Regression

Adopted from ‘Statistics for Business and Economics’
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Models

 Representation of some phenomenon

 Mathematical model is a mathematical expression of some
phenomenon

* (Often describe relationships between variables

* Types
 Deterministic models
* Probabilistic models




Deterministic Models
 Hypothesize exact relationships

e Suitable when prediction error is negligible

 Example: force is exactly mass times acceleration
* F=m-a




Probabilistic Models

Hypothesize two components

Deterministic

Random error
Example: sales volume (y) is 10 times advertising spending (x) +
random error

y=10x + ¢

Random error may be due to factors other than advertising




Types

Probabilistic
Models

|
v v

Regression Correlation
Models Models




Regression Models
 Answers ‘What is the relationship between the variables?’

* Equation used

 One numerical dependent (response) variable
* Whatis to be predicted

* (One or more numerical or categorical
independent (explanatory) variables

 Used mainly for prediction and estimation




Steps
1. Hypothesize deterministic component
2. Estimate unknown model parameters
3. Specity probability distribution of random error term
* Estimate standard deviation of error

4. Evaluate model
5. Use model for prediction and estimation




Specifying the Model

1. Define variables
1. Conceptual (e.g., Advertising, price)
2. Empirical (e.g., List price, regular price)
3. Measurement (e.g., S, Units)

2. Hypothesize nature of relationship

1. Expected effects (i.e., Coefficients’ signs)
2. Functional form (linear or non-linear)

3. Interactions




Relationships

rong relationships

Weak relationships




Relationships

No relationship




Types of Regression Models

1 Explanatory Rel\irzss:on 2+ Explanatory
Variable 0qels Variables
4
Simple Multiple
Non- Non-
Linear Linear

Linear Linear




The Model

Relationship between variables is a linear function

Population Population Slope Random Error
y-intercept

y =Po +Pix+e

Dependent Independent
(Response) Variable (Explanatory) Variable




The Model
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The Model
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The Model
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Estimating Parameters

1. Plotofall (x, y,) pairs
2. Suggests how well model will fit
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Estimating Parameters
e How would you draw a line through the points?

e How do you determine which line ‘fits best’?
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Estimating Parameters

‘Best fit” means difference between actual y values and
predicted y values are a minimum
But positive differences off-set negative

n n
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Least Squares minimizes the Sum of the Squared Differences (SSE)




Estimating Parameters
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Estimating Parameters

Prediction Equation ~ { = Bo + ,le
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Calculations
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Calculations
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Calculations
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Calculations
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Calculations
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Example

You gather the following data:
Ad S Sales (Units)

1
1
2
2
4
Find the least squares line relating sales and advertising
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Bayesian Learning

Adopted from ‘Data Mining Concepts and Techniques’
31



Introduction

» A statistical classifier: performs probabilistic prediction, i.e., predicts
class membership probabilities
 Foundation: Based on Bayes’ Theorem.

* Performance: A simple Bayesian classifier, naive Bayesian classifier, has
comparable performance with decision tree and selected neural
network classifiers

* Incremental: Each training example can incrementally
increase/decrease the probability that a hypothesis is correct — prior
knowledge can be combined with observed data

e Standard: Even when Bayesian methods are computationally
intractable, they can provide a standard of optimal decision making

against which other methods can be measured 3
e




The Model

A good strategy is to predict:

argmax PY|Xy,..., X,)

(for example: what is the probability that the image represents a 5 given its pixels?)




The Model

Total probability Theorem: P(B)= '\é' P(BIA)P(A)
i=1
Bayes’ Theorem: P(H | X) = P(X||:|_(|>)<I)D(H) —P(X|H)xP(H)/P(X)

* Let X be adatasample (“evidence”): class label is unknown
* Let H be a hypothesis that X belongs to class C
* C(lassification is to determine P(H|X), (i.e., posteriori probability): the probability
that the hypothesis holds given the observed data sample X
* P(H) (prior probability): the initial probability
 E.g., Xwill buy computer, regardless of age, income, ...
e P(X): probability that sample data is observed
* P(X|H) (likelihood): the probability of observing the sample X, given that the
hypothesis holds
E.g., Given that X will buy computer, the prob. that X is 31..40, medium income

34



The Model

e Given training data X, posteriori probability of a hypothesis H, P(H |X),
follows the Bayes’ theorem

P(H |X)= P(XLF(%’(H) — P(X|H)xP(H)/P(X)

* Informally, this can be viewed as
posteriori = likelihood x prior/evidence
* Predicts X belongs to C, iff the probability P(C,|X) is the highest among
all the P(C, | X) for all the k classes
* Practical difficulty: It requires initial knowledge of many probabilities,

involving significant computational cost
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The Model

 Let D be atraining set of tuples and their associated class labels, and
each tuple is represented by an n-D attribute vector X = (x, X, ..., X,)

* Suppose there are m classes C,, C,, ..., C,...
e C(lassification is to derive the maximum posteriori, i.e., the maximal

P(C[X)
 This can be derived from Bayes’ theorem
_P(X|C)P(C)

e Since P(X) is constant for all classes, only

* needsto be maximized  P(C;|X)=P(X|C,)P(C,)




The Model

 Asimplified assumption: attributes are conditionally independent (i.e.,

no dependence relation between attributes):
N
F’(XICi):kH P(x, ICi)=P(x [Ci)xP(x,[Cj)x..xP(x_|Cj)
=1
 This greatly reduces the computation cost: Only counts the class

distribution
* If A is categorical, P(x,|C,) is the # of tuples in C, having value x, for A,
divided by |C, | (# of tuples of C;in D)
* If A is continous-valued, P(x,|C) is usually computed based on
Gaussian distribution with a mean i and standard deviation o
1 C(x=p)?
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Example
Class: age | income studentredit_rating com|
Cl:buys computer = ‘yes’
C2:buys _computer = ‘no’

Data to be classified:
X = (age <=30,
Income = medium,
Student = yes
Credit_rating = Fair)




age income |studentredit_rating com|

Example

P(C.): P(buys_computer = “yes”) =9/14 = 0.643
P(buys _computer = “no”) = 5/14=0.357

Compute P(X|C) for each class

P(age = “<=30" | buys_computer = “yes”) =2/9=0.222
age = “<=30" | buys_computer = “no”) =3/5=0.6
income = “medium” | buys_computer = “yes”) = 4/9 = 0.444
income = “medium” | buys_computer = “no”)=2/5=0.4
student = “yes” | buys_computer = “yes) =6/9 = 0.667
student = “yes” | buys_computer = “no”) =1/5=0.2
credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667

P(credit_rating = “fair” | buys_computer = “no”)=2/5=0.4
X = (age <= 30, income = medium, student = yes, credit_rating = fair)
P(X|C) : P(X|buys_computer = “yes”) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044

P(X|buys _computer = “no”)=0.6x0.4x0.2 x0.4=0.019
P(X]C)*P(C) : P(X|buys_computer = “yes”) * P(buys_computer = “yes”) = 0.028
P(X|buys _computer = “no”) * P(buys_computer = “no”) = 0.007

Therefore, X belongs to class (“buys_computer = yes”) 39
S
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Avoiding Zero Probability

* Naive Bayesian prediction requires each conditional prob. be non-zero.
Otherwise, the predicted prob. will be zero

N
P(X|Cj) = TIPM&KkICj)
. k=1

 Ex. Suppose a dataset with 1000 tuples, income=Ilow (0), income=
medium (990), and income = high (10)
* Use Laplacian correction (or Laplacian estimator)
* Adding 1 to each case
* Prob(income = low) =1/1003
* Prob(income = medium) =991/1003
* Prob(income = high) = 11/1003
 The “corrected” prob. estimates are close to their “uncorrected”
counterparts

40



Comments

 Advantages
e Easytoimplement
* Good results obtained in most of the cases
* Disadvantages
* Assumption: class conditional independence, therefore loss
of accuracy
* Practically, dependencies exist among variables
 E.g., hospitals: patients: Profile: age, family history, etc.
 Symptoms: fever, cough etc., Disease: lung cancer,
diabetes, etc.

 Dependencies among these cannot be modeled by
Naive Bayes Classifier

41
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