
Supervised Learning
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Example
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• An emergency room in a hospital measures 17 variables (e.g.,
blood pressure, age, etc) of newly admitted patients

• A decision is needed: whether to put a new patient in an
intensive-care unit

• Due to the high cost of ICU, those patients who may survive
less than a month are given higher priority

• Problem: to predict high-risk patients and discriminate them
from low-risk patients



Application
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• A credit card company receives thousands of applications for
new cards

• Each application contains information about an applicant, age,
marital status, annual salary, outstanding debts, credit rating,
etc.

• Problem: to decide whether an application should approved,
or to classify applications into two categories, approved and
not approved



Focus
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• A computer does not have “experiences”.
• A computer system learns from data, which represent some

“past experiences” of an application domain.
• Our focus: learn a target function that can be used to predict

values of a discrete class attribute, e.g., approve or not-
approved, and high-risk or low risk.

• The task is commonly called: Supervised learning,
classification, or inductive learning.



Data and Goal
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Data: A set of data records (also called examples, instances or 
cases) described by

k attributes: A1, A2, … Ak. 
a class: Each example is labelled with a pre-defined class. 

Goal: To learn a classification model from the data that can be 
used to predict the classes of new (future, or test) 
cases/instances.



Example
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The Learning Task
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Learn a classification model from the data 
Use the model to classify future loan applications into 

Yes (approved) and 
No (not approved)

What is the class for following case/instance?



Supervised vs Unsupervised
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Supervised learning: classification is seen as supervised learning 
from examples.

• Supervision: The data (observations, measurements, etc.) 
are labeled with pre-defined classes. It is like that a 
“teacher” gives the classes (supervision). 

• Test data are classified into these classes too. 

Unsupervised learning (clustering)
• Class labels of the data are unknown
• Given a set of data, the task is to establish the existence of 

classes or clusters in the data



Steps
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◼ Learning (training): Learn a model using the training data

◼ Testing: Test the model using unseen test data to assess the 
model accuracy

,
cases test ofnumber  Total

tionsclassificacorrect  ofNumber 
=Accuracy



Problem
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Given

a data set D, 
a task T, and 
a performance measure M, 

a computer system is said to learn from D to perform the task T if after 
learning the system’s performance on T improves as measured by M.

In other words, the learned model helps the system to perform T better as 
compared to no learning. 



Example
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Data: Loan application data
Task: Predict whether a loan should be approved or not.
Performance measure: accuracy.

No learning: classify all future applications (test data) to the 
majority class (i.e., Yes): 



Assumptions
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• Assumption: The distribution of training examples is identical to 
the distribution of test examples (including future unseen 
examples).

• In practice, this assumption is often violated to certain degree. 

• Strong violations will clearly result in poor classification 
accuracy. 

• To achieve good accuracy on the test data, training examples 
must be sufficiently representative of the test data. 



Classification
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Classification vs Numeric Prediction
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• Classification
• predicts categorical class labels (discrete or nominal)
• classifies data (constructs a model) based on the training set and the 

values (class labels) in a classifying attribute and uses it in classifying 
new data

• Numeric Prediction  
• models continuous-valued functions, i.e., predicts unknown or 

missing values 
• Typical applications

• Credit/loan approval:
• Medical diagnosis: if a tumor is cancerous 
• Fraud detection: if a transaction is fraudulent
• Web page categorization: which category it is



Steps
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• Model construction: describing a set of predetermined classes
• Each tuple/sample is assumed to belong to a predefined class, as determined by 

the class label attribute
• The set of tuples used for model construction is training set
• The model is represented as classification rules, decision trees, or mathematical 

formulae
• Model usage: for classifying future or unknown objects

• Estimate accuracy of the model
• The known label of test sample is compared with the classified result from 

the model
• Accuracy rate is the percentage of test set samples that are correctly 

classified by the model
• Test set is independent of training set (otherwise overfitting) 

• If the accuracy is acceptable, use the model to classify new data
• Note: If the test set is used to select models, it is called validation (test) set



Model Construction
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Training

Data

NAME RANK YEARS TENURED

Mike Assistant Prof 3 no

Mary Assistant Prof 7 yes

Bill Professor 2 yes

Jim Associate Prof 7 yes

Dave Assistant Prof 6 no

Anne Associate Prof 3 no

Classification

Algorithms

IF rank = ‘professor’

OR years > 6

THEN tenured = ‘yes’ 

Classifier

(Model)



Using the Model
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Classifier

Testing

Data

NAME RANK YEARS TENURED

Tom Assistant Prof 2 no

Merlisa Associate Prof 7 no

George Professor 5 yes

Joseph Assistant Prof 7 yes

Unseen Data

(Jeff, Professor, 4)

Tenured?



Decision Trees
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Partially adopted from CS583 University of Illinois & ‘Data Mining Concepts and Techniques’



Introduction
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• Decision tree learning is one of the most widely used 
techniques for classification. 
• Its classification accuracy is competitive with other 

methods, and it is very efficient. 

• The classification model is a tree, called decision tree. 

• C4.5 by Ross Quinlan is perhaps the best known system. 



Example
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Use the Decision Tree
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Uniqueness
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• We want smaller tree and accurate tree.
• Easy to understand and perform better. 

• Finding the best tree is NP-hard.

• All current tree building algorithms are heuristic algorithms



Rules
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• A decision tree can be converted to a set of rules

• Each path from the root to a leaf is a rule.



Problem
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• Basic algorithm (a greedy divide-and-conquer algorithm)
• Assume attributes are categorical now (continuous attributes can be 

handled too)
• Tree is constructed in a top-down recursive manner
• At start, all the training examples are at the root
• Examples are partitioned recursively based on selected attributes
• Attributes are selected on the basis of an impurity function (e.g., 

information gain)
• Conditions for stopping partitioning

• All examples for a given node belong to the same class
• There are no remaining attributes for further partitioning – majority 

class is the leaf
• There are no examples left



Purity
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• The key to building a decision tree - which attribute to choose in order 
to branch. 

• The objective is to reduce impurity or uncertainty in data as much as 
possible.
• A subset of data is pure if all instances belong to the same class. 

• The heuristic in C4.5 is to choose the attribute with the maximum 
Information Gain or Gain Ratio based on information theory.



Example
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Fig. (B) seems to be better. 



Information Theory
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• Information theory provides a mathematical basis for measuring the 
information content. 

• To understand the notion of information, think about it as providing the 
answer to a question, for example, whether a coin will come up heads. 
• If one already has a good guess about the answer, then the actual 

answer is less informative. 
• If one already knows that the coin is rigged so that it will come with 

heads with probability 0.99, then a message (advanced information) 
about the actual outcome of a flip is worth less than it would be for 
a honest coin (50-50). 



Information Theory
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• For a fair (honest) coin, you have no information, and you are 
willing to pay more (say in terms of $) for advanced 
information - less you know, the more valuable the 
information. 

• Information theory uses this same intuition, but instead of 
measuring the value for information in dollars, it measures 
information contents in bits. 

• One bit of information is enough to answer a yes/no question 
about which one has no idea, such as the flip of a fair coin 



Entropy
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The entropy formula,

Pr(cj) is the probability of class cj in data set D
We use entropy as a measure of impurity or disorder of data set 
D. (Or, a measure of information in a tree)
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Example
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As the data become purer and purer, the entropy value becomes 
smaller and smaller. This is useful to us!



Entropy
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• Given a set of examples D, we first compute its entropy:

• If we make attribute Ai, with v values, the root of the current 
tree, this will partition D into v subsets D1, D2 …, Dv . The 
expected entropy if Ai is used as the current root:
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Information Gain
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• Information gained by selecting attribute Ai to branch or to 
partition the data is 

• We choose the attribute with the highest gain to branch/split 
the current tree. 
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Information Gain
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◼ Select the attribute with the highest information gain

◼ Let pi be the probability that an arbitrary tuple in D belongs to class Ci, estimated by 

|Ci, D|/|D|

◼ Expected information (entropy) needed to classify a tuple in D:

◼ Information needed (after using A to split D into v partitions) to classify D:

◼ Information gained by branching on attribute A
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Example
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Age Yes No entropy(Di)

young 2 3 0.971

middle 3 2 0.971

old 4 1 0.722

◼ Own_house is the best 
choice for the root. 
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Continuous Attributes
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• Let attribute A be a continuous-valued attribute

• Must determine the best split point for A

• Sort the value A in increasing order

• Typically, the midpoint between each pair of adjacent values is considered as a 

possible split point

• (ai+ai+1)/2 is the midpoint between the values of ai and ai+1

• The point with the minimum expected information requirement for A is selected 

as the split-point for A

• Split:

• D1 is the set of tuples in D satisfying A ≤ split-point, and D2 is the set of tuples in 

D satisfying A > split-point



Continuous Attributes
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Examples
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Example
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Example
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Gain Ratio
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• Information gain measure is biased towards attributes 
with a large number of values

• C4.5 (a successor of ID3) uses gain ratio to overcome the 
problem (normalization to information gain)

• GainRatio(A) = Gain(A)/SplitInfo(A)

• Example

• gain_ratio(income) = 0.029/1.557 = 0.019
• The attribute with the maximum gain ratio is selected as 

the splitting attribute
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Gini Index
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• If a data set D contains examples from n classes, gini index, gini(D) is defined as

where pj is the relative frequency of class j in D

• If a data set D is split on A into two subsets D1 and D2, the gini index gini(D) is 
defined as

• Reduction in Impurity:

• The attribute provides the smallest ginisplit(D) (or the largest reduction in impurity) 
is chosen to split the node (need to enumerate all the possible splitting points for 
each attribute)
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Example
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• 9 tuples in buys_computer = “yes” and 5 in “no”
• Suppose the attribute income partitions D into 10 

in D1: {low, medium} and 4 in D2

Gini{low,high} is 0.458; Gini{medium,high} is 0.450. 

• Split on the {low,medium} (and {high}) since it has 
the lowest Gini index
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Comparison
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The three measures, in general, return good results but

Information gain: 

• biased towards multivalued attributes

Gain ratio: 

• tends to prefer unbalanced splits in which one partition is much smaller than 

the others

Gini index: 

• biased to multivalued attributes

• has difficulty when # of classes is large

• tends to favor tests that result in equal-sized partitions and purity in both 

partitions



Other Attribute Selection Methods
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• CHAID: a popular decision tree algorithm, measure based on χ2 test for 

independence

• C-SEP: performs better than info. gain and gini index in certain cases

• G-statistic: has a close approximation to χ2 distribution 

• MDL (Minimal Description Length) principle (i.e., the simplest solution is preferred): 

• The best tree as the one that requires the fewest # of bits to both (1) encode the 

tree, and (2) encode the exceptions to the tree

• Multivariate splits (partition based on multiple variable combinations)

• CART: finds multivariate splits based on a linear comb. of attrs.

• Which attribute selection measure is the best?

• Most give good results, none is significantly superior than others



Overfitting
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• Overfitting:  An induced tree may overfit the training data 
• Too many branches, some may reflect anomalies due to noise or outliers
• Poor accuracy for unseen samples

• Overfitting is "the production of an analysis that corresponds too closely or exactly to 
a particular set of data, and may therefore fail to fit additional data or predict future 
observations reliably”

• Two approaches to avoid overfitting
• Prepruning: Halt tree construction early ̵ do not split a node if this would result 

in the goodness measure falling below a threshold
• Difficult to choose an appropriate threshold

• Postpruning: Remove branches from a “fully grown” tree—get a sequence of 
progressively pruned trees
• Use a set of data different from the training data to decide which is the “best 

pruned tree”



Underfitting
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• Underfitting refers to a model that can neither model the training data nor 
generalize to new data.

• An underfit machine learning model is not a suitable model and will be obvious as it 
will have poor performance on the training data.

• Underfitting is often not discussed as it is easy to detect given a good performance 
metric. 



Enhancements
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• Allow for continuous-valued attributes

• Dynamically define new discrete-valued attributes that partition the continuous 

attribute value into a discrete set of intervals

• Handle missing attribute values

• Assign the most common value of the attribute

• Assign probability to each of the possible values

• Attribute construction

• Create new attributes based on existing ones that are sparsely represented

• This reduces fragmentation, repetition, and replication



Example
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