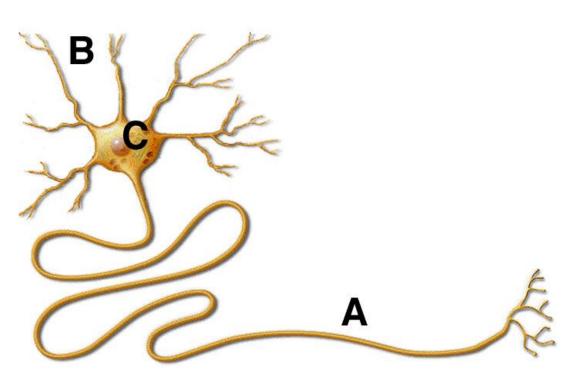
Computational Intelligence & Machine Learning

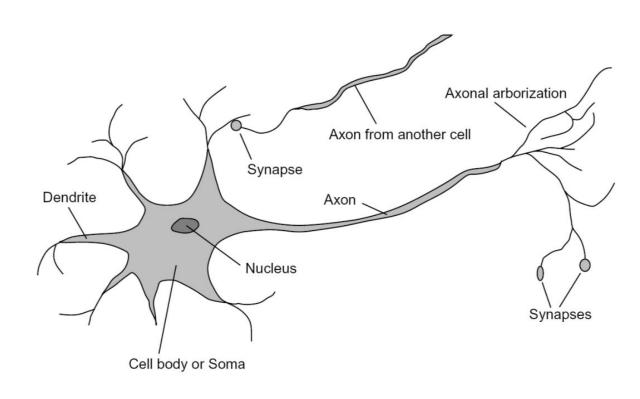
Artificial Neural Networks

Introduction

- We have billions and billions of neurons that somehow work together to create the mind.
- These neurons are connected by 10^{14} 10^{15} synapses, which we think encode the "knowledge" in the network too many for us to explicitly program them in our models
- Rather we need some way to *indirectly* set them via a procedure that will achieve some goal by changing the synaptic strengths (which we call weights).
- This is called *learning* in these systems.

Introduction





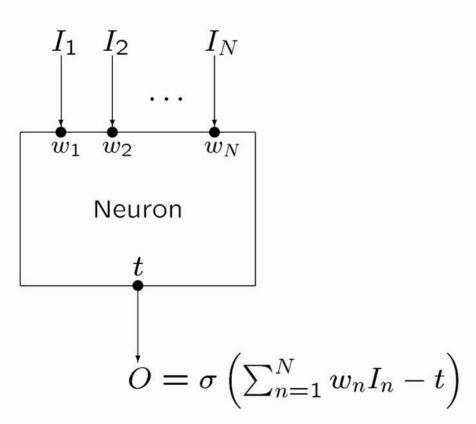
Introduction

Input signals

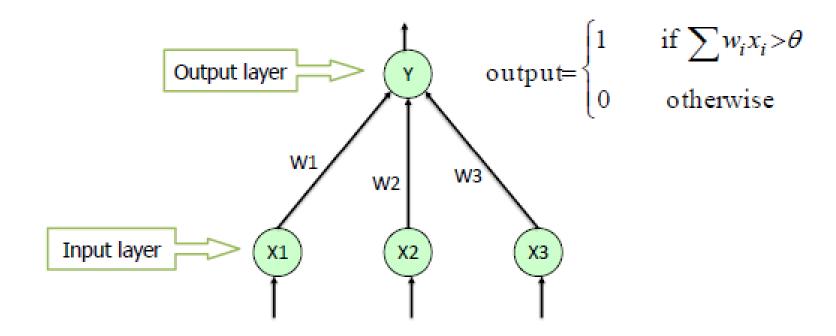
Synaptic weights

Threshold

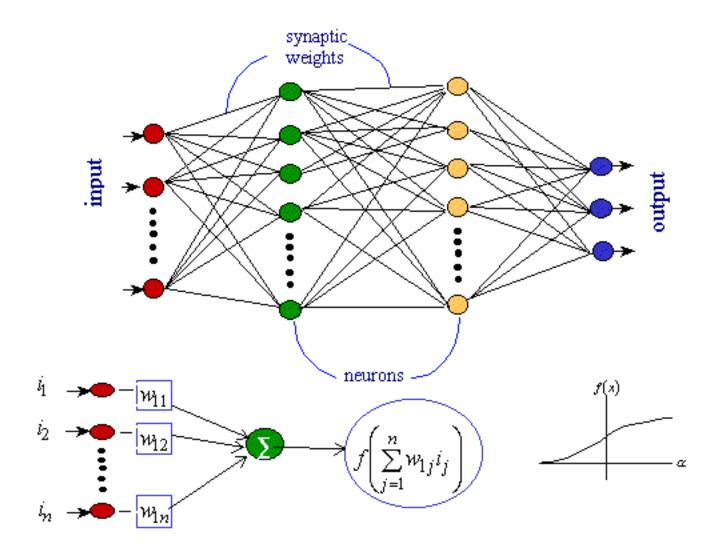
Output signal



Single Layer Perceptron



Multilayer Perceptrons

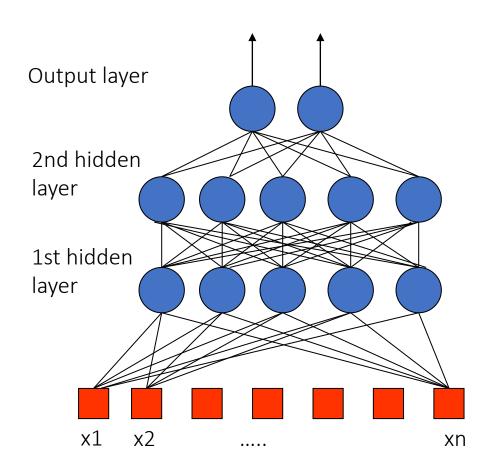


Calculations

- A mathematical model to solve engineering problems
 - Group of highly connected neurons to realize compositions of non linear functions
- Tasks
 - Classification
 - Discrimination
 - Estimation
- 2 types of networks
 - Feed forward Neural Networks
 - Recurrent Neural Networks

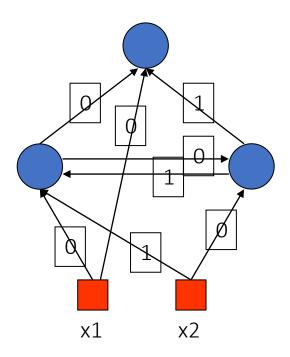
Feed Forward Neural Networks

- The information is propagated from the inputs to the outputs
- Computations of No non linear functions from n input variables by compositions of Nc algebraic functions
- Time has no role (NO cycle between outputs and inputs)



Recurrent Neural Networks

- Can have arbitrary topologies
- Can model systems with internal states (dynamic ones)
- Delays are associated to a specific weight
- Training is more difficult
- Performance may be problematic
 - Stable Outputs may be more difficult to evaluate
 - Unexpected behavior (oscillation, chaos, ...)



Learning

- The procedure that consists in estimating the parameters of neurons so that the whole network can perform a specific task
- 2 types of learning
 - The supervised learning
 - The unsupervised learning
- The Learning process (supervised)
 - Present the network a number of inputs and their corresponding outputs
 - See how closely the actual outputs match the desired ones
 - Modify the parameters to better approximate the desired outputs

Supervised Learning

- The desired response of the neural network in function of particular inputs is well known.
- A "Professor" may provide examples and teach the neural network how to fulfill a certain task

Unsupervised Learning

- Idea: group typical input data in function of resemblance criteria un-known a priori
- Data clustering
- No need of a professor
 - The network finds itself the correlations between the data
 - Examples of such networks :
 - Kohonen feature maps

Learning

- Backpropagation: A **neural network** learning algorithm
- Started by psychologists and neurobiologists to develop and test computational analogues of neurons
- A neural network: A set of connected input/output units where each connection has
 a weight associated with it
- During the learning phase, the network learns by adjusting the weights so as to be
 able to predict the correct class label of the input tuples
- Also referred to as connectionist learning due to the connections between units

Pros & Cons

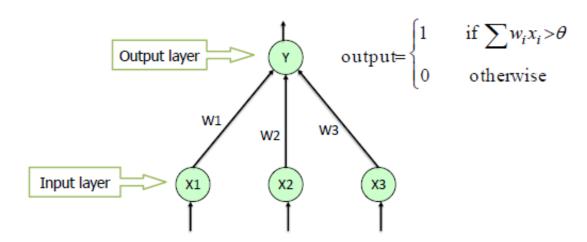
- Weakness
 - Long training time
 - Require a number of parameters typically best determined empirically, e.g., the network topology or "structure."
 - Poor interpretability: Difficult to interpret the symbolic meaning behind the learned weights and of "hidden units" in the network
- Strength
 - High tolerance to noisy data
 - Ability to classify untrained patterns
 - Well-suited for continuous-valued inputs and outputs
 - Successful on an array of real-world data, e.g., hand-written letters
 - Algorithms are inherently parallel
 - Techniques have recently been developed for the extraction of rules from trained neural networks

Architectures

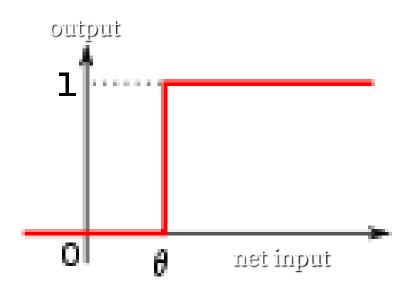
- Perceptron
- Multi-Layer Perceptron
- Radial Basis Function (RBF)
- Kohonen Features maps
- Other architectures
 - An example : Shared weights neural networks

- Rosenblatt (1962) discovered a learning rule for perceptrons called the perceptron convergence procedure.
- Guaranteed to learn anything computable (by a two-layer perceptron)
- Unfortunately, not everything was computable (Minsky & Papert, 1969)

Single Layer Perceptron



- Output activation rule:
 - First, compute the *net input* to the output unit: $\Sigma_i w_i x_i = net$
 - Then, compute the output as:
 If net ≥θ then output = 1
 else output = 0

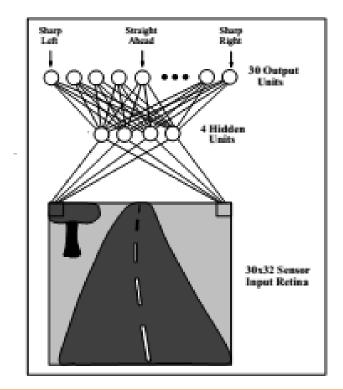


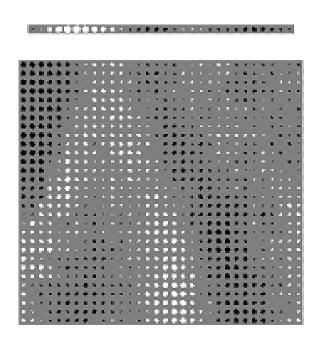
- Perceptrons only be 100% accurate only on linearly separable problems.
- Multi-layer networks (often called *multi-layer perceptrons*, or *MLPs*) can represent any target function.
- However, in multi-layer networks, there is no guarantee of convergence to minimal error weight vector.

- Learning rule:
 - If output is 1 and should be 0, then *lower* weights to active inputs and *raise* the threshold θ
 - If output is 0 and should be 1, then raise weights to active inputs and lower the threshold $\boldsymbol{\theta}$

("active input" means $x_i = 1$, not 0)

- Each output unit correspond to a particular steering direction.
- The most highly activated one gives the direction to steer.

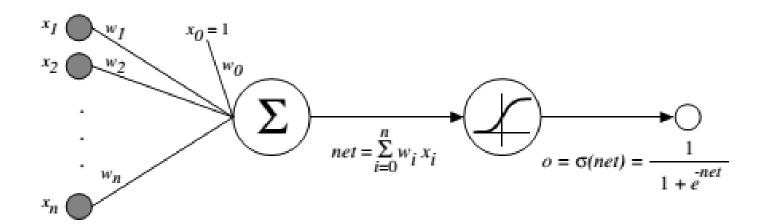




(Note: bias units and weights not shown)

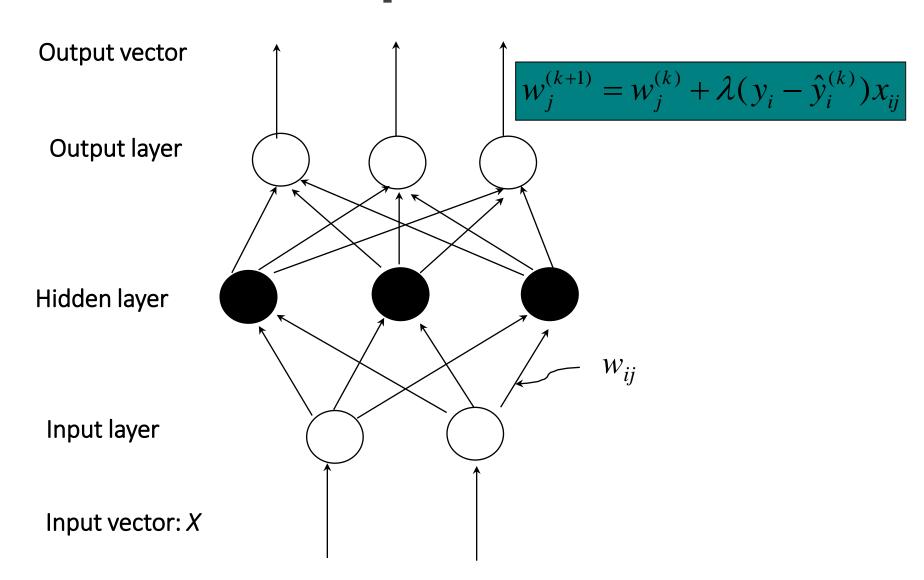
- Before 2009: ANNs typically with 2-3 layers
 - Reason 1: computation times
 - Reason 2: problems of the backpropagation algorithm
 - Local optimization only (needs a good initialization, or re-initialization)
 - Prone to over-fitting (too many parameters to estimate, too few labeled examples)
 - => Skepticism: A deep network often performed worse than a shallow one
- After 2009: Deep neural networks
 - Fast GPU-based implementations
 - Weights can be initialized better (Use of unlabeled data, Restricted Boltzmann Machines)
 - Large collections of labeled data available
 - Reducing the number of parameters by weight sharing
 - Improved backpropagation algorithm
 - Success in different areas, e.g. traffic sign recognition, handwritten digits problem

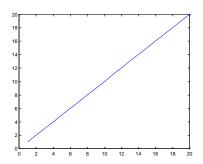
Network node in detail



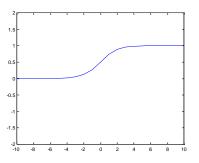
 $\sigma(x)$ is the sigmoid function

- Network learning process = tuning the synaptic weights
 - Initialize randomly
 - Repeatedly compute the ANN result for a given task, compare with ground truth, update ANN weights by backpropagation algorithm to improve ANN performance

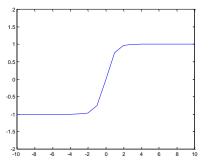




$$y = x$$

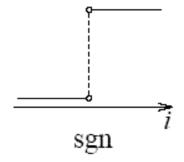


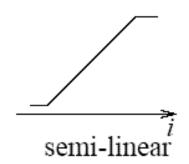
$$y = \frac{1}{1 + \exp(-x)}$$

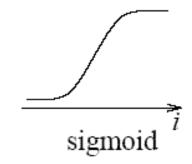


Hyperbolic tangent

$$y = \frac{\exp(x) - \exp(-x)}{\exp(x) + \exp(-x)}$$



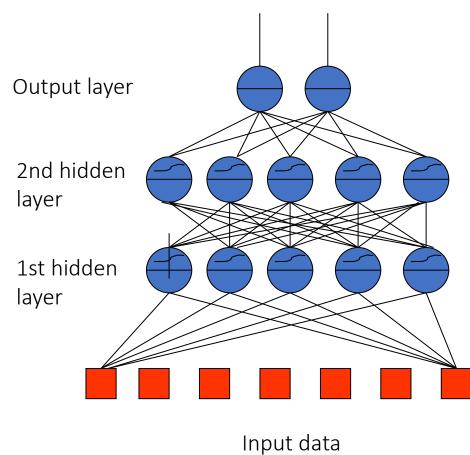




$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Multi-Layer Perceptrons

- One or more hidden layers
- Sigmoid activations functions



Network Topology

- Decide the **network topology:** Specify # of units in the *input layer*, # of *hidden layers* (if > 1), # of units in *each hidden layer*, and # of units in the *output layer*
- Normalize the input values for each attribute measured in the training tuples to [0.0-1.0]
- One **input** unit per domain value, each initialized to 0
- Output, if for classification and more than two classes, one output unit per class is used
- Once a network has been trained and its accuracy is unacceptable, repeat the training process with a different network topology or a different set of initial weights

Backpropagation

- Iteratively process a set of training tuples & compare the network's prediction with the actual known target value
- For each training tuple, the weights are modified to minimize the mean squared
 error between the network's prediction and the actual target value
- Modifications are made in the "backwards" direction: from the output layer, through each hidden layer down to the first hidden layer, hence "backpropagation"
- Steps
 - Initialize weights to small random numbers, associated with biases
 - Propagate the inputs forward (by applying activation function)
 - Backpropagate the error (by updating weights and biases)
 - Terminating condition (when error is very small, etc.)

Backpropagation

$$net_{j} = w_{j0} + \sum_{i}^{n} w_{ji} o_{i}$$
$$o_{j} = f_{j} (net_{j})$$

$$o_{j} = f_{j}(net_{j})$$

$$\Delta w_{ji} = -\alpha \frac{\partial E}{\partial w_{ji}} = -\alpha \frac{\partial E}{\partial net_{j}} \frac{\partial net_{j}}{\partial w_{ji}} = \alpha \delta_{j} o_{i}$$

$$\partial E \quad \partial o_{j} \quad \partial E \quad \partial C \quad$$

$$\delta_{j} = -\frac{\partial E}{\partial o_{j}} \frac{\partial o_{j}}{\partial net_{j}} = -\frac{\partial E}{\partial o_{j}} f'(net_{j})$$

$$E = \frac{1}{2}(t_j - o_j)^2 \Longrightarrow \frac{\partial E}{\partial o_j} = -(t_j - o_j)$$

$$\delta_j = (t_j - o_j)f'(net_j)$$

$$\delta_j = (t_j - o_j) f'(net_j)$$

Credit assignment

$$\delta_{j} = -\frac{\partial E}{\partial net_{j}}$$

$$w_{ji} \leftarrow w_{ji} + \Delta w_{ji}$$

If the jth node is an output unit

Backpropagation (differentiable perceptron)

Define total classification error or loss on the training set:

$$E(\mathbf{w}) = \sum_{j=1}^{N} (y_j - f_{\mathbf{w}}(\mathbf{x}_j))^2, f_{\mathbf{w}}(\mathbf{x}_j) = \sigma(\mathbf{w} \cdot \mathbf{x}_j), \ \sigma(t) = \frac{1}{1 + e^{-t}}$$
 Update weights by gradient descent:

$$\frac{\partial E}{\partial \mathbf{w}} = \sum_{j=1}^{N} \left[-2(\mathbf{y}_{j} - f(\mathbf{x}_{j}))\sigma'(\mathbf{w} \cdot \mathbf{x}_{j}) \frac{\partial}{\partial \mathbf{w}} (\mathbf{w} \cdot \mathbf{x}_{j}) \right]$$

$$= \sum_{j=1}^{N} \left[-2(\mathbf{y}_{j} - f(\mathbf{x}_{j}))\sigma(\mathbf{w} \cdot \mathbf{x}_{j})(1 - \sigma(\mathbf{w} \cdot \mathbf{x}_{j}))\mathbf{x}_{j} \right]$$

For a single training point, the update is:

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha (\mathbf{y} - f(\mathbf{x})) \sigma(\mathbf{w} \cdot \mathbf{x}) (1 - \sigma(\mathbf{w} \cdot \mathbf{x})) \mathbf{x}$$

Backpropagation (differentiable perceptron)

For a single training point, the update is:

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha (\mathbf{y} - f(\mathbf{x})) \sigma(\mathbf{w} \cdot \mathbf{x}) (1 - \sigma(\mathbf{w} \cdot \mathbf{x})) \mathbf{x}$$

• Compare with update rule with non-differentiable perceptron:

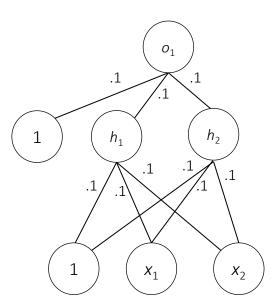
$$\mathbf{w} \leftarrow \mathbf{w} + \alpha (y - f(\mathbf{x})) \mathbf{x}$$

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

Training set:

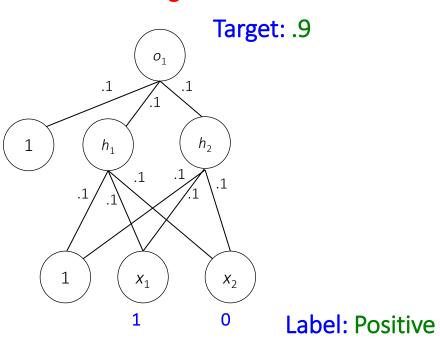
1 0 Label: Positive

0 1 Label: Negative



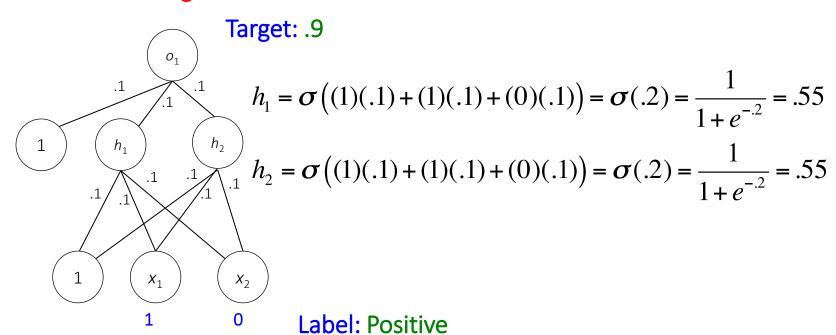
Training set:

- 1 0 Label: Positive
- 0 1 Label: Negative



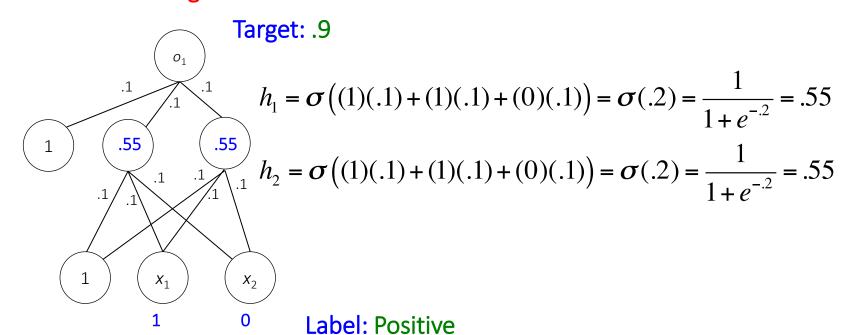
Training set:

- 1 0 Label: Positive
- 0 1 Label: Negative



Training set:

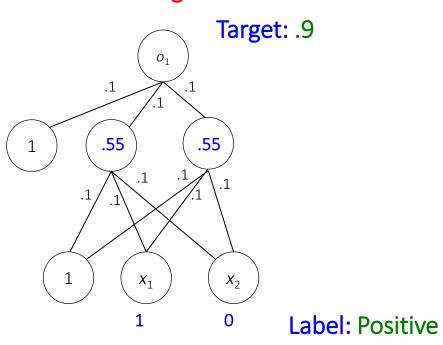
- 1 0 Label: Positive
- 0 1 Label: Negative



Training set:

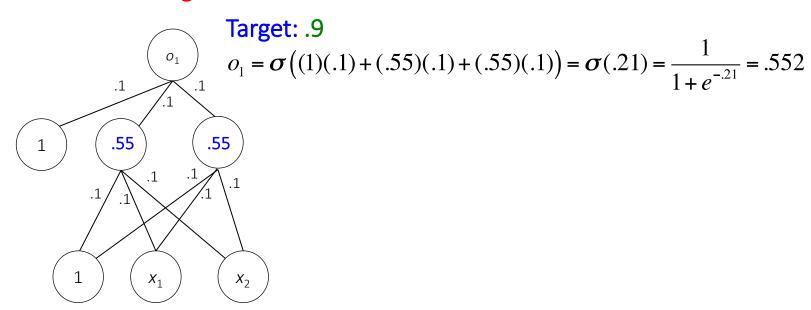
1 0 Label: Positive

0 1 Label: Negative



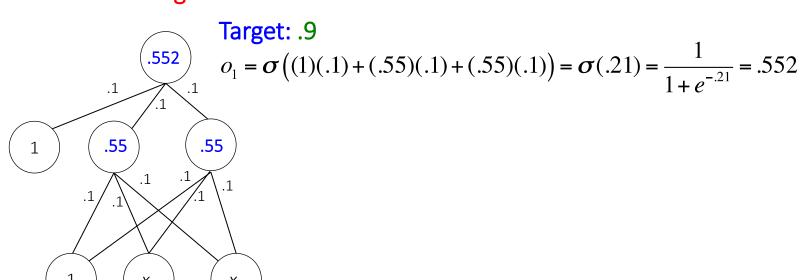
Training set:

- 1 0 Label: Positive
- 0 1 Label: Negative



Training set:

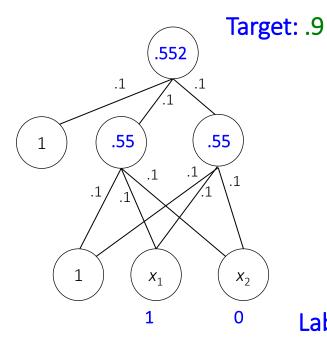
- 1 0 Label: Positive
- 0 1 Label: Negative



Training set:

1 0 Label: Positive

0 1 Label: Negative



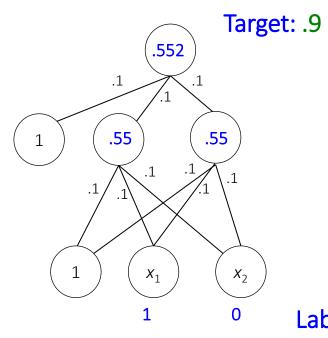
Here we interpret $o_1 > .5$ as "positive".

Classification is correct.

But we still update weights.

Training set:

- 1 0 Label: Positive
- 0 1 Label: Negative



Calculate error terms:

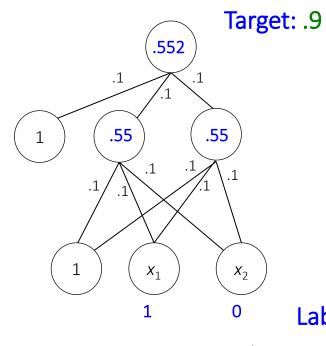
$$\delta_{k=1} = (.552)(.448)(.9 - .552) = .086$$

$$\delta_{j=1} = (.55)(.45)(.1)(.086) = .002$$

$$\delta_{j=2} = (.55)(.45)(.1)(.086) = .002$$

Training set:

- 1 0 Label: Positive
- 0 1 Label: Negative



Calculate error terms:

$$\delta_{k=1} = (.552)(.448)(.9 - .552) = .086$$

$$\delta_{j=1} = (.55)(.45)(.1)(.086) = .002$$

$$\delta_{j=2} = (.55)(.45)(.1)(.086) = .002$$

Label: Positive

Update hidden-to-output weights (learning rate = 0.2; *momentum =* 0.9):

1

0

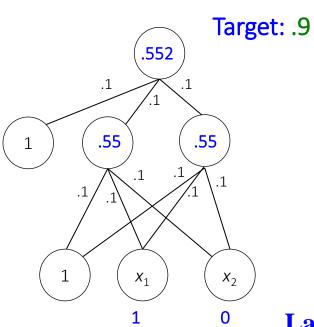
Label: Positive

Example

0

1

Label: Negative



Calculate error terms:

$$\delta_{k=1} = (.552)(.448)(.9 - .552) = .086$$

$$\delta_{j=1} = (.55)(.45)(.1)(.086) = .002$$

$$\delta_{i=2} = (.55)(.45)(.1)(.086) = .002$$

Label: Positive

Update hidden-to-output weights (learning rate = 0.2; *momentum =* 0.9):

$$\Delta w_{k=1,j=0}^1 = (.2)(.086)(1) + (.9)(0) = .0172$$

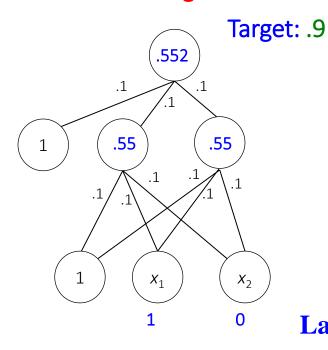
$$\Delta w_{k=1,j=1}^1 = (.2)(.086)(.55) + (.9)(0) = .0095$$

$$\Delta w_{k=1, j=2}^{1} = (.2)(.086)(.55) + (.9)(0) = .0095$$

1 0 Label: Positive

Example

0 1 Label: Negative



Calculate error terms:

$$\delta_{k=1} = (.552)(.448)(.9 - .552) = .086$$

$$\delta_{j=1} = (.55)(.45)(.1)(.086) = .002$$

$$\delta_{j=2} = (.55)(.45)(.1)(.086) = .002$$

Label: Positive

Update hidden-to-output weights (learning rate = 0.2; *momentum =* 0.9):

$$\Delta w_{k=1,j=0}^1 = (.2)(.086)(1) + (.9)(0) = .0172$$
 $w_{k=1,j=0}^1 = .1 + .0172 = .1172$

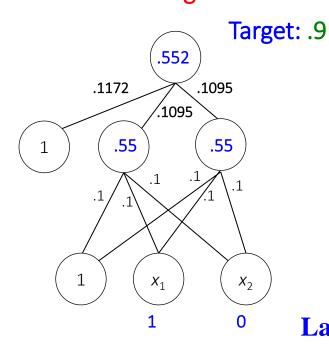
$$\Delta w_{k=1,j=1}^1 = (.2)(.086)(.55) + (.9)(0) = .0095$$
 $w_{k=1,j=1}^1 = .1 + .0095 = .1095$

$$\Delta w_{k=1,j=2}^1 = (.2)(.086)(.55) + (.9)(0) = .0095$$
 $w_{k=1,j=2}^1 = .1 + .0095 = .1095$

1 0 Label: Positive

Example

0 1 Label: Negative



Calculate error terms:

$$\delta_{k=1} = (.552)(.448)(.9 - .552) = .086$$

$$\delta_{j=1} = (.55)(.45)(.1)(.086) = .002$$

$$\delta_{j=2} = (.55)(.45)(.1)(.086) = .002$$

$$\Delta w_{k=1, i=0}^{1} = (.2)(.086)(1) + (.9)(0) = .0172$$

$$W_{k=1,j=0}^{1} = .1 + .0172 = .1172$$

$$\Delta w_{k=1,j=1}^1 = (.2)(.086)(.55) + (.9)(0) = .0095$$

$$w_{k=1,j=1}^1 = .1 + .0095 = .1095$$

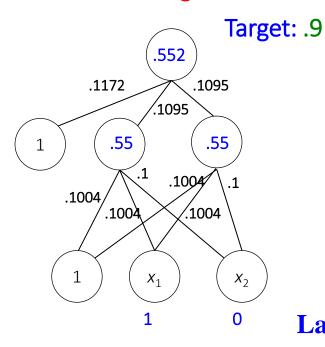
$$\Delta w_{k=1,j=2}^1 = (.2)(.086)(.55) + (.9)(0) = .0095$$

$$w_{k=1, j=2}^{1} = .1 + .0095 = .1095$$

1 0 Label: Positive

Example

0 1 Label: Negative



Calculate error terms:

$$\delta_{k=1} = (.552)(.448)(.9 - .552) = .086$$

$$\delta_{j=1} = (.55)(.45)(.1)(.086) = .002$$

$$\delta_{j=2} = (.55)(.45)(.1)(.086) = .002$$

Label: Positive

Update input-to-hidden weights (learning rate = 0.2; *momentum =* 0.9):

$$\Delta w_{j=1,j=0}^1 = (.2)(.002)(1) + (.9)(0) = .0004$$
 $w_{j=1,j=0}^1 = .1 + .0004 = .1004$

$$\Delta w_{j=1,i=1}^1 = (.2)(.002)(1) + (.9)(0) = .0004$$
 $w_{j=1,i=1}^1 = .1 + .0004 = .1004$

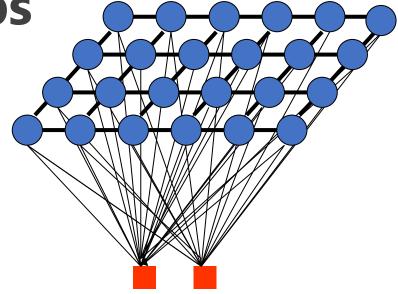
$$Dw_{i=1,i=2}^{1} = (.2)(.002)(0) + (.9)(0) = 0 w_{i=1,i=2}^{1} = .1 w_{i=2,i=2}^{1} = .1$$

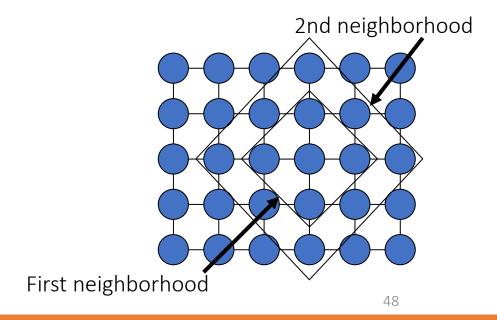
Self Organizing Maps

- The purpose of SOM is to map a multidimensional input space onto a topology preserving map of neurons
 - Preserve a topological so that neighboring neurons respond to « similar »input patterns
 - The topological structure is often a 2 or 3 dimensional space
- Each neuron is assigned a weight vector with the same dimensionality of the input space
- Input patterns are compared to each weight vector and the closest wins (Euclidean Distance)

Self Organizing Maps

- The activation of the neuron is spread in its direct neighborhood =>neighbors become sensitive to the same input patterns
- Block distance
- The size of the neighborhood is initially large but reduce over time => Specialization of the network





Self Organizing Maps

- During training, the "winner" neuron and its neighborhood adapts to make their weight vector more similar to the input pattern that caused the activation
- The neurons are moved closer to the input pattern
- The magnitude of the adaptation is controlled via a learning parameter which decays over time

