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Abstract
Functional differentiation and metabolite exchange enable microbial consortia to perform complex metabolic tasks and 
efficiently cycle the nutrients. Inspired by the cooperative relationships in environmental microbial consortia, synthetic 
microbial consortia have great promise for studying the microbial interactions in nature and more importantly for various 
engineering applications. However, challenges coexist with promises, and the potential of consortium-based technologies is 
far from being fully harnessed. Thorough understanding of the underlying molecular mechanisms of microbial interactions 
is greatly needed for the rational design and optimization of defined consortia. These knowledge gaps could be potentially 
filled with the assistance of the ongoing revolution in systems biology and synthetic biology tools. As current fundamental 
and technical obstacles down the road being removed, we would expect new avenues with synthetic microbial consortia 
playing important roles in biological and environmental engineering processes such as bioproduction of desired chemicals 
and fuels, as well as biodegradation of persistent contaminants.
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Introduction

Microorganisms ubiquitously exist in nature and lie at the 
heart of biogeochemical cycling [34], most of which stay 
together with others to survive and thrive in complex micro-
bial communities. Ecological interactions among species 
shape the structure and functions of the community [66]. 
The diversity of functions and division of labor enable 
microbial communities to cycle the nutrients and to perform 
complicated functions more efficiently than individual popu-
lations. Moreover, growing in mixed cultures also exhibits 
stronger resistance and resilience for individual members to 
environmental changes [63]. Inspired by these distinct prop-
erties of environmental microbial communities, the consor-
tium-based concept has become promising for resilient and 

cost-effective biotechnologies, in which synthetic microbial 
consortia containing 2 or more key species carry out desired 
functions cooperatively based on the microbial interaction 
principles in nature.

We have dealt with undefined microbial consortia for cen-
turies in different fields such as wastewater treatment, biogas 
production, as well as biodegradation and bioremediation. 
However, the enormous potential of microbial consortia is 
far from fully harnessed. In recent years, the understand-
ing and application of microbial consortia have attracted 
broad interest in biosynthesis and bioprocessing [12, 17, 30, 
117]. For example, biorefinery using biomass as feedstock 
is a sustainable solution for producing fuels and chemicals, 
mitigating climate change caused by traditional petroleum 
refineries [22]. Lignocellulose is a low-cost feedstock for 
biorefineries due to its abundance in nature. However, it is 
still challenging to genetically engineer complex pathways 
such as cellulolytic pathways in model strains for efficient 
and stable biosynthetic performance from cellulose-based 
feedstock [17]. Bioconversion of cellulosic biomass using 
synthetic microbial consortia is thus holding promise as an 
alternative approach for lignocellulosic biorefineries [64].

Some synthetic microbial consortia have already revealed 
superior capabilities in biosynthesis and biodegradation 
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[122, 129, 145]. However, the lack of rational design of 
microbial consortia is the bottleneck of utilizing the vast 
potential of microbial consortia [60]. The current design of 
defined consortia mostly comes from the assembly of geneti-
cally engineerable model microorganisms such as Escheri-
chia coli and yeast strains [61, 90, 145], which might geneti-
cally lack cooperative and communicative bases as they are 
not commonly found growing together in nature. Despite 
extensive research on microbial interactions, elucidating 
the underlying molecular mechanisms among co-existing 
microorganisms remains a major challenge to achieve a 
rational design of synthetic microbial consortia. The rapid 
development of omics technology and genome-editing tools 
in recent years opens opportunities and challenges in under-
standing and applying synthetic microbial consortia. Omics 
tools arm researchers with holistic views of metabolic fluxes, 
growth dynamics, and regulations in defined consortia [23, 
85, 104], but pinpointing specific genes/pathways and con-
necting them between consortia members to achieve certain 
phenotypes of the consortium still needs to be further tack-
led. Moreover, the CRISPR/Cas-based toolkits enable rapid 
and efficient genome editing, transcriptional control, as well 
as high-throughput and trackable mutagenesis [28, 39, 132], 
but optimization of the machinery is needed particularly for 
non-model microorganisms. The integration of fundamental 
and technical gears will facilitate synthetic microbial consor-
tia toward a stable and cost-effective approach for engineer-
ing applications such as biofuel/bioproducts synthesis and 
target biodegradation (Fig. 1).

In this review, we start from macro-scale micro-
bial consortia identified and characterized from natural 

environments. Microbial interactions that may sustain a 
functional consortium are discussed with their potential 
applications in engineering fields and the implications 
for constructing synthetic microbial consortia. We then 
introduce the concept of synthetic microbial consortia and 
the synthetic and systems biology tools essential for the 
design and optimization of synthetic microbial consortia. 
The examples of using synthetic consortia for biosynthe-
sis and biodegradation are given. In the end, we bring up 
current challenges that limit the application of synthetic 
microbial consortia together with some suggestions on 
future research directions to make the consortium-based 
biotechnologies more competitive in industrial and envi-
ronmental applications.

Environmental microbial consortia

In nature, microorganisms typically occur in complex 
communities containing multiple populations that may 
metabolically interact with each other. In some cases, cells 
from a single population survive and thrive in complex 
communities where the interactions with cells from other 
populations determine the fitness of that population [133]. 
More importantly, functional differentiation and metabo-
lite exchange during ecological interactions, particularly 
in cooperative relationships, enable co-existing species to 
cycle the nutrients efficiently and to gain strong resistance 
and resilience to environmental perturbations [63].
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Fig. 1  Design, characterization, and optimization of synthetic microbial consortia for biosynthesis/biodegradation
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Microbe–microbe interactions

Consortia are co-existing groups of two or more microbial 
species [127]. Microbial interactions determine the stability 
and functions of consortia. With combinations of positive, 
negative, and neutral effects between two species, there are 
six basic interaction modes: mutualism (e.g., syntrophy), 
commensalism, parasitism or predation, competition, amen-
salism, and neutralism [35]. Stable and robust growth is 
more likely achieved in consortia based on cooperative rela-
tionships, such as mutualism and commensalism. Mutualism 
refers to the cross-feeding between two species occurring 
via the exchange of metabolic products, which is beneficial 
to both partners [134]. In the case of commensalism, one 
community member benefits from the other (e.g., growing 
on the metabolites of the other), while the other community 
member is neither positively nor negatively affected [35].

Communicating by the exchange of metabolites or sig-
nals, members of a consortium coordinate their activities 
and benefit each other through the division of labor, which 
enables microbial consortia to have the capacity to per-
form complex functions and allows parallel or sequential 
processes for resource utilization. Diversity of biochemi-
cal reactions in consortia boosts the overall resource utili-
zation efficiency and reduces the formation of byproducts 
[8]. Moreover, natural consortia may contain members that 
metabolize inhibitory and/or toxic byproducts of primary 
substrates, such as acetic acid, which if not being further 
consumed will waste the energy and carbon in it and inhibit 
the biomass production due to acidification and anion accu-
mulation [15, 29, 107, 108]. Additionally, microbial con-
sortia may have stronger resistance and resilience to fluc-
tuations of environmental factors (e.g., pH, temperature, 
nutrient levels, and the presence of toxic compounds) [20]. 
The diversity of metabolic pathways possessed in different 
members can facilitate the survival of consortia in sub-opti-
mal environments, which lack readily available substrates 
and/or have toxic compounds present [72]. The environmen-
tal resilience and metabolic diversity of microbial consortia 
are important to maintain the desired functions in bioreme-
diation and bioproduction processes.

Microbial interactions that sustain environmental 
microbial consortia

One important microbial interaction in nature is cross-
feeding (usually corresponds to mutualism, and sometimes 
commensalism, Fig. 2), which can lead to the more sustain-
able and robust growth of both partners than each in isola-
tion [92]. One specific example of environmental consortia 
based on cross-feeding is syntrophy, an obligately mutual-
istic interaction. Syntrophy typically refers to a coopera-
tive relationship in which the continuous utilization of one 

compound by organism A for growth is dependent on organ-
ism B that lives on the metabolic intermediate of A. More 
specifically, organism A carries out the degradation of spe-
cific compounds, which only becomes thermodynamically 
favorable to sustain the growth of A when the metabolites 
are kept at lower levels by organism B via exergonic con-
sumption [84].

Syntrophy is widely occurring in natural environments 
and to some extent, contributing to shaping the biogeochem-
ical cycles of carbon, sulfur, and nitrogen. The most com-
mon example is the syntrophy between syntrophic bacteria 
and methanogens in various anaerobic environments, which 
is essential for anaerobic global carbon cycles converting 
organic matter to methane and carbon dioxide [112]. The 
anaerobic degradation of a wide range of carbon compounds, 
including the complex polymers like lipids, proteins, and 
polysaccharides by syntrophic consortia, usually takes sev-
eral steps under anaerobic condition. The compounds are 
initially utilized by hydrolytic bacteria to form monomers, 
then by fermentative microorganisms to produce interme-
diates such as short-chain fatty acids (e.g., butyrate, pro-
pionate, acetate, and formate),  CO2, and  H2. Under stand-
ard conditions (i.e., 273 K, 1 atm, and 1 M of reactants), 
the fermentation of certain organic carbon intermediates 
is thermodynamically unfavorable (i.e., endergonic). The 
consumption of fermentation end products (e.g.,  H2,  CO2, 
and acetate) by partners such as methanogenic archaea and 
homoacetogens makes the fermentation reactions of the 
initial organic compounds thermodynamically favorable 
(exergonic) [119]. Such syntrophy between fermenters and 
methanogens is widely distributed in terrestrial and aquatic 
microbiomes, as well as in microbiomes in the gut of high-
level organisms.

Another example of syntrophy with metabolic coopera-
tion is the co-existence of sulfate-reducing bacteria (SRB) 

Fig. 2  Six basic interaction modes between two species in microbial 
consortia
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and anaerobic methanotrophic (ANME) archaea as an obli-
gate co-culture discovered recently from the ocean floor. 
The ANME archaea oxidize methane to  CO2 by reverse 
methanogenic pathway. SRB take the electrons originally 
donated from methane and reduce sulfate to provide energy 
for growth of both partners [14, 31, 67]. The syntrophy 
between SRB and ANME uncovers an important route in 
the sulfur and carbon cycles coupling sulfate reduction to 
methane oxidation. Recent studies show that the interspe-
cies electron transfer couples the two species by passing 
electrons from methane oxidation by ANME archaeon to 
SRB rather than using traditional diffusible syntrophic 
substrates such as hydrogen, formate, and acetate men-
tioned above [110, 120]. However, the detailed electron 
transfer mechanism remains to be further explored.

Syntrophy also occurs to another type of ANME archaea 
that links the nitrogen cycle to the carbon cycle, nitrate-
dependent denitrifying anaerobic methane oxidation 
(DAMO) archaea. In anoxic environments where organic 
carbons are limiting, DAMO archaea and anaerobic ammo-
nium oxidation (Anammox) bacteria may co-exist via syn-
trophic interactions [50, 78]. Nitrate-dependent DAMO 
archaea anaerobically oxidize methane coupled to the 
reduction of nitrate to nitrite [33]. Anammox bacteria then 
consume the produced nitrite to oxidize ammonium and 
produce dinitrogen gas. As anammox bacteria also utilize 
nitrite as their reducing power to fix  CO2 for their auto-
trophic growth, forming nitrate [70]. The formed nitrate 
can, in turn, be used by DAMO archaea. Such interactions 
are not only important to the biogeochemical cycles of 
nitrogen and carbon, but also to the engineering applica-
tions for nutrient removal. Theoretically, DAMO–anam-
mox can result in a complete reduction of nitrate. It has 
been demonstrated in a recent enrichment study, where 
the consortium containing anammox bacteria and nitrate-
dependent DAMO archaea is capable of complete removal 
of nitrate and ammonium through their syntrophic interac-
tions with provided methane gas [54].

Besides the metabolically syntrophic cross-feeding 
between organisms A and B, detoxification is another impor-
tant benefit that allows microbial consortia to sustain cell 
growth and functions. In this relationship, organism B is 
fed on the metabolites of organism A, while the sustainable 
growth of A benefits from the removal of its toxic metabo-
lites by the other organism. One example is sulfur utiliz-
ing consortia, facilitating the conversion of organic sulfur 
to inorganic forms and promotes the biogeological cycling. 
The growth of SRB in pure culture is significantly inhibited 
by the accumulation of metabolic sulfide produced from 
elemental sulfur [98, 105]. In the consortium of green sulfur 
bacteria and SRB, sulfide produced by SRB is oxidized to 
elemental sulfur by green sulfur bacteria. Elemental sulfur 
is then reduced by SRB resulting in regeneration of sulfide. 

The concentrations of sulfide and elemental sulfur are kept 
at non-inhibitory levels allowing both partners to thrive [10].

Such one-way cross-feeding plus detoxification rela-
tionships have also been found in aerobic environments. 
Methanotrophic bacteria oxidize methane to methanol and 
methanol to formaldehyde in methane oxidation [49]. Co-
existing methylotrophic organisms in laboratory enrichment 
are capable of oxidizing methanol relieving its inhibition on 
the growth of methanotroph [91]. It is also reported that the 
highly toxic formaldehyde is removed in the consortium of 
methanotrophs and methylotrophs [111]. Another example 
is the co-existence of ammonia-oxidizing bacteria (AOB) or 
archaea (AOA) and nitrite-oxidizing bacteria (NOB) found 
in both natural and built environments [42, 65, 93, 137]. 
During the nitrification process, ammonia is oxidized by 
AOB or AOA leading to the production of toxic metabolites 
nitrite, which is then removed by NOB through oxidation of 
nitrite to nitrate [80, 100, 121].

Microbial consortia could benefit from syntrophy via the 
third approach: organism A provides B essential substrates, 
while organism B offers protective habitats such as biofilms. 
Pseudomonas species are one group of important biofilm-
forming microorganisms found in environmental consortia 
[47]. Cyanolichen contains phototrophic cyanobacteria 
and heterotrophic fungi forming a symbiotic relationship, 
where the phototrophic bacteria provide organic carbons to 
the heterotrophic fungi, and the filaments of fungi create a 
protective habitat that also traps moisture and nutrients for 
the cyanobacteria [2].

Systems‑level understanding of microbial 
interactions in consortia

Thanks to the rapid development of high-throughput 
sequencing and analytical chemistry, omics approaches 
((meta)transcriptomics, (meta)proteomics, and metabo-
lomics) have been broadly employed to analyze mono-
culture, defined consortia, enrichment culture, as well as 
environmental microbial communities to fill the knowledge 
gap of the underlying molecular mechanisms of microbial 
interactions [6, 21, 79, 143, 146]. Omics tools enlighten the 
understanding of microbial interactions by providing valu-
able information on functional diversity, gene expression 
levels, regulatory networks, and metabolite profiles [7, 103, 
106, 127]. Different types of meta-omics analyses can com-
plement and support each other, leading to integrated omics, 
a more comprehensive approach to decipher microbial inter-
actions in detail (Fig. 3). With known genomic information 
of each consortium member, the current technology can 
generate informative metatranscriptomics and metaproteom-
ics data to compare the temporal gene expression (mRNA 
and protein) between monocultures and consortia. For 
example, the temporal proteomes complemented with the 
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metabolomic analysis elucidated the possible interactions 
between Ketogulonicigenium vulgare and Bacillus megate-
rium, which are artificially assembled together to produce 
2-keto-gulonic acid (2-KGA), the precursor of vitamin C. 
The profiling of proteins and metabolites revealed that B. 
megaterium helped K. vulgare to resist reactive oxygen 
stress, and after sporulation and lysis B. megaterium also 
provided necessary nutrients, such as purine, for K. vulgare 
to grow better and produce more 2-KGA [79].

Comparative transcriptomics and proteomics have also 
been applied to study interspecies relationships in various 
syntrophic consortia, including interspecies hydrogen trans-
fer in consortia containing a hydrogenic fermenter and a 
hydrogenotrophic microorganism (methanogenic archaea 
or dechlorinating bacteria) [85, 88], nutrient cross-feeding 
between corrinoid-auxotrophic and corrinoid-producing 
bacteria [86, 87], and stress-related in-contact interactions 
resulting in exclusive Mn oxidation in a co-culture [76]. 
Multiple comparative omics analyses also provided insights 
into interspecies interactions in the archaeal consortium 
of marine hyperthermophiles Ignicoccus hospitalis and 
Nanoarchaeum equitans: compared with monocultures, the 
metabolism (e.g., ribosome protein synthesis and amino acid 
metabolism) of I. hospitalis was redirected to alternative 
pathways to sustain the growth of N. equitans, resulting in 
the reduction of metabolic diversity in the consortium [104].

The integrative omics analysis would be even more pow-
erful if complemented with metabolic flux analyses (MFA). 
However, even for 13C-labeling metabolic flux analysis (13C-
MFA) in a consortium, it is difficult to distinguish labeling 
fingerprints of different species using the typical amino 
acid-based isotopic tracing experiments for monocultures, 
as amino acids produced by different populations cannot be 
easily distinguished [40]. To overcome this, a peptide-based 
13C-MFA together with protein-based stable isotope probing 

(SIP) and transcriptomic analyses have been developed, in 
which the unique sequences of amino acids in peptide allow 
the assignment of peptides to specific species in consortia 
[41]. Experimental peptide labeling patterns can be obtained 
by mass spectrometry via procedures similar to proteomics 
and protein-based SIP [13, 16, 57], and metabolic fluxes to 
each consortium member can be inferred from the peptide 
labeling patterns [101]. The extensive data generated from 
meta-omics can then be used to carry out flux balance analy-
sis and to establish predictive models for microbial consortia 
[48, 101]. In addition, the above-mentioned systems biology 
tools can be combined with single-cell technologies such as 
fluorescence-activated cell sorting (FACS), Raman-activated 
cell sorting, and NanoSIMS to interpret the metabolic roles 
played by individual members in microbial consortia [32, 
51, 74].

Engineering applications of environmental 
microbial consortia

The discovery of microorganisms growing syntrophically 
in nature has directed the design of engineering applica-
tions in pollution control and renewable energy produc-
tion. One example of macroscopic microbial consortia used 
in environmental engineering is the production of biogas 
through anaerobic digestion of excess activated sludge 
from wastewater treatment and combined with food wastes. 
Anaerobic digestion is considered as an energy-efficient 
and environment-friendly approach for bioenergy produc-
tion [77], where syntrophic interactions between fermen-
tative microorganisms and methanogens play crucial roles 
in methane production. The loss of activity of one partner 
may severely affect the activity of the other, causing acid 
accumulation and a significant decrease in methane content 
in the biogas [45, 53, 126]. More recently, the concept of 

Fig. 3  Schematic workflow 
using omics tools for metabolic 
network elucidation and rational 
metabolic engineering design
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complete nitrogen removal by membrane biofilm reactor has 
been tested in the laboratory taking advantage of the syn-
trophic interactions between DAMO microorganisms and 
anammox bacteria [138]. Algae–prokaryote consortia have 
also been used in wastewater treatment for energy-efficient 
nitrogen removal, where oxygenic phototrophs provide  O2 
instead of aeration for nitrifying and heterotrophic prokary-
otes while prokaryotes provide  CO2 and ammonia detoxifi-
cation to algae [130].

Similar syntrophic relationship based on interspecies 
hydrogen transfer has been utilized in bioremediation of 
tetra-/tri-chloroethene (PCE and TCE)-contaminated fields 
with the addition of fermentable organic substrates, where 
fermenting bacteria supply hydrogen the sole electron donor 
used by the dechlorinating bacteria (i.e., Dehalococcoides 
spp.) and, in turn, hydrogen level is lowered down for the 
fermentation of organics to proceed further [3, 36, 82]. In 
addition to hydrogen, cross-feeding on another essential 
nutrient corrinoids has also been observed between the 
corrinoid-auxotrophic, dechlorinating Dehalococcoides and 
corrinoid-producing fermentative bacteria [86, 141].

Taken together, environmental microbial consortia can 
form tight mutualistic relationships via cross-feeding, detox-
ification, and biostructure formation. The microbial interac-
tions and metabolic networks possessed in environmental 
microbial consortia may provide guidance for the design and 
optimization of stable, robust and efficient synthetic micro-
bial consortia for a variety of engineering applications, such 
as biosynthesis and biodegradation.

Synthetic microbial consortia 
for engineering purposes

Synthetic microbial consortia refer to designed simple 
microbial communities with a defined composition of 2 or 
more (typically 2–3) species/strains. They hold great prom-
ise in a variety of engineering applications, including bio-
synthesis and bioremediation (bioaugmentation). Traditional 
medical and industrial biosynthesis processes rely on using 
genetically modified monoculture to create an all-in-one 
engineered strain capable of a broad spectrum of heterolo-
gous processes completing the bioconversion all the way to 
the end product. The fitness cost due to metabolic resource 
allocation makes it extremely challenging to engineer a sin-
gle microbe to effectively and sustainably produce desired 
high-value products that require complex biosynthetic 
pathways [61, 135]. The division of labor among consor-
tium members benefits each in terms of substrate utiliza-
tion, redox balance (e.g.,  NAD+/NADH cycling) and cell 
growth [17]. Although at its infant stage, synthetic microbial 
consortia have been emerging as a new paradigm as they 
possess the potential to overcome the limitations of using 

a single population. First, it can achieve higher biosynthe-
sis efficiency with less refined substrates (e.g., pretreated 
beech wood) due to the capacity of microbial consortia to 
utilize a broader range of raw and low-cost substrates [9, 
37, 115]. Second, the application of microbial consortia can 
also potentially simplify the multi-step process to reduce 
the operational cost. For example, the reorganized one-step 
vitamin C production by synthetic consortium eliminates the 
requirement of second sterilization process in conventional 
two-step fermentation, and notably reduces the production 
cost [129]. In addition, synthetic microbial consortia are 
advantageous to complex communities for bioremediation 
when the key players may compete with the other non-con-
tributing members in the community for limited substrates. 
Such substrate competition would be eliminated by con-
structing microbial consortia containing only the contribut-
ing species. Here, we will discuss the design and optimiza-
tion of synthetic microbial consortia, and consortium-based 
applications for biosynthesis and biodegradation.

Design of synthetic microbial consortia

Successful synthetic microbial consortia not only carry 
out the desired functions but also sustain cell growth in a 
stable and robust way. More stable relationships among 
consortium members are formed when they highly depend 
on each other. Microbial interactions that lead to the inter-
dependence and stable relationships include cross-feeding, 
detoxification, and biofilm formation, which are important 
consortium design principles [56, 85, 86, 115]. There are 
typically two strategies to select consortium members: (1) 
top-down (from complex to simple): the consortium mem-
bers are the identified keystone players from one specific 
complex microbial community [109, 147] (Fig. 4a), and (2) 
bottom-up (from simple to complex): the consortium mem-
bers are selected from an inclusive pool of isolated and/or 
engineered microorganisms, which may possess the desired 
traits but not necessarily have common environmental ori-
gins [58, 68] (Fig. 4b). Although the bottom-up approach 
facilitated by a variety of synthetic biology tools is a sim-
ple and common method to construct synthetic microbial 
consortia, the top-down strategy offers naturally occurring 
microbial interdependence that might be missing from an 
artificial combination of engineered microorganisms using 
the bottom-up strategy. The most efficient and stable mac-
roscopic microbial consortia for cellulose utilization exist in 
nature, such as rumen microbiome. However, it is typically 
non-model species that are involved in those environmen-
tal microbial communities. The unavailability of isolates 
of unconventional microorganisms as well as the lack of 
their genomic information, metabolic pathways, and suitable 
engineering tools are the major obstacles that prevent the 
top-down approach from being widely applied in synthetic 
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consortia construction. It is challenging particularly for bio-
synthesis purposes as they require more accurate control on 
the metabolic fluxes and the output products. As single-cell 
technologies and systems biology tools for community stud-
ies are being advanced [83, 144], one may expect a better 
understanding of the environmental microbial consortia, 
which will benefit a more stable and robust design of syn-
thetic consortia using environmental microorganisms.

Optimization of synthetic microbial consortia

Although promising, synthetic microbial consortia need to 
be optimized for the desired performance. One trade-off of 
using synthetic consortia for biosynthesis is the introduc-
tion of redundant metabolic pathways, rendering diluted 
flux toward the desired product. In addition, for defined con-
sortia used as a bioaugmentation seed in bioremediation/
biodegradation, they may need to carry out the reactions at 
sub-optimal growth conditions (e.g., low temperatures and 
low/high pH values) and low substrate levels (e.g., treating 
groundwater contaminations). To make the synthetic consor-
tia cost-effective, stable, and robust, we need to modify the 
consortia or consortia members individually. The optimiza-
tion methods include directed evolution, genomic and meta-
bolic engineering, and artificial cell-to-cell communications.

Directed evolution

Directed evolution is a process simulating Darwinian selec-
tion to identify mutants with desired traits through iterative 
cycles of mutagenesis and enrichment of selected mutants. 
Different from natural evolutionary adaptation [128], 
directed evolution uses accelerated mutagenesis induced 
by a chemical mutagen or realized by molecular regulation 
and genetic/genomic engineering [26]. Random or targeted 

mutagenesis libraries are constructed, and the mutants are 
selected by monitoring the emergence of desired traits. Such 
mutagenesis and selection cycles drive the consortium sys-
tem toward the desired phenotypes circumventing a thorough 
understanding of the metabolic networks and the underly-
ing regulation mechanisms [5, 27]. The feedback-regulated 
evolution of phenotype has also been achieved in an adaptive 
control system, where the mutagenesis rate is maximized 
when no desired product is present and decreased when the 
desired product is in high concentration [24]. It has been 
successfully applied to select mutants with higher produc-
tion of tyrosine and isoprenoid in E. coli [24]. Although 
directed evolution is typically based on single cells or 
proteins, theoretically it can also be applied to microbial 
consortia by evolving all members as growing together or 
generating mutant strains of individual consortium members 
for new consortia construction. It is a tremendous amount 
of work to construct mutant libraries and conduct selection 
experiments. Thus, more targeted approaches are needed. 
Directed evolution can be combined with genetic/genomic 
engineering to obtain desired traits when the genes/pathways 
essential for acquiring/losing the desired trait are known 
[73].

Genome and metabolic engineering

Advances in synthetic biology toolkits, particularly the 
rapid development of genome-editing techniques open up 
more possibilities of optimizing synthetic microbial con-
sortia through metabolic engineering. Engineered nucle-
ases coupled with sequence-specific DNA-binding domain 
enable the site-directed genome editing via the generation 
of double-strand break (DSB) followed by nonhomologous 
end joining (NHEJ) or homology-directed repair (HDR) in 
diverse cell types and organisms [46]. The site-specific DSB 

Fig. 4  Top-down (a) and bottom-up (b) approaches for synthetic consortia construction
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can be generated by (1) Zinc-finger nucleases (ZFNs) [124], 
(2) transcription activator-like effector nucleases (TALENs) 
[89], and (3) clustered regularly interspaced short palindro-
mic repeats (CRISPR) and CRISPR-associated (Cas) sys-
tems. CRISPR/Cas genome-editing systems emerge rapidly 
in recent years due to their advantages over the other two 
genome-editing approaches, including higher efficiency, 
easier procedure, and the availability for multiplex genomic 
modification [46, 96]. The type II CRISPR/Cas system (i.e., 
CRISPR/Cas9) originated from Streptococcus pyogenes 
is the most applied CRISPR/Cas-based genome-editing 
machinery. It includes a Cas-encoding gene (cas9), a single 
guide RNA (sgRNA), and an editing template, which are 
carried by a plasmid to be introduced to the target cells. The 
sgRNA is composed of crRNA, tracrRNA, and a ~ 20 bp 
target sequence (protospacer) in the to-be-edited genome 
plus a protospacer-adjacent motif (PAM, a three-nucleotide 
sequence of NGG) (Fig. 5). Besides numerous applications 
in plants and animals, high selectivity and efficiency of 
genome editing by CRISPR/Cas9 have also been demon-
strated in microorganisms, particularly those model strains 
like yeast and E. coli involved in biosynthesis [1, 4, 28, 
59, 75, 94, 140]. Recently, there is an emerging need for 
CRISPR/Cas-based toolkits tailored to non-model strains 
of specific interest for bioenergy and bioproduct synthesis 
[113]. One challenge to edit non-conventional microbial 
genomes is that some bacteria such as Clostridium species 
are lack of NHEJ and active HDR. The mutated Cas9, Cas9 
nickase has been successfully applied to carry out DNA 
deletion and insertion via the single-nick-triggered homol-
ogous recombination (SNHR) strategy for the cellulolytic 
Clostridium cellulolyticum, resulting in editing efficiency 

as high as 95% [140]. Other challenges for CRISPR/Cas9 
application to non-model strains include the selection of 
effective promoter and compatible carrying vectors, as well 
as the optimization of sgRNA. The editing efficiency by the 
CRISPR/Cas9 machinery can be enhanced by selecting pro-
moters and vectors most compatible with the target cells [95, 
102]. Furthermore, researchers have recently developed a 
high-throughput method screening high-efficiency sgRNAs 
in a non-conventional yeast strain, which can be potentially 
applied to other non-conventional microbial strains [113]. 
Efficient CRISPR/Cas-based genome editing can be applied 
for knocking out and/or knocking in genes that are essential 
in microbe–microbe interactions, thus enhancing the sta-
bility and performance of synthetic consortia. For exam-
ple, the enhancement of cellulolytic activity of C. cellulo-
lyticum converting cellulose into fermentable intermediates 
will open the possibility of constructing highly efficient 
cellulose-based synthetic consortia with specific ferment-
ing bacteria converting the intermediates into biofuels and/
or bioproducts.

Besides genomic manipulation, transcriptional control 
can also be achieved by CRISPR-assisted systems, CRISPR 
interference (CRISPRi) with deactivated or “dead” Cas9 
(dCas9) for transcriptional repression and CRISPR activa-
tion (CRISPRa) with a transcriptional activator protein fused 
with dCas9 for upregulation of gene expression [11, 19, 
139]. The CRISPR-enabled transcriptional control has been 
applied to a twin-clostridial consortium. The consortium was 
able to produce 22.1 g/L acetone–butanol–ethanol (ABE) 
from alkali-extracted, deshelled corn cobs, which matches 
the titer of ABE produced from starchy feedstock and is 
evident to be a promising platform for ABE production 

Fig. 5  CRISPR–Cas9 system
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from lignocellulose. The desired metabolic pathway is 
divided into four modules and shared between Clostridium 
cellulovorans and Clostridium beijerinckii via metabolic 
engineering. CRISPRi system was designed to decrease 
the transcription level of the target hydrogenase gene in C. 
cellulovorans. The production of ethanol was increased by 
tenfold, indicating that the NADH generated was redirected 
to the synthesis of ethanol rather than hydrogen gas [132]. 
Moreover, a recently developed CRISPR-enabled trackable 
genome engineering (CREATE) technique enables (1) the 
high-throughput construction of site-specific mutagenesis 
libraries (including site saturation mutagenesis of a given 
protein), which can link genotypes to phenotypes, and (2) 
the reconstruction of adaptive evolution libraries contain-
ing mutants with all evolved genotypes, which can pinpoint 
which mutation leads to the evolved phenotype [38]. The 
CRISPR/Cas system can also be applied to selectively 
remove undesired bacterial species/strains and quantitatively 
control the composition of consortia, which are critical to 
industrial synthetic consortia. Illustrated in E. coli, type I-E 
CRISPR/Cas system was found to be capable of distinguish-
ing and removing highly similar strains in consortia, and the 
control of consortium composition can be achieved by vary-
ing the collection of delivered CRISPR RNAs [43].

CRISPR/Cas-based techniques are powerful tools to 
genetically and/or metabolically engineer each member of 
microbial consortia. Ideally, an optimized synthetic consor-
tium should have (1) enhanced interdependency and stabil-
ity, (2) alleviated substrate competition among members, 
and (3) increased flux toward the desired products. However, 
different from monocultures, it is even more challenging to 
optimize synthetic consortia. To achieve a rational metabolic 
engineering design and promotes the stability and efficiency 
of the consortium, it is critical to have a thorough under-
standing of metabolic networks among consortium mem-
bers. Systems biology tools discussed in Sect. 2.3 can be 
employed to disentangle complex microbial interactions in 
undefined and defined consortia. Due to the complexity of 
microbial networks, although with a tremendous amount of 
information obtained by systems biology, it is still challeng-
ing to disentangle the key components that directly contrib-
ute to the cooperative interactions. High-throughput experi-
mental screening tools and model simulation or machine 
learning are needed to complement with the traditional sys-
tems biology, for further identification and validation.

Artificial cell‑to‑cell communication

Another possible way to manipulate synthetic microbial 
consortia is introducing artificial cell-to-cell communica-
tion circuits. Cell-to-cell communication plays a crucial role 
in the organization and regulation of multicellular traits such 
as division of labor, inter- and intracellular communications, 

and coordination of cellular activities. Design and incor-
poration of cell-to-cell communications enable researchers 
to engineer population-level behaviors and functions [25]. 
Quorum sensing (QS) is one of the most common mecha-
nisms of intra- and interspecies communication. The large 
diversity and availability in synthetic biology make QS an 
attractive approach for coordinating complex behavior in 
synthetic consortia [109, 118]. The population-level behav-
ior is coordinated by bacteria which produce and respond 
to specific signaling molecules (acyl-homoserine lactones, 
AHLs) in a density-dependent way. The gene transcription 
is controlled by certain QS regulating proteins (either acti-
vators or repressors), which AHLs can bind to. There are 
a number of QS systems found in environmental microor-
ganisms, including lux, esa, las, tra, rpa, rhl, and cin [71, 
118]. To develop QS-based genetic circuits for regulating 
system behaviors in synthetic consortia, variants of the QS 
regulator EsaR were obtained from directed evolution, with 
more than 70-fold higher signal sensitivity than the wild-
type EsaR. Thus, the variants can be used at low signal mol-
ecule concentrations ranging from 5 to 10,000 nM [118]. By 
engineering esaR promoters with a second EasR binding 
site, researchers were able to modulate QS-dependent gene 
expression, opening possibilities of using a single QS signal 
to tune the regulation of multiple genes, which can be used 
to control microbial behaviors in synthetic consortia [116]. 
For consortia constructed based on multiple QS systems, 
system pairs that exhibit orthogonality are more useful as 
they do not form interactions (i.e., signal crosstalk, promoter 
crosstalk, or both) that may interfere different regulation 
systems in the consortium. Two engineered QS systems, 
rpa and tra, were examined to be completely orthogonal. 
The orthogonality of QS systems can also be predicted by 
a software tool [71]. Three in silico identified orthogonal 
QS communication channels were simultaneously applied 
to a consortium of three E. coli populations, and they suc-
cessfully controlled each population level in response to the 
specific AHL signal as predicted [71]. Thus, the QS-based 
cell–cell communication systems provide potential modules 
for versatile control of synthetic consortia [114].

Synthetic microbial consortia for biosynthesis

Lignocellulosic biomass, the most abundant renewable 
carbon source, is an ideal feedstock for the production of 
biofuel and chemicals [44]. Biosynthesis of fuels and value-
added chemicals from lignocellulosic biomass has been 
regarded as a sustainable alternative of current petroleum 
feedstock platforms. However, challenges remain in improv-
ing the bioconversion efficiency and lowering processing 
costs [97]. Consolidate bioprocessing (CBP) is thought to 
be a promising scheme for biorefinery due to its low cost 
and simple operation. However, monoculture typically has 
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limited productivity, yield, and titer. Harnessing consortia 
is an attractive alternative for CBP, although there are chal-
lenges such as maintaining stability and boosting the pro-
ductivity of consortia [136].

Biofuels

A synthetic consortium of three epiphytic strains of Ente-
rococcus was reported to produce 79.5 mL  H2 per gram of 
added wheat straw xylose which is many folds more than 
the monoculture of those species. Another consortium con-
sisting C. beijerinckii with C. cellulovorans was designed 
to enhance the production of acetone–butanol–ethanol 
from previous leftover wheat straw; however, the interac-
tions among the above species remain elusive [125]. Cross-
kingdom interactions also guide the design of synthetic 
consortium for biofuel production: a consortium containing 
a cellulolytic fungus Trichoderma reesei producing soluble 
saccharides and an engineered E. coli strain metabolizing 
the saccharides to isobutanol, achieved up to 1.88 g/L pro-
duction of isobutanol from cellulosic biomass. This study 
also demonstrates that the cooperator–cheater interaction 
could be applied to the design of stable consortia with tun-
ing capacity [90].

Moreover, physical compartmentation enables the growth 
of consortium consisting of both aerobic and anaerobic 
microorganisms, broadening the spectrum of potential appli-
cations of microbial consortia. A recent study demonstrates 
this concept with bioproduction of ethanol from wheat straw 
in single biofilm membrane reactor featuring both aerobic 
conditions for the cellulase-producing fungal strain T. reesei 
Rut C30 and anaerobic conditions for an ethanol-producing 
yeast strain Saccharomyces cerevisiae. The oxygen perme-
able membrane at the bottom of the reactor enables the for-
mation of fungi biofilm, in which oxygen is depleted, and 
cellulolytic enzymes are synthesized and released. Sugars 
from cellulose hydrolysis are then fermented to ethanol in 
the upper anaerobic yeast biofilm [18].

Bioproducts

Up to 19.8 g/L lactic acid was produced by a fungal–bacte-
rial consortium of the aerobic fungus T. reesei and faculta-
tive anaerobic lactic acid bacterium Lactobacillus pento-
sus from non-detoxified steam-pretreated beech wood in a 
spatially structured biofilm, similar as described above. On 
dense oxygen permeable membrane, the oxygen is depleted 
in the biofilm of T. reesei, producing cellulases that hydro-
lyze cellulose to sugars including cellobiose, which may 
inhibit the fungal growth at high concentrations. In the 
anaerobic bulk liquid, L. pentosus fed with released sugars 
consumes cellobiose, which alleviates the inhibitory effect 
of cellobiose on T. reesei. The self-inhibitory by-product 

acetic acid produced by L. pentosus can, in turn, be con-
sumed by T. reesei via cross-feeding, thus promoting a sta-
ble mutualistic relationship between the two species [115].

The conventional industrial bioproduction of 2-keto-
l-gulonic acid (2-KGA), the precursor of vitamin C, is 
limited by a long incubation period and the additional ster-
ilization process. Synthetic microbial consortia have been 
successfully applied for one-step vitamin C production, 
in which the yield of 2-KGA is comparable to the original 
two-step fermentation process. Consortia optimization via 
metabolic engineering was carried out to produce 2-KGA 
from d-sorbitol. The consortium of Gluconobacter oxy-
dans and Ketogulonicigenium vulgare was reorganized 
with alleviated competition for substrate and enhancement 
of symbiotic relationship by deleting genes involved in 
sorbose metabolism of G. oxydans [129].

Traditional engineered strains typically hold long 
reconstituted metabolic pathways to produce high-value 
metabolites; however, parts of the pathway may require 
specialized environments for optimal performance, and the 
host may be metabolically overburdened. A consortium of 
engineered E. coli and S. cerevisiae is reported to success-
fully produce 33 mg/L oxygenated taxanes, precursors of 
the anti-cancer drug paclitaxel, through the distribution 
of a heterologous pathway into two engineered bacteria. 
In this division of labor, S. cerevisiae utilizes metabolic 
intermediates produced by E. coli. The fast growth of E. 
coli and the complete protein expression system of S. cer-
evisiae are integrated for the biosynthesis of taxanes. To 
avoid the competition between the two species, research-
ers engineered mutualistic relationships in the consortium, 
where S. cerevisiae grew solely on acetate, a self-inhibi-
tory product of E. coli [145].

Engineered E. coli consortia containing two functionally 
different strains have been applied to synthesize high-value 
natural products. Flavonoid was produced by an E. coli co-cul-
ture. The malonyl-CoA dependent upstream E. coli strain con-
verts phenylpropanoic acids to flavanones, and the NADPH-
dependent downstream E. coli strain transforms flavanones 
to flavan-3-ols. These two E. coli strains were individually 
optimized by improving flux to essential substrates and co-
factors, and the combined consortia were screened based on 
titer. With the aid of empirical modeling, the optimization of 
carbon source, strain compatibility, temperature, and inocula-
tion ratio leads to a 970-fold improvement in titer over the pub-
lished production by single populations [62]. A more complex 
consortium containing four E. coli strains has been recently 
designed to conduct complete biosynthesis of anthocyanins 
from sugar. The division of metabolic burden and genetic 
optimization of individual strain enabled cooperative overex-
pression of 15 exogenous or modified enzymes from various 
plants and microbes, achieving milligram-per-liter production 
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titer, which is several orders of magnitude higher than previous 
studies using enzymes from eukaryotic organisms [61].

Synthetic microbial consortia for biodegradation/
bioremediation

Synthetic microbial consortia may play important roles in 
bioremediation, as the division of labor in consortia is impor-
tant for the degradation of persistent pollutants, which usually 
requires multiple steps, and cultures must be robust to the com-
plex environment [52]. The constructed and optimized syn-
thetic consortia can serve as the seed culture for bioaugmenta-
tion of in situ bioremediation practice and for biodegradation 
in more confined reactors as ex situ remediation approaches. 
It is worth noting that the application of engineered microbial 
consortia currently is, to the most extent, restrained in well-
controlled bioprocesses to avoid genetic contamination from 
environmental microorganisms.

In a batch study, the inhibitory effect of acetylene, a product 
of tetra- and trichloroethene biodegradation on the dechlorin-
ating bacterium Dehalococcoides sp., was eliminated by co-
cultivating an acetylene-fermenting bacterium, Pelobacter. 
The acetylene fermentation products also sustained the growth 
of the dechlorinating bacteria as energy and carbon source 
[81]. In addition, a consortium consisting of Bacillus clausii 
T and Bacillus clausii O/C, both isolated from human probiot-
ics, alleviated the toxicity of antibiotics and showed a higher 
removal efficiency of select antibiotics than pure cultures [69]. 
A defined consortium isolated from petrochemical landfarm 
site (containing Mycobacterium fortuitum, Bacillus cereus, 
Microbacterium sp., Gordonia polyisoprenivorans, Microbac-
teriaceae bacterium, the Naphthalene-utilizing bacterium, and 
a fungus Fusarium oxysporum) was tested to degrade poly-
cyclic aromatic hydrocarbons (PAHs) including anthracene, 
phenanthrene, and pyrene in soil. On average, 78% of three 
PAHs with different concentrations were mineralized by the 
consortium in 70 days. And the consortium showed more 
effective anthracene degradation than any of the isolates [55]. 
Similarly, the aliphatic and aromatic hydrocarbons of crude 
oil were efficiently degraded by a defined microalgal–bacterial 
consortium containing four bacterial species Sphingomonas 
sp. GY2B, Burkholderia cepacia GS3C, Pseudomonas sp. 
GP3A, and Pandoraea pnomenusa GP3B and one oil-tolerant 
microalga Scenedesmus obliquus GH2. Almost all alkanes, 
alkylcycloalkanes, alkylbenzenes naphthalene, fluorene, and 
phenanthrene were removed by this consortium [122].

Challenges and future research directions

Challenges remain to be overcome before fully harness-
ing the potential of synthetic microbial consortia [117, 
147]. First, the available number of orthogonal cell–cell 

interaction channels is limited [123]. Second, the underly-
ing mechanisms and regulations of microbial interactions 
and their functional flexibility are poorly understood [142]. 
Although ubiquitously occurring in nature, inter- and intra-
kingdom communications have not been well studied, as 
well [131]. Third, long-term homostasis of consortia could 
be difficult to maintain, as the long-term behavior of engi-
neered organisms is unpredictable [17]. Fourth, some useful 
functions such as cellulolysis are possessed by non-model 
microorganisms such as Caldicellulosiruptor saccharolyti-
cus [99], for which efficient genome-editing tools are lacking 
due to the limited knowledge of organism-specific biochemi-
cal pathways and regulatory mechanisms. In addition, fine 
tuning the behavior of multiple populations in consortia is 
still challenging. Expanding directed evolution used for a 
single population to multiple populations under varying 
environments is also needed.

Future research is needed to address the above challenges. 
Potential directions include (1) obtaining a systems-level 
understanding of microbial interactions and metabolic net-
works in synthetic consortia for rational metabolic engineer-
ing design; (2) developing the state-of-the-art high-efficiency 
genome-editing toolkits for non-model microorganisms; (3) 
developing high-throughput screening tools and inexpensive 
gene-chip assay for directed evolution in multiple popula-
tions. The success of synthetic microbial consortia is, to 
a large extent, dependent on the advancement of systems 
biology, synthetic biology, analytical, and modeling tools. 
Only when we decipher the codes of microorganisms given 
by the mother nature to form strong and stable relationships 
among each other and know how to re-code them, synthetic 
microbial consortia will fully show their power in biosyn-
thesis and biodegradation, as well as many other engineering 
applications.
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