error

y = 10x + 
Random error may be due to factors other than advertising



Types 
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Regression Models
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• Answers ‘What is the relationship between the variables?’

• Equation used

• One numerical dependent (response) variable

• What is to be predicted

• One or more numerical or categorical 
independent (explanatory) variables

• Used mainly for prediction and estimation



Steps
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1. Hypothesize deterministic component
2. Estimate unknown model parameters
3. Specify probability distribution of random error term

• Estimate standard deviation of error
4. Evaluate model
5. Use model for prediction and estimation 



Specifying the Model
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1. Define variables

1. Conceptual (e.g., Advertising, price)

2. Empirical (e.g., List price, regular price) 

3. Measurement (e.g., $, Units)

2. Hypothesize nature of relationship

1. Expected effects (i.e., Coefficients’ signs)

2. Functional form (linear or non-linear)

3. Interactions



Relationships
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Relationships
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Types of Regression Models
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The Model
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Relationship between variables is a linear function

y x= + +  0 1

Dependent 
(Response) Variable

Independent 
(Explanatory) Variable

Population SlopePopulation 
y-intercept

Random Error



The Model
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The Model
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The Model
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Estimating Parameters
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1. Plot of all (xi, yi) pairs
2. Suggests how well model will fit
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Estimating Parameters

17

• How would you draw a line through the points?

• How do you determine which line ‘fits best’?
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Estimating Parameters
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‘Best fit’ means difference between actual y values and 
predicted y values are a minimum

But positive differences off-set negative

Least Squares minimizes the Sum of the Squared Differences (SSE)
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Estimating Parameters
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Estimating Parameters
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Calculations
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Calculations
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Calculations
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Calculations
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Calculations
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Example
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You gather the following data:
Ad $ Sales (Units)

1 1
2 1
3 2
4 2
5 4

Find the least squares line relating sales and advertising



Example
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Bayesian Learning
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Adopted from ‘Data Mining Concepts and Techniques’



Introduction
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• A statistical classifier: performs probabilistic prediction, i.e., predicts 

class membership probabilities

• Foundation: Based on Bayes’ Theorem. 

• Performance: A simple Bayesian classifier, naïve Bayesian classifier, has 

comparable performance with decision tree and selected neural 

network classifiers

• Incremental: Each training example can incrementally 

increase/decrease the probability that a hypothesis is correct — prior 

knowledge can be combined with observed data

• Standard: Even when Bayesian methods are computationally 

intractable, they can provide a standard of optimal decision making 

against which other methods can be measured



The Model
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A good strategy is to predict:

(for example: what is the probability that the image represents a 5 given its pixels?)



The Model
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Total probability Theorem:

Bayes’ Theorem:

• Let X be a data sample (“evidence”): class label is unknown
• Let H be a hypothesis that X belongs to class C 
• Classification is to determine P(H|X), (i.e., posteriori probability): the probability 

that the hypothesis holds given the observed data sample X
• P(H) (prior probability): the initial probability

• E.g., X will buy computer, regardless of age, income, …
• P(X): probability that sample data is observed
• P(X|H) (likelihood): the probability of observing the sample X, given that the 

hypothesis holds
E.g., Given that X will buy computer, the prob. that X is 31..40, medium income

)(/)()|(
)(

)()|()|( XX
X

XX PHPHP
P

HPHPHP ==

)()
1

|()(
i

AP
M

i
i

ABPBP 

=
=



The Model
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• Given training data X, posteriori probability of a hypothesis H, P(H|X), 

follows the Bayes’ theorem

• Informally, this can be viewed as 

posteriori = likelihood x prior/evidence

• Predicts X belongs to Ci iff the probability P(Ci|X) is the highest among 

all the P(Ck|X) for all the k classes

• Practical difficulty:  It requires initial knowledge of many probabilities, 

involving significant computational cost
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The Model
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• Let D be a training set of tuples and their associated class labels, and 
each tuple is represented by an n-D attribute vector X = (x1, x2, …, xn)

• Suppose there are m classes C1, C2, …, Cm.
• Classification is to derive the maximum posteriori, i.e., the maximal 

P(Ci|X)
• This can be derived from Bayes’ theorem

• Since P(X) is constant for all classes, only                                        

• needs to be maximized
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The Model
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• A simplified assumption: attributes are conditionally independent (i.e., 
no dependence relation between attributes):

• This greatly reduces the computation cost: Only counts the class 
distribution

• If Ak is categorical, P(xk|Ci) is the # of tuples in Ci having value xk for Ak
divided by |Ci, D| (# of tuples of Ci in D)

• If Ak is continous-valued, P(xk|Ci) is usually computed based on 
Gaussian distribution with a mean μ and standard deviation σ

and P(xk|Ci) is 
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Example
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Class:

C1:buys_computer = ‘yes’

C2:buys_computer = ‘no’

Data to be classified: 

X = (age <=30, 

Income = medium,

Student = yes

Credit_rating = Fair)

age income studentcredit_ratingbuys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no



Example
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P(Ci):    P(buys_computer = “yes”)  = 9/14 = 0.643
P(buys_computer = “no”) = 5/14= 0.357

Compute P(X|Ci) for each class
P(age = “<=30” | buys_computer = “yes”)  = 2/9 = 0.222
P(age = “<= 30” | buys_computer = “no”) = 3/5 = 0.6
P(income = “medium” | buys_computer = “yes”) = 4/9 = 0.444
P(income = “medium” | buys_computer = “no”) = 2/5 = 0.4
P(student = “yes” | buys_computer = “yes) = 6/9 = 0.667
P(student = “yes” | buys_computer = “no”) = 1/5 = 0.2
P(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667
P(credit_rating = “fair” | buys_computer = “no”) = 2/5 = 0.4

X = (age <= 30 , income = medium, student = yes, credit_rating = fair)
P(X|Ci) : P(X|buys_computer = “yes”) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044

P(X|buys_computer = “no”) = 0.6 x 0.4 x 0.2 x 0.4 = 0.019
P(X|Ci)*P(Ci) : P(X|buys_computer = “yes”) * P(buys_computer = “yes”) = 0.028

P(X|buys_computer = “no”) * P(buys_computer = “no”) = 0.007
Therefore,  X belongs to class (“buys_computer = yes”)

age income studentcredit_ratingbuys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no



Avoiding Zero Probability

40

• Naïve Bayesian prediction requires each conditional prob. be non-zero.  
Otherwise, the predicted prob. will be zero

•

• Ex. Suppose a dataset with 1000 tuples, income=low (0), income= 
medium (990), and income = high (10)

• Use Laplacian correction (or Laplacian estimator)
• Adding 1 to each case

• Prob(income = low) = 1/1003
• Prob(income = medium) = 991/1003
• Prob(income = high) = 11/1003

• The “corrected” prob. estimates are close to their “uncorrected” 
counterparts
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Comments
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• Advantages 
• Easy to implement 
• Good results obtained in most of the cases

• Disadvantages
• Assumption: class conditional independence, therefore loss 

of accuracy
• Practically, dependencies exist among variables 

• E.g.,  hospitals: patients: Profile: age, family history, etc. 
• Symptoms: fever, cough etc., Disease: lung cancer, 

diabetes, etc. 
• Dependencies among these cannot be modeled by 

Naïve Bayes Classifier
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