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• Regression analysis is useful when you want to 
predict the scores of one dependent variable 
from the scores of one independent variable 
(Simple Regression) 

• Or more independent variables (Multiple 
Regression).



Note!!

• Note that a significant prediction does not 
prove that the predictor (independent) 
variables have a causal effect on the predicted 
(dependent) variable. 

• A significant prediction merely indicates that 
changes in the scores of the dependent 
variables can by predicted by the independent 
variables (remember correlation…)



Multiple regression is not just one technique 
but a family of techniques (e.g., hierarchical, 
stepwise) that can be used to explore the 
relationship between one continuous 
dependent variable and a number of 
independent variables or predictors - usually 
continuous



Multiple regression is based on correlation 
but allows a more sophisticated exploration 
of the interrelationship among a set of 
variables

You should have a sound theoretical or 
conceptual reason for the analysis and, in 
particular; the order of variables entering 
the equation.



• It can tell you how well a set of variables is able to predict a 
particular outcome

For example, you may be interested in exploring how well a set 
of subscales on achievement goals (e.g., mastery approach, 
performance approach, etc..) is able to predict positive self-talk. 
Multiple regression will provide you with information about the 
model as a whole (all subscales) and the relative contribution of 
each of the variables that make up the model (subscales). 
As an extension of this, multiple regression will allow you to test 
whether adding a variable (e.g., anxiety) contributes to the 
predictive ability of the model, over and above those variables 
already included in the model



Types of multiple regression

• There are a number of different types of 
multiple regression analyses that you can use, 
depending on the nature of the question you 
wish to address. The three main types of 
multiple regression analyses are:

• standard or simultaneous;
• hierarchical or sequential
• stepwise



Standard multiple regression

• In standard multiple regression, all the 
independent (or predictor) variables are 
entered into the equation simultaneously. 
Each independent variable is evaluated in 
terms of its predictive power, over and above 
that offered by all the other independent 
variables. 

• This is the most commonly used multiple 
regression analysis. 



When to use it

• You would use this approach if you had a set 
of variables (e.g. various motivational 
subscales) and wanted to know how much 
variance in a dependent variable (e.g. negative 
self-talk) they were able to explain as a group 
or block. 

• This approach would also tell you how much 
unique variance in the dependent variable 
each of the independent variables explained.



Hierarchical multiple regression

• In hierarchical regression (also called 
sequential regression), the independent 
variables are entered into the equation in the 
order specified by the researcher based on 
theoretical grounds. Variables or sets of 
variables are entered in steps (or blocks), with 
each independent variable being assessed in 
terms of what it adds to the prediction of the 
dependent variable, after the previous 
variables have been controlled for.



When to use it

• For example, if you wanted to know how well 
extraversion and goal setting predict 
distractability, after the effect of extraversion is 
controlled for.

• You would enter extraversion in Block 1 and then 
goal-setting in Block 2. Once all sets of variables 
are entered, the overall model is assessed in 
terms of its ability to predict the dependent 
measure (distractability). The relative 
contribution of each block of variables is also 
assessed.



Stepwise multiple regression

• In stepwise regression, the researcher provides 
SPSS with a list of independent variables and then 
allows the program to select which variables it 
will enter and in which order they go into the 
equation, based on a set of statistical criteria. 

• There are three different versions of this 
approach: 

• forward selection
• backward deletion 
• and stepwise regression. 



ASSUMPTIONS OF MULTIPLE 
REGRESSION

• It makes a number of assumptions about the 
data, and it is not all that forgiving if they are 
violated. 

• Sample size
• Multicollinearity and singularity
• Outliers
• Normality, linearity, homoscedasticity, 

independence of residuals



Sample size
• The ratio of participants to independent variables should 

be at least 5:1 and ideally 20:1.
• Stevens (1996, p. 72) recommends that 'for social science 

research, about 15 subjects per predictor are needed for a 
reliable equation'. 

• If the stepwise method is used (see below), the ratio 
should be 40:1. This is due to the possibility that with small 
sample sizes this method can produce results which do not 
generalize to other samples. 

• Make sure you have enough cases (participants) in the data 
file, as this analysis deletes all cases with missing values. If 
there are not enough cases, you may need to replace the 
missing values with the variable mean



Multicollinearity and singularity
• This refers to the relationship among the independent 

variables. Multicollinearity exists when the independent 
variables are highly correlated (r=.9 and above). 

• Singularity occurs when one independent variable is 
actually a combination of other independent variables (e.g. 
when both subscale scores and the total score of a scale are 
included). 

• Multiple regression doesn't like multicollinearity or 
singularity, and these certainly don't contribute to a good 
regression model, so always check for these problems 
before you start.

• To test for multicollinearity or singularity, use the 
Collinearity diagnostics in Statistics.



Outliers
• Multiple regression is very sensitive to outliers (very high or very low 

scores). 
• Checking for extreme scores should be part of the initial data screening 

process 
• You should do this for all the variables, both dependent and independent, 

that you will be using in your regression analysis.
• Outliers can either be deleted from the data set or, alternatively, given a 

score for that variable that is high but not too different from the remaining 
cluster of scores. 

• You can also use the Casewise diagnostics in Statistics (see below). To 
identify outliers in the values of the dependent variable create a 
scatterplot of its standardised residuals (use Save below to save these 
residuals in the data file). To detect multivariate outliers among the 
independent variables, that is, cases with extreme values on a 
combination of variables, use the Mahalanobis distance or the Leverage 
value (see Save below).



How to test this in SPSS

• Mahalanobis distance is a measure of how 
much the value of a case differs in the 
independent variables from the average of all 
other cases. 

• Large Mahalanobis distances signify potential 
outlier cases. 

• Tabachnick and Fidell (2007, p. 128) define 
outliers as those with standardised residual 
values above about 3.3 (or less than -3.3).



Normality, linearity, 
homoscedasticity, independence of 

residuals
• These all refer to various aspects of the 

distribution of scores and the nature of the 
underlying relationship between the variables. 
These assumptions can be checked from the 
residuals scatterplots which are generated as 
part of the multiple regression procedure. 
Residuals are the differences between the 
obtained and the predicted dependent 
variable (DV) scores. The residuals scatterplots 
allow you to check:



Normality, linearity, 
homoscedasticity, independence of 

residuals
• normality: the residuals should be normally 

distributed about the predicted DV scores;
• linearity: the residuals should have a straight-

line relationship with predicted DV scores;
• homoscedasticity: the variance of the 

residuals about predicted DV scores should be 
the same for all predicted scores.



Checking the assumptions of regression 
analyses

Scatterplot

Dependent Variable: DEXAPFAT
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To check for assumptions 
of homoscedasticity, plot 
studentized residuals (SRESID)
against standardised predicted 
values of the dependent variable
(ZPRED)

If the linearity assumption is met, 
such plots should not show any 
pattern. 

Residuals can be saved in the ‘save’ 
function to be plotted in simple scatter plot 
Graphs menu



Checking the assumptions of regression 
analyses

Regression Standardized Residual
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The histogram shows that 
the residuals are normally 
distributed.



Checking the assumptions of regression 
analyses

Normal P-P Plot of Regression Standardized Residual

Dependent Variable: DEXAPFAT
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The Normal Probability Plot shows the distribution of the standardised residuals against a normal
distribution.  Graph shows that distribution is more or less normal as points cluster 
around straight line. 
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The concept of multiple 
regression

Largest %variance
accounted for by skinfolds 

Next largest %variance 
accounted for by waist:hip ratio

Unexplained variance

Waist:hip ratio accounts for 
some unique’ variance

Self-reported activity accounts for only 
a very small proportion of unique variance

Winter Eston Lamb J Sports Sci 2001



Selection of variables in hierarchical 
regression

• This means that we will be entering our variables 
in steps or blocks in a predetermined order (not 
letting the computer decide, as would be the case 
for stepwise regression). In the first block, we will 
'force' the variable(s) that we want to control. 
This has the effect of statistically controlling for 
these variables. The difference this time is that 
the possible effect of this variable (s) has been 
'removed' and we can then see whether our 
block of independent variables are still able to 
explain some of the remaining variance in our 
dependent variable.



Selection of variables for stepwise 
Analysis 

Make available for selection at each analysis 
a) all skinfolds, weight and height, 

To do:  Draw a Venn diagram to show proportion of 
variance explained by pectoral and thigh (clue use 
R2 and correlation matrix to help you draw it)

b) You may argue that from a theoretical perspective, 
that the BMI would account for some additional 
variance in %fat.  You can force this into the 
analysis AFTER entering the best predictors.



Example of standard multiple 
regression

• Question 1: How well do the two measures of 
exercise behaviour (intention to exercise-exint, 
behaviour of exercise-bexbeh) predict 
frequency of exercise? How much variance in 
frequency of exercise can be explained by 
scores on these two scales? 

• Question 2: Which is the best predictor of 
frequency of exercise: exint or bexbeh?



• This involves all of the independent variables 
being entered into the equation at once. 

• The results will indicate how well this set of 
variables is able to predict frequency of exercise; 
and it will also tell us how much unique variance 
each of the independent variables explains in the 
dependent variable, over and above the other 
independent variables included in the set. For 
each of the procedures,



1) Click Analyze, Regression and then Linear



Make sure that enter is selected this will 
give you standard multiple regression

2) Dependent variable (zpexbeh) in the Dependent box then the independent or predictors (pexbeh, exint) in the Independent (s): 
box and then click Statistics



3) Click Descriptives and Part and partial correlations and then Continue



4) Click Ok



Multiple R is .42. 

Overall 17% of the variance of frequency of exercise (ZPEXBEH) explained by
the two independent variables (EXINT, PEXBEH)

Model

R R Square

Adjusted R 
Square

Std. Error of the Estimate

1 , 416 ,173 ,171 1,4926

R represents the total 
correlation between the 2 
independent variables and 
the dependent variable.

R squared is R which has 
been squared. The 
square of a correlation is 
the same as a 
proportion of variance –
it represents the total 
amount of variance 
accounted for in the 
dependent variable by 
the independent 
variables

A reduced value of R squared which 
attempts to make an estimate of 
the value of R squared in the 
population rather than the sample



ANOVAb

Model
Sum of Squares df Mean Square F Sig.

1 Regression 386,451

2

193,225 86,737

,000a

Residual 1846,780 829 2,228

Total 2233,231 831

a. Predictors: (Constant), exint, pexbeh

b. Dependent Variable: zpexbeh

Statistical significant, F (2, 829)= 86.74, p < .001.  

The significance of the value F (called sig. in the table) is the probability 
associated with R squared. This probability can be thought of as a 
significance value for the whole model or equivalently, a significance value 
of R squared



Coefficientsa

Model

Unstandardized Coefficients

Standardized 

Coefficients

t Sig.

Correlations

B Std. Error Beta Zero-order Partial Part

1 (Constant) ,250 ,209 1,197 ,232

pexbeh ,284 ,035

,283 8,178 ,000

,370 ,273 ,258

exint ,238 ,039 ,209 6,043 ,000 ,326 ,205 ,191

a. Dependent Variable: zpexbeh

The final part of the printout is the coefficients. To find out how well 
each of the variables contributes to the final equation, we need to 
look in the Coefficients. This summarizes the results, with all the 
variables entered into the equation. Scanning the Sig. column, both 
the two variables make a statistically significant contribution (less 
than .05). In order of importance, they are: pexbeh (beta = .28) and 
exint (beta = .21). Remember, these beta values represent the unique 
contribution of each variable, when the overlapping effects of all 
other variables are statistically removed. In different equations, with 
a different set of independent variables, or with a different sample, 
these values would change. Standardised regression coefficients 
range from -1 to 1. The higher the standardised regression coefficient 
(in absolute terms), the better the prediction of the dependent 
variable. 

If you square this 
value, you get an 
indication of the 
contribution of that 
variable to the total 
R square. In other 
words, it tells you 
how much of the 
total variance in the 
dependent variable 
is uniquely 
explained by that 
variable and how 
much R square 
would drop if it 
wasn't included in 
your model.



PRESENTING THE RESULTS FROM 
MULTIPLE REGRESSION

• As a minimum, you should indicate what type 
of analysis was performed (standard or 
hierarchical), standardised (beta) values if the 
study was theoretical, or unstandardised (B) 
coefficients (with their standard errors) if the 
study was applied (usually we use the 
standardised). If you performed a hierarchical 
multiple regression, you should also provide 
the R square change values for each step and 
associated probability values.



Example

• Multiple regression was used to predict frequency of 
exercise from intention to exercise and exercise 
behaviour. Preliminary analyses were conducted to 
ensure no violation of the assumptions of normality, 
linearity, multicollinearity and homoscedasticity. The 
total variance explained by the model as a whole was 
17%, F (2, 829) = 86.74, P < .001. In the final model 
both measures were statistically significant, with the 
behaviour of exercise recording a higher beta value (t = 
8.18, beta = .28, p< .001) than the intention of exercise 
(t = 6.04, beta = .21, p< .001).


