

Dr. Christine Becker

Dr. Christine Becker

Dr. Christine Becker

LIGHT CONDITIONS

• What is light?

electromagnetic radiation within a certain portion of the electromagnetic spectrum

Huché-Thélier et al 2016, Environ Exper Bot, modified; Robert A. Rohde, Wikimedia Commons, modified)

Greenhouse cladding changes the quality and quantity of the transmitted radiation, especially regarding:

- intensity (quantity)
- UV
- NIR
- blue wavelengths

Huché-Thélier et al 2016, Environ Exper Bot, modified

Dr. Christine Becker

• What is a pest?

Merriam-Webster dictionary: "a plant or animal detrimental to humans or human concerns (such as agriculture or livestock)"

→ *here:* focus on insect pests in agriculture; **food competitors to humans**

• Feeding on plant sap: aphids

• Feeding on plant sap: aphids

Wikipedia, Jacopo Werther

aphids: high taxonomic diversity

Many species with diverse shapes, colors and sizes!

aphid life cycle, reproduction

Green apple aphid (*Aphis pomi*) (Robert Evans Snodgrass, 1930)

- Very diverse reproduction cycles!
- 1 common model:
 - beginning of the season: only females, asexual reproduction
 - declining food quality: winged females produced, to change host plant
 - end of the season: production of males, sexual reproduction

aphid feeding

Green apple aphid (*Aphis pomi*) (Robert Evans Snodgrass, 1930)

compound eye

stylet in sheath ("rostrum")

Front view of wheat aphid, *Schizaphis graminum*, showing the piercing-sucking mouthparts

• Feeding on plant sap: aphids

(Mehrabi 2016, modified)

Aphid feeding on phloem sap. st: stylet, scl: sclerenchyma, p: phloem, x: xylem. Scale bar = 1 mm. ("Plants in Action", Australian Society of Plant Scientists)

Feeding on plant sap: aphids

• aphids: feeding on plant sap, excreting fluids

Cornicles: excretion of defense fluid

Anus: excretion of honeydew

also feeding on plant sap: whitefly

Trialeurodes vaporariorum, Greenhouse Whitefly

- weaken plants through salivary toxins
- often spread virusus while feeding (like aphids)
- excrete honeydew that fosters mold (like aphids)
- Prominent pests:
- Bemisia tabaci, Silverleaf whitefly
- Aleyrodes proletella, Cabbage Whitefly
- Trialeurodes vaporariorum, Greenhouse Whitefly

• Eating whole leaves: caterpillars, larvae of Lepidoptera (butterflies and moths)

• Eating whole leaves: caterpillars, larvae of Lepidoptera (butterflies and moths)

Bright-line brown-eye (*Lacanobia oleraceae*)

• Eating whole leaves: caterpillars, larvae of Lepidoptera (butterflies and moths)

Blend5,6

Ermine moths, Yponomeutidae family

• Leaf mining caterpillars: feeding inside the leaf (e.g. Tuta absoluta)

http://www.nbair.res.in/insectpests/Tuta-absoluta.php

Double sided leaf mine (Jahrbücher des Nassauischen Vereins für Naturkunde, Band 130, Wiesbaden 2009)

https://www.bursadelegume.ro/influenta-atacului-tutei-absolute-asupra-pretului-tomatelor/

Leaf miners feed inside the leaf, only minor damage to the epidermis. They can be a devastating pest, sometimes causing complete yield losses.

Caterpillar anatomy

A. M. Liosi/Wikimedia Commons (CC by SA license), modified by Debbie Hadley, WILD Jersey

- 1: Head
- 2: Thorax with true legs (8)
- 3: Abdomen with prolegs (6; fleshy, false legs used to cling on, like 10: anal prolegs)
- 4: One segment
- 5: Horn (not with all species)
- 7: Spiracle: opening to respiratory system
- 9: Mandibles: jaws for chewing

Caterpillar anatomy

Caterpillar anatomy

- Mouth parts different from aphids
 - → different feeding mode,
 different kind of damage to
 the plant
- Like aphids: effectors in saliva; signal presence to plant (together with physical damage to leaves)

Caterpillars: not all of them are ugly!

Ceruna vinula, the Puss Moth

• Caterpillars: not all of them are ugly!

Calliteara pudibunda, Pale Tussock

• Caterpillars: not all of them are ugly!

Deilephila elpenor, Elephant Hawk Moth

· Caterpillars: not all of them are ugly!

Orgyia antiqua, the Rusty Tussock

Aglais io, European Peacock

Acharia stimulea, the Saddleback caterpillar

Hypomecis roboraria, Great Oak Beauty

Life cycle of caterpillars

All developmental stages of the Monarch Butterfly (Danaus plexippus)

• Life cycle of caterpillars: not all stages inflict damage on plants

Adult Lepidoptera usually don't feed or only nectar, but lay eggs...

- How can we control pests?
 - Toxins: chemical insecticides

- Biological control: natural enemies

- Natural enemies: Parasitoids
 - \rightarrow kill their hosts over time during own development

A small braconid wasp laying an egg inside a Black Bean Aphid (*Aphis fabae*). The aphid is about 1 mm long.

Natural enemies: aphid parasitoids

Life cycle of an endoparasitoid:

- stings host, oviposits egg inside
- host still alive during offspring development
- offspring pupates, host dies
- adult parasitoid emerges

Dr. Christine Becker:

- for instance Aphidius colemani, Aphidius ervi
- one female lays 300-500 eggs in her lifetime
- wasp offspring develops from the egg to the adult inside the aphid
- parasitized aphids change color, become "mummies", adult wasps emerge through round holes

Natural enemies: caterpillar parasitoids

Aleiodes indiscretus wasp parasitizing a gypsy moth caterpillar (Lymantria dispar dispar)

Natural enemies: caterpillar parasitoids

Ektoparasitoids: oviposit eggs on outside of host

Larvae of parasitic wasp *Bracon* sp.

Larvae of parasitic wasp *Cotesia congregata*
PEST CONTROL

Natural enemies: predatory bugs

The predatory bug Macrolophus pygmaeus feeding on eggs of Pieris brassicae

https://www.entocare.nl/bestrijders/bestrijders-van-

PEST CONTROL

Natural enemies: humans?

"Sago worm" satay

GREENHOUSES: AN ARTIFICIAL ECOSYSTEM

- Artificial ecosystem greenhouse: limited number of species
- \rightarrow but: trophic networks ("food chain") exist, used for biological control

TROPHIC NETWORKS

Carnivores

3rd trophic level

Herbivores

2nd trophic level

Plants

1st trophic level

Dr. Christine Becker:

TROPHIC NETWORK IN THE GREENHOUSE

Carnivores

· Natural enemies of pests: insect parasitoids and predators

Herbivores

2nd trophic level

Herbivorous insects: • leaf chewers like larvae of butterflies, and sap feeders like aphids and whiteflies

Crop plants

Plants

DIRECT EFFECTS OF LIGHT

Natural enemies

The function of the function o

Herbivores

Plants

Direct effect:

on plant quality*

* nutritional value, defense compounds

Dr. Christine Becker:

EXCURSION: PLANT DEFENSE

Natural enemies

Herbivores

Plants

DIRECT PLANT DEFENSE

Direct defense:

- Morphology: trichomes, thorns and spines, cuticula and epicuticular waxes, tough epidermis...
- Chemical defense: glucosinolates, alkaloids, phenolics...

http://www.uva.nl/profiel/b/l/p.m.bleeker/p.m.bleeker.html

glucosinolate

nicotine (alkaloid)

EXCURSION: PLANT DEFENSE

INDIRECT PLANT DEFENSE

Indirect defense:

- cellular food bodies and extrafloral nectaries as nourishment, domatia as shelter
- emission of VOC attracts natural enemies

What is the connection between plant defense and light conditions?

Plants are phototroph organisms.

→ light is the prerequisite for energy and carbon resources, i.e. for every process from growth to defense!

...and if resources are limited?

 \rightarrow How to prioritize?

 \rightarrow What is more important: growth or defense?

Well, that depends...

growth < defense

- High UV: plenty of light, no growth necessary, photosynthesis produces plenty of resources <u>that can be invested in defense</u>
- Can be a stress factor it self that warrants defense, dose dependency (interaction between biotic and abiotic stress when it comes to herbivory)

growth > defense

- shade avoidance-syndrome: high FR: competition or shading, plants invest majority of resources into growth to reach canopy top
 - = foraging for light, *i* e resources

Huché-Thélier et al 2016, *Environ Exper Bot*, modified; Ballaré et al 2009, *Plant, Cell Environ;* Ballaré & Perik 2017, *Plant Cell Environ*

EFFECT OF LIGHT ON PLANT DEFENSE

Probably well defended plants.

Probably weakly defended plants.

Huché-Thélier et al 2016, *Environ Exper Bot*, modified; Ballaré et al 2009, *Plant, Cell Environ;* Ballaré & Perik 2017, *Plant Cell Environ*

Dr. Christine Becker:

EFFECTS OF LIGHT ON PLANT DEFENSE

• light quantity:

trichome density and mechanical toughness of foliage, chemical defense compounds (alkaloids, phenolics, terpenoids but not necessarily glucosinolates) nectar in extrafloral nectaries

- light quality:

UV-screening phenolic compounds, depending on intensity and frequency of exposure

blue light profoundly affects plant metabolism, including defence compounds, induces pathogenesis related-genes

far-red reduced plant direct defense by desensitizing against herbivory-signaling, decreased indirect defense (number of extrafloral nectaries)

`increased iindirect defense (manipulated VOC \rightarrow more attractive to predators; *few* studies so far!)

Dr. Christine Becker:

DIRECT EFFECTS OF LIGHT

DIRECT EFFECTS ON PESTS

Light quantity and quality affects vision and orientation.

- Pest preference:
- → Can they find and recognize good host plants?
- Pest performance:
- \rightarrow Can they find and recognize mates?
- → Do population dynamics change?

• What is necessary for a direct effect of radiation quality and quantity on herbivorous insects and their natural enemies?

PERCEPTION OF VISUAL CUES!

Eyes! (or something similar...)

- Insects: several different organs to perceive light
- Ocelli ("simple eyes")
- Compound eyes

compound eyes

• Ocelli: "pigment pits", simple eyes, one lense

dorsal ocelli of a wasp

dorsal ocelli of a hornet

human eye: "pigment pit" with one lense

• Compound eyes:

Compound eyes of a fly

Compound eyes of a robber fly

Compound eyes:

Ommatidium: single eye

- cornea lense (A)
- crystal cone (B)
- pigment cells (C, D)
- rhabdom (E), guides light to the
- photoreceptor cells (F)
- membrane (G)
- optic nerve (H)

Compound eye: up to thousands of ommatidia

- The eyes contain photoreceptor cells located in the retina
- Photons are perceived if their wavelength is absorbed by the visual pigment: opsin protein + chromophore; λ_{max} = absorption maximum

Döring 2014, Ann Appl Biol

Döring & Chittka 2007, Arthropod-Plant Interactions

 Most insects perceive UV A (~350 nm) and green (~530 nm) wavelengths, many also blue (~440 nm), some also red (>565 nm)

Briscoe & Chittka 2001, Annu Rev Entomol

Order of Lepidoptera: many well-studied and economically important herbivores

Briscoe & Chittka 2001, Annu Rev Entomol, modified

DIRECT EFFECT OF LIGHT ON PESTS

- Hemiptera*: mostly trichromatic as well (UV, blue, green)
- for instance: whitefly, *Bemisia tabaci* and most aphids BUT some also perceive red
- Difficult to study due to small size of organs!

*Hemiptera: aphids, cicadas, planthoppers, leafhoppers, shield bugs

DIRECT EFFECT OF LIGHT ON PESTS

• Light quality:

increased UV radiation reduced foraging and dispersal,

reduced survival of some pests

Response to wavelengths may differ with insect species & age!

Briscoe & Chittka 2001, Annu Rev Entomol, modified

Direct effect: on preference and performance*

* orientation, host choice, development

Herbivores

Plants

DIRECT EFFECTS ON NATURAL ENEMIES

Light quantity and quality affects vision and orientation.

- Parasaitoid preference:
- → Can they find and recognize good hosts?
- Parasitoid performance:
- \rightarrow Can they find and recognize mates?
- \rightarrow Do population dynamics chan

DIRECT EFFECTS OF LIGHT ON NATURAL ENEMIES

- Vision of parasitoids: similar to other insects; not as many studies...
- · perceive mainly UV, blue, and green-yellow
- Parasitoid wasp, Aphidius gifuensis: UV, blue, green
- Parasitoid wasp, Encarsia formosa: UV, blue, green-yellow, red

Phototaxis observed:

- Tachinid parasitoid fly, Exorista japonica: towards UV-A
- *E. formosa*: towards UV-A, blue and green, but also active in UV-blocked environment
- Parasitoid wasp, Scleroderma guani: towards blue, green

Response to wavelengths may differ with insect sex, age, and experience!

DIRECT EFFECTS OF LIGHT ON NATURAL ENEMIES

• light quantity:

orientation, activity (parasitoids and predators)

light quality:

increased activity and improved host location by some parasitic wasps

developmental rate (found in predatory bug Orius sauteri)

diffusion of light promoted host finding by *E. formosa* in 1 study*

*Doukas & Payne 2007, Horticultural Entomology

TROPHIC NETWORK IN THE GREENHOUSE

INDIRECT EFFECTS OF LIGHT: BOTTOM-UP

BOTTOM-UP EFFECTS

Carnivores

3rd trophic level

Herbivores

2nd trophic level

Plants

1st trophic level

INDIRECT EFFECTS ON PESTS: BOTTOM-UP

Light conditions affect plant quality. Pests consume/develop in/on plant tissue.

- Pest preference:
- → Can they find and recognize good host plants?
- Pest performance:
- \rightarrow Does the plant offer enough nutrients for good development?
- \rightarrow Has the plant accumulated toxic defense compounds?

INDIRECT EFFECTS OF LIGHT ON PESTS

• light quantity:

decreased palatability of leaves due to enhanced toughness and defense chemicals (phenolics, terpenes, alkaloids)

f increased plant nutritional value, benefit for herbivores that can cope with also elevated defense compounds

increased trichome density can trap more small arthropod pests (e.g. mites)

increased VOC-emission; increased "chemical visibility" to insects

- → In summary: probably lower infestation rates with higher light intensity
- \rightarrow (But it's complicated: species, sex, development, experience...)

INDIRECT EFFECTS OF LIGHT ON PESTS

light quality:

- reduces plant digestibility and attractivity for herbivores due to increased phenolics concentration \rightarrow probably decreased herbivore performance
- flavonoid-rich larval diet enhances attractivity of adult females of *Polyommatus icarus* butterfly

especially in the field, herbivores may benefit from UV-effect on entomopathogenic pathogens, and nematodes *

• increases preference of cabbage aphid (*Brevicoryne brassicae*) on broccoli **

- → In summary: probably higher infestation rates with lower UV radiation intensity.
- → But it's complicated! Herbivore and plant species, feeding mode and degree of dietary specialization are as important as experimental design...

* Roberts & Paul 2006, *New Phytol* **Rechner et al 2017, *Plos ONE*
INDIRECT EFFECTS OF LIGHT ON NATURAL ENEMIES

Light quantity and quality affect plant quality and therefore affect pests. Natural enemies consume/develop in/on pest.

- Natural enemy preference:
- \rightarrow Can they find and recognize good insect hosts/ prey ?
- Natural enemy performance:
- → Does the insect host offer enough nutrients for good development and longevity?
- \rightarrow Has the insect host taken up toxic plant defense compounds?

INDIRECT EFFECTS OF LIGHT ON NATURAL ENEMIES

• light quality:

1 parasitic wasp *Cotesia plutellae* prefered diamondback moth larvae (*Plutellae xylostella*) that had fed on UV-B-exposed plants*

No effect of elevated UV-B on *Cotesia marginiventris* and it's host *Spodoptera frugiperda* **

 $fincreased indirect defense (manipulated VOC \rightarrow more attractive to predators; few studies so far!)$

→ In summary: it depends on the involved species and experimental design. (More studies needed.)

*Foggo et al 2007, Oecologia **Winter & Rostàs 2008, Environ Pollut

Dr. Christine Becker:

Invited Review

UV Radiation Effects on Pathogens and Insect Pests of Greenhouse-Grown Crops

Michael Raviv*1 and Yehezkel Antignus2

¹Department of Environmental Horticulture, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel ²Department of Virology, Volcani Center, Agricultural Research Organization, Bet Dagan, Israel

Received 6 June 2003; accepted 2 January 2004

ABSTRACT

Production of high-value crops is often performed u protected cultivation. In recent years various spectral 1 ifications have been made in greenhouse covers. Two o main reasons to modify the spectral characteristic greenhouse covers have been to suppress the proliferation several foliar diseases and to protect crops from insects insect-borne virus diseases of greenhouse-grown crops. T goals were achieved by complete or partial absorption of UV radiation, which interrupts the life cycle of several ft pathogens and alters the visual behavior of many ins Examples of these management strategies are described in article. **Evidence from field studies.** More than 80% of the studies that have evaluated the effects of ambient UVB on insect herbivory reported that plant damage or insect growth increased in response to attenuation of UVB radiation (10). Insect-feeding experiments with plants pretreated with either ambient or attenuated UVB radiation have clearly demonstrated that at least part of the effect of selar UVB reducing herbivory is indirect (i.e., mediated by changes in the quality Ballaré 2014, Annu Rev Plant Biol

Contradiction?

Web of Science

Search

InCites

Web of Science

et al. 2001; Kuhlmann and Müller 2009a). The species-specific and life-history trait-specific responses of herbivores to visual cues are probably driven by adaptations to different habitats. Under applied aspects, UV-absorbing filters can be used in integrated pest management programs at least against certain herbivorous insects (Antignus et al. 1996; Raviv and Antignus 2004).

Kuhlmann & Müller 2011, Progress in Botany 72

Progress in

BOTANY

7)

Times Cited: 81 (from Web of Science Core Collection)

Journal Citation Re

UV RADIATION

Table 1. Overview of ultraviolet (UV) radiation and its biological effects

Waveband	Response to ozone depletion ^{a-c}	Physical and biological properties ^{a-c}	Role in animals ^{d-j}	Role in plants ^{d – j}
UV-C (200-280 nm)	None	Short wavelength, therefore highly energetic	None	None
	Absorbed in atmosphere;	Strongly absorbed	Artificial UV-C causes	Artificial UV-C sources
	does not penetrate to	by nucleic acids	severe amage to skin	cause severe damage
	biosphere		and eyes	to exposed dissues
UV-B (280–315 nm)	Strongly affected by	The most energetic UV	Possible acute and chronic	Rarely damaging in the
	variation in the ozone	radiation to reach	damage to skin and eyes	field but induces many
	column	biosphere		morphological, physiological
				and biochemical changes
				to many ecological effects
		Absorbed by many	Compromises immune	to many ecological ellects
		biological molecules.	system	
		including nucleic acids	eyeletti	
		mondaring machine conde	Possible factor in decline	
			of many amphibian populations	
			Acute exposure causes sunburn	
			in humans; chronic exposure is	
			a cause of skin cancers	
UV-A (315–400 nm)	Not affected	Less energetic than UV-B	Increasingly recognized as an	Influences plant morphology,
		but present at much higher	important factor in development	plus some specific effects
		intensity in sunlight	of skin cancers in humans	(e.g. stomatal opening
				and induction of
		Alterative differences of		4pigment formation)
		Absorbed by many	of many invertebrates	
		important photoreceptors	and vertebrates	
		important photoreceptors	and vertebrates	

Paul & Gwynn-Jones 2003, Trends in Ecology and Evolution

...AND WHAT ABOUT PATHOGENS?

EFFECTS OF LIGHT ON PATHOGENS

DIRECT EFFECTS OF LIGHT ON PATHOGENS

reduced infestation in many species

- light quality:
- reduced sporulation, infection and/or dispersal in many species
 increased sporulation in some species

 \rightarrow In summary: It depends on the involved species and their developmental stages

Hochschule

Universitu

Geisenheim

INDIRECT EFFECTS OF LIGHT ON PATHOGENS

light quantity:

can reduce the susceptibility gainst Turnip mosaic virus

light quality:

can reduced infection of many pathogen species due to increased plant chemical defense and strengthened cell walls which reduce penetration by fungal hyphae

can reduce *Pseudomonas syringae, Pseudoperonospora cubensis,* Turnip Crinkle virus, and Cucumber mosaic virus infection due to increased plant defense

can reduced resistance to pathogens

 \rightarrow In summary: It depends on the involved species and their developmental stages

THANK YOU FOR YOUR ATTENTION

Any questions?

Christine.Becker@hs-gm.de

Dr. Christine Becker: Effect of g