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Abstract
Cognitive load theory provides instructional recommendations based on our knowledge of 
human cognition. Evolutionary psychology is used to assume that knowledge should be 
divided into biologically primary information that we have specifically evolved to acquire 
and biologically secondary information that we have not specifically evolved to acquire. 
Primary knowledge frequently consists of generic-cognitive skills that are important to 
human survival and cannot be taught because they are acquired unconsciously while sec-
ondary knowledge is usually domain-specific in nature and requires explicit instruction 
in education and training contexts. Secondary knowledge is first processed by a limited 
capacity, limited duration working memory before being permanently stored in long-term 
memory from where unlimited amounts of information can be transferred back to working 
memory to govern action appropriate for the environment. The theory uses this cognitive 
architecture to design instructional procedures largely relevant to complex information that 
requires a reduction in working memory load. Many of those instructional procedures can 
be most readily used with the assistance of educational technology.

Keywords  Cognitive load theory · Human cognitive architecture · Evolutionary 
psychology · Instructional design

The success or otherwise of educational technology is affected by the characteristics of 
human cognitive architecture. Technology-based instruction used without reference to the 
instructional design principles that flow from human cognition is likely to be random in its 
effectiveness. Cognitive load theory (Sweller et al. 2011, 2019), as an instructional design 
theory based on our rapidly expanding knowledge of human cognition, is well-suited to 
provide guidance suggesting which educational technologies are likely to be effective and 
how they should be used. This paper summarises the theory and applies it to learning that 
occurs with the assistance of educational technology.

I will begin by describing relevant aspects of human cognitive architecture and its 
evolutionary psychology base. The purpose of specifying the cognitive and evolution-
ary psychology base is to identify those aspects of human cognition and evolutionary 
psychology that are relevant to instructional design. That base then is used to indicate 
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general instructional implications, followed by a discussion of several of the specific 
cognitive load theory effects. The cognitive load effects, all derived from randomised, 
controlled trials, can be used to partially validate the theory, assuming that a theory that 
can generate applications is tied to reality. Of course, the major function of the cog-
nitive load effects is to provide specific instructional design guidelines. Most of those 
effects are directly relevant to technology-based education.

Evolutionary psychology and human cognitive architecture

Evolutionary psychology can be used to indicate those aspects of human cognitive 
architecture that are relevant to instructional design issues. By doing so, our viewpoints 
on what we teach, how we teach it, and even why we teach it can be transformed.

Categories of information

Based on Geary’s evolutionary educational psychology (Geary 2002; Geary and Berch 
2016), we can divide information into two categories, biologically (or evolutionary) 
primary and secondary information (“information” is termed “knowledge” when it is 
held in long-term memory and “skills” when knowledge is translated into appropriate 
action). We have evolved to process and acquire primary information over many gen-
erations and can do so easily, automatically and without conscious effort even when 
the amount of information processed is voluminous. We do not need to teach learners 
how to process primary information nor do we need to teach them how to acquire it and 
store it as knowledge. Not only do we not need to teach primary knowledge, we cannot 
teach it simply because it is acquired automatically, frequently very early in life. Exam-
ples of the acquisition of primary knowledge are learning to listen to and speak our 
native language, learning to plan, learning to self-regulate our cognitive processes, or 
acquiring general problem-solving strategies such as means-ends analysis (Newell and 
Simon 1972). All of these skills are acquired automatically without explicit tuition. It 
also should be noted that they are probably modular with limited relations between them 
because they may have evolved during different evolutionary epochs.

In contrast, secondary knowledge is much more difficult to acquire despite in most 
cases incorporating far less information than primary knowledge. Rather than being 
acquired automatically, it requires conscious effort on the part of the learner and is 
assisted by explicit instruction. The biologically secondary system is used to acquire 
knowledge that our culture has deemed important but that we have not specifically 
evolved to acquire. Secondary knowledge requires explicit guidance while learners must 
consciously and actively attend to its acquisition. In the absence of these conditions, few 
people are likely to acquire secondary knowledge and the resultant skills. Examples of 
secondary knowledge are learning to read and write, learning a second language as an 
adult, and mathematics. Indeed, since education and training institutions were estab-
lished precisely because their curricula are rarely acquired without their existence, vir-
tually all topics taught in schools and other training institutions provide examples of 
secondary knowledge.
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Generic‑cognitive and domain‑specific knowledge and skills

There is another knowledge classification system closely related to the biologically primary 
and secondary dichotomy that needs to be used when considering the cognitive substrate 
of instructional design. That system distinguishes between generic-cognitive and domain-
specific knowledge and skills (Sweller 2015, 2016; Tricot and Sweller 2014).

Most, though not all biologically primary skills (referred to as “primary skills” below) 
are generic-cognitive skills. Knowledge and skills that are general and so apply to a wide 
variety of areas and that refer to cognitive processes are generic-cognitive in nature. The 
biologically primary skills referred to above such as planning, self-regulating or gen-
eral problem-solving skills are generic-cognitive. For example, an ability to plan can be 
assumed to incorporate a wide variety of areas but refers to a specific cognitive procedure.

While not all primary skills are generic-cognitive, it is likely that all generic-cognitive 
skills are primary. These skills are far too important for us not to have evolved to acquire 
them. As an example, in order to survive, we must be able to use problem-solving tech-
niques such as means-ends analysis in which we attempt to find problem solving operators 
that reduce the distance between our current problem state and a goal state. Without this 
skill, we would have difficulty finding food or shelter. Accordingly, while the problem-
solving strategy has been known for decades, as far as I am aware, there is not a single 
example in the literature of successfully teaching it with the result of improved problem-
solving skill. It may be reasonable to speculate that it cannot be taught because everyone 
automatically acquires this skill as primary knowledge. It may be equally reasonable to 
speculate that other generic-cognitive skills have exactly the same properties.

In contrast to generic-cognitive knowledge and skills, domain-specific knowledge and 
skills are specific to a particular domain. We may use means-ends analysis to attempt to 
solve any novel mathematics problem that we face but if we have learned to solve a particu-
lar class of algebra problems such as a/b = c, solve for a, by multiplying out the denomina-
tor on the left-hand side, then we have acquired a domain-specific skill that is limited to 
a particular class of algebra problem. Furthermore, the knowledge underlying this skill is 
biologically secondary. We can learn to solve algebra problems but we have not specifically 
evolved to solve such problems. They are biologically secondary. Most of the curricular 
information that is acquired during education is domain-specific, biologically secondary 
information that unlike generic-cognitive, biologically primary knowledge, will not be 
acquired unless it is explicitly taught.

Consequences of the distinction between generic‑cognitive primary 
and domain‑specific secondary knowledge and skills

Because the distinction between primary and secondary knowledge is relatively new, as is 
the connection between primary knowledge and generic-cognitive skills on the one hand 
and secondary knowledge and domain-specific skills on the other hand, they have had min-
imal impact on either instructional design in general or on the use of educational technol-
ogy. Nevertheless, our failure to appreciate these distinctions has misled us for generations 
and to a large extent, continues to do so.

Let us assume that contrary to the above distinctions in the instructional consequences 
of generic-cognitive, primary and domain-specific, secondary knowledge and skills, that 
both categories are equivalent in the ease with which they are acquired and the procedures 
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needed to assist in their acquisition. Which knowledge and skills should we emphasise? 
Both are needed but of course, generic-cognitive, primary skills are far more important 
than domain-specific, secondary skills. It is surely more important to acquire critical think-
ing skills (and no, I am unable to define them either), self-regulation or general problem-
solving skills than it is to learn about the causes of WW1, or how to multiply out a denomi-
nator in an algebraic equation. If we are unable to think clearly or do not know how to 
solve novel problems, there will be little that we will be able to do with domain-specific 
knowledge.

This argument has been implicit in much educational discussion and has driven a con-
siderable body of educational research for at least the last 100  years. The issue can be 
resolved by treating the argument as a testable, scientific hypothesis. If generic-cognitive, 
primary skills can be taught, then evidence for their effectiveness should be obtainable 
from far-transfer tasks. Such tasks are required to ensure that any improvements in perfor-
mance are not due to the acquisition of domain-specific, secondary skills. Generic-cogni-
tive skills presumably apply in a wide diversity of curriculum areas while domain-specific 
skills are narrow. As far as I am aware, despite decades of effort, there are no substantive, 
replicated bodies of work using randomised, controlled trials demonstrating superior far 
transfer performance due to instruction in the use of generic-cognitive procedures. Until 
such bodies of research are available, we need to look elsewhere for effective instructional 
procedures. Accordingly, cognitive load theory places its emphasis on the acquisition of 
domain-specific, secondary knowledge and that emphasis applies to e-learning procedures 
as well as other forms of instruction. The cognitive architecture discussed next applies to 
the acquisition of domain-specific, biologically secondary skills rather than generic-cogni-
tive, biologically primary skills.

Human cognitive architecture and the acquisition of domain‑specific knowledge

A specific cognitive architecture is associated with the acquisition of domain-specific, sec-
ondary knowledge that provides a base for cognitive load theory. That architecture is anal-
ogous to the information processing system which guides evolution by natural selection. 
It can be described by five principles that reflect a natural information processing system 
(Sweller and Sweller 2006). These principles indicate how we acquire novel information, 
process and store it before retrieving it from storage to govern action that is appropriate for 
the environment in which we find ourselves.

Acquiring Information

Randomness as genesis principle

This principle deals with novel information that: (a) is obtained from the external environ-
ment; (b) is not obtained from another person in spoken or written form and (c) for which 
we do not have previously acquired knowledge indicating how it should be processed. For 
example, it is used to determine problem-solving moves for when we do not have a previ-
ously learned solution. When solving a novel problem, we may reach problem states that 
allow multiple possible solution moves that appear equally likely to lead to a solution goal. 
The only possible way to determine a move is to randomly select one and test it for effec-
tiveness. If it appears to move us closer to the goal, we will retain it and continue. If it does 
not appear to move us closer to the goal we will discard it and try a different move. The 
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point is that we have no way of determining whether the move is effective until after we 
have chosen it and tested it for effectiveness either mentally or physically. Its effectiveness 
cannot be determined prior to it being chosen and so it must be chosen randomly and only 
then can its effectiveness be determined.

This randomness as genesis principle provides the initial source of all secondary knowl-
edge. It allows us to obtain knowledge through problem solving when we have no alter-
native source of information. Commonly, there are alternative sources of information and 
these are discussed next.

The borrowing and reorganising principle

As is the case for the randomness as genesis principle, the borrowing and reorganising 
principle also deals with novel, secondary information from the external environment for 
which we do not have previously acquired knowledge. The two principles differ in that the 
borrowing and reorganising principle relies on information from other people and as a con-
sequence, has different biologically primary characteristics to the randomness as genesis 
principle that relies on problem solving.

While the randomness as genesis principle provides the initial source of all secondary 
information, once information is obtained, it can be transmitted to others using the borrow-
ing and reorganising principle. When we obtain information from others, it then is com-
bined with previously stored information before the new information is itself stored. Novel 
information borrowed from others is rarely stored without being reorganised by previously 
stored knowledge.

In this manner, the borrowing and reorganising principle provides another source 
of information that is also the major source of human knowledge. Humans are intensely 
social. Most of our knowledge is not obtained by random generate and test during problem 
solving, rather, it is obtained far more easily from others. We listen to what others say and 
read what they write. Because the vast bulk of our secondary information is obtained from 
others, this principle is central to the education process and so is central to e-learning. 
Accordingly, it also needs to be central to any instructional theory such as cognitive load 
theory. For this reason, cognitive load theory is mainly concerned with how information 
should be presented to learners during the instructional process. The purpose of instruction 
is to use this principle to provide needed information to learners.

The borrowing and reorganising principle does not only apply to information obtained 
during instruction. We also can obtain information from other people under a variety of 
circumstances including for example, during collaborative learning (Kirschner et al. 2018). 
One of the advantages of collaboration is that information can be shared among collaborat-
ing individuals who otherwise might have difficulty obtaining it. The process of collabora-
tion is underpinned by the borrowing and reorganising principle.

Processing and storing processed information

The narrow limits of change principle

The randomness as genesis and the borrowing and reorganising principles indicate the 
two ways in which humans can acquire novel, secondary information. The narrow lim-
its of change principle describes the manner in which that information is initially pro-
cessed by the human cognitive system. Working memory provides the processing engine. 
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When dealing with novel, secondary information from the external environment, whether 
obtained via the randomness as genesis principle or the borrowing and reorganising princi-
ple, working memory has two notable characteristics. It is very limited in both capacity and 
duration. We can remember no more than about seven elements of novel, secondary infor-
mation (Miller 1956) and can process, in the sense of comparing, contrasting or dealing 
with, no more than 2–4 elements of information (Cowan 2001). In addition, we can hold 
that information in working memory for no more than about 20 s (Peterson and Peterson 
1959).

The narrow limits of change principle reflects these working memory limits. There are 
severe limits in our ability to process novel, domain-specific, secondary information, the 
category of information that is overwhelmingly represented in most instructional contexts. 
Accordingly, instructional procedures that ignore the narrow limits of change principle are 
unlikely to be effective. The principle is central to cognitive load theory and to instruc-
tional design.

The information store principle

Once processed by working memory, novel, domain-specific, secondary information can 
be stored in long-term memory, as reflected in the information store principle. This prin-
ciple assumes that through learning, useful information is stored in long-term memory for 
later use. The main function of learning is to store that newly acquired information. If it is 
not stored, learning has not occurred. Accordingly, the main function of instruction is to 
ensure learners have stored novel information.

While it has always been self-evident that we store information in long-term memory, 
our realisation concerning the nature of that information and its function in human cogni-
tion have only become evident more recently. Long-term memory is not simply a passive 
repository of largely unrelated, individual, rote-learned facts. Rather, it is a central, possi-
bly the central structure of human cognition. Evidence for its surprising role initially came 
from the work of De Groot (1965); (see also De Groot and Gobet 1996). De Groot was con-
cerned with the factors that allow chess masters and grand-masters to consistently defeat 
chess hobby players. Chess is a game of problem solving so the issue was why are expert 
chess players better at solving chess problems than less able chess players? De Groot found 
no evidence that expert chess players considered a greater breadth of moves at each choice-
point or searched in depth for a better series of moves than less able players. The only 
difference he could find was in memory of chess-board positions taken from real games. 
Masters or grand-masters shown a board configuration taken from a real game for 5 s could 
then reproduce that configuration from memory with over 80% accuracy while hobby play-
ers could only reproduce less than 30% of the pieces accurately. Chase and Simon (1973) 
replicated this result and in addition found little difference between more and less expert 
players using random configurations, with both only able to remember the location of very 
few of the pieces.

How should we interpret these results? Based on De Groot’s and Chase and Simon’s 
findings, acquired skill in problem solving does not derive from some undescribed, learn-
able, general problem-solving strategies. Rather, it is due to the acquisition over a long 
period of time of an enormous store of domain-specific knowledge. Expert chess players 
have learned to recognise a very large range of board configurations and have learned the 
best move associated with each configuration. It is that knowledge, acquired over many 
years and stored in long-term memory that permits them to defeat hobby players (Ericsson 
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and Charness 1994). Similar results to these have been obtained in a variety of education-
ally relevant domains (Chiesi et  al. 1979; Egan and Schwartz 1979; Jeffries et  al. 1981; 
Sweller and Cooper 1985). The information store principle assumes that expert skill 
derives from a large knowledge base of domain-specific information stored in long-term 
memory.

Using stored information to generate action

The environmental organising and linking principle

This principle provides the ultimate justification for the preceding principles. On receiv-
ing appropriate environmental signals, relevant information previously stored in long-term 
memory can be transferred to working memory to generate action appropriate to that envi-
ronment. The characteristics of working memory when dealing with previously processed 
information that has been stored in long-term memory are very different to its characteris-
tics when dealing with novel information from the environment. As may be recalled from 
the discussion of the narrow limits of change principle, working memory has severe capac-
ity and duration limits when processing novel information. In contrast, when dealing with 
stored information from long-term memory, there are no known capacity or duration limits 
to working memory. Seemingly unlimited amounts of information can be transferred from 
long-term to working memory and held in working memory for seemingly unlimited peri-
ods of time. Because of the vastly different characteristics of working memory when deal-
ing with novel or familiar information, Ericsson and Kintsch (1995) have used the term 
“long-term working memory” to describe the structure and function of working memory 
when dealing with familiar as opposed to unfamiliar information.

It is a truism to say that education transforms us. This cognitive architecture in general 
and the environmental organising and linking principle in particular, explain how. Through 
the transformation of working memory from a limited capacity and duration to an effec-
tively unlimited capacity and duration structure, we are able to engage in cognitive activi-
ties that in the absence of this transformation, would leave us deprived of the facility to act. 
The very act of transforming squiggles into meaningful (hopefully!) text that readers of 
this article are engaged in provides an obvious example of this function. Indeed, we might 
expect that if De Groot’s (1965) experiment was repeated using text rather than chess board 
configurations with competent readers of English compared to people with less knowledge 
of written English, analogous results to those obtained by De Groot should be obtained. 
Indeed, as indicated in the previous section on the information store principle, analogous 
results to those of De Groot have been obtained in a variety of educationally relevant areas.

This cognitive architecture is universal and applies to all instructional systems including 
technology assisted systems such as e-learning. The next question is how should we organ-
ise instruction to accord with this architecture or indeed, use this architecture to leverage 
and facilitate learning?

Instructional design

Cognitive load theory assumes the major aim of instruction is to facilitate the transfer of 
domain-specific, biologically secondary information, initially into working memory from 
the external environment, and then from working memory to long-term memory where it 
can be stored. Lastly, once information is stored in long-term memory, it can be transferred 
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back to working memory to govern action appropriate to the environment. All of these 
transfers are biologically primary and so do not need to be taught. The relevant biologi-
cally primary processes are incorporated in the five principles outlined above that deline-
ate the characteristics of the cognitive system that need to be considered when designing 
instruction. While the principles are driven by biologically primary knowledge in the sense 
that we do not have to be taught how to: randomly generate and test; borrow information 
from others; process that information in working memory; store it in long-term memory; 
or use it under appropriate environmental conditions, the combined function of these prin-
ciples is to allow us to acquire, process, store and appropriately use biologically secondary 
information.

There are instructional conclusions that flow from this cognitive architecture along with 
many specific prescriptions. The instructional conclusions and prescriptions are associated 
with the concept of element interactivity that links human cognitive architecture to instruc-
tional design (Sweller 2010).

Element interactivity

Element interactivity is a measure of informational complexity that is central to cognitive 
load theory. The theory is concerned with instructional designs that reduce unnecessary 
informational complexity and so reduce working memory load when acquiring new knowl-
edge. If the purpose of the theory is to reduce informational complexity, techniques for 
determining informational complexity are required.

The nature of the human cognitive system as described above renders the measurement 
of informational complexity difficult. We cannot simply consider the characteristics of the 
information. We must simultaneously consider both the characteristics of the information 
and the knowledge held by learners in long-term memory. As indicated above under the 
information store principle and the environmental organising and linking principle, infor-
mation that is impossibly complex for one person may be trivially simple for someone else, 
depending on knowledge held in long-term memory. For the readers of this paper, the fol-
lowing squiggles, “the cat sat on the mat” represent a single, trivial element of informa-
tion that can be easily processed and reproduced if required. We can readily deal with this 
information in a variety of ways because of the large amount of relevant information held 
in long-term memory. That information can be treated as a single element when transferred 
back to working memory. In contrast, for someone who cannot read the English alphabet, 
the information is impossibly complex because of the enormous number of elements of 
information that must be processed simultaneously. Complexity only can be determined by 
simultaneously determining both the nature of the information and the knowledge held in 
the long-term memory of the person processing that knowledge.

The concept of element interactivity resolves this problem by estimating the number of 
elements that a particular individual must process simultaneously in working memory. The 
following factors are relevant when estimating element interactivity.

1.	 Some elements can be processed individually without reference to other elements. For 
example, when learning a second language, we can learn the translation of the word 
“dog” independently of the translation of the word “cat”. The two elements do not 
interact and so do not need to be processed simultaneously in working memory. Element 
interactivity is low. If element interactivity is low, a task may be easy if there are few 
elements, or difficult if there are many, but the difficulty will not be due to an excessive 
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working memory load since the elements can be processed independently of each other. 
A difficult, low element interactivity task will have a low cognitive load despite its dif-
ficulty.

2.	 Other elements interact and so unlike the above example, must be processed simulta-
neously in working memory. When learning to solve the problem, (a + b)/c = d, solve 
for a, we must process all of the elements simultaneously in working memory because 
they interact. Element interactivity is high for anyone first learning algebra with each of 
the symbols constituting a single element that must be processed simultaneously with 
all of the other symbols. Furthermore, each time a change is made in the equation, the 
elements of the new equation must not only be processed simultaneously, to understand 
the change the new set of elements must be compared with the previous set. To learn 
how to solve a problem such as this, an enormous number of elements will need to be 
processed rendering this high element interactivity task very difficult.

3.	 For anyone familiar with introductory algebra, the above problem is very low in element 
interactivity and so very simple. All of the interacting elements are incorporated into a 
single element held in long-term memory.

4.	 Currently, the only method we have of determining the element interactivity of a task 
is by estimating the knowledge base of the learners under consideration and counting 
the number of elements. This process cannot yield precise measures. For instructional 
design purposes, a lack of precise measures is not critical if we are comparing compet-
ing instructional procedures that vary sufficiently substantially in element interactivity 
for us to be confident the difference is real. Small differences in element interactivity 
should not be used to prescribe differences in instructional design.

Intrinsic and extraneous cognitive load

Differences in element interactivity can be attributed to either differences in intrinsic or 
extraneous cognitive load. Intrinsic cognitive load is determined by the intrinsic properties 
of the information being processed. It can be altered only by either changing the subject 
matter that must be assimilated or by changing the knowledge base of the learner. Differ-
ences in learning the nouns of a foreign language or learning to solve an algebra problem 
are due to differences in intrinsic cognitive load.

Extraneous cognitive load is determined by instructional procedures. Some instructional 
procedures unnecessarily increase element interactivity and so increase extraneous cogni-
tive load. The vast majority of the cognitive load effects are due to changes in extraneous 
cognitive load.

Cognitive load effects

A cognitive load effect is demonstrated when an instructional design based on cognitive 
load theory is compared with a more conventional design using a randomised, controlled 
trial. If the cognitive load theory-based procedure results in better test performance than 
the more conventional procedure, a cognitive load effect has been demonstrated.

There are many cognitive load effects. A complete current list may be obtained in 
Sweller et al. (2019). Only some of the cognitive load effects more relevant to technology-
assisted instruction will be discussed here. They are summarised in Table 1.
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Worked example effect

This effect is probably the best known of the cognitive load effects (Cooper and Sweller 
1987; Glogger-Frey et  al. 2015; Renkl 2013, 2014). It occurs when learners provided 
with problems to solve perform more poorly on subsequent test problems than learn-
ers provided the same problems along with worked examples of the solutions. From a 
theoretical perspective, it is assumed that the worked examples provide learners with 
the domain-specific, biologically secondary information that needs to be stored in long-
term memory for subsequent use. Worked examples reduce extraneous working memory 
load by reducing element interactivity. When solving a problem, learners need to search 
through a variety of possible moves at each choice point, determine whether each pos-
sibility is effective in moving closer to the goal and choose the best of the range of 
possibilities before repeating the process from the new problem state. A worked exam-
ple eliminates all of the interacting elements associated with this process by indicating 
exactly which moves are appropriate at each choice point thus reducing element inter-
activity and extraneous cognitive load. Based on these results, novice learners should 
be provided with explicit guidance when learning (Kirschner et al. 2006; Sweller et al. 
2007). Instructional procedures, including technology-based instruction, that require 
novice learners to engage in problem-solving search are likely to be deficient. Educa-
tional technology systems centred around problem-solving activity for novice learners 
rather than providing examples of successful problem-solving for learners to study are 
unlikely to optimise learning.

Assuming the above explanation for the worked example effect is valid, we would 
expect there to be many conditions that will compromise the expected result. The effect 
assumes that studying a particular worked example reduces working memory load com-
pared to solving the equivalent problem. Based on cognitive load theory, some worked 
examples can be assumed not to have this effect. A failure to obtain the worked exam-
ple effect has led to several additional cognitive load effects, such as the split-attention 
effect, discussed next.

Table 1   Summary of some of the instructional effects generated by cognitive load theory

Instructional Effect Description

Worked example Studying worked examples is superior to solving the equivalent problems
Split-attention If multiple sources of information need to be considered simultaneously, 

physically integrating them is superior to requiring learners to split their 
attention between them

Modality If a diagram and text need to be considered simultaneously and the text is 
simple and short, presenting the text in spoken rather than written form is 
superior

Transient High element interactivity information should be presented in permanent 
rather than transient form or presented in smaller chunks

Redundancy Eliminating unnecessary information results in superior learning
Expertise reversal and ele-

ment interactivity
With increases in expertise and decreases in element interactivity, information 

that is essential for novices becomes redundant for more expert learners, 
decreasing learning

Working memory depletion Working memory use depletes working memory resources that recover after 
rest
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Split‑attention effect

Some worked examples require learners to split their attention between multiple sources 
of information that cannot be understood in isolation and so need to be mentally inte-
grated to increase intelligibility. If the same information is physically integrated by for 
example, placing text at appropriate places on a diagram rather than next to or under a 
diagram, element interactivity due to extraneous cognitive load is decreased and learn-
ing facilitated (Tarmizi and Sweller 1988).

It needs to be noted that the logical relations between the multiple sources of infor-
mation are critical to this effect. It only will be obtained if the sources of information 
refer to each other and cannot be understood unless they are processed simultaneously in 
working memory. If they are intelligible in isolation, the redundancy effect (see below) 
rather than the split-attention effect is relevant.

With respect to technology-based learning, presenting split-source information on 
separate screen pages because it is convenient to do so is probably the most common 
source of split-attention. Sometimes, split-attention is unavoidable due to insufficient 
screen size. Nevertheless, if at all possible, it should be avoided.

Modality effect

The modality effect occurs using information with the same logical relations as the 
split-attention effect. For the effect to occur, multiple sources of information must refer 
to each other and be unintelligible unless they are considered in conjunction. If split-
attention is unavoidable due to screen size as indicated above, rather than attempting to 
eliminate it by for example, physically integrating diagrams and text, it may be possible 
to eliminate the effect by presenting written information in spoken form. Using visual 
information for one source such as a diagram, and auditory information for the other 
source such as text, can increase available working memory and so enhance learning 
(Tindall-Ford et al. 1997). Working memory capacity can be increased by using dual-
modality rather than single-modality instruction (Baddeley 1999) that in turn, facilitates 
learning.

Dual-modality presentations require e-learning systems and so the modality effect is 
particularly relevant to e-learning. In the absence of a live presentation, an e-learning sys-
tem with its ability to present spoken as well as written information is a requirement for 
dual-modality presentations.

Transient information effect

The modality effect only is obtainable if the auditory information is sufficiently simple to 
allow it to be processed in working memory (Leahy and Sweller 2011; Wong et al. 2012). 
Lengthy, complex, information may require learners to cycle between various aspects 
before it can be assimilated. If that information is transient as is the case when it is spo-
ken, returning to it while processing current information may be difficult or impossible 
due to working memory characteristics. Holding current information in working memory 
while searching for other, relevant information may be overwhelming resulting in reduced 
learning. Relating current and previous information may be easier when it is in permanent, 
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written form. Similar concerns apply when using video animations rather than still dia-
grams or pictures.

The transient information effect occurs when lengthy, complex, transient information is 
learned better using permanent rather than transient information. Frequently, it is possible 
to rectify these issues associated with transience by dividing the information into smaller 
chunks as well as by using permanent information.

This issue can be particularly important when using educational technology. Converting 
permanent, written information into transient spoken information or permanent diagrams 
into transient animations can be easy using educational technology. When that information 
is lengthy and complex, the effect can be negative and the impulse to convert permanent 
into transient information should be resisted.

Redundancy effect

The advantage of using integrated diagrams and text under split-attention conditions is 
often erroneously assumed to apply to all uses of diagrams and text. In fact, the logical 
relations between the two sources of information are critical. As indicated above, for the 
split-attention effect, both sources are essential to understanding the materials. A statement 
such as “Angle ABC = Angle XYZ” is unintelligible without a diagram. To understand 
such geometry instruction, both the text and diagram must be attended to and integrated. 
Omitting either will leave the instruction unintelligible. In contrast, diagrams and text are 
very often provided under conditions where both the text and diagram are intelligible with-
out reference to each other. For example, text may simply re-state the information in a dia-
gram using language. Under those circumstances, either the text or the diagram (usually the 
text) should be eliminated due to redundancy. The effect occurs when redundant informa-
tion interferes with learning compared to non-redundant information (Kalyuga et al. 2004).

It should be noted that a broad definition of redundancy is used. While most commonly 
it refers to a source of information that repeats other information in a different form such as 
text in spoken and written form during a presentation, it can also refer to any unnecessary 
information such as, for example, background noise or even music. All are redundant and 
interfere with learning.

Redundancy can pose a major problem in technology mediated instruction. The temp-
tation to include possibly interesting but redundant information on a screen can be over-
whelming. We have all seen instructional materials that are so “busy” that they render the 
real information being presented almost unintelligible. Processing redundant, unnecessary 
information using our limited working memory may provide a major reason for a lack of 
effectiveness of educational technology.

Expertise reversal and element interactivity effects

Most cognitive load effects including all of the above effects assume that learners are nov-
ices just commencing a course of study on a particular topic. Working memory load is 
higher for novices than for more expert learners and cognitive load theory is concerned 
with information that imposes a high working memory load. As indicated above, with 
increasing expertise, element interactivity decreases and decreases in element interactiv-
ity have instructional consequences. These instructional consequences lead to the expertise 
reversal effect (Kalyuga et al. 2003) which is a particular example of the element interac-
tivity effect (Chen et al. 2017).
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With increasing expertise and its resultant decrease in element interactivity and intrin-
sic cognitive load, the advantage of cognitive load generated instructional procedures 
decreases. With further increases in expertise, differences between instructional condi-
tions may disappear or even reverse. These changes are referred to as the expertise reversal 
effect. Examples of it can be seen with respect to the worked example effect. For nov-
ices on a topic, studying problem solutions can be a very effective way of learning com-
pared to solving the same problems. With increases in expertise, problem solving becomes 
increasingly effective and studying worked examples becomes increasingly ineffective. 
Once a problem solution is understood, additional practice may allow increasing levels of 
competence but those increases are best obtained by solving problems rather than study-
ing worked examples (Chen et al. 2015, 2016a, b; Kalyuga et al. 2001). Studying worked 
examples for a more expert learner provides an example of the redundancy effect and 
decreases learning compared to solving problems. A similar trajectory can be found for all 
cognitive load effects. With changes in expertise, changes in instructional procedures are 
needed.

E-learning can be a particularly useful technique for dealing with the expertise reversal 
effect. Based on the effect, instructional procedures should change with changing levels 
of expertise. By assessing levels of expertise, the use of e-learning can allow commensu-
rate changes in instructional procedures resulting in more efficient learning (Kalyuga and 
Sweller 2004, 2005). Altering instructional procedures depending on levels of expertise is 
likely to be difficult or impossible in the absence of e-learning.

Working memory depletion effect

This effect is new and currently only has limited data in support (Chen et al. 2018). Cogni-
tive load theory has assumed that for any given individual, working memory characteristics 
are fixed and only can be altered by changes in long-term memory via the information store 
and environmental organising and linking principles. In fact, there may be another way in 
which working memory capacity can be altered. After concentrated cognitive effort, work-
ing memory capacity may be depleted and require rest before recovery. Chen et al. (2018) 
demonstrated increases in working memory capacity after rest compared to after cognitive 
effort. They also demonstrated that this change could be used to explain the spacing effect.

The spacing effect occurs when identical instruction is spaced over a longer period with 
rest periods between learning episodes than a shorter period with the same learning epi-
sodes massed together without spacing. The effect is obtained when spaced practice results 
in superior test performance compared to massed practice. There are many explanations 
of the spacing effect but working memory depletion may provide a plausible candidate. 
Chen et al. (2018), in two experiments, demonstrated the conventional spacing effect and 
in addition found that working memory capacity was greater after spaced than after massed 
practice. That finding suggests that by incorporating working memory depletion effects, 
cognitive load theory may be used to explain the spacing effect.

Under e-learning conditions, progression should be structured as far as possible to per-
mit learners to progress at their own pace, assuming that they will naturally space learning 
episodes appropriately. As far as I am aware, at this point there are no data with respect to 
the assumption that learners will naturally space learning episodes appropriately.

The large range of cognitive load theory effects has a dual purpose. The main purpose 
is to generate novel instructional procedures. A secondary purpose is to provide valida-
tion for the underlying theory. To this point, the theory has had a degree of success in 
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these two aims but it needs to be noted that the theory is under constant development as 
new data become available. Most commonly, a failure by the theory to predict an instruc-
tional outcome results in further theoretical development and novel instructional effects. 
Two examples from the above instructional effects can be used to demonstrate this process. 
The split-attention effect was found when success in using worked examples for algebra 
that did not use split-attention was followed by failure to obtain the worked example effect 
in geometry and physics that conventionally used a split-attention format. Without that fail-
ure, the split-attention effect may not have been discovered. Similarly, the spacing effect 
has been known since the 1800s but was assumed not to be a cognitive load effect. The 
hypothesis that working memory capacity might not be constant but rather, may deplete 
with use and recover with rest, allowed the spacing effect to be incorporated as a cognitive 
load theory effect.

Conclusions

Cognitive load theory places a heavy emphasis on our increasingly detailed knowledge of 
human cognition. In particular, it is unique amongst instructional theories in its emphasis 
on evolutionary psychology and the consequences of evolution for human cognitive archi-
tecture. That emphasis allows us to prescribe which categories of knowledge are likely to 
be amenable to instruction and which are likely to be impervious to instructional manipula-
tions. The use of human cognitive architecture and evolutionary psychology has resulted 
in an ever-increasing list of cognitive load effects indicating appropriate instructional pro-
cedures. Those experimental effects and the resultant instructional procedures provide 
the ultimate validation of the theory. The experimental effects also have a critical role in 
expanding the theory. Ultimately, the theory is dependent on the data that underlies each 
effect and those data, especially data indicating the limits of particular effects, interact-
ing with the basic theory, provide a dynamic tension that allows the theory to continually 
develop while retaining its initial, core principles.

Cognitive load theory is directly applicable to technology-assisted learning. Many of the 
instructional procedures generated by the theory are difficult to use without the assistance 
of educational technology. In addition, other instructional procedures that instructional 
technology enables such as the presentation of some transient information are incompatible 
with human cognitive architecture and may need modification. Accordingly, the theory can 
provide a guide to appropriate uses of technology-assisted learning.
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