

Factorial ANOVA (between groups) Two-way ANOVA

Nikos Comoutos & Antonis Hatzigeorgiadis

Tests of group differences

- 1 independent variable (2 levels) 1 dependent \rightarrow Independent t-test
- 1 independent variable (3+ levels) 1 dependent \rightarrow one-way ANOVA
- 2 independent variables 1 dependent \rightarrow two-way ANOVA

When? To analyze a situation in which there are two or more independent variables

Specific name The specific names (e.g., two- way Anova) reflect the experimental design

<u>1 independent variable (2 levels) – dependent \rightarrow t-test</u>

Examine differences in height between males and females

Gender (independent – 2 levels)

Height (dependent)

We conducted independent t-test to examine differences in height between males and females. The results showed...

<u>1 independent (>2 επίπεδα) – 1 dependent \rightarrow one-way ANOVA</u>

Differences in height between classes in secondary school

Class (independent – 3 levels: 1st, 2nd, 3rd grade)

Height (dependent)

We conducted One-way ANOVA to examine differences in height between 1st, 2nd and 3rd grade in secondary school. The results showed...

2 independent variables – 1 dependent → two-way ANOVA

Differences in height between grades and gender

Grades (independent – 3 levels: 1st, 2nd, & 3rd grade)

Gender (independent- 2 levels)

Height (dependent)

We conducted two-way ANOVA to examine differences in height between males and females in the 1st, 2nd and the 3rd grade. The results showed...

Example – 2(levels of the first factor) X2(levels of the second factor)ANOVA

To determine the effectiveness of different methods of training (PNF and passive flexibility) in flexibility between males and females

Two-factor designs examine the seperate and combined effects of two independent variables upon a dependent variable

Questions of the two-factor design

- Main effect for gender: Do men increase in flexibility more than women as a result of flexibility training?
- Main effect for training method: Is PNF more effective than passive training in increasing flexibility?
- Interaction between Gender and Training method: Does the effectiveness of PNF and passive training depend upon whether the stretching training is being followed by men or women?

Hypotheses On two- way Anova (3 hypotheses) | One-way (1 hypothesis)

- Main effect for gender:
 Ho = Mmales = Mfemales
- Main effect for method:
 Ho = Mpnf = Mpassive
- Interaction sex by method:

Ho = Mpnf + Mpassive are the same for males and females

Graphing interactions – Click on plots

Estimated Marginal Means of flexion

Assumptions

The scores of the dependent variable should come from a population which is normally distributed (i.e., normality assumption). Use Histogram with normal curve in the Descriptive Statistics/Frequencies or with Frequencies option check skewness and kurtosis values (if they are above 1.96 -standard errors, the data are probably not normally distributed)

 The two samples should come from populations which have approximately the same variance (i.e., homogeneity of variance assumption). Use Levene test to test this assumption. (not significant!!!)

File	Edi	it View Da	ta Transform	Analyze	Grap
6		🔒 📴 🔶	🔶 🐜 🕼	Rep	orts
30 :				Des	criptive
		sex	method	- Tab	les
	1	1,00	1,00	Cor	npare
	2	1,00	1,00	Gen	eral Li
	3	1,00	1,00	Gen	eralize
	4	1,00	1,00	Mix	ed Mo
	5	1,00	1,00	Cor	relate
	6	1,00	2,00	Base	iciuic
	7	1,00	2,00	Reg	ression
	8	1,00	2,00	Log	linear
	9	1,00	2,00	Clas	ssify
	10	1,00	2,00	Dat	a Redu
	11	2,00	1,00	Sca	le
	12	2,00	1,00	Nor	param
	13	2,00	1,00	Tim	e Serie
	14	2,00	1,00		ie sene
	15	2,00	1,00	Sun	/ivai
	16	2,00	2,00	Mu	Itiple R
	17	2,00	2,00	Mis	sing Va
	18	2,00	2,00	Cor	nplex S
	19	2,00	2,00	Qua	ality Co
	20	2,00	2,00	ROO	Curv
	21				
	22				
	23				

yze	Graphs	Utilities	Window	Help
Rep	orts		+	
Des	criptive St	atistics	+	H
Tab	les		+	Var
Cor	mpare Mea	ans	•	Val
Ger	neral Linea	r Model	•	
Ger	neralized Li	inear Mod	els 🕨	
Mix	ed Models	5	+	
Cor	relate		+	
Reg	ression		+	-
Log	linear		•	H
Cla	ssify		+	E
Dat	a Reductio	n	+	
Sca	le		•	
No	nparametr	ic Tests	•	Ŀ
Tim	ne Series		+	H
Sur	vival		•	H
Mu	Itiple Resp	onse	•	E
Mis	sing Value	Analysis.		E
Cor	mplex Sam	ples	•	
Qui	ality Contr	ol	+	H
RO	C Curve			H
-				_
	-			

elp								
/ar	var	var	var					
l	Jnivariate							
I F	Multivariate Repeated Measur	es						
١	/ariance Compo	nents						
			_					

Univariate Analysis of Variance

[DataSet1] C:\Users\Nikos\Desktop\two_factor.sav

Between-Subjects Factors

		Value Label	Ν
sex	1,00	males	10
	2,00	females	10
method	1,00	passive	10
	2,00	pnf	10

Tests of Between-Subjects Effects

Dependent Variable: flexion

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	163,750ª	3	54,583	32,108	,000
Intercept	594,050	1	594,050	349,441	,000
sex	1,250	1	1,250	,735	,404
method	,050	1	,050	,029	,866
sex * method	162,450	1	162,450	95,559	,000
Error	27,200	16	1,700		
Total	785,000	20			
Corrected Total	190,950	19			

a. R Squared = ,858 (Adjusted R Squared = ,831)

Note: When interaction F is significant, the main effect must be interpreted with cautionor not interpreted at all. If main effects are significant and interaction effect, we can pay attention only to the cell means and not to the main effects means.

*****P<.001

two_f	actor.sav [Da	taSet1] - SPSS	Data Editor	C 1 112				
File Edi	t View Da	ata Transform	m Analyze	Graphs Util	ities Windo	ow Help		
	🔒 📴 🔹) 🔿 🔚 🛙	? 🐴 📲	i 🗄 🕀	🖺 🖗 🤇			
30 :								
	💷 Univ	ariate				E	3 ar	var
1 2 3 4 5 6 7 8 9 10		pup		Dependent Vari flexion Fixed Factor(s): fixed	able:	Model Contrasts Plots Post Hoc Save Options		Click options
11 12 13 14				Covariate(s):				
15				WLS Weight:				
16								
17		ОК	Paste	Reset Car	cel Help			
18								
19	2,00	2,00	4,00	4,00				
20	2,00	2,00	4,00	1,00				

🗁 🖬 🖻 🐨 🔶 🐜 🕼 👭 📲 🏥 🖽 🐺 🤏 🌰

):	
1	
2	Univariate: Options
3	Estimated Marginal Means
4	Escinated Marginal Means
5	
6	sex
7	method family
8	
9	Compare main effects
10	Confidence interval adjustment:
11	Sidak 💌
12	
13	- Usplay
14	Estimates of official size Spread us lough plot
15	
16	Deserved power
17	Lack of fit
18	Contrast coefficient matrix General estimable function
19	2 Significance level: 05 Confidence intervals are 95%
20	
21	Continue Cancel Help
22	
23	
20	

🗁 🖬 🖻 🐨 🐡 🐜 🕼 👫 👫 🛗 🖽 🐺 🤏 🜰

):		
	Univariate	23 ai
2	Univariate: Options	×
3	Estimated Marginal Means	
4	Eactor(s) and Eactor Interactions: Display Means for:	
5		
6	sex method	
7	method sex*method	
8		
9	Compare main effects	
10	Lonfidence interval adjustment:	
11		
12	Display Bonferroni	
13	Descriptive statistics	
14	Estimates of effect size Spread vs. level plot	
15	Observed power Residual plot	
16	Parameter estimates Lack of fit	
17	Contrast coefficient matrix General estimable function	
18		
19	2. Significance level: .05 Confidence intervals are 95%	
20	2. Continue Cancel Help	
21		
22		
23		

Click Paste to write syntax

For the examination of the interaction

COMPARE (method) ADJ (SIDAK) COMPARE (sex) ADJ (SIDAK)

Click the arrow

1. sex

Estimates

Dependent Variable: flexion

			95% Confidence Interval		
sex	Mean	Std. Error	Lower Bound	Upper Bound	
males	5,200	,412	4,326	6,074	
females	5,700	,412	4,826	6,574	

Based on estimated marginal means

a. Adjustment for multiple comparisons: Sidak.

Univariate Tests

Dependent Variable: flexion

	Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Contrast	1,250	1	1,250	,735	,404	,044
Error	27,200	16	1,700	10000000000000000000000000000000000000		

The F tests the effect of sex. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

2. method

Estimates

Dependent Variable: flexion

			95% Confidence Interval		
method	Mean	Std. Error	Lower Bound	Upper Bound	
passive	5,500	,412	4,626	6,374	
pnf	5,400	,412	4,526	6,274	

Pairwise Comparisons

Based on estimated marginal means

a. Adjustment for multiple comparisons: Sidak.

Univariate Tests

Dependent Variable: flexion

	Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Contrast	,050	1	,050	,029	,866	,002
Error	27,200	16	1,700			-

The F tests the effect of method. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

3. sex * method

Estimates

Bopondont fundore. Hower								
				95% Confidence Interval				
sex	method	Mean	Std. Error	Lower Bound	Upper Bound			
males	passive	2,400	,583	1,164	3,636			
	pnf	8,000	,583	6,764	9,236			
females	passive	8,600	,583	7,364	9,836			
	pnf	2,800	,583	1,564	4,036			

Dependent Variable: flexion

Pairwise Comparisons

Dependent Variable: flexion

			Mean			95% Confidence Interval for Difference [®]	
sex	(I) method	(J) method	(L-I)	Std. Error	Sig.ª	Lower Bound	Upper Bound
males	passive	pnf	-5,600*	,825	,000	-7,348	-3,852
	pnf	passive	5,600*	,825	,000	3,852	7,348
females	passive	pnf	5,800*	,825	,000	4,052	7,548
	pnf	passive	-5,800*	,825	,000	-7,548	-4,052

Based on estimated marginal means

*. The mean difference is significant at the ,050 level.

a. Adjustment for multiple comparisons: Sidak.

4. sex * method

Estimates

Dependent Variable: flexion

				95% Confidence Interval			
sex	method	Mean	Std. Error	Lower Bound	Upper Bound		
males	passive	2,400	,583	1,164	3,636		
	pnf	8,000	,583	6,764	9,236		
females	passive	8,600	.583	7,364	9,836		
	pnf	2,800	,583	1,564	4,036		

Pairwise Comparisons

Dependent Variable: flexion

			Mean Difference			95% Confidence Interval for Difference ^a	
method	(I) sex	(J) sex	(L-I)	Std. Error	Sig.ª	Lower Bound	Upper Bound
passive	males	females	-6,200*	,825	.000	-7,948	-4,452
	females	males	6,200*	,825	.000	4,452	7,948
pnf	males	females	5,200*	,825	.000	3,452	6,948
	females	males	-5,200*	,825	,000	-6,948	-3,452

Based on estimated marginal means

*. The mean difference is significant at the ,050 level.

a. Adjustment for multiple comparisons: Sidak.

How to report

We conducted a 2x2 ANOVA to determine the differences in the effectiveness of PNF and passive flexibility training with males and females. The results revealed no significant gender effect, F(1,16) = .74, p =.40,nor a significant method effect F(1,16) = .03, p = .87, but a significant interaction effect, F(1,16) = 95.56, p < .001. Pairwise comparisons revealed that passive flexibility is significantly more effective than PNF for females (p < .001), but PNF is significantly more effective than passive for males (p < .001).

Examples – How to report

<u>Two-way ANOVA</u> significant main effect non significant interaction effect

We conducted 2x2 ANOVA to examine differences in ego orientations between gender and class (5th and 6th grade). The results showed significant main effect for gender, F (1,155) = 3.93, p < .05, non significant effect for classroom, F (1,155) = 2.18, p = .14, and non significant interaction effect F (1,155) = 1.54, p = .22. The examination of the means showed that females had higher scores than males in ego orientations.

<u>Two-way ANOVA</u> No significant main effect Significant interaction effect

We conducted 2x2 ANOVA to examine differences in ego orientations between gender and class (5th and 6th grade). The results showed non significant effect for gender, F (1,155) = 2.91, p = .09, non significant effect for classroom, F (1,155) = .32, p = .57, but statistical interaction effect, F (1,155) = 3.96, p < .05. For the examination of the interaction effect, pairwise analysis showed that although in the 5th grade there were no significant differences between boys and girls in the 6th grade boys had higher scores than girls in ego orientations.

We conducted 2x2 ANOVA to examine differences in ego orientations between gender and class (5th and 6th grade). The results showed significant main effect for gender, F (1,155) = 18.21, p < .01, and classroom, F (1,155) = 21.48, p < .01, and statistical interaction effect F (1,155) = 7.48, p < .01. Pairwise analysis showed that although in the 5th grade there were no significant differences between boys and girls in the 6sth grade boys had higher scores than girls in ego orientations.