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Abstract

Polycyclic aromatic hydrocarbons (PAHs) are widespread in various ecosystems

and are pollutants of great concern due to their potential toxicity, mutagenicity

and carcinogenicity. Because of their hydrophobic nature, most PAHs bind to

particulates in soil and sediments, rendering them less available for biological

uptake. Microbial degradation represents the major mechanism responsible for the

ecological recovery of PAH-contaminated sites. The goal of this review is to

provide an outline of the current knowledge of microbial PAH catabolism. In the

past decade, the genetic regulation of the pathway involved in naphthalene

degradation by different gram-negative and gram-positive bacteria was studied in

great detail. Based on both genomic and proteomic data, a deeper understanding

of some high-molecular-weight PAH degradation pathways in bacteria was

provided. The ability of nonligninolytic and ligninolytic fungi to transform or

metabolize PAH pollutants has received considerable attention, and the biochem-

ical principles underlying the degradation of PAHs were examined. In addition,

this review summarizes the information known about the biochemical processes

that determine the fate of the individual components of PAH mixtures in polluted

ecosystems. A deeper understanding of the microorganism-mediated mechanisms

of catalysis of PAHs will facilitate the development of new methods to enhance the

bioremediation of PAH-contaminated sites.

Introduction

Polycyclic aromatic hydrocarbons (PAHs) are an all-pervad-

ing group of hydrophobic organic compounds consisting of

two or more combined benzene rings in linear, angular or

cluster arrangements. PAHs are the most important compo-

nents of crude oil, creosote, asphalt and coal tar. They

contaminate the soil via many routes, including the burning

of fossil fuels, the manufacture of gas and coal tar, wood

processing, escaped automobile gasoline and the incinera-

tion of waste (Harvey, 1991). There are more than 100

diverse PAH compounds, and most of them persist in the

ecosystem for many years owing to their low aqueous

solubility and their absorption to solid particles (Volkering

et al., 1992, 1993; Bosma et al., 1997). The presence of PAHs

in contaminated soil and sediment poses a significant risk to

the soil, because many PAH compounds are known or

suspected to be toxic, mutagenic and, in some cases,

carcinogenic (Cerniglia & Heitkamp, 1989; Patnaik, 1992).

On the basis of their abundance and toxicity, 16 PAH

compounds have been included in the United States Soilal

Protection Agency’s list of priority pollutants (Keith &

Telliard, 1979).

The elimination of PAHs from contaminated soil is

essential during its remediation according to relevant clean-

up standards. The biological treatment of soil contaminated

with PAHs should be a more efficient, financially affordable

and adaptable choice than physicochemical treatment be-

cause it presents potential advantages such as the complete

degradation of the pollutants, lower treatment cost, greater

safety and less soil disturbance (Habe & Omori, 2003).

Many bacteria have been discovered that degrade PAHs via

either metabolism or cometabolism. The ordinary biochemical

pathways of the bacterial metabolism of PAHs have been

scrutinized. Low-molecular-weight (MW) PAHs, such as

naphthalene, phenanthrene and anthracene, are usually

FEMS Microbiol Rev 32 (2008) 927–955 c� 2008 Federation of European Microbiological Societies
Published by Blackwell Publishing Ltd. All rights reserved

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sre/article-abstract/32/6/927/2683263 by Ecole Francaise D
'Athenes user on 09 February 2020



readily degraded by bacteria in soil and under laboratory

conditions (Cerniglia, 1984, 1992; Sutherland et al., 1995).

Since the initial studies by Heitkamp et al. (1988a, b) on the

bacterial degradation of pyrene, there have been numerous

reports describing the microbial oxidation of four-ring

PAH. Recently, a Sphingomonad endowed with the remark-

able ability to grow on four-ring PAH chrysene as its sole

carbon and energy source was isolated (Willison, 2004).

However, less is known about the bacteria capable of

utilizing PAHs containing five or more rings as a carbon

and energy source, such as benzo[a]pyrene and benz[a]an-

thracene. The mechanisms involved in the degradation of

PAHs with more than five rings are unclear.

Diverse fungi capable of utilizing PAHs have been in-

vestigated as well. Some filamentous fungi, basidiomycetes,

white-rot fungi and deuteromycetes have been shown to

remove PAHs more competently than bacteria. PAHs sus-

ceptible to fungal biodegradation include naphthalene,

phenanthrene, anthracene, pyrene, benzo[a]pyrene, fluorene,

dibenzothiophene, catechol, benzo[a]anthracene, benzo[-

ghi]-perylene, chrysene, benzo[b]fluoranthene and ben-

zo[k]-fluoranthene (Cerniglia, 1997; Zheng & Obbard,

2002, 2003). At least two mechanisms are involved in PAH

biodegradation: one utilizes the cytochrome P-450 system

(Yadav et al., 2006) and the other uses the soluble extra-

cellular enzymes of lignin catabolism, including lignin

peroxidase, manganese peroxidase (Steffen et al., 2003) and

laccase (Gianfreda et al., 1999).

In the past decade, more and more microorganisms

capable of mineralizing PAH compounds have been isolated,

and knowledge about many PAH-catabolic genes from

bacteria and fungi is accumulating. However, until now,

there have been no reviews summarizing this progress. In

this review, we will summarize the recent advances in

understanding the natural diversity and capabilities of

bacteria and fungi for degrading PAH compounds.

Bacterial catabolism of polycyclic
aromatic hydrocarbons

Numerous bacteria have been found that degrade PAHs, and

some can utilize low-MW PAHs as their sole carbon source.

The common biochemical pathways for the bacterial degra-

dation of PAHs such as naphthalene (Resnick et al., 1996;

Annweiler et al., 2000), phenanthrene (Menn et al., 1993;

Kiyohara et al., 1994; Pinyakong et al., 2003a, b), anthracene

and acenaphthene (Dean-Ross et al., 2001; Pinyakong et al.,

2004) have been well investigated. Biodegradation mechan-

isms require the presence of molecular oxygen to initiate the

enzymatic attack of PAH rings. In the initial step, dioxygenase-

catalyzed oxidation of arenes generally takes place in

aerobic bacterial systems to yield vicinal cis-dihydrodiols as

the early bioproducts by a multicomponent enzyme system.

These dihydroxylated intermediates may then be cleaved by

intradiol or extradiol ring-cleaving dioxygenases through

either an ortho-cleavage pathway or a meta-cleavage path-

way, leading to central intermediates such as protocatechu-

ates and catechols that are further converted to tricarboxylic

acid (TCA) cycle intermediates (Cerniglia, 1992; Eaton &

Chapman, 1992; Gibson & Parales, 2000).

Dioxygenases responsible for the formation of cis-

dihydrodiols from arenes of PAH substrates appear to be the

most ubiquitous in bacteria. They have usually been found

to contain multicomponent enzyme systems involving sev-

eral proteins, nonheme iron, and require NADH (Gibson &

Subramanian, 1984; Gibson et al., 1990; Resnick et al.,

1994). To date, dioxygenase-containing organisms have

been grown on a range of carbon sources, and these enzymes

have been classified accordingly, e.g. toluene (TDO),

naphthalene (NDO) and biphenyl (BPDO). TDO is con-

firmed to be an extremely wide-ranging substrate enzyme.

The TDO system is most suitable for cis-dihydroxylation of

substituted benzene substrates and bicyclic arenes. However,

there is a size limitation on substrate acceptability for TDO;

bulky and bendy molecules fit poorly into the active site of

this enzyme. For larger PAHs, both NDO and BPDO are

capable of catalyzing dihydroxylation, with only the latter

enzyme capable of metabolizing tetracyclic or larger exam-

ples. By contrast, the NDO enzyme appears to be generally

incapable of catalyzing the cis-dihydroxylation of monocyc-

lic aromatic rings (Boyd & Sheldrake, 1998).

Low-MW PAH dioxygenase system

The bacterial naphthalene dioxygenase system is particularly

useful for oxidizing bi- and tri-cyclic PAH substrates, such as

naphthalene, phenanthrene and anthracene. The naphtha-

lene dioxygenase system is a multicomponent enzyme,

generally including an NADH oxidoreductase, a ferredoxin

and an oxygenase component that contains the active site.

This catalytic portion of the naphthalene dioxygenase sys-

tem, termed NDO, is composed of large and small subunits

– a and b, respectively – that are in an a3b3 configuration.

NDO is a member of a large family of oxygenases whose a
subunits contain a Rieske [2Fe–2S] center and mononuclear

nonheme iron, and determine the substrate specificity of

NDO (Butler & Mason, 1997; Parales et al., 1998). Generally,

two electrons from the reduced pyridine nucleotide are

transferred via the reductase, the ferredoxin, and the Rieske

center to the Fe (II) ion at the active site during a catalytic

cycle. The reducing equivalents allow the activation of

molecular oxygen, which is a prerequisite to dihydroxylation

of the substrate (Carredano et al., 2000; Ferraro et al., 2005,

2006). Interestingly, the AaAb genes, which encode the

ferredoxin and reductase components of the multicompo-

nent PAH initial dioxygenase, are not present on the phn
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locus of the Burkholderia sp. strain RP007 (Laurie & Lloynd-

Jones, 1999). Currently, we are trying to improve the

efficiency of the electron transport functions of the nahAcAd

gene products by DNA shuffling.

Naphthalene-degrading bacteria are broadly distributed

in nature. So far, a few naphthalene dioxygenases have been

purified and extensively characterized from different strains

of bacteria, and genetic control of the pathways involved in

naphthalene degradation has been studied in detail. The

naphthalene catabolic genes (nah) of NAH7 are organized

into two operons: the nal operon encoding the upper path-

way enzymes involved in conversion of naphthalene to

salicylate, and the sal operon encoding the lower pathway

enzymes involved in the conversion of salicylate to pyruvate

and acetyl coenzyme A. The two operons are closely

genetically linked to each other and to their common

regulatory gene, nahR. The nahR gene encodes a trans-

acting positive regulator belonging to the LysR family of

transcriptional regulators that are widely distributed in

bacteria. NahR is required for the induction of the nah genes

by salicylate and the high-level expression of those genes in

bacteria (Yen & Gunsalus, 1982, 1985; Grund & Gunsalus,

1983).

The nucleotide sequences of genes encoding the upper

pathway enzymes from several Pseudomonas strains have

been reported: ndo genes from Pseudomonas putida NCIB

9816 (Yang et al., 1994), nah genes from P. putida G7 (Menn

et al., 1993), NCIB9816-4 (Simon et al., 1993), ND6 (Li

et al., 2004), BS202 (Kosheleva et al., 1986; Balashova et al.,

2001), and P. putida sp. (Ono et al., 2007), dox genes from

Pseudomonas sp.C18 (Denome et al., 1993), pah genes from

P. putida OUS82 (Kiyohara et al., 1994; Takizawa et al.,

1994) and Pseudomonas aeruginosa Pak1 (Takizawa et al.,

1999), and nah genes from Pseudomonas stutzeri AN10

(Bosch et al., 1999a, b, 2000). All the nah structural and

regulatory genes on the former plasmid are located on a 39-

kb class II transposon, Tn4655 (Tsuda & Iino, 1990; Sota

et al., 2006). The nucleotide sequences of the upper pathway

genes are more than 90% identical. All these genes are

arranged in a similar order: nahAa (ferredoxin reductase)-

nahAb (NDO ferredoxin)- nahAc (the a-subunit

of NDO)- nahAd (the b-subunit of NDO)- nahB (naphtha-

lene-cis-dihydrodiol dehydrogenase)- nahF (salicylal-

dehyde dehydrogenase)- nahC (1,2-dihydroxynaphthalene

dioxygenase)- nahQ (unknown gene)- nahE (trans-o-hydro-

benzylidenepyruvate hydratase aldolase)- nahD (2-hydroxy-

chromene-2-carboxylate isomerase) (Habe et al., 2003)

(Fig. 1). The genetic regulation of this pathway was also

studied in detail for different bacterial strains (Fig. 2). In

Ralstonia sp. U2, the naphthalene dioxygenase genes (nag

gene) contained all of the genes corresponding to the

classical nah gene of Pseudomonas strains in the same order,

with the exception of two extra genes inserted between the

ferredoxin reductase gene and ferredoxin gene. The two

additional genes, named nagG and nagH, are structural

subunits of salicylate-5-hydroxylase and can help the host

convert naphthalene to gentisate (Fuenmayor et al., 1998;

Zhou et al., 2001). In the Comamonas testeroni strain GZ42,

the upper pathway genes are similar to those of Ralstonia sp.

U2 (Goyal & Zylstra, 1997). However, in C. testeroni strain

GZ39, the pathway genes are quite different from those of

the typical nah genes. In this strain, several genes (such as

extradiol dioxygenase) are not within the cluster, but a

glutathione-S-transferase gene was inserted into the cluster

(Goyal & Zylstra, 1996; Zylstra et al., 1997).

It was determined from the sequences of P. putida G7,

NCIB9816-4, ND6, and P. stutzeri AN10 strains that the

lower pathway genes consist of 11 genes organized in the

order nahGTHINLOMKJY. nahY is not a catabolic gene, but

a naphthalene chemotaxis gene (Grimm & Harwood, 1999;

Boronin, 2001) (Fig. 2). In the strains AN10 and ND6, there

is another salicylate hydroxylase gene (nahW) outside but

close to the sal operon. It was suggested that isofunctional

enzyme might be advantageous for the host to adjust its

metabolism to extreme conditions (Bosch et al., 1999a, b; Li

et al., 2004).

A number of PAH-degrading phenotypes cannot be

explained genotypically by comparison with nah-like se-

quences in contaminated soils. The nah-like probe can only

provide a monitor for 45% of strains isolated with a

naphthalene-degrading phenotype, and yet the same probe

was only useful for 15% of strains isolated with a phenan-

threne-degrading phenotype (Lloyd-Jones et al., 1999,

2000). The enzymes involved in the conversion of naphtha-

lene to salicylate can also degrade phenanthrene to naphtha-

lene-1,2-diol. However, it was found that the sequence

similarity and gene organization of the naphthalene cata-

bolic genes were very different between the Burkholderia sp.

RP007 strain and some classical naphthalene degradation

strains. The strain RP007’s naphthalene catabolic genes (phn

gene) encode iron–sulfur protein a and b subunits of a PAH

initial dioxygenase, but lack both ferredoxin and reductase

components. The ferredoxin and reductase genes for elec-

tron transport functions of the phn gene may be located

elsewhere in the RP007 genome or may be supplied by

cellular housekeeping genes (Laurie & Lloyd-Jones, 1999,

2000).

Different routes of naphthalene degradation have also

been illustrated. The Alcaligenes faecalis AFK2 strain makes

use of phenanthrene as its sole carbon source through the

o-phthalate pathway (Kiyohara et al., 1982). Some unique

genes, such as 3,4-dihydroxyphenanthrene dioxygenase

(phnC), 2-carboxybenzaldehyde dehydrogenase (phnI),

and trans-2-carboxybenzal-pyruvate hydratase aldolase

(phnH), appear in this pathway, which may make the strain

prefer phenanthrene to naphthalene (Nagao et al., 1988;
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Kiyohara et al., 1990). The Nocardioides sp. KP7 strain

degrades phenanthrene via the phthalate pathway as well

(Iwabuchi & Harayama, 1997, 1998a, b). The phd genes of

this strain belong to a new class of PAH-catabolic genes due

to variation in gene organization and sequence similarity.

The PhdA and PhdB genes, which encode the a- and b-

subunit of phenanthrene dioxygenase, are essential for

enzyme activity. Although the basic sequence features of

each protein family are conserved, each of the subunits of

the dioxygenase shows a modest (o 60%) sequence identity

to all of the known dioxygenase subunits. The ferredoxin

component of the dioxygenase PhdC belongs to the

[3Fe–4S] or [4Fe–4S] type of ferredoxin, but not to the

[2Fe–2S] type found in most components of PAH dioxy-

genase (Iwabuchi & Harayama, 1998a, b; Saito et al., 1999).

The dispensability of the ferredoxin and ferredoxin reduc-

tase components of Escherichia coli suggests the relatively

low specificity of the electron transport systems toward the

oxygenase components (Saito et al., 2000).

It has been observed that a high proportion of the PAH-

degrading isolates in soil belong to the sphingomonads.

Unlike other gram-negative bacteria strains, members of the

genus Sphingomonas are able to degrade a wide range of

natural and xenobiotic compounds, such as biphenyl, (sub-

stituted) naphthalene(s), fluorene, (substituted) phenan-

threne(s), pyrene, (chlorinated) diphenylether(s),

(chlorinated) furan(s), (chlorinated) dibenzo-p-dioxin(s),

carbazole, estradiol, polyethylenglycols, chlorinated phenols

and different herbicides and pesticides (Basta et al., 2005). It

seems possible that PAH-degrading sphingomonads are

adapted to the oligotrophic environment by having

high-affinity uptake systems and an ability to simulta-

neously take up mixed substrates rather than being

particular specialists for the degradation of hydrophobic

aromatic compounds (Eguchi et al., 1996; Schut et al., 1997;

Fredrickson et al., 1999; Pinhassi & Hagstrom, 2000). Many

sphingomonads degrade naphthalene, phenanthalene,

and anthracene via common pathways found in other

gram-negative bacteria (Pinyakong et al., 2003a, b). It was

demonstrated that large plasmids present in xenobiotic-

degrading Sphingomonas strains are responsible for the

degradative capabilities (Kim et al., 1996; Feng et al., 1997;

Fig. 1. Gene clusters for naphthalene/phenanthrene upper catabolic pathway in Pseudomonas strains. The pentagon represents the size, location, and

direction of transcription of the ORF. The tnpI and tnpR genes encode the site-specific tyrosine and serine recombinases, respectively (Nash, 1996). The

bold line represents the 84-bp sequence reported Eaton (1994). References for the sequences are as follows: nah genes from Pseudomonas putida G7

(NAH7) (AB237655), P. putida sp. (pSLX928-6) (AB255564), P. putida NCIB9816-4 (pDTG1) (AF491307), Pseudomonas sp. ND6 (pND6-1) (AY208917),

Pseudomonas stutzeri AN10 (AF039533), and P. putida BS202 (AF010471); pah genes from Pseudomonas aeruginosa PaK1 (D84146) and P. putida

OUS82 (AB004059); ndo genes from P. putida NCIB9816 (M23914); and dox genes from Pseudomonas sp. strain C18 (M60405). Enzyme designations

are described in the text.
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Romine et al., 1999; Ogram et al., 2000; Basta et al., 2004).

For example, a 40-kb DNA region was found to be related to

aromatic catabolism in Sphingobium yanoikuyae strain B1,

in which two dioxygenase genes are predicted to be required

for conversion of PAHs and biphenyl to simple aromatic

acid, and meta-cleavage genes are required for conversion of

aromatic acids to the tricarboxylic acid cycle (TAC) inter-

mediate (Yen & Serdar, 1988; Assinder & Williams, 1990;

Zylstra & Kim, 1997; Kim & Zylstra, 1999). However, these

aromatic-degradative genes for catabolic pathways are often

Fig. 2. Proposed catabolic pathways of

naphthalene by aerobic bacteria. The compounds

are naphthalene (1), cis-1,2-dihydroxy-1,

2-dihydronaphthalene (cis-naphthalene

dihydrodiol) (2), 1,2-dihydroxynaphthalene (3),

2-hydroxy-2H-chromene-2-carboxylic acid (4),

trans-o-hydroxybenzylidenepyruvic acid (5),

salicylaldehyde (6), salicylic acid (7), gentisic acid

(8), maleylpyruvic acid (9), fumarylpyruvic acid

(10), pyruvic acid (11), fumaric acid (12), catechol

(13), cis,cis-muconic acid (14), b-ketoadipic acid

(15), b-ketoadipyl-CoA (16), succiny-CoA (17),

acetyl-CoA (18), 2-hydroxymuconic-semialde-

hyde (19), 2-hydroxymuconic acid (20),

4-oxalocrotonic acid (21), 2-oxo-4-pentenoic

acid (22), 4-hydroxy-2-oxovaleric acid (23), and

acetaldehyde (24). The enzymes involved in each

reaction step are naphthalene dioxygenase

(NahAaAbAcAd) (step A1), cis-naphthalene

dihydrodiol dehydrogenase (NahB) (A2), 1,

2-dihydronaphthalene dioxygenase (NahC) (A3),

2-hydroxy-2H-chromene-2-carboxylate isomerase

(NahD) (A4), trans-o-hydroxybenzylidenepyruvic

hydratase-aldolase (NahE) (A5), salicylaldehyde

dehydrogenase (NahF) (A6), salicylate

5-hydroxylase (NagGHAaAb) (A7), gentisate 1,

2-dioxygenase (NagI) (A8), maleylpyruvate

isomerase (NagL) (A9), fumarylpyruvate

hydrolase (NagK) (A10), salicylylate hydroxylase

(NahG) (A11), catechol 1,2-dioxygenase (A12),

b-ketoadipate:succinyl-CoA transferase (A13),

b-ketoadipyl-CoA thiolase (A14), catechol 2,

3-dioxygenase (NahH) (A15), hydroxymuconic-

semialdehyde dehydrogenase (NahI) (A16),

4-oxalocrotonate isomerase (NahJ) (A17),

4-oxalocrotonate decarboxylase (NahK) (A18),

hydroxymuconic-semialdehyde hydrolase (NahN)

(A19), 2-oxo-4-pentenoate hydratase (NahL)

(A20), 2-oxo-4-hydroxypentenoate aldolase

(NahM) (A21), and acetaldehyde dehydrogenase

(NahO) (A22).

FEMS Microbiol Rev 32 (2008) 927–955 c� 2008 Federation of European Microbiological Societies
Published by Blackwell Publishing Ltd. All rights reserved

931Microbial biodegradation of polyaromatic hydrocarbons

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sre/article-abstract/32/6/927/2683263 by Ecole Francaise D
'Athenes user on 09 February 2020



localized in the plasmid separately from each other, or, at

least, are not organized in coordinately regulated operons.

There is no evident biochemical function of the individual

gene clusters. In plasmid pNL1 of strain F199, there are at

least 13 gene clusters predicted to encode enzymes asso-

ciated with the degradation of aromatic compounds (Ro-

mine et al., 1999). Several parts of the DNA sequence in

pNL1 regions encoding aromatic catabolic genes are similar

to those in other Sphingomonas strains (Habe et al., 2003).

The ‘flexible’ gene organization (e.g. different combinations

of conserved gene clusters) could be one of the mechanisms

that allows sphingomonads to adapt quickly and efficiently

to novel compounds in the environment (Basta et al., 2005).

In contrast to Pseudomonas and other gram-negative

bacteria whose structural genes required for naphthalene

utilization are usually clustered, the gram-positive bacteria

Rhodococcus strains NCIMB12038, P200 and P400 display

only three structural genes required for naphthalene utiliza-

tion (narAa, narAb and narB) in the region (Larkin et al.,

1999; Kulakov et al., 2005). The narAa and narAb genes

encode the a- and b-subunits of the naphthalene dioxygen-

ase (NDO) catalytic component of iron–sulfur protein

(ISPNAR). Both subunits of the NCIMB12038 NDO

showed only 30% amino acid identity to the corresponding

P. putida NDO subunits. The narB gene has 39% amino acid

identity to NahB from the P. putida G7 strain. No genes were

found in the Rhodococcus strains that corresponded to the

genes encoding the electron transport components reduc-

tase and ferredoxin of NDO in Pseudomonas. It was found

that the nar region is not organized into a single operon, but

there are several transcription units that differ in the

Rhodococcus strains. The narA and narB genes were found

to be transcribed as a single unit through different start sites,

and their transcription was induced by naphthalene. Puta-

tive regulatory genes (narR1 and narR2) are transcribed as a

single mRNA in naphthalene-induced cells (Kulakov et al.,

2000; Larkin et al., 2005).

As described above, many bacteria containing the en-

zymes involved in the conversion of naphthalene to salicy-

late can degrade phenanthrene as well. There are three

pathways that can convert phenanthrene dihydrodiols to

naphthalene-1,2-diol: initial dioxygenation at the 1,2-posi-

tion, 3,4-position and 9,10-position of phenanthrene

(Pinyakong et al., 2000; Seo et al., 2006) (Fig. 3). In studies

of the Burkholderia sp. C3 strain, the initial dioxygenation at

the 3,4-C positions may be dominant in the first three days

of incubation because the concentrations of cis-phenan-

threne-3,4-dihydrodiol were higher than cis-phenanthrene-

1,2-dihydrodiol. However, cis-phenanthrene-1,2-dihydrodiol

was more abundant than cis-phenanthrene-3,4-dihydrodiol at

the 7th day. The result of a constant accumulation of

1-hydroxy-2-naphthoic acid rather than 2-hydroxy-1-

naphthoic acid in the phenanthrene-supplemented media

suggested that degradation of 2-hydroxy-1-naphthoic acid

might not be a limiting step. Slow degradation of 1-hydroxy-

2-naphthoic acid probably facilitated the 1,2-dioxygenation

metabolic pathway but 3,4-dioxygenation. Naphthalene-

1,2-diol was further degraded through meta- and ortho-

cleavages. The meta-cleavage of naphthalene-1,2-diol

yielded 2-hydroxybenzalpyruvic acid, which was then trans-

formed to gentisic acid through salicylic aldehyde. This

reaction was presumably catalyzed by hydratase–aldolase,

which works in the naphthalene degradation pathway. The

ortho-cleavage formed 2-carboxycinnamic acid, which was

then converted to phthalic acid (Seo et al., 2007). The

Arthrobacter sp. P1-1 strain can degrade phenanthrene

through dioxygenation on the 1,2-, 3,4-, and 9,10-C posi-

tions. The intermediate products phenanthrene-1,2-, 3,4-

and 9,10-diols mainly undergo meta-cleavage and convert

into naphthalene-1,2-diol, except for a limited amount of

ortho-cleavage that produces a trace amount of o-carboxy-

vinylnaphthoates and diphenic acid (Seo et al., 2006). As

in the Burkholderia sp. C3 strain, the degradation of

naphthalene-1,2-diol was branched again to yield a

dominant ortho-cleavage pathway to produce phthalate

and a minor meta-cleavage to salicylate. Phenanthrene-

degrading bacteria using the ortho-cleavage pathway

cannot grow when naphthalene is the sole carbon source

(Keum et al., 2005; Xia et al., 2005).

Anthracene is found in high amounts in PAH-contami-

nated environments, and a variety of bacterial species have

the ability to utilize anthracene as their sole source of carbon

and energy (Tongpim & Pickard, 1999; Wick et al., 2002).

The initial reactions in the degradation of anthracene are

catalyzed by multicomponent dioxygenases to produce cis-

1,2-dihydrodiols. The enzymatic attack at the C-1 and C-2

positions of the anthracene moiety is similar to the naphtha-

lene dioxygenase pathways. The product 1,2-dihydroxyan-

thracene can be cleaved by meta-ring cleavage and converted

to 2-hydroxy-3-naphthaldehyde and then to 2-hydroxy-3-

naphthoic acid, which is further metabolized to salicylate.

Identification of metabolites by comparison with authentic

standards and transient accumulation of o-phthalic acid by

the Mycobacterium sp. strain during growth on anthracene

suggest a pathway through o-phthalic acid and protocate-

chuic acid (van Herwijnen et al., 2003a, b). An alternate

route of enzymatic attack by the Mycobacterium sp. strain

PYR-1 at the C-9 and C-10 positions of anthracene was

found to form the dead-end product 9, 10-anthraquinone.

A small number of side product 6,7-benzocoumarin can also

be detected during the meta-ring cleavage process. The

accumulation of 1-methoxy-2-hydroxyanthracene provided

further evidence for the dioxygenation of anthracene by the

Mycobacterium sp. strain PYR-1 (Moody et al., 2001). On the

other hand, ortho-cleavage of 1,2-dihydroxyanthracene into

3-(2-carboxyvinyl) naphthalene-2-carboxylic acid has also
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Fig. 3. Proposed catabolic pathways of phenanthrene by aerobic bacteria. The compounds are phenanthrene (1), cis-1,2-dihydroxy-1,2-dihydrophenan-

threne (2), 1,2-dihydroxyphenanthrene (3), 2-[(E)-2-carboxyvinyl]-1-naphthoic acid (4), trans-4-(2-hydroxynaph -1-yl)-2-oxobut-3-enoic acid (5), 5,6-

benzocoumarin (6), 2-hydroxy-1-naphthoic acid (7), naphthalene-1,2-dicarboxylic acid (8), cis-3,4-dihydroxy-3,4-dihydrophenanthrene (9), 3,4-dihydrox-

yphenanthrene (10), 1-[(E)-2-carboxyvinyl]-2-naphthoic acid (11), trans-4-(1-hydroxynaph-2-yl)-2-oxobut-3-enoic acid (12), 1-hydroxy-2-naphthoic acid (13),

7,8-benzocoumarin (14), 1,2-dihydroxynaphthalene (15), 2-hydroxy-2H-chromene-2-carboxylic acid (16), trans-o-hydroxybenzalpyruvic acid (17), salicylalde-

hyde (18), salicylic acid (19), trans-2-carboxybenzalpyruvic acid (20), 2-carboxybenzaldehyde (21), o-phthalic acid (22), protocatechuic acid (23), cis-9,10-

dihydroxy-1,2-dihydrophenanthrene (24), and 2,20-diphenic acid.
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been reported for Mycobacterium sp. PYR-1 and a Rhodo-

coccus species (Tongpim & Pickard, 1996; Dean-Ross et al.,

2001; Moody et al., 2001) (Fig. 4).

Fluorene is a major component of fossil fuels and can be

commonly identified in the atmosphere, fresh water, and

both riverine and marine sediments (Grifoll et al., 1992,

1994, 1995). Three major degradative pathways for fluorine

have been proposed (Casellas et al., 1997, 1998; Wattiau

et al., 2001; Habe et al., 2004). Two of these pathways are

initiated by a dioxygenation at the 1,2 or the 3,4 position.

The corresponding cis dihydrodiols undergo dehydrogena-

tion and then meta-cleavage. After the aldolase reaction and

decarboxylation of the ring-fission product, the resulting

indanones are substrates for a biological Baeyer–Villiger

reaction, yielding the aromatic lactones 3-isochromanone

and 3,4-dihydrocoumarin. Enzymatic hydrolysis of the latter

results in the production of 3-(2-hydroxyphenyl) propionic

acid, which is further metabolized via catechol, to connect

this pathway with the central metabolism. The third route is

initiated by monooxygenation at the C-9 position to pro-

duce 9-fluorenol, which is then dehydrogenated to 9-fluor-

enone (Fig. 5). Angular dioxygenation of 9-fluorenone leads

to 1,1a-dihydroxy-1-hydro-9-fluorenone, which is dehydro-

genated to 20-carboxy-2,3-dihydroxybiphenyl and then

spontaneously transformed to 8-hydroxy-3,4-benzocou-

marin. Afterwards, the metabolite is catalyzed by a pathway

analogous to biphenyl degradation, leading to the formation

of phthalate (Engesser et al., 1989; Selifonov et al., 1993;

Wattiau et al., 2001). The genes involved in the degradation

of fluorene to phthalate were characterized in the fluorine-

degrader Terrabacter sp. strain DBF63. A 14.7-kb region

containing the genes flnRB-dbfA1A2-flnED1-ORF16 that

carry out fluorene degradation is found in the DBF63 strain.

The initial attack on both fluorene and 9-fluorenone is

Fig. 4. Proposed catabolic pathways of

anthracene by aerobic bacteria. The compounds

are anthracene (1), anthracene-9,10-dihydrodiol

(2), 9,10-dihydroxyanthracene (3), 9,

10-anthraquinone (4), cis-1,2-dihydroxy-1,

2-dihydroanthracene (5), 1,2-dihydroxy

anthracene (6), cis-4-(2-hydroxynaphth-3-yl)-2-

oxobut-3-enoic acid (7), 2-hydroxy-3-naphthoic

acid (8), 6,7-benzocoumarin (9), o-phthalic acid

(10), protocatechuic acid (11), 1-methoxy-2-hy-

droxyanthracene (12), and 3-(-2-carboxyvinyl)-

naphthalene-2-carboxylic acid (13).
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Fig. 5. Proposed catabolic pathways of fluorene by aerobic bacteria. The compounds are fluorene (1), cis-1,2-dihydroxy-1,2-dihydrofluorene (2), 1,

2-dihydroxy fluorene (3), 2-indanone (4), 3-isochromanone (5), cis-3,4-dihydroxy-3,4-dihydrofluorene (6), 3,4-dihydroxy fluorene (7), 1-indanone (8),

3,4-dihydrocoumarin (9), 3-(2-hydroxyphenyl) propionic acid (10), salicylic acid (11), 9-fluorenol (12), 9-fluorenone (13), 1,1a-dihydroxy-1-hydro-9-

fluorenone (14), 20-carboxy-2,3-dihydroxybiphenyl (15), phthalic acid (16), 4,5-dihydroxyphthalate (17), protocatechuic acid (18) 1,2-dihydro-1,

2-dihydroxy-9-fluorenone (19), and 8-hydroxy-3,4-benzocoumarin (20).
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catalyzed by the angular dioxygenase (DbfA1 and DbfA2) to

yield 9-fluorenol and 1,1a-dihydroxy-1-hydro-9-fluore-

none, respectively. The FlnB protein exhibited activities

against both 9-fluorenol and 1,1a-dihydroxy-1-hydro-9-

fluorenone to produce 9-fluorenone and 20-carboxy-2,3-

dihydroxybiphenyl, respectively. FlnD1 is a heteromeric

protein encoded by flnD1 and ORF16, and is a member of

the class III two-subunit extradiol dioxygenases. FlnE was

identified as a serine hydrolase for the metacleavage pro-

ducts that yield phthalate (Kasuga et al., 2001; Habe et al.,

2003, 2004).

High-MW PAH dioxygenase system

The presence of high-MW PAHs in contaminated soils

continues to pose significant problems because the persis-

tence and genotoxicity of PAHs increase with increasing

molecule size (Cerniglia, 1992). The relationship between

PAH environmental persistence and increasing numbers of

benzene rings is in agreement with the knowledge of

environmental biodegradation rates and molecule size

(Bossert & Bartha, 1986; Heitkamp & Cerniglia, 1987). For

example, half-lives of the three-ring molecule phenanthrene

in soil and sediment may range from 16 to 126 days, while

half-lives of the five-ring molecule benzo[a]pyrene (BaP)

may range from 229 to 1400 days (Shuttleworth & Cerniglia,

1995). Electrochemical stability and hydrophobicity are two

crucial factors for the accretion of high-MW PAHs in the

environment (Volkering et al., 1992, 1993; Bosma et al.,

1997; Harms & Bosma, 1997).

The first report of the biodegradation of high-MW PAHs

was presented in 1975. Gibson et al. identified two products

of BaP metabolism – cis-9,10-dihydroxy-9,10-dihydro-ben-

zo[a]pyrene and cis-7,8-dihydroxy-7,8-dihydrobenzo[a]-

pyrene – from the culture solution of a mutant Beijerinckia

sp. strain when it grew with succinate and biphenyl (Gibson

et al., 1975). However, in 1988 the bacterium that could

degrade PAHs with four aromatic rings was isolated from

sediment below an oil field by Heitkamp and Cerniglia for

the first time (Heitkamp & Cerniglia, 1988). Also in 1988,

Mahaffey et al. (1988) investigated the further catabolism of

benz[a]anthracene by the Beijerinckia sp. strain B1 (reclas-

sified as S. yanoikuyae) after induction with biphenyl,

m-xylene, or salicylate. Nuclear magnetic resonance (NMR)

and mass spectral analyses led to the identification of one

major metabolite – 1-hydroxy-2-anthranoic acid – and two

minor metabolites – 2-hydroxy-3-phenanthroic acid and 3-

hydroxy-2-phenanthroic acid. Later, Mueller et al. (1989,

1990) showed that a bacterial community isolated from a

creosote waste site was capable of utilizing fluoranthene as

its sole source of carbon and energy for bacterial growth.

Pyrene has often been used as a model compound for

high-MW PAH biodegradation because it is structurally

similar to several carcinogenic PAHs. Although a number

of bacterial isolates have been reported to grow on or

mineralize pyrene, the majority of these isolates are nocar-

dioform actinomycetes, such as members of the genus

Mycobacterium and Rhodococcus (Heitkamp & Cerniglia,

1988; Walter et al., 1991; Rehmann et al., 1998).

Multiple pathways of pyrene degradation have been

offered for the Mycobacterium vanbaalenii PYR-1 strain,

including typical dioxygenation and monooxygenation

(Heitkamp & Cerniglia, 1988; Brezna et al., 2005). Although

Mycobacteria strains can oxidize pyrene via initial dioxy-

genation at the 1,2-positions, the metabolite will form

o-methylated derivatives of pyrene-1,2-diol or the dead end

product 4-hydroxy-perinaphthenone. The chief pathway of

pyrene degradation is dioxygenation at the 4,5-positions to

produce both cis- and trans-4,5-pyrenedihydrodiol by diox-

ygenase and monooxygense, respectively. Rearomatization

of the dihydrodiol and subsequent ortho-cleavage lead to the

formation of 4,5-dicarboxyphenanthrene, which is further

decarboxylated to 4-phenanthroate. Following another di-

oxygenation reaction, 4-phenanthroate forms cis-3,4-dihy-

droxyphenanthrene-4-carboxylate. Rearomatization of the

metabolite yields 3,4-dihydroxyphenanthrene, which is

further metabolized to 1-hydroxy-2-naphthoate. The subse-

quent enzymatic reactions, including intradiol ring cleavage

dioxygenation, result in the production of o-phthalate. Then

phthalate is further transformed to TCA cycle via the

b-ketoadipate pathway (Wang et al., 2000; Kim et al., 2003)

(Fig. 6).

Based on both genomic and proteomic data, Kim et al.

have identified 27 enzymes necessary for constructing a

complete pathway for pyrene degradation. Proteomic ana-

lysis also reveals that 18 enzymes in the pathway are

upregulated more than twofold, as indicated by peptide

counting when the organism was grown with pyrene. There

are four ring-hydroxylating steps catalyzed by the corre-

sponding dioxygenase NidAB2, MvanDraft_0817/0818,

PhtAaAb, and NidA3B3. The electron transfer components

for these four steps have been found: ferredoxin (PhtAc) and

ferredoxin reductase (PhtAd). This gene arrangement of the

b- and a-subunits of dioxygenase NidAB2 has rarely been

found in other bacteria. NidA and NidB proteins are 40-

56% similar to the corresponding isofunctional enzymes in

the Nocardioides sp. strain KP7 and Pseudomonas sp. strain

NCIMB12038. Three copies of the terminal subunits of ring-

hydroxylating oxygenase (NidAB2, MvanDraft_0817/0818,

and PhtAaAb), dihydrodiol dehydrogenase (Mvan-

Draft_0815), and ring cleavage dioxygenase (Mvan-

Draft_3242) were induced in pyrene-grown cells. However,

no ORFs for enzymes such as 1-hydroxy-2-naphthoate

hydroxylase, which is necessary for 1-hydroxy-2-naphthoate

degradation through salicylate, were detected. ORFs for

phthalate 4,5-dioxygenase and protocatechuate-4,5-
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Fig. 6. Proposed catabolic pathways of pyrene by aerobic bacteria. The compounds are pyrene (1), cis-1,2-dihydroxy-1,2-dihydropyrene (2), 1,2-

dihydroxy pyrene (3) 4-hydroxyperinaphthenone (4), 1,2-dimethoxypyrene (5), cis-4,5-dihydroxy-4,5-dihydropyrene (6), P2, 4,5-dihydroxypyrene (7),

phenanthrene-4,5-dicarboxylate (8), phenanthrene-4-carboxylate (9), cis-3,4-dihydroxyphenanthrene-4-carboxylate (10), 3,4-dihydroxyphenanthrene

(11), 1-hydroxy-2-naphthoate (12), trans-20-carboxybenzalpyruvate (13), phthalate (14), 1,2-dihydroxynaphtharene (15), cinnamic acid (16) trans-4,5-

dihydroxy-4,5-dihydropyrene (17), 6,60-dihydroxy-2,20-biphenyl dicarboxylic acid (18), and pyrene-4,5-dione (19).
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dioxygenase, which are found in the optional routes for

oxidation of phthalate and the meta cleavage of protoca-

techuate, respectively, were also not detected in the genome

sequence (Kim et al., 2004a, 2007).

Besides the M. vanbaalenii PYR-1 strain, many other

Mycobacterium sp. strains were identified and found to

mineralize pyrene. Most of the PAH-degrading mycobacter-

ia described are fast-growing species within the genus. The

mycolic acid-rich cell walls of these soil bacteria may be an

important factor in their utilization of hydrophobic sub-

strates such as PAHs.

The Mycobacterium sp. strain RJGII-135 is capable of

degrading a wide range of PAHs. Mineralization studies

using [14C]pyrene added to contaminated soils, with and

without the addition of this strain, indicated that this strain

was able to grow on pyrene as its sole source of carbon and

energy. During the mineralization of pyrene, three steady

intermediates were formed within 4–8 h, which included

two identified metabolites in strain PYR-1 – 4-phenanthre-

necarboxylic acid and 4,5-pyrenedihydrodiol – and one

special product only in the strain RJGII-135 – 4,5-phenan-

threnedicarboxylic acid (Schneider et al., 1996).

The Mycobacterium sp. strain KMS was isolated from

vadosezone soil at the Champion International Superfund

site (Libby, MT), and is able to degrade pyrene and other

PAHs. It was determined from 2-dimensional gel electro-

phoresis that the first aromatic ring hydroxylating dioxy-

genase that oxidizes pyrene to cis-4,5-pyrene-dihydrodiol

includes the a and b subunits, 4Fe–4S ferredoxin, and the

Rieske (2Fe–2S) region, which were all induced with the

addition of pyrene to the cultures. Other proteins that

further pyrene degradation, such as dihydrodiol dehydro-

genase, oxidoreductase, and epoxide hydrolase, were also

found to be notably induced with the addition of pyrene.

There were five different b-subunits and two different Rieske

(2Fe–2S) regions of the a-subunit of aromatic ring hydro-

xylating dioxygenase, indicating that there are multiple

copies of dioxygenase expressed during pyrene degradation.

Pyrene-4,5-dione was identified to be a pyrene degradation

metabolite of the Mycobacterium sp. strain KMS. Pyrene-

4,5-dione can then be degraded into two major intermedi-

ates – phenanthrene-4,5-dicarboxylic acid and 4-phenan-

throic acid – by a flavoprotein-like, FAD-dependent

oxidoreductase. Pyrene-4,5-dione can also be reduced back

to 4,5-dihydroxypyrene by quinone reductase, as reported

for M. vanbaalenii PYR-1 (Liang et al., 2006).

The Mycobacterium sp. strain AP1 was isolated from a

pyrene enrichment culture and can grow with pyrene as its

sole source of carbon and energy. However, the strain cannot

remove the substrate completely, and its growth yield

suggests an assimilation of about 10% of the pyrene carbon.

A novel metabolite identified as 6,6-dihydroxy-2,2-biphenyl

dicarboxylic acid reveals a new branch in the pathway that

involves dioxygenation on 4,5 positions and 9,10 positions

and cleavage of both central rings of the pyrene (Vila et al.,

2001).

The Mycobacterium sp. strain KR2 was isolated from

PAH-contaminated soil originating from the area of a

former gaswork plant. This isolate metabolized up to 60%

of the pyrene added (0.5 mg mL�1) within 8 days at 20 1C.

Similar to pyrene degradation by strain PYR-1, pyrene

metabolism in the KR2 strain seems to be controlled by

metabolite induction. With the exception of 2-carboxyben-

zaldehyde and cis-3,4-phenanthrene dihydrodiol-4-car-

boxylic acid, all pyrene metabolites produced by strain KR2

have been detected in cultures of other pyrene-degrading

bacteria. The formation of 4-phenanthrol from cis-3,4-

phenanthrene dihydrodiol-4-carboxylic acid should be steri-

cally favored under the assumption that the bulky carboxy

group is extruded from the bay region, thus occupying a

pseudoaxial position necessary for elimination (Rehmann

et al., 1998).

The Mycobacterium sp. strain BB1 was isolated from a

past coal gasification site. Exponential growth on pyrene was

observed over a 35-fold increase of CO2 evolution in the

fermentor. In addition, some nonsubstrate and harmless

nonionic surfactants were found to enhance the degradation

of pyrene (Boldrin et al., 1993; Fritzsche, 1994; Tiehm,

1994).

The Mycobacterium sp. strain CH1 was isolated from

PAH-contaminated freshwater sediments and could utilize

pyrene or a wide range of branched alkanes and n-alkanes as

its sole carbon and energy sources. A lag phase of at least 3

days was detected when strain CH1 was grown in pyrene;

however, this lag phase was decreased to o 1 day when

phenanthrene or fluoranthene was supplied in the culture

media. Because there was no detectable hybridization with

the nahAc gene, the enzyme system involved in pyrene

degradation is unrelated to the naphthalene dioxygenase

pathway. Furthermore, weak hybridization of the P. oleovorans

alkB gene probe to strain CH1 DNA suggests slight

homology between the genes involved in alkane oxidation.

These observations suggest that the occurrence of both

aromatic and aliphatic hydrocarbon-degradative capacities

within a single strain may be more universal (Churchill

et al., 1999).

The pathway describing the biodegradation of the four-

ringed PAH fluoranthene by M. vanbaalenii PYR-1 has been

discovered recently (Kweon et al., 2007) (Fig. 7). Thirty-

seven fluoranthene metabolites including potential isomers

were isolated from culture medium and analyzed using

HPLC, GC-MS, and UV-visible absorption. Fifty-three en-

zymes were determined to likely be involved in fluoranthene

degradation. Four proposed pathways have been proposed

for the degradation of fluoranthene initiated by mono- and

dioxygenation reactions. The dioxygenase attack occurs at
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Fig. 7. Proposed catabolic pathways of fluoranthene by aerobic bacteria. The compounds are fluoranthene (1), 7,8-dihydroxy fluoranthene (2), 7-

methoxy-8-hydroxy -fluoranthene (3), (2Z, 4Z)-2-hydroxy-4-(2-oxoacenaphthylen-1(2H)-ylidene) but-2-enoic acid (4), 1-acenaphthenone-2-carboxylic

acid (5), acenaphthylene-1(2H)-one (6),1H,3H-benzo[de] isochromen-1-one (7), acenaphthylen-1-ol (8), acenaphthylen-1,2-diol (9), naphthalene-1,8-

dicarboxylic acid (10), 2-(hydroxymethy)-acenaphthylene-1-carboxylic acid (11), 2-formylacenaphthylene-1-carboxylic acid (12), 1,2-dihydroace-

naphthylene-1,2-diol (13), 2,3-dihydroxy fluoranthene (14), 1,2-dihydroxy fluoranthene (15), (9E)-9-(carboxymethylene)-9H-fluorene-1-carboxylic acid

(16), 9-fluorenone-1-carboxylic acid (17), 9-hydroxy-9H-fluorene-1-carboxylic acid (18), 9-fluorenone (19), 9-hydroxyfluorene (20), 1,2,3-benzene-

tricarboxylic acid (21), phthalic acid (24), and monohydroxyfluoranthene (22).
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the C-1,2, C-2,3, and C-7,8 positions of the fluoranthene.

The C-1,2 and C-2,3 dioxygenation routes degrade fluor-

anthene via fluorene-type metabolites, whereas the C-7,8

route oxidizes fluoranthene via acenaphthylene-type meta-

bolites by extra- and intradiol ring cleavages. The major site

of dioxygenation is the C-2,3 dioxygenation route, which

consists of 18 enzymatic steps via 9-fluorenone-1-carboxylic

acid and phthalate with the initial ring-hydroxylating oxy-

genase, NidA3B3, oxidizing fluoranthene to fluoranthene

cis-2,3-dihydrodiol. Six cytochrome P450 genes, including

CYP51, are responsible for monooxygenation of fluor-

anthene. Then the monooxygenation product is trans-

formed to monohydroxyfluoranthenes in the catalysis of

ring-hydroxylating oxygenases and chemical dehydration of

cis- or trans-dihydrodiols (Kweon et al., 2007).

There are only limited studies that document extensive

mineralization of PAHs that have more than four rings

(Kanaly & Harayama, 2000). Most research is focused on

the five-ring benzo[a]pyrene (BaP) because it is one of the

most important environmental contaminants, and because

its mutagenesis and carcinogenesis that cause ubiquitous

xenobiotics are well recognized (Kalf & Crommentuijn,

1997; NTP, 2002). All reported BaP oxidization by bacteria

has occurred when the bacteria were grown on other

substrates, which could induce microorganisms to produce

some enzymes that can degrade BaP. An early observation of

BaP biodegradation was its oxidation to dihydrodiols by

S. yanoikuyae B8/36 (formerly Beijerinckia sp. strain B8/36),

a strain that can be induced with biphenyl, m-xylene, or

salicylate. However, no ring cleavage products were detected

(Gibson et al., 1975; Mahaffey et al., 1988; Gibson, 1999).

Schneider et al. (1996) identified cis-7,8-dihydrodiol from

growing cultures of the Mycobacterium sp. RJGII-135 strain

where pyrene was used to maintain PAH degradation. It was

suggested that the Mycobacterium sp. RJGII-135 strain was

capable of transforming BaP to initial ring oxidation and

ring cleavage products by enzymatically attacking at the

C-4,5, C-7,8, and/or C-9,10 position (Schneider et al.,

1996). When grown in a mixture of yeast extract, peptone,

and soluble starch, M. vanbaalenii PYR-1 can biotransform

0.5 mg BaP L�1 to 24.7% aqueous and organic-extractable

metabolites. This strain was also shown to slightly degrade

BaP in a six-component PAH mixture. Recently, Moody

used resting M. vanbaalenii PYR-1 cultures induced with

phenanthrene to produce several dihydrodiols and one ring-

cleavage product, 10-oxabenzo[def]chrysene-9-one, from

benzo[a] pyrene (Moody et al., 2003, 2004).

The M. vanbaalenii strain PYR-1 initially oxidized BaP

with dioxygenases and monooxygenases at C-4,5, C-9,10,

and C-11,12 (Fig. 8). It was determined from the metabo-

lites separated by reversed-phase HPLC and characterized by

UV-visible, mass, NMR, and circular dichroism spectral

analyses that the major intermediates of benzo[a]pyrene

metabolism were benzo[a]pyrene cis-4,5-dihydrodiol, ben-

zo[a]pyrene cis-11,12-dihydrodiol, benzo[a]pyrene trans-

11,12-dihydrodiol, 10-oxabenzo-[def] chrysen-9-one, and

hydroxymethoxy and dimethoxy derivatives of BaP. The

reaction of dioxygenation in the K region (4,5 positions) to

form the cis-dihydrodiol and ortho-cleavage to form chry-

sene 4,5-dicarboxylic acid are consistent with phenanthrene

and pyrene degradation. The ortho-ring fission products 4-

formylchrysene-5-carboxylic acid and 4,5-chrysene-dicar-

boxylic acid and a monocarboxylated chrysene product were

formed when replacement culture experiments were con-

ducted with benzo[a]pyrene cis-4,5-dihydrodiol. Chiral sta-

tionary-phase HPLC analysis of the dihydrodiols indicated

that benzo[a]pyrene cis-4,5-dihydrodiol had 30% 4S,5R and

70% 4R,5S absolute stereochemistry. The initial dioxygena-

tion of BaP at the C-9 and C-10 positions yields benzo[a]-

pyrene cis-9,10-dihydrodiol. Dehydration of the dihydrodiol

to the dihydroxy intermediate with subsequent meta-clea-

vage and aromatic-ring closure may lead to the formation of

10-oxabenzo-[def] chrysen-9-one. The PYR-1 strain also

oxidizes BaP to cis- and trans-11,12-dihydro-11,12-dihy-

droxybenzo[a]pyrene, which then form cis- and trans-

dihydrodiols. Benzo[a]pyrene cis-11,12-dihydrodiol

adopted an 11S,12R conformation with 100% optical purity.

The enantiomeric composition of benzo[a]pyrene trans-

11,12-dihydrodiol was an equal mixture of 11S,12S and

11R,12R molecules. The identification of the cis- and trans-

dihydrodiols is an indication that dioxygenation and mono-

oxygenation reactions occurred in naphthalene, anthracene,

phenanthrene, and pyrene degradation. The formation of

the benzo[a]pyrene trans-11,12-dihydrodiol was probably

due to the oxidation by cytochrome P450 to form ben-

zo[a]pyrene-11,12-epoxide and the successive hydrolysis of

the latter by epoxide hydrolase (Moody et al., 2004).

Additional experiments with [14C]7-benzo[a]pyrene de-

monstrated that 3.8% mineralization of BaP will take place

by the S. yanoikuyae JAR02 strain grown in the presence of

both succinate (2.0 mM) and salicylate (2.5 mM) over 7

days. Benzo[a]pyrene-cis-4,5-dihydrodiol and benzo[a]pyr-

ene-cis-7,8-dihydrodiol were observed using HPLC/MS.

Further characterization of the radio-labeled metabolite

using HPLC/MS and HPLC/MS/MS identified radio-labeled

pyrene-8-hydroxy-7-carboxylic acid and unlabeled pyrene-

7-hydroxy-8-carboxylic acid as novel ring-cleavage metabo-

lites. The similar chirality of these metabolites suggested that

the enzymatic attack position will be at C-7,8 and C-9,10

(Rentz et al., 2008).

Fungi catabolism of polycyclic aromatic
hydrocarbons

Several studies have shown that diverse fungi are capable of

PAH mineralization. These fungi can be classed into two
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groups: ligninolytic and nonligninolytic fungi (Cerniglia,

1997). At least two mechanisms are involved in PAH

biodegradation: one uses the cytochrome P-450 system and

the other uses the soluble extracellular enzymes of lignin

catabolism, including lignin peroxidase (LiP), manganese

peroxidase (MnP) and laccases (Tortella & Diez, 2005).

These enzymes are nonspecific and oxidize a wide variety of

organic compounds. These enzymes lack selectivity because

Fig. 8. Proposed catabolic pathways of benzo[a]pyrene by aerobic bacteria. The compounds are benzo[a]pyrene (1), benzo[a]pyrene-11,12-epoxide

(2), trans-benzo[a]pyrene -11,12-dihydrodiol (3), cis-benzo[a]pyrene-11,12-dihydrodiol (4), 11,12-dihydroxy-benzo[a]pyrene (5), hydroxymethoxyben-

zo[a]pyrene (6), dimethoxybenzo[a]pyrene (7), cis-benzo[a]pyrene-4,5-dihydrodiol (8), 4,5-dihydroxy-benzo[a]pyrene (9), 4-formylchrysene-5-car-

boxylic acid (10), 4,5-chrysene-dicarboxylic acid (11), chrysene-4(5)-carboxylic acid (12), cis-benzo[a]pyrene-9,10-dihydrodiol (13), 9,10-dihydroxy-

benzo[a]pyrene (14), cis-4-(8-Hydroxypyrene-7-yl)-2-oxobut-3-enoic acid (15), pyrene-8-hydroxy-7-aldehyde (16), pyrene-8-hydroxy-7-carboxylic acid

(17), cis-benzo[a]pyrene-7,8-dihydrodiol (18), 7,8-dihydroxy-benzo[a]pyrene (19), cis-4-(7-hydroxypyrene-8-yl)-2-oxobut-3-enoic acid (20), pyrene-7-

hydroxy-8-aldehyde (20), and pyrene-7-hydroxy-8-carboxylic acid (22).
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lignin contains a variety of aromatic structures formed in

plant cell walls by oxygen-radical coupling reactions of 4-

hydroxy cinnamyl, 3-methoxy-4-hydroxy cinnamyl and 3,5-

dimethoxo-4-hydroxy cinnamyl, resulting in a variety of

intermonomer linkages (Hammel, 1992). In nonligninolytic

fungi, cytochrome P450 monooxygenase enzymes catalyze

the oxidation of PAHs to arene oxides, which are initial

products of PAH metabolism.

The extracellular enzymes of lignin catabolism in
ligninolytic fungi

Because of their advantage of being able to diffuse to the

immobile PAHs, the fungal extracellular enzymes of lignin

catabolism appear to be more likely than bacterial intracel-

lular enzymes to make the initial attack on PAHs in soil.

White-rot fungi are ubiquitous in nature in their ability to

degrade and mineralize recalcitrant plant polymer lignin

(Otjen & Blanchette, 1986; Martı́nez et al., 2005). Several

reports have shown that white-rot fungi are capable of

degrading PAHs and have potential in the bioremediation

of PAH-polluted soils and sediments. Large quantities of

mycelia of several species of white-rot fungi are used to

increase the extent of PAH bioremediation in soil. The best-

characterized strain – Phanerochaete chrysosporium – can

oxidize pyrene, anthracene, fluorine and benzo[a]pyrene to

the corresponding quinines by lignin peroxidase and man-

ganese peroxidase (Bogan et al., 1996a, b). In contrast to

P. chrysosporium, the metabolism of PAHs with Phanerochaete

laevis is faster and more extensive (Bogan & Lamar, 1996).

Lignin peroxidase and manganese peroxidase can catalyze

the oxidation of the recalcitrant nonphenolic lignin to form

a high redox potential oxo-ferryl intermediate during the

reaction of the heme cofactor with hydrogen peroxide

(H2O2) (Jensen et al., 1996; Gold et al., 2000; Pérez et al.,

2002) (Fig. 9a). Two features in the molecular structure

confer ligninolytic peroxidases with distinctive catalytic

properties: (1) a heme group, conferring high redox poten-

tial to the oxo-ferryl complex and (2) the existence of

specific-binding sites for oxidation of their characteristic

substrates, including nonphenolic aromatics in the cases of

LiP, manganous iron in the case of MnP (Reddy & D’souza,

1994; Reddy et al., 2003; Martı́nez et al., 2005).The heme

group is sandwiched between an N-terminal and a

C-terminal helix and rests at the bottom of the space formed

by the surfaces of both structures. The iron coordination

and the residues involved in the active site are conserved

among most peroxidases. The iron is pentacoordinated to

the four pyrrole nitrogens of the heme and to the nitrogen in

the imidazole group of the proximal histidine. Another

distal histidine, assisted by an asparagine residue, takes part

in the transfer of the oxidizing equivalents from H2O2 to the

heme. It is suggested that the length of the Fe–imidazolic

nitrogen (Fe–Ne2) bond is related to the redox potential of

the different peroxidases (Piontek et al., 1993; Poulos et al.,

1993; Sundaramoorthy et al., 1997). Laccases catalyze a one-

electron oxidation concomitantly with the four-electron

reduction of molecular oxygen to water using a range of

phenolic compounds as hydrogen donors (Fig. 9a). The

catalysis is carried out by the presence of different copper

centers, which were arranged in a trinuclear cluster with one

type-1 (T1), one type-2 (T2) and two type-3 (T3) copper

ions. The presence of the four cupric ions, each co-ordinated

to a single polypeptide chain, is an absolute requirement for

optimal activity (Messerschmidt, 1997; Solomon et al., 2001;

Baldrian, 2006).

Various researches have revealed that the mechanism of

oxidation of PAHs by fungi ligninolytic enzymes is similar to

the degradation of nonphenolic lignin. A correlation has

been found between the ionization potential (IP) of PAHs

and the specific activity of MnP and LiP. Aromatic substrates

with a lower IP were oxidized by the two ligninolytic

enzymes and the lower the IP, the faster the oxidation rate.

A threshold value of IP was found for each enzyme: LiP

oxidizes PAHs with an IP � 7.55 eV (Vazquez-Duhalt et al.,

1994), while MnP oxidizes PAHs with an IP up to 8.2 eV. For

Fig. 9. Catalysis reaction of polycyclic aromatic hydrocarbons by the

fungal lignin peroxidase, manganese peroxidase, and laccase. (a) The

mechanism of reaction is described in equation. AH2 is the reducing

substrate. AH is the reducing substrate after one electron oxidation.

(b) Oxidation of polycyclic aromatic hydrocarbons by ligninolytic fungi.

Lignin peroxidase, manganese peroxiase, and laccase are capable of

oxidizing PAHs to the corresponding quinines.
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example, MnP isolated from Irpex lacteus was able to

efficiently degrade three- and four-ringed PAHs with an IP

higher than 7.8 eV (Bogan & Lamar, 1995; Bogan et al.,

1996a, b). Despite the possibility of direct electron transfer

from the aromatic substrate to the heme environment, long-

range electron transfer has also been detected in LiP from

P. chrysosporium (Schoemaker, 1994). Thus, extracellular

LiPs can directly oxidize condensed PAHs to produce

unstable aryl cation radicals, whereas MnPs catalyze the

oxidation of PAHs in a reaction that requires Mn21, oxygen,

and unsaturated lipids (Baborová et al., 2006; Eibes et al.,

2006). A novel manganese–lignin peroxidase (MnLiP) hy-

brid enzyme produced by Bjerkandera adusta can efficiently

oxidize Mn(II) to Mn(III) and can also carry out Mn(II)-

independent activity on aromatic substrates (Wang et al.,

2003). The role of laccase in the oxidation of nonphenolic

lignin structures is similar to LiP. All laccases can be divided

into three groups according to their redox potential (E1) at

the T1 copper site (Cambria et al., 2008). It has been

observed that the different activities of various laccases

toward substrates can mainly be attributed to differences in

their redox potential. PAHs show E1 higher than that of

laccase (500–800 mV), and so the PAH degradation by

laccase needs to be aided by small mediators (Johannes

et al., 1996; Majcherczyk et al., 1998). The most common

mediators used are 2,20-azino-bis-(3-ethylbenzothiazoline-

6-sulfonic acid) (ABTS) (Bourbonnais et al., 1995) and

–N–OH-type mediators such as 1-hydroxybenzotriazole

(HBT) and violuric acid (VA). The E1 of ABTS, HBT, and

VA are 1.09, 1.12, and 0.91 V, respectively (Xu et al., 2000,

2001). A greater DE1 could create a more favorable transi-

tional energy state for the interaction between molecular

orbitals of the mediator and the enzyme, resulting in faster

electron transfer. Laccase efficiently oxidized [14C]phenan-

threne in the presence of HBT and Tween 80. 73% of initially

added phenanthrene was degraded within 182 h to yield

phenanthrene-9,10-quinone and 2,20-diphenic acid as the

major products (Fig. 9b). The addition of the redox med-

iator ABTS to the reaction mixture increased oxidation of

phenanthrene by c. 40% (Han et al., 2004). However, the use

of these synthetic mediators implies high added costs and

the possible generation of toxic oxidized species. Some of

the natural compounds, such as r-coumaric acid, strongly

promoted the removal of PAHs by laccase. This compound

was a better laccase mediator than ABTS and was similar to

HBT, attaining 95% removal of anthracene and benzo[a]-

pyrene and around 50% removal of pyrene within 24 h

(Cañas et al., 2007).

The cytochrome P450 system

The biological functions of cytochrome P450 monooxy-

genases, such as detoxification of xenobiotics and steroido-

genesis, are based on its ability to catalyze the insertion of

oxygen into a wide variety of compounds. It was well known

that mammalian P450 plays key roles not only in the

detoxification of PAHs but also in the activation of PAHs

(Shimada, 2006). The pathways leading to the formation of

PAH diol-epoxides have been extensively studied in rat liver

P450s and epoxide hydrolase using BaP as a prototype (Fig.

10a). Traditionally, a K-region oxide, B[a]P-4,5-oxide, was

thought to be an oxidation product of BaP by P450s. The

metabolite was found to be readily hydrolyzed to an inactive

B[a]P-4,5-diol by epoxide hydrolase (Conney, 1982). Sub-

sequent examination of several BaP metabolites revealed

that CYP1A1 and CYP1B1 enzymes can activate PAHs to

toxic and carcinogenic metabolites in collaboration with

epoxide hydrolase by the formation of B[a]P-7,8-diol,

which were again oxidized to the highly reactive bay region

oxides, B[a]P-7,8-diol-9,10-epoxide (Levin et al., 1976;

Pelkonen & Nebert, 1982; Shimada & Fujii-Kuriyama,

2004).

Fungi metabolize PAH compounds to metabolites similar

to those formed by mammalian enzymes. The predominant

pathway in the initial oxidation of PAHs is a cytochrome

P450 monooxygenase/epoxide hydrolase that catalyzes the

reaction that forms trans-dihydrodiols (Mueller et al., 1995;

Cerniglia, 1997) (Fig. 10b). These metabolic steps are found

in nonligninolytic fungi, such as Cunninghamella elegans,

and ligninolytic fungi, such as Pleurotus ostreatus. For

example, C. elegans metabolized fluoranthene into fluor-

anthene trans-2,3-dihydrodiol, 8- and 9-hydroxyfluor-

anthene trans-2,3-dihydrodiol (Tortella & Diez, 2005),

whereas P. ostreatus metabolized pyrene into pyrene trans-

4,5-dihydrodiol and anthracene into anthracene trans-1,2-

dihydrodiol and 9,10-anthraquinone (Bazalel et al.,

1996a, b). The cytochrome P450 can also oxidize numerous

PAHs to phenols that are subsequently conjugated with

sulfate, glucoronic acid, or glucose (Cerniglia et al., 1982,

1986; Casillas et al., 1996; Pothuluri et al., 1996). Cunning-

hamella elegans metabolizes benzo[e]pyrene to 10-hydroxy-

3-benzo[e]pyrenylsulfate (Cerniglia et al., 1989; Pothuluri

et al., 1996) and the fungus A. niger SK9317 metabolizes

pyrene to 1-pyrenylsulfate and 1-hydroxy-8-pyrenylsulfate

(Wunder et al., 1994; Capotorti et al., 2005).

The fungus cytochrome P450 monooxygenases are a

superfamily of heme-thiolate proteins that are associated

with membranes in the endoplasmic reticulum (Degtyar-

enko, 1995; Yadav et al., 2003). Whole-genome sequencing

of the white-rot basidiomycete P. chrysosporium has revealed

the presence of the largest P450 monooxygenases in fungi

comprising c. 150 P450 genes, which could be classified into

12 families and 23 subfamilies and under 11 fungal P450

clans. The amino acid sequence of these P450 monooxygen-

ase proteins is extremely diverse, with levels of identity as

low as 16% in some cases, but their structural fold has
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Fig. 10. Similar metabolic pathways of PAHs by mammals and fungi P450s monooxygenase. (a) Proposed metabolic pathways for activation of benzo[a]pyrene

by mammalian P450s. The compounds are benzo[a]pyrene (1), (1)benzo[a]pyrene-7,8-epoxide (2), (� )benzo[a]pyrene-7,8-diol (3), (� )benzo[a]pyrene-7,

8-diol-9,10-epoxide-1 (4), (1)benzo[a]pyrene-7,8-diol-9,10-epoxide-2 (5), (� )benzo[a]pyrene-7,8-epoxide (6), (1)benzo[a]pyrene-7,8-diol (7), (� )benzo[a]

pyrene-7,8-diol-9,10-epoxide-2 (8), and (1)benzo[a]pyrene-7,8-diol-9,10-epoxide-1 (9). (b) Proposed pathway for phenanthrene degradation by fungi. A

metabolic pathway of fungi for PAHs degradation is similar to that of mammals, which is considered to be the formation of diol-epoxides by P450s and epoxide

hydrolase. Another metabolic pathway of fungi for PAHs degradation involving: hydroxylation by a monooxygenase, conjugation with sulfate ion (methyl,

glucoside, glucuronide, and xyloside), followed by a further hydroxylation to hydroxylarylsulfates (methyl, glucoside, glucuronide, and xyloside) compounds.
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remained the same throughout evolution (Rabinovich et al.,

2004; Doddapaneni et al., 2005a, b). Under two distinct

nutrient conditions, nutrient-limited (ligninolytic) and nu-

trient-sufficient (nonligninolytic), P450 monooxygenases

proved to be a functional divergence in transcriptional

profiling. P450 genes in this basidiomycetous fungus

showed varying degrees of structural similarities to the

P450 genes from different ascomycetous fungi such as

Aspergillus and Fusarium, suggesting that P. chrysosporium

has acquired these P450 families as a part of a vertical

descent from a common ancestor. For instance, the CYP63

family of proteins of P. chrysosporium, which consists of

seven members (pc-1 through pc-7), shows a structural

resemblance to the CYP52 family of ascomycetous yeasts

and has, therefore, been classified under the CYP52 clan

(Doddapaneni & Yadav, 2004; Doddapaneni et al., 2005a, b;

Yadav et al., 2006). All seven genes of the CYP63 family of

proteins showed differential transcriptional induction with

alkanes and their derivatives (Anzenbacher & Anzenbacher-

ova, 2001). Moreover, their substrate specificity seems to

extend beyond alkanes/substituted alkanes as they also showed

induction in the presence of various aromatics, including

polycyclic aromatic compounds like PAHs. For example, the

gene of pc-1 was induced by mono-aromatics (m-hydroxy

benzoic acid, nitrophenol, and phenoxy acetic acid), polycyclic

aromatic compounds (naphthalene, phenanthrene, pyrene,

3-methylcholanthrene, p-p0-biphenol and polychlorinated bi-

phenyl), and alkyl-substituted aromatics (dodecylbenzene

sulfonate, 1-phenyl dodecane and limonene). On the other

hand, pc-2 showed no induction in response to mono-

aromatic compounds, but could be induced by polycyclic

aromatic compounds. pc-4 showed induction specifically in

response to polycyclic aromatic compounds and alkyl-sub-

stituted aromatics. pc-6 showed high levels of induction in

response to some polycyclic aromatic compounds (1-

naphthol and 1,2-benzanthracene) and several alkyl-substi-

tuted aromatic compounds (Yadav et al., 2006).

Under optimized conditions, the ligninolytic enzymes

LiP, MnP, and laccase are capable of oxidizing PAHs with

an IP o 7.6. However, for PAHs with a higher IP, a

cytochrome P450 monoxygenase activity is likely required

(Bazalel et al., 1996a, b). For example, the amount of CO2

released from BaP oxidation decreased by 66% in 10 days of

culture in the presence of the inhibitor of cytochrome P450,

1-aminobenzotriazole, suggesting that such an enzyme is

involved in BaP degradation by Fusarium solani (Rafin et al.,

2000). In some fungi that degrade PAHs, extracellular

laccase and peroxidase activities were not induced by the

presence of PAHs. Moreover, the percentages of degradation

did not seem to correlate with the ligninolytic enzyme

activities (Gramss et al., 1999; Verdin et al., 2004). In certain

fungi, it seems that a wide variety of PAH can be degradated

by cytochrome P450 monoxygenase.

Although cytochrome P450-type monooxygenases might

be involved in the oxidation of PAHs by several fungi, they

oxidize PAHs via a pathway similar to the mammalian

enzyme systems to form potent carcinogens – epoxides and

dihydrodiols (Mueller et al., 1995; Cerniglia, 1997). On the

contrary, peroxidase-mediated extracellular oxidation of

PAHs in cultures of white rot fungi results initially in

quinines (Bumpus, 1989; Vyas et al., 1994). Because qui-

nones are less toxic than their respective PAH and dihy-

droxylated metabolites generated by cytochrome P450

monooxygenases, enzymatic oxidation of PAHs by lignino-

lytic oxidoreductases could be a more useful strategy in

detoxification and bioremediation processes.

Degradation of environmental PAH
mixtures

Several bacteria have the ability to degrade low- and high-

MW PAHs. For example, the Mycobacterium sp. AP1 strain,

for which pyrene and fluoranthene degradation pathways

have been proposed, can also utilize phenanthrene as its sole

source of carbon and energy (Vila et al., 2001; López et al.,

2006). The kinetics of the disappearance of individual PAHs

was in agreement with differences in their respective aqu-

eous solubilities (Volkering et al., 1992; Harms & Bosma,

1997). Mycobacterium sp. AP1 showed a significant deple-

tion of naphthalene, phenanthrene, and anthracene when

compared with uninoculated controls after 30 days. The

decrease in the concentrations of fluoranthene, pyrene and

benzo[a]pyrene with respect to the controls was not statis-

tically significant, although typical ring-cleavage products

from those compounds could be detected (Vila et al., 2001;

López et al., 2007).

It was suggested that the simultaneous bacteria-mediated

biodegradation of PAHs dissolving from a PAH mixture was

strongly influenced by their different bioavailabilities. Bioa-

vailability is considered to be a dynamic process that is

determined by the rate of substrate mass transfer to micro-

bial cells relative to their intrinsic catabolic activity. At high

mass transfer rates, the overall biodegradation rate is con-

trolled by the metabolic activity of the bacteria (Koch, 1990;

Bosma et al., 1997). The observed disappearance rates and

extents of the PAH compounds are in agreement with their

aqueous solubilities. When the growth-linked compounds

phenanthrene, fluoranthene, and pyrene are all added

together to a Mycobacterium sp. AP1 strain culture, they will

reduce simultaneously and their reduction rates will reach

maximum values during the first 168 h. However, the

biodegradation rates of fluoranthene and pyrene are sig-

nificantly lower than that of phenanthrene (López et al.,

2007).

Degradation of PAHs in contaminated soil will be also

influenced by the diffusional release of PAHs from the
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nonaqueous phase liquids (NAPLs) phase. The specific

surface area of the NAPLs may negatively influence biode-

gradation because of kinetic restrictions to the dissolution

process (Ortega-Calvo & Alexander, 1994). For bacteria

growing on NAPL-dissolved PAHs in aqueous systems,

production of bioemulsifiers would generate a larger surface

area of the substrates and subsequently a higher substrate

flux (Reddy et al., 1982). sphingomonads and Mycobacteria

growing on NAPL-dissolved PAHs can adhere strongly to

the NAPL phase. Consequently, it appears that attachment

to and biofilm formation on PAH sources is a widespread

mechanism among bacteria to overcome mass-transfer

limitations when growing on weakly soluble and strongly

sorbed PAHs (Johnsena et al., 2005).

Environmentally derived bacterial isolates often degrade

only a narrow range of PAHs, and patterns of simultaneous

degradation of PAH mixtures are complex. The observed

pattern of utilization of PAHs is not only the result of

bioavailability but also of metabolic interactions related to

competition and cometabolism effects (Bouchez et al.,

1995). Cometabolism is an important feature of the degra-

dation of PAHs. Cometabolism of one kind of PAH could

have a synergistic effect increasing the degradation of

another. Therefore, cometabolism can widen the range of

PAH attacked by a defined strain, especially for the degrada-

tion of high-MW PAHs (van Herwijnen et al., 2003a, b).

During the incubation, a number of acid metabolites carried

out by high-MW PAH-degrading Mycobacteria accumulated

in the medium. Most of these metabolites were dicarboxylic

aromatic acids formed as a result of the utilization of growth

substrates (phenanthrene, pyrene, or fluoranthene) by mul-

tibranched pathways including meta and ortho-ring-cleavage

reactions: phthalic acid, naphthalene-1,8-dicarboxylic acid,

phenanthrene-4,5-dicarboxylic acid, diphenic acid, Z-9-car-

boxymethylenefluorene-1-carboxylic acid and 6,60-dihy-

droxy-2,20-biphenyl dicarboxylic acid. These partially

oxidized compounds produced by one microbial strain

could be degraded by others (López et al., 2007).

A number of species of white-rot fungi can cometabolize

PAHs with bacteria by improving the compound bioavail-

ability. Fungi cannot utilize any high-MW PAH as their sole

carbon and energy source, but can partially degrade these if

cultured in a nutrient broth (Sutherland, 1992). Some fungi

can oxidize PAHs rapidly to a higher aqueous solubility with

their extracellular ligninolytic enzyme systems, resulting in

higher rates of mineralization of these metabolites by

bacteria. A study carried out with anthracene has confirmed

that all detected oxidation products of this compound

breakdown by white-rot fungi can be mineralized by in-

digenous bacteria (e.g. activated sludge) more rapidly than

anthracene itself is mineralized (Meulenberg et al., 1997).

Addition of indigenous microbial communities to the

white-rot fungus Bjerkandera sp. strain BOS55 resulted in

an initially rapid increase in the level of CO2 recovery from

[14C]BaP and the level of water-soluble label decreased to

16% of initial levels. This demonstrated that some polar

metabolites of fungal benzo[a]pyrene oxidation were readily

degraded by indigenous microorganisms (Kotterman et al.,

1998). Some fungi can use cytochrome P450 to transform

PAHs and activate PAHs for further degradation by bacteria.

When the nonligninolytic fungus Penicillium janthinelum

VUO 10 201 and either its bacterial consortium VUN 10 009

or S. maltophilia VUN 10 010 were combined in one culture,

25% of the BaP was mineralized to CO2 by these fungal–

bacterial cocultures over 49 days, accompanied by the

transient accumulation and disappearance of intermediates.

Inoculation of fungal–bacterial cocultures into PAH-

contaminated soil resulted in significantly improved degrada-

tion of some high-MW PAHs, such as chrysene, benzo-

[a]anthracene and dibenzo[a,h]anthracene (Boonchan

et al., 2000). Thus, it was suggested that PAH degradation

in nature is a consequence of sequential breakdown by fungi

and bacteria, with the fungi performing the initial oxidation

step (Meulenberg et al., 1997; Sack et al., 1997; Kotterman

et al., 1998).

With mixtures of two individually degradable PAHs,

metabolic competition took place whether cometabolism

occurred or not (Bouchez et al., 1995). Competition at the

active site of enzymes, in particular the initial oxygenase, has

been observed most commonly. For example, the presence

of low-MW PAHs, such as phenanthrene and fluorene, can

inhibit the degradation of fluoranthene and pyrene

(Bouchez et al., 2000; Dean-Ross et al., 2002; Lotfabat &

Gray, 2002). A second possible cause of inhibition is the

dead-end products that result from cometabolic oxidation

of nongrowth substrates, such as o-xylene and p-xylene, in a

Pseudomonas stutzeri strain (Barbieri et al., 1993; String-

fellow & Aitken, 1995).

The moisture content, pH value, aeration condition, and

availability of nutrients were determined to be the key

factors in the bioremediation of contaminated soils

(Roling-Wilfred et al., 2002; Kim et al., 2005). At early stages

(0–45 days) of the bioremediation process, the addition of

KNO3 and K2HPO4 caused significant increases in both the

heterotrophic and the PAH-degrading microbial popula-

tions, while soil stimulated only by aeration and optimum

humidity exhibited smaller increases in the sizes of both

populations and a marked delay in the increase in microbial

PAH degraders. The proportion of the PAH-degrading

microbial population compared with the heterotrophic

population not treated with nutrients increased noticeably

at 21 and 45 days, and reached 100% at 135 days, while

lower proportions were observed for the populations treated

with nutrients. Denaturing gradient gel electrophoresis

analysis and principal component analysis confirmed that

there was a remarkable shift in the composition of the
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bacterial community due to both the biodegradation pro-

cess and the addition of nutrients. At early stages of

biodegradation, the Alphaproteobacteria group (genera

Sphingomonas and Azospirillum) was the dominant group

in all treatments. At later stages, the Gammaproteobacteria

group (genus Xanthomonas), the Alphaproteobacteria group

(genus Sphingomonas), and the Cytophaga–Flexibacter–

Bacteroides group (Bacteroidetes) were the dominant groups

that did not receive nutrients, while the Gammaproteobacteria

group (genus Xathomonas), the Betaproteobacteria group

(genera Alcaligenes and Achromobacter), and the Alphapro-

teobacteria group (genus Sphingomonas) were the dominant

groups that received nutrients (Vinas et al., 2005). Monitor-

ing the microbial community by terminal restriction frag-

ment length polymorphism (TRFLP) analysis suggests that

the aeration change stimulated by soil excavation would

cause the change in the microbial community composition.

The fragments show several ribotypes considerably increas-

ing in aerobic organisms with a corresponding decrease in

anaerobic organisms such as Clostridia sp. (Grant et al.,

2007).

Conclusion

During the past decade, a variety of microorganisms have

been isolated and characterized for their ability to degrade

different PAHs. Furthermore, many metabolic enzymes for

the degradation of different PAHs have been isolated from

microorganisms and several novel pathways have been

elucidated based on the identification of initial ring oxida-

tion and ring cleavage products. The genes responsible for

PAH catabolic pathways are always localized as gene clusters,

and some gene clusters have been cloned and sequenced. An

analysis of the gene organization and transcription patterns

in the clusters of different species and an analysis of the

homology of related loci led to the conclusion that genetic

exchange and rearrangements played a major part in the

evolution of the regions that play a role in PAH degradation.

Genes that catalyze PAH degradation are believed to have

adaptively evolved in nature by various genetic events. In

bacteria, some aromatic ring hydroxylating dioxygenases

share high homologies in structure and exhibit very relaxed

substrate specificities, whereas some dioxygenases with

small differences in their amino acid sequences display

major differences in their enzymatic properties, such as

substrate range and regiospecificity. In fungi, more than

one isoenzyme of extracellular enzymes and P450 monoox-

ygenases was found. These genes offer an insight into the

evolution of the catalytic versatility of fungus in the detox-

ification and biodegradation of a broad range of xenobiotic

chemicals.

In the natural environment, PAHs tend to interact with

non-aqueous phases and soil organic matter and, as a

consequence, become potentially unavailable for microbial

degradation. Microorganisms have evolved different strate-

gies to adapt to the PAH compounds present in the

contaminated situation. Many microorganisms produce

biosurfactants to increase the bioavailability of the poorly

available substrates. Many microorganisms show chemo-

taxis towards PAH compounds, which could lead to im-

proved degradation. Environmentally derived bacterial

isolates often degrade only a narrow range of PAHs, and

degradation of a PAH mixture becomes visible as a coopera-

tive process involving a consortium of strains with comple-

mentary capacities. The ubiquitous coexistence of bacteria

and fungi in soil and their catabolic cooperation suggests

that fungal–bacterial interactions may be of importance for

PAH degradation in the natural environment.

Combing genetic engineering tools such as gene conver-

sion, gene duplication and transposition, we can produce

novel strains with desirable properties for bioremediation

applications according to the knowledge of PAH degrada-

tion by microorganisms. For example, the rates of PAH

mineralization can be enhanced when NAH plasmids from

different bacteria are hybridized using colony hybridization.

Overexpression of the dioxygenase fusion system from the

Mycobacterium sp. strain PYR-1 in other bacteria might

improve its ability to degrade high-MW PAHs. Other

technology designed according to the principles of microbial

PAH-degradation in soil may also be useful for PAH

bioremediation. For example, sequential treatment by bac-

terial consortia and fungi (e.g. white-rot fungi) or defined

fungal–bacterial cocultures are proposed to improve the

degradation of PAHs. Salicylate, acting as an inducer of

genetic operons, can be used to enhance the degradation of

PAH compounds. Addition of small amounts of biosurfac-

tants to the PAH-containing soil may increase the com-

pound’s dispersion and bioavailability, whereas it appears to

be a good strategy to improve emulsification of NAPL-

dissolved PAH in aqueous systems with turbulent mixing.
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