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A B S T R A C T

History shows that the discovery of, and the resistance to, antibiotics go hand in hand. While knowledge of
resistance mechanisms, their impact and distribution is vast, over the years, the topic of antibiotic degradation
has often been overlooked and regarded as being discrete from the research on resistance. As a result, under-
standing of the degradation of antibiotics and the impact of antibiotic degraders on the environment and human
health are, for most classes, neither thoroughly documented nor understood. Current information on the bio-
degradation of antibiotics is described in two review articles. This first part focuses on sulfonamides, tri-
methoprim, aminoglycosides, amphenicols and tetracyclines. Detailed metabolic and molecular aspects as well
as the role of the degraders in natural microbial communities are discussed. An integrated analysis of the ac-
cumulated data indicates that appreciation of the interplay between resistance and degradation is quite frag-
mented, and closing this gap will require novel experimental approaches.

Introduction

The discovery of antibiotics in the early 20th century marked the
beginning of modern medicine. Over the past decades, their continuous
use has created lasting effects not only on human and animal health,
but also on the environment. Current medical and animal farming
practices rely on the availability of antibiotics. This dependency has led
to their intensive and sometimes imprudent use. Because antimicrobials
often leave the body unaltered, antibiotic residues as well as antibiotic-
resistant bacteria (ARB) and genes (ARG) enter soils and water bodies
through the application of manure onto agricultural fields and through
the wastewater treatment process [1–3]. As a result, both wastewater
treatment plants (WWTP) and animal farming are considered important
sources of ARB and ARG. These contaminated habitats possess high
densities of commensal and environmental bacteria and provide the
perfect settings for the selection, development, and spread of antibiotic
resistance [4–6] (Fig. 1). As a consequence, the timeline of antibiotic
discovery and the occurrence of resistance go hand in hand [7], and
antibiotics, as well as ARBs and ARGs, are now regarded as emerging
pollutants [8–12].

Information on antibiotic resistance is extensive [13]. However,
only a few studies have focused on the degradation of antibiotics, and
even fewer have investigated microorganisms that can use them as
carbon and energy sources, i.e. antibiotrophs [14,15]. Thus, the role of
these degraders in the environment remains poorly understood. Beyond
their value as tools for bioremediation and biological treatment, in-
vestigating these organisms may also help researchers understand the
evolution of resistance (Fig. 1). Recent studies suggest that degraders
can protect susceptible members of the microbiota by reducing the
concentration of the antibiotic and thus abolishing the need for the
susceptible bacteria to acquire resistance genes of their own [16,17].
This mechanism, known as indirect resistance, poses severe risks in
clinical settings and is often linked to antibiotic therapy failures [16].
Moreover, it may even influence how resistance and susceptibility
evolve in natural communities.

This study outlines the current knowledge of biological degradation,
distinguishing between organisms capable of modifying (bio-
transformation), cleaving (biodegradation), or mineralizing (sub-
sistence) these micropollutants. Furthermore, it draws together in-
formation on the central degradation pathways and genes characterized
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to date. It differs from other reviews on this topic [18–20] in comparing
abiotic and biotic degradation pathways, details specific biological
pathways and discusses the feasibility of developing biotechnological
approaches to remediating contaminated sites. In addition, critical
knowledge is summarized regarding the role of these degraders in
natural microbial communities as well as emphasizing gaps in the
methodology.

The review is divided into two parts and cites literature from all
major and some minor classes of antibiotics. The first part examines the
biodegradation and biotransformation of sulfonamides, trimethoprim,
aminoglycosides, amphenicols and tetracyclines. In the second part,
beta-lactams, macrolides, quinolones, ionophore antibiotics and other
minor antibiotic classes (e.g., oxazolidinones, nitroimidazoles, and
others) are discussed. Both parts provide information on the chemical
structure, mode of action and mechanisms of resistance to a given an-
tibiotic class. Subsequently, the commonest abiotic routes of transfor-
mation in the environment are summarized, and reports on bio-
transformation and biodegradation are discussed, beginning with
complex microbial communities and concluding with axenic microbial
cultures and responsible enzymes.

Sulfonamides

Sulfonamides are synthetic antibiotics that act as competitive in-
hibitors of dihydropteroate synthetase (DHPS) and block bacterial
synthesis of folic acid [21]. Since the discovery of Prontosil (sulfami-
dochrysoidine), the first of the sulfonamide antibiotics introduced,
more than 5000 different sulfonamides have been developed [22].
Antibiotics of this class differ in the heterocyclic group (Table 1), and
are presently most commonly used for veterinary purposes [23] and as

growth promoters in animal husbandry [24]. In human medicine, these
antibiotics, specifically sulfamethoxazole, are still highly relevant when
used in combination with trimethoprim, a combination known as co-
trimoxazole [25]. This combination is primarily administered orally
and is the drug of choice for treatment and prophylaxis of Pneumocystis
jiroveci pneumonia in HIV-infected patients [21]. High doses of co-tri-
moxazole have been shown to be effective against methicillin-resistant
Staphylococcus aureus (MRSA) infections [26]. Mechanisms of resistance
mainly constitute insensitive versions of DHPS (encoded bysul1, sul2,
sul3, and sul4 [27–29]) and, on occasion, can be mediated by genes
encoding efflux pumps, such as smeDEF [30]. Detailed reviews on this
topic can be found elsewhere [28,31–33].

Sulfonamides adsorb weakly to sediments or sludge [34] and can
quickly reach and contaminate groundwater. The main physicochem-
ical properties for the primary antibiotics of this class are listed in
suppl. Table S1.

Abiotic degradation

Sulfonamides are susceptible to photolysis both by exposure to
natural light and UV irradiation [35,36] (suppl. Fig. S1). Nevertheless,
these processes alone were shown to generate persistent and toxic in-
termediates, showing that natural conditions are insufficient for en-
suring complete environmental removal [37].

Biotransformation and biodegradation

Comprehensive reviews on the biodegradation of sulfonamides were
published in 2012 [38] as well as more recently [39,40] in an attempt
to synthesize the vast amount of dispersed knowledge on the their de-
gradation. Here, prior knowledge is highlighted and the most relevant
studies on the degradation and transformation of sulfonamide anti-
biotics discussed. Over the years, some high-throughput studies have
highlighted the potential of microorganisms to subsist on antibiotics as
their sole carbon and energy source [14,15]; a detailed overview of the
metabolic pathways proposed thus far is provided to assess the

Fig. 1. WWTP, animal farms and agricultural fields as “hotspots” for the de-
velopment of antibiotic resistance and degradation mechanisms. The WWTP
image is courtesy of the Integration and Application Network (ian.umces.edu/
symbols); vectors graphics are from FreePik (www.freepik.com); the molecular
structure is from tetX enzyme – PDB ID 2XDO [191] – obtained from RCSB PDB
(www.rcsb.org).

Table 1
General chemical structure of the main sulfonamide antibiotics, composed by
an aniline moiety, a sulfonamide group and a heterocyclic moiety (R), adapted
from Ingerslev and Halling-Sørensen [41].

General structure Sulfonamide Heterocyclic moiety (R)

Sulfanilamide
Sulfamethoxazole

Sulfamethizole

Sulfadimethoxine

Sulfadiazine

Sulfamethazine

Sulfathiazole
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likelihood of such claims.
Biological degradation of sulfonamides was first reported in acti-

vated sludge [41,42]. More recently, it was further shown that these
communities could degrade sulfonamides either in presence or absence
of additional carbon and nitrogen sources [43]. Nevertheless, the
transformation pathway was dependent on nitrogen availability. In the
presence of additional nitrogen sources, sulfamethoxazole (SMX) was
fully converted into 3-amino-5-methylisoxazole (3A5MI, SMX-10,
Fig. 2), which lacks antibiotic activity [44]. In nitrogen starvation,
sulfamethoxazole was only partially degraded into 3A5MI, and an ad-
ditional product was detected, which appeared to result from the hy-
drolysis of the primary amine of sulfamethoxazole (SMX-4, Fig. 2), but
its identity was not further confirmed. Degradation of other sulfona-
mide antibiotics, namely sulfamethazine and sulfanilamide (Table 2)
has also been described. However, none of the previous studies assessed
mineralization of the parent drug.

In anaerobic conditions, the degradation of sulfonamides seems to
depend on the structure of the heterocyclic ring independently of the
nature of the electron acceptor. For instance, in anaerobic digesters
inoculated with sludge and manure, sulfadiazine was extensively
transformed by hydroxylation of the pyrimidine ring, whereas sulfa-
methazine, with two methyl groups attached to the pyrimidine ring,
was not transformed at all [45,46]. Under anaerobic Fe(III)-reducing
conditions in soils [47], both sulfamethoxazole and sulfisoxazole, with
an NeO bond within the heterocyclic ring, were quickly degraded,
while sulfamethizole and sulfathiazole, which do not contain this bond,
were not degraded. Thus it was proposed that this transformation can
be initiated by reductive cleavage of the NeO bond in the isoxazole
group to form an unstable, radical anion and yield several stable, dead-
end products (SMX-1 to -1.3, Fig. 2). The same mechanism was ob-
served in abiotic conditions with Fe(II) and goethite, suggesting it is a
mere byproduct of the Fe(III) reduction carried out by soil microbiota
and not the result of catalysis by specific enzymes. Another report also
showed the extensive transformation of the isoxazole moiety of

sulfamethoxazole in activated sludge under anaerobic conditions with
skimmed milk and bicarbonate [48]. Furthermore, it was observed that
reduction is accompanied by limited mineralization (between 1.2% and
2.2%) of the molecule, implying that the aniline moiety may remain
intact under anaerobic conditions.

This instability of the isoxazole moiety of sulfamethoxazole was also
observed in anoxic conditions [49]. This moiety may be effectively
degraded in microbial fuel cells with potassium ferricyanide as an
electrolyte in the cathode chamber [49]. Here, the accumulation of
3A5MI upon sulfamethoxazole degradation was exclusively transient,
thus yielding isopropanol as a final product (SMX-10.1, Fig. 2). Fur-
thermore, in water/sediment tests with NO3

− as an electron acceptor,
several reports [34,50,51] found that two major sulfamethoxazole
metabolites were formed: 4-nitro-sulfamethoxazole and desamino-sul-
famethoxazole (SMX-2 and -2.1, Fig. 2). Both products were formed
concomitantly with sulfamethoxazole degradation, and nitrate reduc-
tion, specifically, 4-nitro-sulfamethoxazole, was found to be more toxic
than the parent compound [44]. Nevertheless, once the nitrite was
entirely consumed, the 4-nitro-sulfamethoxazole reverted back to its
original parental form, suggesting that sulfamethoxazole concentration
in the environment may fluctuate depending on nitrate availability.

Similar products were also reported in anoxic conditions with both
ammonium (NH4

+) as a nitrogen source and activated sludge enriched
for ammonia-oxidizing bacteria (AOB) [52]. Under these conditions,
allylthiourea (ATU) completely suppressed the transformation of sul-
famethoxazole, strongly indicating that copper-containing enzymes,
such as ammonia monooxygenase (AMO), may be involved in this
process. Recently, many aerobic heterotrophic bacteria from phyla
Actinobacteria or Proteobacteria (Table 2) have been shown to transform
or even mineralize sulfonamide antibiotics, and the knowledge of the
specific metabolic pathways has become quite extensive.

The biotransformation of sulfonamides (Fig. 2) by bacterial strains
was first reported for Rhodococcus and Pseudomonas strains. For in-
stance, R. rhodochrous [53] was found to hydrolyze sulfamethoxazole,

Fig. 2. Summary of the main metabolites detected during degradation of sulfanilamide (SML), sulfamethoxazole (SMX) and sulfadiazine (SDZ) by individual bacteria
and complex microbial communities under aerobic and anaerobic conditions.
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forming the same dead end as the one described previously [43](SMX-
4). Conversely, Pseudomonas aeruginosa and R. equi could form different
metabolites when sulfamethoxazole was fed in combination with glu-
cose [54]. It was proposed that both strains could transform this anti-
biotic into N4-acetylsulfamethoxazole (SMX-3), while R. equi would
metabolize it and thus further lead to the formation of an alcohol de-
rivative that accumulated at low amounts (SMX-3.1). Indeed, the
equimolar transformation of sulfamethoxazole into N4-acet-
ylsulfamethoxazole was recently described for several Proteobacteria
strains isolated from mineral water [55]. In addition, it was observed
[56] that the co-metabolic transformation of sulfamethoxazole by Al-
caligenes faecalis yielded hydroxylamine sulfamethoxazole (SMX-3.2)
and N4-acetylsulfamethoxazole (SMX-3), both of which have also been
reported as human metabolites of sulfonamide antibiotics [24,57]
(Fig. 2).

Particular consideration should be given to such biotransformation
products when evaluating elimination rates. In some cases, only minor
changes of the molecule occur with no elimination of the antibiotic
activity [44], while in others the metabolites can retransform back into
the parental form. The latter has been demonstrated [58] for N4-acet-
ylsulfamethoxazole in microcosm experiments with river water and
sediments. In this way, despite exhibiting lower toxicity compared to its
parental form [44], this transformation does not guarantee complete
detoxification of the drug, as it is quickly reverted.

Conversely, other bacterial strains have been found to use sulfona-
mides as a source of carbon and energy [59,60]. Most often, the sul-
fonamide bond is cleaved (Fig. 2), and in some cases, the heterocyclic
moieties are released as dead-end products (Table 2). For instance, it
was demonstrated that the degradation of sulfamethoxazole by Micro-
bacterium sp. BR1 was initiated by ipso-hydroxylation of the aniline
moiety, resulting in the cleavage of the sulfonamide bond and accu-
mulation of 3A5MI [61]. Sulfite and 4-aminophenol were only tran-
siently accumulated and the latter was further channeled into the citric
acid cycle via 1,2,4-trihydroxybenzene (SMX-9.1 and -9.2, Fig. 2)
[62,63]. More recently, the formation of 4-aminophenol and 3A5MI
was also reported for three other sulfamethoxazole-degrading strains
(Table 2) [64], suggesting the same underlying mechanism as strain
BR1. Furthermore, in this study, hydroquinone was also detected,
suggesting that 4-aminophenol may be channeled to the citric acid
cycle through this intermediate. However, contrary to strain BR1, all
three strains could further degrade 3A5MI via an unknown pathway,
suggesting that this moiety may not accumulate in the environment
even if released as a dead-end product of sulfamethoxazole degradation
by some bacterial strains. Degradation of the heterocyclic group was
also observed for sulfadiazine, a pyrimidine-substituted sulfonamide.
For instance, Arthrobacter strains D2 and D4 [65], a Terrabacter sp.
strain [66] and Acinetobacter sp. strain W1 [67], were found to hy-
droxylate 2-aminopyrimidine (SDZ-4 to -4.2, Fig. 2) and further utilize
it as a carbon source.

The ipso-hydroxylation of sulfonamides appears to be shared among
several members of the Micrococcaceae family and has been recently
linked to the presence of a conserved sulfonamide degradation cluster
[68]. The sad gene cluster encoding two flavin-dependent mono-
oxygenase (SadA and SadB) and a flavin mononucleotide (FMN) re-
ductase (SadC) provides reduced co-factors to the first two enzymes.
The first monooxygenase (SadA) was shown to be responsible for the
initial attack of sulfonamide molecules by releasing 4-aminophenol
(SMX-9) [68], while SadB transforms this metabolite into 1,2,4-trihy-
droxybenzene (SMX-9.1, Fig. 2). Interestingly, transformation of sul-
fonamides depends on the nature and bulkiness of the heterocyclic
group, which influences the affinity of each parent molecule for the
active site. This property may explain the different degradation rates
observed for different sulfonamides while assuming the same under-
lying mechanism for all [59,61].

The members of the Microbacterium and Arthrobacter genera that
harbor the sad cluster were also shown to harbor the extensively

described sul1 gene [68], a widespread resistance gene encoding a
sulfonamide-insensitive DHPS. The co-existence of both a degradation
mechanism and a resistance gene in the same strains raises important
questions concerning the co-evolution of these traits. Thus, future stu-
dies should also investigate whether antibiotic degraders require ad-
ditional resistance genes to grow in the presence of sulfonamide anti-
biotics or whether they alone suffice for the antibiotic resistance
phenotype.

Despite recent advances in the molecular characterization of these
sulfonamide degraders, few studies have focused on assessing their
applicability for biotechnological treatments. Since the link between
antibiotic degradation and resistance remains unexplored, the direct
application of these degraders may promote the undesirable spread of
resistance. Furthermore, these strains may not perform ideally under
environmental conditions, as observed in membrane bioreactors spiked
with Microbacterium sp. BR1 [69]. This specialized strain did not im-
prove sulfamethoxazole removal compared to removal in the control
experiments, as it was unable to thrive at low temperatures and to
degrade the antibiotic at environmentally relevant concentrations.
However, the ability to degrade environmental concentrations may also
depend on the regulation of this metabolic pathway in each strain, since
Achromobacter denitrificans PR1 was able to degrade sulfamethoxazole
in batch experiments at concentrations as low as 600 ng/l [70].

Sulfonamides are also susceptible to degradation by ligninolytic
enzymes. For instance, the versatile peroxidase of Bjerkandera adusta
[71] degrades sulfamethoxazole yielding 3A5MI as a stable product,
carboxylic acids (acetic and oxalic acid), and anions (nitrate, nitrite,
and sulfate), suggesting an effective degradation of an aniline ring.
Moreover, laccase [72,73] was shown to degrade sulfonamides with
distinct heterocyclic groups. As observed in previous reports under both
anaerobic and aerobic conditions, all the sulfonamides had different
elimination rates. In addition, for sulfapyridine, 2-aminopyrimidine and
aniline were identified as transformation products. Although complete
degradation by these enzymes alone may be costly and inefficient, their
use as a pre-treatment may be a suitable application because they
render intermediates more amenable to biological degradation [74].

Limited research has been done on the topic of sulfonamide de-
gradation and its link to indirect resistance. For instance, the correla-
tion was investigated between sulfamethoxazole degradation and the
spread of known resistance genes (sul1 and sul2) in mesocosms with
river water and biofilm from pristine and polluted environments [75].
In this study, an interesting effect was that, at high sulfamethoxazole
concentrations (5 μg/l) in waters from pristine environments, the rapid
degradation of the antibiotic led to a reduced spread of the known re-
sistance genes. This suggests that degradation might actually decrease
the horizontal gene transference of resistance genes and the prolifera-
tion of antibiotic-resistant bacteria. This study did not take into account
a robust assessment of the microbial diversity, and the amount of mi-
neralization was also overlooked. Nevertheless, it raises new and in-
teresting implications for the role of these antibiotic degraders in
achieving the equilibrium between antibiotic resistance and suscept-
ibility in natural communities.

Trimethoprim

Trimethoprim, a diaminopyrimidine, is often used in combination
with sulfamethoxazole. Despite being structurally different, it shares
most of the antibacterial spectrum and mechanism of action with sul-
fonamides by inhibiting dihydrofolate reductase (DHFR), a downstream
enzyme also involved in the synthesis of folic acid [31]. Resistance also
predominately occurs through mutated and horizontally transferred
versions of DHFR [31]. Presently, more than 20 genes encoding mu-
tated versions of DHFR have been described and can be found in both
the Antibiotic Resistance Database (ARDB) and the Comprehensive
Antibiotic Resistance Database (CARD) [76,77]. Despite being used in
combination with sulfonamides and sharing a similar mechanism of
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action, trimethoprim is vastly different in physicochemical properties
(see suppl. Table S1). Trimethoprim adsorbs weakly to sediments or
sludge, and therefore its mobility among environmental compartments
is slightly more restricted than that of sulfonamides [78].

Abiotic degradation

This antibiotic is susceptible to photolysis, but to a lesser extent than
sulfonamides. This process was reported to yield photostable products,
mainly trimethoxybenzoylpyrimidine (TMP-a, suppl. Fig. S1), a ketone
derivative [79,80].

Biotransformation and biodegradation

In contrast to sulfonamides, which are quickly degraded in aerobic
conditions by activated sludge, trimethoprim is typically recalcitrant to
degradation or transformation under the same conditions
[42,78,81,82]. However, significant transformation of trimethoprim by
aerobic-activated sludge was reported [83] for sludge collected from a
system with an extended Solids Retention Time (SRT) as well as by
several authors for nitrifying activated sludge (NAS) [42,84–86]. NAS is
an activated sludge process specializing in efficient nitrogen removal.
Due to an increased SRT compared with conventional activated sludge
systems [87], this system is enriched in autotrophic nitrifiers, namely
AOB and nitrite-oxidizing bacteria (NOB). These obligate aerobic bac-
teria use inorganic carbon (e.g., CO2) as their primary carbon source
and generate energy by the oxidation of ammonia or nitrite respectively
[88]. Trimethoprim degradation in aerobic NAS systems has been at-
tributed mainly to AOB activity because ATU significantly reduced the
degradation of this drug in batch tests (Table 3) [84,86]. Two products
of trimethoprim oxidation by NAS were identified [85] and were fur-
ther confirmed in experiments performed with 20 mg/l and 0.5 mg/l
trimethoprim, respectively [89]. These degradation products were
consistent with typical reactions catalyzed by ammonia mono-
oxygenases (TMP-1 and -1.1, Fig. 3). However, at lower concentrations
(5 μg/l), additional products were detected [89], suggesting a different
pathway for trimethoprim elimination. At this concentration, tri-
methoprim transformation started with demethylation of the parent
compound (TMP-3, Fig. 3) and resulted in the accumulation of 2,4-
diaminopyrimidine-5-carboxylic acid (DAPC, TMP-3.3), which is only
slowly metabolized in this system.

The assumption that AOB are solely responsible for trimethoprim
biotransformation was challenged in similar experiments [90,91]. Both
studies implied that heterotrophic bacteria were crucial for trimetho-
prim transformation in NAS. Specifically, it was found that ATU did not
inhibit trimethoprim degradation in batch tests when added halfway
through the incubation time [90]. Moreover, axenic cultures of the
ammonia-oxidizing Nitrosomonas europaea were unable to transform
this drug, while the heterotrophic aerobic bacteria enriched from NAS
were able to cleave the trimethoprim molecule (TMP-2 and -2.1, Fig. 3),
thus accumulating recalcitrant metabolites that were likely not further
degraded. The metabolites described in [90] for heterotrophic bacteria
enriched from a NAS system and in [85] for NAS are fundamentally
different. Considering that one observed cleavage of the trimethoprim

structure [90], it is likely that this pathway involves specific enzymes.
In contrast, the other [85] only observed oxidation without further
transformation, supporting the idea that unspecific enzymes such as
ammonia monooxygenases may be involved in this process. In this way,
both mechanisms appear to be equally important for the removal of
TMP from the environment, although more studies are required in order
to identify the microorganisms and enzymes responsible for these
transformations.

An additional metabolite was detected for TMP degradation in soils
consisting in the hydroxylation of the molecule at C6 position (TMP-4,
Fig. 3). Interestingly, trimethoprim removal was also reported to be
effective in anaerobic digesters [45], but neither pathway nor me-
chanism has been described to date.

Aminoglycosides

Streptomycin, the firstly aminoglycoside described, was isolated
from the soil-dwelling bacteria Streptomyces griseus [92]. It became in-
valuable due to its ability to inhibit Mycobacterium tuberculosis, which is
presently re-emerging due to high levels of resistance [93,94]. Several
other natural aminoglycosides were isolated from other Actinomycetes
(Streptomyces sp. and Micromonosphora sp.), and many semi-synthetic
analogues were subsequently developed and introduced for both clin-
ical and veterinary use [95]. Presently, the most commonly prescribed
antibiotics of this class are gentamicin, tobramycin, and amikacin,
while streptomycin is still utilized due to its effectiveness in the treat-
ment of tuberculosis [96]. Each of these consists of a complex mixture
of closely related derivatives that can render the detailed character-
ization of degradation and transformation mechanisms difficult.

These antibiotics (Fig. 4) typically consist of an aminocyclitol nu-
cleus (mainly 2-deoxystreptamine, as in compounds a, b, c, e; or
streptidine, as in d, Fig. 4) linked to amino sugars by glycosidic bonds
[97]. They possess concentration-dependent bactericidal ability and act
to inhibit protein synthesis in bacteria [97]. Aminoglycosides are also
often used in combination with beta-lactams [95,97]. They are still in
use with human and veterinary medicine [23,25,98], albeit at a much
lower scale compared to other antibiotic classes, such as tetracyclines,
sulfonamides, or beta-lactams. Thus, contamination with them is rarely
detected in wastewaters [99], but resistance levels are highly prevalent
among clinical and environmental isolates [100–105], the predominant
resistance mechanisms being enzymatic modification (acetylation,
adenylation, phosphorylation), efflux pumps and target modification
(16S rRNA methylation). All gene sequences and detailed mechanisms
of action can be found elsewhere [76,77,97,106] and the main psy-
chochemical properties of this class can be found in suppl. Table S1.

Abiotic degradation

Stability of aminoglycosides is difficult to assess due to their mul-
ticomponent nature and established presence of impurities. It was re-
ported [107] that, at room temperature, gentamicin was quickly de-
graded (48 h) in a solution of dextrose, commonly combined with
antibiotics for intravenous administration. Several degradation pro-
ducts were detected, one of which was identified as sisomicin (AMG-b,

Table 3
Microbial communities and single bacterial strains able to degrade sulfonamide antibiotics and trimethoprim.

Class Order Organism Origin Antibiotic Conditions Identified metabolites Reference

Complex microbial community NAS Trimethoprim Aerobic ammonia
oxidizing

TMP-1 and TMP-1.1 [85]

NAS (heterotrophs) Trimethoprim Aerobic TMP-2 and TMP-2.1 [90]
NAS Trimethoprim Aerobic TMP-1; TMP-1.1; 4-desmethyl-TMP (TMP-3); TMP-3.1;

TMP-3.2; DAPC (TMP-3.3)
[89]

Farm, urban and pristine
soils

Trimethoprim Aerobic N.d. [14]
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Fig. 3. Summary of the main degradation pathways of trimethoprim by NAS.

Fig. 4. Chemical structures of the main aminoglycoside antibiotics, with the aminocyclitol nucleus (N): (a) gentamicin, (b) tobramycin, (c) amikacin (d), strepto-
mycin (d) and kanamycin (e).
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Fig. 5), a molecule with known antibacterial activity [108]. This and
other intermediates (AMG-b and -c, Fig. 5) are also established by-
products of aminoglycoside synthesis in Micromonospora purpurea
[109], indicating that these compounds are part of the producing
strain’s metabolism [110,111].

Degradation of the parent compounds in natural matrices was
shown to be significantly enhanced at higher temperatures [112] and
low pH. For instance, under extremely acidic conditions (6 N HCl), both
gentamicin and kanamycin were revealed to both lose antibacterial
activity completely and release 2-deoxystreptamine (Fig. 5)
[109,113,114]. In contrast, direct photolysis of aminoglycosides is
negligible because they do not absorb light from the solar spectrum
[115]. Significant photodegradation occurs mostly in the presence of
natural organic matter, which can bind and make them more suscep-
tible to radical attacks [115].

Biotransformation and biodegradation

In most studies, aminoglycosides are generally considered non-
biodegradable in both aerobic (Closed Bottle Test [CBT], Zahn-Wellens
Test [ZWT], and CO2-evolution test) and anaerobic conditions for ex-
periments executed with activated sludge [116–118]. Moreover, a sig-
nificant amount was adsorbed to the sludge, but not degraded, sug-
gesting that they may become unavailable for biodegradation after
adsorption. In soil, it was also found that kanamycin was moderately
persistent when incubated for 63 days [119]. The specific properties of
each soil significantly influenced degradation rate, with higher rates
occurring in soils with high organic matter content and water retention
ability. However, neither the specific mechanism for the elimination of
these drugs nor the antimicrobial activity of the degradation products
were assessed. Conversely, enzymatic modification of these drugs by
bacterial strains is well known, as it represents the central mechanism
of resistance to antibiotics of this class [97,106]. Enzymes that mediate
these reactions are intracellular and classified as nucleotidyl-
transferases, phosphotransferases or acetyltransferases; they catalyze
the derivatization of different amino or hydroxyl groups in the ami-
noglycoside structure (Fig. 6). Although these modifications result in
significant decrease of antibacterial activity, no cleavage of the mole-
cule itself occurs [120].

Few studies have investigated the ability of isolated microorganisms
and complex microbial communities to degrade these antibiotics. It was
found [14] that soil microbiota from different sources (farmland, urban
soil, and undisturbed pristine soils) were able to use aminoglycosides
(amikacin, gentamicin, kanamycin, and sisomicin) as a sole carbon
source. Furthermore, others observed the subsistence phenotype (in-
crease in colony-forming unit [CFU] counts over time with the anti-
biotic as sole carbon source) in more than 50 Salmonella sp. isolates

from clinical, non-clinical, and food samples [15]. However, the me-
tabolic pathway and toxicity of the degradation products were not as-
sessed and no direct proof of mineralization was provided. These ob-
servations were even challenged in similar experiments [121,122]. The
subsistence phenotype was investigated in soils under different an-
thropogenic influence [122]. Although an increase in CFU counts over
time was also observed in media with streptomycin as the single carbon
source, actual degradation of this antibiotic was not found. Similarly,
others investigated the aminoglycoside subsistence phenotype in aero-
bically grown gut bacteria [121]. Nine E. coli and Cellulosimicrobium sp.
isolates obtained in this study displayed the subsistence phenotype,
however no degradation of the antibiotic was observed. These con-
flicting results highlight the need for combining high-throughput
screening techniques with a detailed assessment of the mechanistic
aspects of antibiotic removal.

To date, only one bacterial strain has been identified as using
streptomycin as both a carbon and energy source [123]. This Steno-
trophomonas maltophilia strain enriched from soil was able to degrade
the antibiotic via streptamine into pyridine, which was further meta-
bolized via an unknown pathway (SMC-1 and SMC-1.1, Fig. 6). De-
gradation occurred concomitantly with the release of volatile ni-
trogenous compounds, methylamine and ammonia (Fig. 6). No other
authors have investigated this particular transformation mechanism
and the enzymes involved in this process as well as their relevance in
environmental settings remain unidentified.

Thus, although enzymatic modification is widespread and ami-
noglycoside-transformation strains are highly prevalent, the impact of
enzymatic modification on the development and evolution of resistance
in susceptible bacteria has not been thoroughly assessed. For instance,
bacteria engineered to express aminoglycoside-modifying enzymes do
not protect susceptible subpopulations, as recently exemplified [16,17].
These results, contrary to those observed for chloramphenicol-de-
grading strains (see next section), may result from the low permeability
of these drugs that require active uptake before undergoing in-
tracellular transformation. However, as no bioremediation studies have
employed aminoglycoside-modifying enzymes, the real effect of ami-
noglycoside transformation on the development of de novo resistance
remains unclear.

Amphenicols

Chloramphenicol is a natural antibiotic isolated from the soil-
dwelling bacterium Streptomyces venezuelae. Due to its severe side ef-
fects and suspected carcinogenesis, it is currently banned from use in
the treatment of food-producing animals in the EU, USA, and China,
among other regions. However, it is still used to treat a small number of
infections in clinical settings [25,124]. Several synthetic analogs of

Fig. 5. Chemical structure of some of the common impurities and degradation products of gentamicin and kanamycin.
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chloramphenicol, namely thiamphenicol and florfenicol, have been
developed and are presently in use [124,125] (Fig. 7). These antibiotics
act as bacteriostatic agents by preventing amino acid chain elongation
during protein synthesis [126] and possess both a dichloroacetamide
group and an aromatic moiety (Fig. 7). However, chloramphenicol
contains a nitrobenzene group, whereas in thiamphenicol and florfe-
nicol, the p-nitro group in the benzene ring is replaced by a sulfomethyl
group. This substitution was reported to reduce toxicity and eliminate
the development of aplastic anemia in humans and animals [126]
(suppl. Table S1).

Despite the low levels of usage, chloramphenicol is naturally pro-
duced and abundant in soils. Consequently, it can be translocated into
plants that serve as food supply for livestock animals [127,128], leading
to high levels (μg/kg) of contamination in animal products even in
countries where its use has been banned [129–131]. Resistance to
chloramphenicol frequently occurs through its enzymatic modification
by acetylation or phosphorylation [124]. Thiamphenicol is also a sub-
strate of these transferases, while florfenicol, due to its fluor residue,

remains untransformed (Fig. 7). Consequently, many strains that are
resistant to chloramphenicol may be susceptible to florfenicol
[124,132], with cross-resistance occurring only by efflux pumps [124].

Abiotic degradation

Chloramphenicol and florfenicol can be modified by hydroxylation
and dechlorination (suppl. Fig. S2) under acidic or basic pH and high
temperatures (60 °C) [133]. Nevertheless, their aromatic moieties are
not affected. Chloramphenicol can also be degraded by photolysis to
yield hydroxylated byproducts; however, while this transformation
eliminated antimicrobial activity, increased toxicity against Artemia
salina was observed [134]. Photolysis can also transform thiamphenicol
and florfenicol through similar reactions, but the toxicity of the by-
products has yet to be assessed [135].

Biotransformation and biodegradation

The literature assessing the biodegradation of chloramphenicol by
complex communities and isolated microorganisms is scattered, and
there is a lack of recent, detailed studies. Several authors reported
[136,137] that chloramphenicol was degraded in soil, with higher de-
gradation rates occurring under aerobic rather than anaerobic condi-
tions, but the metabolic pathway and activity of the degradation pro-
ducts were not assessed. In addition, it was observed that a reduced
persistence of the fluorinated analog “florfenicol” occurred during
anaerobic digestion [46]. The degradation consisted of dechlorination,
alkyl fluorine hydrolysis and demethylation reactions, but the chemical
structures of these metabolites were not identifed. The metabolites
showed an increased persistence (> 40 days) compared to the parent
molecule and moderate toxicity against anaerobic sludge microbiota.

Many bacteria, including antibiotic-producing strains, can resist
chloramphenicol through enzymatic inactivation by acetylation (CAP-
5) or phosphorylation (CAP-6, Fig. 8) [124,138,139]. However, this
reaction may be quickly reversed by esterases from various sources,

Fig. 6. Degradation of streptomycin by Stenotrophomonas maltophilia, formerly Pseudomonas maltophilia [123] and examples of common modifications of kanamycin
A (AMG-1 to 3), adapted from Magalhães and Blanchard [106].

Fig. 7. Chemical structure of amphenicol antibiotics: (a) chloramphenicol, (b)
thiamphenicol and (c) florfenicol.
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including soil, serum, and pathogenic bacteria [140–142]. Esterases
obtained from a soil metagenome [141,143], besides their ability to
reverse acetylation of chloramphenicol, may also hydrolyze both
chloramphenicol and florfenicol parental forms. The hydrolyzed pro-
duct of chloramphenicol was further identified as p-nitrophenylserinol
(CAP-2, Fig. 8), resulting from the hydrolysis of the N-dichloroacetyl
group. Some chloramphenicol-producing actinomycetes have also ex-
hibited a similar hydrolytic activity. For instance, a Streptomyces sp.
strain was identifed as capable of transforming chloramphenicol by
hydrolytic cleavage of the N-dichloroacetyl group (p-nitrophenylser-
inol) that was either subsequently transformed by acetylation to N-
acetyl-p-nitrophenylserinol (stable dead-end product) or further hy-
drolyzed in small, parallel reactions into p-nitrobenzyl alcohol (CAP-
2.2) and p-nitrobenzoic acid (CAP-2.3, Fig. 8) [144] Several bacterial
strains were also shown to reduce the p-nitro group of chloramphenicol
to an amino group. This reaction, possibly mediated by nitroreductases,
was reported to eliminate antimicrobial activity [145,146].

As yet, only a few strains have been reported as using amphenicol
antibiotics as their sole carbon source (Table 4). A Streptomyces sp.
strain capable of doing so was described previously [147], but a de-
gradation pathway has not been proposed and Flavobacterium sp. CB 60
was found to acetylate this drug by constitutively expressed enzymes
and further degrade this product into unknown metabolites [148,149].
Nevertheless, actual mineralization of the molecule was not assessed.
Another strain of the Flavobacterium genus (CB 6) was reported to use
chloramphenicol as a sole carbon source [150]. Degradation was per-
formed by inducible enzymes and was initiated by oxidation of the
primary alcoholic group in the C-3-position. Eventually, β-carboxy-
cis,cis-muconic acid was formed as the final product of the primary
degradation pathway (CAP-4 to -4.10, Fig. 8). This carboxylic acid, a
common metabolite from xenobiotic degradation, can readily be me-
tabolized in central pathways, thus strongly supporting the assumption
that this strain exhibits the subsistence phenotype [151,152]. Six other
strains (Table 4) in the order Enterobacteriales [15,153] have been re-
ported as capable of subsisting on amphenicol antibiotics as sole carbon

source, but no sufficient proof of the subsistence phenotype has been
provided in any of these studies, as they lack detailed characterization
and CO2 evolution tests.

To the best of our knowledge, studies regarding biotechnological
applications are infrequent. However, several authors [154,155] have
exemplified that it is possible to harness microbial dechlorination of
amphenicol antibiotics through combination with an electrochemical
system, which was able to reduce (CAP-1, Fig. 8) and further de-
chlorinate (CAP-1.1, Fig. 8) the p-nitro group of chloramphenicol.

With the exception of the extensive transformation of chlor-
amphenicol by Flavobacterium sp. CB 6, common elimination routes of
this antibiotic leave the p-nitrobenzene moiety intact. Therefore, most
degradation products are still expected to retain some toxicity.
However, since chloramphenicol is naturally produced in soil, other
unknown and overlooked routes may be involved in its elimination.

Conversely, some authors investigated the link between antibiotic
degraders and the onset of resistance. One study [16] showed that,
when E. coli expressed a chloramphenicol acetyltransferase (CatA1) in
co-culture with a susceptible strain, it prevented this strain from de-
veloping or acquiring resistance. Further investigation [17] was made
of the influence of this phenotype co-occurring with opportunistic
human pathogens, Streptococcus pneumoniae, and Staphylococcus aureus
both in vitro and in mouse infection models. In both cases, susceptible
populations were protected by indirect resistance during chlor-
amphenicol treatment. Surprisingly, in the co-infection studies in mice,
the resistant subpopulation was outcompeted by the susceptible bac-
teria, suggesting unexpected fitness costs to the resistant cells. This
explanation is plausible because resistant cells maintain the ability to
grow quickly in the presence of chloramphenicol and thereby become
preferred targets of host defense factors [156]. This unexpected and
paradoxical effect of antibiotic resistance indicates a general lack of
knowledge and research on the fitness costs and implications of anti-
biotic degraders in natural populations.

Fig. 8. Summary of degradation and transformation reactions of chloramphenicol carried out by bacterial strains.
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Tetracyclines

Tetracycline antibiotics exist as natural compounds produced by
Streptomyces sp. [157]. They act as inhibitors of protein synthesis by
preventing the binding of aminoacyl-tRNA to the ribosomal acceptor
site [158]. The ones described first were chlortetracycline, oxyte-
tracycline and tetracycline, and they are still widely used (Fig. 9). Later,
semi-synthetic analogues with increased solubility and oral absorption
were introduced into clinical practice. These analogues divide them-
selves into second-generation or semi-synthetic tetracyclines (e.g.,
minocycline) and third-generation tetracyclines or glycylcyclines (e.g.,
tigecycline) [126,158]. Despite their reduced use in human medicine,
tetracyclines are currently the most relevant drugs for veterinary ap-
plications, specifically for food-producing animals, either for treatment
[98,159] or as growth promoters [23].

Tetracyclines are amphoteric and strong chelating agents (see suppl.
Table S1 for detailed physicochemical properties). They adsorb to se-
diments and activated sludge [137,160,161] and thus preferentially
contaminate soils [162]. However, residues of tetracyclines have been
detected in a broad range of environmental compartments, such as
WWTP effluent (μg/L), activated sludge (μg/kg), surface waters (ng/L),
and soil (μg/kg) [163–166]. As observed for other antibiotic classes,
resistance to tetracycline antibiotics is extremely prevalent [167–169],
and to date, more than 30 resistance genes have been described as
encoding various efflux pumps and ribosomal protection proteins. De-
tailed reviews and databases containing information on the structure
and resistance to these antibiotics can be found in [76,77,126,158].

Abiotic degradation

Tetracyclines have reduced stability and undergo extensive trans-
formation in waters and soils [170] depending on pH and the presence
of cations [171]. Natural tetracyclines are relatively stable under acidic
conditions, though very unstable in alkaline solutions. Tetracycline, for
instance, generally undergoes epimerization in acidic and neutral
conditions (TET-c, suppl. Fig. S3). However, this reaction is easily re-
versed and is furthermore inhibited in the presence of calcium and
magnesium at pH ≥ 6. Also, in acidic conditions, both tetracycline and
its epimer can be irreversibly dehydrated to anhydrotetracycline (TET-
d, suppl. Fig. S3) and 4-epi-anhydrotetracycline, respectively [172].Ta
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Fig. 9. Tetracycline molecules consist of four aromatic ring nucleus (A to D) to
which several functional groups are attached. Four-ring structure of (a) tetra-
cycline with the aromatic rings identified (A to D), (b) oxytetracycline, (c)
chlortetracycline, (d) minocycline and (e) tigecycline.

A.C. Reis, et al. New BIOTECHNOLOGY 54 (2020) 34–51

44



Under alkaline conditions, transformation is more extensive and results
in the irreversible cleavage of the hydroxyl group in the C ring, thus
yielding isotetracycline (TET-e, suppl. Fig. S3) that can be reversibly
epimerized to 4-epi-isotetracycline. However, these products still re-
tained some degree of antimicrobial activity and toxicity [171,173],
and anhydrotetracycline and its epimer were both more toxic against
tetracycline-resistant bacteria, suggesting that this modification may
have altered the drug’s mode of action [171]. Photolysis was also
shown to transform tetracyclines, causing the loss of all antimicrobial
activity. These reactions consist mainly of the loss of N-methyl-, amino-
and hydroxyl- groups (TET-a and -b, suppl. Fig. S3). However, the
toxicity of these degradation products against luminescent Vibrio fi-
scheri was higher than that of the original compound [174,175].

Biotransformation and biodegradation

Despite their limited stability in aqueous solutions, tetracyclines are
often reported as nonbiodegradable under aerobic and anaerobic con-
ditions. They are mainly eliminated through abiotic transformation and
adsorption, with biological transformation playing only a minor role
[136,176]. This behavior has been observed in several different tests,
including CBT, ZWT, and CO2-evolution tests with activated sludge
[116,118,161]. The results were also reported under anaerobic condi-
tions, during which these drugs adsorbed to the sludge with detrimental
effects on the microbiota [117,177]. However, it is still unclear whether
these compounds become stable when adsorbed or whether they un-
dergo further abiotic or biotic transformations.

The degradation of tetracyclines by individual microorganisms has
been reported mostly in fungal species from phyla Basidiomycota
(classes Tremellomycetes and Agaricomycetes) and, Ascomycota (classes
Sordariomycetes and Eurotiomycetes), and, to a minor extent, in bacterial
strains from genera Stenotrophomonas and Sphingobacterium (Table 5).
As far as we are aware, the most extensive transformation within the
four-ring nucleus of tetracyclines was described for Paecilomyces sp.
CMB-MF010, a known producer of a tetracycline-like molecule, and
Fusarium sp. CMB-MF017 [178]. Both isolates catalyzed a similar re-
action by cleaving rings A and B from oxytetracycline and doxycycline,

resulting in the accumulation of hemi-cyclines (OXY-1, Fig. 10). These
products were devoid of antimicrobial activity. It is unclear whether the
fungi were able to use tetracyclines partially as a carbon and energy
source, and the biodegradability of these metabolites was not further
assessed.

Conversely, the bacterial transformation of tetracyclines is quite
distinct. This metabolic feat was accidentally discovered [179] while
cloning a transposon from the obligate anaerobe Bacteroides fragilis. A
new resistance gene, named TetX, was shown to inactivate tetracycline
enzymatically in transformed E. coli, but only when this strain was
grown under aerobic conditions. The pathway was subsequently de-
scribed [180] and TetX was identified as an NADH-dependent flavo-
protein that performed O2-dependent hydroxylation of tetracyclines
(TET-3, Fig. 10). This reaction resulted in further abiotic transforma-
tion, forming a black pigment thought to be a high molecular weight
polymer without antimicrobial activity. The enzyme encoded by TetX
was able to transform both natural and semi-synthetic tetracyclines
[180]. Nevertheless, due to its O2 dependency, it did not confer re-
sistance to its original host, Bacteroides fragilis. It was only in 2009 that
a TetX gene conferring resistance to its host was discovered [181]. The
Sphingobacterium sp. strain PM2-P1-29 contained a TetX gene and was
also flanked by transposon-like elements. It was not possible to prove
actual conjugation of this element, but since then, TetX has been de-
tected in samples from oral microbiome [182] and even in human pa-
thogens [183].

Others have recently shown that new tetracycline-modifying en-
zymes may be discovered using culture-independent approaches
[182,184]. Tet37 was discovered by using functional metagenomics
with oral microbiome samples from healthy individuals [182]. This
enzyme is not a homolog of the previously described TetX, but was also
found to catalyze the NADPH-dependent transformation of tetracyclin
Furthermore, nine new flavoproteins were discovered (GenBank ac-
cession numbers from KR857681–KR857689) while investigating the
metagenome of farm and grassland soil as well as the genome of a
human pathogen (Legionella longbeachae) [184]. These proteins share
little amino acid sequence similarity with the original TetX gene (˜20%)
and also catalyzed a different reaction from that of the original enzyme

Table 5
Fungi and bacteria able to degrade or transform tetracyclines. N.d. Not determined.

Class Order Species Origin Antibiotic Conditions Identified metabolites Reference

Tremellomycetes Trichosporonales Trichosporon
mycotoxinivorans XPY-10

Wastewater Tetracycline Aerobic Tet-2 to 2.4 [205]

Sordariomycetes Hypocreales Trichoderma deliquescens
RA114
Trichoderma harzianum
RA115

Marine
sediment

Oxytetracycline Aerobic N.d. [206]

Fusarium sp. CMB-MF017 Marine
environment

Tetracycline
Oxytetracycline
Minocycline
Chlortetracycline
Doxycycline

Aerobic seco-cyclines (Tet-1)
hemi-cyclines (Oxy-1)

[178]

Xylariales Xylaria digitate N.d. Tetracycline
Demeclocycline
Oxytetracycline
Chlortetracycline

Aerobic N.d.
Possible attack on the B-C moiety

[207]

Eurotiomycetes Eurotiales Penicilium crustosum
RA118

Marine
sediment

Oxytetracycline Aerobic N.d. [206]

Paecilomyces sp. CMB-
MF010

Marine
environment

Tetracycline
Oxytetracycline
Minocycline
Chlortetracycline
Doxycycline

Aerobic seco-cyclines (Tet-2)
hemi-cyclines (Oxt-1)

[178]

Agaricomycetes Agaricales Pleurotus ostreatus
SMR684

Culture
collection

Oxytetracycline Aerobic 2-acetyl-2-decarboxamidooxytetracycline
(Oxy-2)

[208]

Gammaproteobacteria Xanthomonadales Stenotrophomonas
maltophilia DT1

Soil Tetracycline Aerobic Cleavage of N-methyl, carbonyl, and amine
groups (Tet-5 to 5.4)

[209]

Sphingobacteriia Sphingobacteriales Sphingobacterium sp.
PM2-P1-29

Soil Tetracycline Aerobic TET-3 [181,210]
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by cleaving the A-ring of tetracycline (TET-4 and -4.1, Fig. 10).
Nevertheless, by homology modeling, they were found to be structu-
rally similar to TetX and share its flavin adenine dinucleotide (FAD)-
binding and oxidoreductase domains. The low sequence similarity be-
tween these structural homologs suggests that they may have arisen
from convergent evolution as described for other enzymes [185,186].

Ligninolytic enzymes, namely lignin and manganese peroxidases
from white rot fungus Phanerochaete chrysosporium, have also been
successfully applied to eliminate tetracycline and oxytetracycline in
buffer solutions [187,188], but the antibacterial activity and nature of
these degradation products have yet to be elucidated. Laccase of Tra-
metes versicolor [189] was shown to degrade tetracycline extensively by
dehydroxylation, (bi)demethylation and oxidation of the A and C rings.
However, no cleavage within the four-ring structure was observed,
suggesting that these products might be stable, as shown for other
abiotic transformation products.

The impact of these antibiotic degraders was further assessed in
[16], which revealed that resistant populations expressing TetX2, an
ortholog of TetX, protected sensitive bacteria and allowed them to re-
sume growth after inactivation of the antibiotic. Although no particular
cases of treatment failure due to indirect resistance have been reported,
some of these enzymes have been recently detected in human patho-
gens [183,184], strongly suggesting that the use of these strains as
biotechnological tools might further aggravate the burden of antibiotic
resistance.

Conclusions

Although knowledge on antibiotic degradation and transformation
by bacteria and fungi is vast, the underlying metabolic pathways,
catabolic enzymes and genes are quite dispersed, and bacteria capable
of subsisting on antibiotics appear to be rare. Nonetheless, biode-
gradation and biotransformation reactions have sometimes been ex-
tensively described and can be summarized as follows for the antibiotic
classes discussed here:

• Sulfonamides: easily degraded, with cleavage of the sulfonamide
group by many heterotrophic bacteria isolated from soil and acti-
vated sludge. Some bacteria were shown to subsist on these anti-
biotics by using them as a carbon and energy sources.

• Trimethoprim: only partially degraded by AOB and heterotrophic
bacteria from NAS.

• Aminoglycosides: biotransformation well documented, but to date,
only a single bacterial strain from soil has been shown to use
streptomycin as a carbon and energy source, although the enzymes
involved in this process were not identified.

• Amphenicols: many microorganisms were reported to degrade or
transform amphenicol antibiotics. Thus far, the degradation of the
aromatic moiety has only been described in one species, suggesting
that this part of the molecule may be recalcitrant to further de-
gradation.

• Tetracyclines: these molecules are degraded primarily by fungi
with partial cleavage of the stable four-ring core structure. These
degradation mechanisms have not yet been linked to actual miner-
alization of the molecule or the subsistence phenotype.

Even though many of these results are promising from a bio-
technological point of view, the risks of the direct use of these antibiotic
degraders for bioremediation and bioaugmentation purposes must be
considered. In fact, decades of research on antibiotic resistance have
revealed that these phenotypic traits can quickly become fixed in a
microbial population by compensatory mutations and co-resistance
events [190] resulting in aggravating effects on human health. Despite
these concerns, it is regrettable that most studies often focus exclusively
on antibiotic disappearance and ignore characterization of the de-
gradation process from a molecular and ecological viewpoint. On the
one hand, there are insights into the specific mechanisms of degrada-
tion, while on the other hand, the genes involved in these processes are
largely unknown, which limits understanding of the role of these de-
graders in clinical and environmental settings. Enzyme discovery
should be intensified by complementing classical approaches with high-
throughput approaches, which have proven to be successful e.g. in the

Fig. 10. Main degradation pathways for tetracyclines by fungi, yeast, and bacterial species.
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discovery of new tetracycline oxidoreductases [182,184].
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