Πρόγραμμα Μεταπτυχιακών Σπουδών: Ανάλυση και Διαχείριση Ενεργειακών Συστημάτων

Εισαγωγή στις Θερμικές Επιστήμες

Διδάσκων: Β. Μποντόζογλου

Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας

Ακαδημαϊκό Έτος 2022-23

- Y. A. Cengel & R. H. Turner, Fundamentals of Thermal Fluid Sciences, McGraw-Hill 2nd edition, 2005
- J. M. Smith, J. C. VanNess, M. M. Abbot, Introduction to Chemical Engineering Thermodynamics, McGraw-Hill 7th edition, 2005
- F. M. White, Fluid Mechanics, McGraw-Hill, 7th edition, 2011
- F. M. White, Viscous Fluid Flow, McGraw-Hill, 3rd edition, 2006
- D. J. Tritton, Physical Fluid Dynamics, Oxford Press, 2nd edition, 1988
- P. A. Durbin, G. Medic, Fluid Dynamics with a Computational Perspective, Cambridge, 2007
- J. H. Lienhard IV, J. H. Lienhard V, A Heat Transfer Textbook, Published by the authors, 2000
- R. B. Bird, W. E. Stewart & E. N. Lightfoot, Transport Phenomena, John Wiley & Sons Inc, 2nd edition, 2002
- F. M. White, Heat and Mass Trasfer, Pearson, 1988.

Παραδείγματα από έναν ατμοπαραγωγό

ΚΥΚΛΩΜΑ ΑΕΡΑ/ΚΑΥΣΙΜΟΥ-ΚΑΥΣΑΕΡΙΩΝ

- Διαθέσιμη θερμότητα καύσης (Θ)
- Θερμοκρασία φλόγας- Ακτινοβολία (ΜΘ)
- Προθερμαντήρας, Υπερθερμαντήρες (MP, MΘ)
- Μηχανική καταπόνηση αυλών (MP)
- Σωματίδια, διαχυτότητα, επικαθήσεις (MP, MM)
- Συμπύκνωση υδρατμών, διάβρωση (Θ, ΜΘ)

ΚΥΚΛΩΜΑ ΝΕΡΟΥ-ΑΤΜΟΥ

- Πίεση λειτουργίας ατμοπαραγωγού (Θ)
- Κυκλοφορία εργαζόμενου μέσου (MP)
- Βρασμός ροής-Προστασία αυλών από φλόγα (ΜΘ)
- Προθερμαντήρας, Υπερθερμαντήρες (MP, MΘ)
- Τύμπανο-Διαχωριστές (MP)
- Επεξεργασία νερού-διάβρωση-επικαθήσεις (ΜΜ)

Ανασκόπηση Θερμοδυναμικής

ΣΥΣΤΗΜΑ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝ

Μία φάση σε ισορροπία: Μηχανική, θερμική και χημική ισορροπία (ομοιόμορφη πίεση, θερμοκρασία και σύσταση)

Κλειστό σύστημα: Αλληλεπίδραση με εναλλαγή θερμότητας, Q, και έργου, W

Ανοικτό σύστημα: Εισροή/εκροή ενέργειας με τα ρεύματα εισόδου/εξόδου

Ενέργεια συστήματος: κινητική, E_{kin} , δυναμική, E_{dyn} , εσωτερική, U^t , (+ επιφανειακή, ηλεκτρομαγνητική...)

Περιγραφή συστήματος με εκτατικές και εντατικές μεταβλητές: P, T, $V^t = nV$, $U^t = nU$

1° ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ ΓΙΑ ΚΛΕΙΣΤΟ ΣΥΣΤΗΜΑ

 $\Delta (\mathbf{U}^t + E_{kin} + E_{dyn}) = Q - \mathbf{W}$

και για αμελητέες μεταβολές μηχανικής ενέργειας $\Delta U^t = Q - W$ $dU^t = \delta Q - \delta W$

ΚΑΤΑΣΤΑΤΙΚΑ ΜΕΓΕΘΗ

Για κλειστό σύστημα:

$$\mathbf{U}^t = f(P,T)$$

Παρομοίως,
$$H^{t} = U^{t} + PV^{t} = g(P,T)$$
 $\int_{1}^{2} dU = U_{2} - U_{1}$ $\int_{1}^{2} \delta Q = Q$

Αντιστρεπτό έργο

Πόσο έργο παράγεται αν τα βαρίδια μετακινηθούν μονομιάς, και πόσο αν είναι πολύ μικρά και μετακινούνται σταδιακά;

ΠΡΟΫΠΟΘΕΣΕΙΣ ΑΝΤΙΣΤΡΕΠΤΟΤΗΤΑΣ

- Έλλειψη τριβών
- Εσωτερική ισορροπία στον κύλινδρο (ομοιόμορφη Ρ)
- Διαφορική απόκλιση από την ισορροπία

$$F \approx PA = (m_{\beta\alpha\rho} + m_{\varepsilon\mu\beta})g$$

$$SW = F \, dx = P \, Adx = P \, dV \Rightarrow W_{rev} = \int_{1}^{2} P \, dV$$

Απότομη απομάκρυνση βαριδίων

$$\mathrm{d}U_{\sigma\nu\sigma\tau} = \delta Q - \delta W = -PdV?$$

Στη θέση μέγιστης ανύψωσης, $U_{\sigma v \sigma \tau}(1) - U_{\sigma v \sigma \tau}(0) \approx m_{\varepsilon \mu \beta} g x_{\mu \varepsilon \gamma}$

Τελικά,

 $\Delta U_{\sigma \upsilon \sigma \tau} + \Delta U_{\pi \varepsilon \rho} = m_{\varepsilon \mu \beta} \ g \ x_{\tau \varepsilon \lambda}$

ΙΣΟΡΡΟΠΙΑ ΣΥΣΤΗΜΑΤΟΣ ΜΕ ΠΕΡΙΣΣΟΤΕΡΕΣ ΤΗΣ ΜΙΑΣ ΦΑΣΕΙΣ

- Για κάθε φάση: Ομοιόμορφη πίεση, Ρ, θερμοκρασία, Τ και σύσταση
 (πχ γραμμομοριακό κλάσμα N-1 συστατικών, εντατικές μεταβλητές)
- Πίεση και θερμοκρασία κοινές σε όλες τις φάσεις
- Κάθε συστατικό έχει το ίδιο χημικό δυναμικό σε όλες τις φάσεις

Φάσεις και βαθμοί ελευθερίας

ΚΑΝΟΝΑΣ ΦΑΣΕΩΝ GIBBS

$$F = 2 - \Phi + N$$

- F : πλήθος ελεύθερων εντατικών μεταβλητών
- Φ : πλήθος φάσεων
- Ν : πλήθος χημικών συστατικών

Ιδανικό μίγμα πτητικών υγρών – Νόμος RAOULT

$$y_i P = x_i P_i^{sat}(T)$$

Μίγμα πτητικών υγρών και μόνιμων αερίων – Νόμος HENRY $y_i P = H_i(T) x_i$

y_i : γραμμομοριακό κλάσμα συστατικού *i* στη φάση (α)

x_i : γραμμομοριακό κλάσμα συστατικού *i* στη φάση (β)

- Pisat : τάση ατμών συστατικού i
- *H_i* : σταθερά νόμου Henry συστατικού *i*

Ισορροπία καθαρού συστατικού (νερό-ατμός)

Ατμοπαραγωγός φυσικής ανακυκλοφορίας

Εντατικές μεταβλητές:
$$P, T, \rho_v, \rho_l, H_v, H_l,$$

 $P = P^{sat}(T)$ ή $T = T^{sat}(P)$

CR

Εκτατικές μεταβλητές: x

κλάσμα ατμού στην έξοδο λόγος ανακυκλοφορίας

CR = 1/x [=] kg μιγμ./kg ατμού

 $P < 70 \text{ bar} \rightarrow CR = 50 - 10$ $P > 70 \text{ bar} \rightarrow CR = 10 - 5$

- Θερμική προστασία αυλών
 Σημασία διαφοράς πυγκάτη
 - Σημασία διαφοράς πυκνότητας
 στη φυσική ανακυκλοφορία

Συσκευές διεργασιών και δίκτυα ατμού

Το 1° Θερμοδυναμικό Αξίωμα για ανοικτό σύστημα

ΑΝΟΙΚΤΟ ΣΥΣΤΗΜΑ - ΟΓΚΟΣ ΕΛΕΓΧΟΥ $\frac{d(mE)_{sys}}{dt} = \dot{Q} - \dot{W}$, $E = U + \frac{u^2}{2} + gz$: ενέργεια ανά μονάδα μάζας $\frac{d(mE)_{CV}}{dt} = \frac{d(mE)_{sys}}{dt} + (\dot{m}E)_{in} - (\dot{m}E)_{out}$ \dot{m}_{out} $\dot{W}_{\text{pressure}} = Fu = PAu = \frac{P}{\rho}\dot{m} \Rightarrow \dot{W} = \dot{W}_s + \left(\frac{P}{\rho}\dot{m}\right)_{\text{out}} - \left(\frac{P}{\rho}\dot{m}\right)_{\text{in}}$ $\frac{d(mU)_{CV}}{dt} = \left| \dot{m} \left(H + \frac{u^2}{2} + gz \right) \right|_{t=0} - \left| \dot{m} \left(H + \frac{u^2}{2} + gz \right) \right|_{t=0} + \dot{Q} - \dot{W}_s$ Ενθαλπία ανά μονάδα μάζας: $(H = U + \frac{P}{c})$ Θερμικές διεργασίες - Μόνιμες συνθήκες Θερμικές διεργασίες: $H + \frac{u^2}{2} + gz \approx H$ $\sum_{i} \dot{m}_{\text{out},j} H_{\text{out},j} = \sum_{i} \dot{m}_{\text{in},i} H_{\text{in},i} + \dot{Q}$ Συμπιεστές ροές: $H + \frac{u^2}{2} + gz \approx H + \frac{u^2}{2}$

Υπολογισμός μεταβολών ενθαλπίας

Καθαρά συστατικά (εξάρτηση από Τ, Ρ)

$$dH = C_P dT + \left[V - T \left(\frac{\partial V}{\partial T} \right)_P \right] dP$$

Ιδανικά αέρια

$$dH = C_P dT \Rightarrow H(T) = \int_{T_0}^{I} C_p dT \approx C_p (T - T_0)$$

Т

Υγρά σε χαμηλές έως μέτριες πιέσεις

$$C_{\rm V} \approx C_P = C \Rightarrow H(T \approx U(T) \approx C(T - T_0)$$

Μεταβολή από υπόψυκτο υγρό (1) σε υπέρθερμο ατμό (2)

$$\Delta H = H_2 - H_1 \approx C_P^l (T_{sat} - T_1) + \Delta H^{lv} (T_{sat}) + C_P^v (T_2 - T_{sat})$$

Πίνακες ειδικής ενθαλπίας

http://checalc.com/calc/steam.html https://webbook.nist.gov/chemistry/fluid/ Μίγματα (παραδοχή ιδανικής ανάμιξης)

$$H_{m}(T) = \sum_{i=1}^{N} x_{i}H_{i} = \left(\sum_{i=1}^{N} x_{i}C_{p,i}\right)(T - T_{0})$$

Αντίστοιχα,

$$\Delta H_m^{\rm lv} = \sum_{i=1}^N x_i \Delta H_i^{\rm lv}$$

Παράδειγμα: Εξατμιστήρας που λειτουργεί σε ατμοσφαιρική πίεση τροφοδοτείται με υδατικό διάλυμα NaCl, παροχής 7000 kg/h, θερμοκρασίας 70°C και σύστασης 3% κατά βάρος (C_p=4,05 kJ/kg°C), και παράγει προϊόν σύστασης 25% κατά βάρος (C_p=3,24 kJ/kg°C). Θερμότητα παρέχεται στον εξατμιστήρα από την συμπύκνωση κορεσμένου ατμού θέρμανσης 150°C που κυκλοφορεί εσωτερικά των αυλών. Υπολογίστε την απαιτούμενη παροχή ατμού και σχολιάστε τη σημασία της ατμοπαγίδας.

Δοχείο πλήρους ανάμιξης : $P_b=1$ atm, $T_b=T_P=107^{\circ}C$ (σημείο βρασμού δ/τος 25%)

$$Fx_F = Px_P \rightarrow P = 7000 \cdot 0.03/0.25 = 840 \ kg/h$$

$$S = F - P = 7000 - 840 = 6160 kg/h$$

 $\begin{aligned} FH_{F} + \dot{m}_{st}H_{v} &= PH_{P} + SH_{S} + \dot{m}_{st}H_{l} \rightarrow FH_{F} + \dot{m}_{st}(H_{v}-H_{l}) = PH_{P} + SH_{S} \\ H_{F} &= C_{p,F}(T_{F}-0) = 283,50 \ kJ/kg, \qquad H_{P} = C_{p,P}(T_{P}-0) = 346,68 \ kJ/kg \\ H_{S} &= 2690 \ kJ/kg \ (\upsilon \pi \acute{e}\rho \theta e \rho \mu o \varsigma \ \alpha \tau \mu \acute{o}\varsigma), \ (H_{v}-H_{l}) = \Delta H_{vl} = 2113,7 \ kJ/kg \end{aligned}$

 $\dot{m}_{st} = 7038 \, kg/h$

- Κακή λειτουργία ατμοπαγίδας: απώλεια ατμού, συσσώρευση υγρού
- Διαχείριση δικτύου ατμού και δικτύου συμπυκνωμάτων

Παράδειγμα: Υπέρθερμος ατμός πίεσης 50 atm και θερμοκρασίας 427°C θα μετατραπεί σε κορεσμένο με ψεκασμό με νερό 150°C. Υπολογίστε την παροχή νερού που απαιτείται.

ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΥΠΕΡΘΕΡΜΟΥ ΑΤΜΟΥ

- Αποφυγή συμπυκνωμάτων στους αγωγούς μεταφοράς – υψηλές ταχύτητες
- Ατμοπαγίδα λειτουργεί μόνον στο ξεκίνημα
- Χαμηλός συντελεστής συναγωγής
- Αβεβαιότητα στο σχεδιασμό συσκευών
 θερμικών διεργασιών
- Θερμική καταπόνηση υλικών και αισθητήρων
- Δυσκολία αυτόματου ελέγχου για T_2 ≈ T_{sat}

 $\frac{m}{m_1} = \frac{H_1 - H_2}{H_2 - H} = 0,217 \Rightarrow m = 21,7\% m_1$

Ατμοπαγίδες και δίκτυα ατμού

Υδραυλικό πλήγμα

Χωροθέτηση σωληνώσεων

Πίεση διανομής ατμού και πίεση λειτουργίας συσκευών

ΣΥΝΕΠΕΙΕΣ ΥΨΗΛΗΣ ΠΙΕΣΗΣ ΠΑΡΑΓΩΓΗΣ/ΔΙΑΝΟΜΗΣ

- Υψηλότερη θερμοχωρητικότητα του λέβητα και
 καλύτερη απόκριση σε αυξομειώσεις φορτίου
- Μικρότερες διάμετροι κεντρικού συστήματος
 διανομής και μέγεθος βαλβίδων, ατμοπαγίδων
- Ευχερής μεταφορά σε μεγαλύτερες αποστάσεις

ΠΕΡΙΟΡΙΣΜΟΙ ΛΕΙΤΟΥΡΓΙΑΣ ΣΥΣΚΕΥΩΝ

- Μέγιστη επιτρεπτή πίεση
- Ατμός θέρμανσης κοντά στον κορεσμό
- Έλεγχος θερμοκρασίας μέσω ελέγχου της πίεσης, p_{sat}=f(T_{sat})

Απλός μειωτής πίεσης (offset αναλογικού ελέγχου)

https://www.spiraxsarco.com/learn-about-steam

Η πλημμύριση θερμαντήρα με συμπύκνωμα (waterlogging) προκαλείται από μείωση φορτίου και αντίστοιχη μείωση της πίεσης ατμού κάτω από την πίεση επιστροφής του δικτύου συμπυκνωμάτων

ΑΝΤΙΜΕΤΩΠΙΣΗ

ΣΥΜΠΤΩΜΑΤΑ

- Εξασφάλιση τουλάχιστον ατμοσφαιρικής πίεσης στο χώρο ατμού και απομάκρυνση συμπυκνώματος με βαρύτητα μέσω μηχανικής ατμοπαγίδας (και vacuum breaker)
- Εγκατάσταση συνδυασμένης ατμοπαγίδας-αντλίας συμπυκνώματος
- Διατήρηση σταθερής πίεσης ατμού (υψηλότερης της πίεσης επιστροφής συμπυκνωμάτων) και έλεγχος λειτουργίας με αυξομείωση της παροχής εισόδου

Υπολογισμοί καύσης

Ορισμός πρότυπης ενθαλπίας χημικής αντίδρασης (με βάση το αντιδρόν συστατικό 1)

$$\dot{Q} = \left(\sum \dot{m}_{out} H_{out}\right)_{298K} - \left(\sum \dot{m}_{in} H_{in}\right)_{298K} = \dot{m}_{in,1} \Delta H_r^o$$

Η ενθαλπία είναι καταστατικό μέγεθος. Μεταβολές της εξαρτώνται μόνον από τις αρχικές και τελικές συνθήκες, όχι από τη διαδρομή.

Γενικός υπολογισμός θερμικού αποτελέσματος

$$\dot{\mathbf{Q}} = \left[\sum \dot{m}_{\text{out}} \mathbf{H}_{\text{out}}(\mathbf{T}_{\varepsilon\xi}) - \sum \dot{m}_{\text{out}} \mathbf{H}_{\text{out}}(25^{\circ}\text{C})\right] + \left[\sum_{j} \dot{m}_{\text{out}} \mathbf{H}_{\text{out}}(25^{\circ}\text{C}) - \sum_{i} \dot{m}_{in} \mathbf{H}_{in}(25^{\circ}\text{C})\right] + \left[\sum_{j} \dot{m}_{in} \mathbf{H}_{in}(25^{\circ}\text{C}) - \sum_{i} \dot{m}_{in} \mathbf{H}_{in}(\mathbf{T}_{\varepsilon\iota\sigma})\right] + \left[\sum_{j} \dot{m}_{in} \mathbf{H}_{in}(25^{\circ}\text{C}) - \sum_{i} \dot{m}_{in} \mathbf{H}_{in}(\mathbf{T}_{\varepsilon\iota\sigma})\right] + \left[\sum_{j} \dot{m}_{in} \mathbf{H}_{in}(25^{\circ}\text{C}) - \sum_{i} \dot{m}_{in} \mathbf{H}_{in}(25^{\circ}\text{C}) - \sum_{i} \dot{m}_{in} \mathbf{H}_{in}(\mathbf{T}_{\varepsilon\iota\sigma})\right] + \left[\sum_{j} \dot{m}_{out} \mathbf{H}_{out}(25^{\circ}\text{C}) - \sum_{i} \dot{m}_{in} \mathbf{H}_{in}(25^{\circ}\text{C}) - \sum_{i} \dot{m}_{in} \mathbf{H}_{in}(\mathbf{T}_{\varepsilon\iota\sigma})\right] + \left[\sum_{j} \dot{m}_{out} \mathbf{H}_{out}(25^{\circ}\text{C}) - \sum_{i} \dot{m}_{in} \mathbf{H}_{in}(25^{\circ}\text{C}) - \sum_{i} \dot{m}_{in} \mathbf{H}_{in}(25^$$

Σύνθεση αντιδράσεων

 $C + O_2 \rightarrow CO_2 \tag{1}$

 $H_2 + \frac{1}{2}O_2 \to H_2O$ (2)

 $CH_4 + 2O_2 \rightarrow CO_2 + H_2O$ (3)

$$(1) + 2(2) - (3): C + 2 H_2 \rightarrow CH_4$$

 $\Delta H_r^o = \Delta H_{r1}^o + 2 \Delta H_{r2}^o - \Delta H_{r3}^o$

Πρότυπη ενθαλπία σχηματισμού

Παράδειγμα: $C + 2 H_2 → CH_4$ $ΔH_f^o = ΔH_r^o$

(πρότυπη ενθαλπία σχηματισμού μεθανίου)

Θερμικό αποτέλεσμα γενικής αντίδρασης

$$\begin{split} \mathbf{a}\mathbf{A} + \mathbf{b}\mathbf{B} &\to \mathbf{c}\mathbf{C} + \mathbf{d}\mathbf{D} \\ \mathbf{a}\Delta \mathbf{H}^{o}_{\text{react}} &= \mathbf{c}\Delta \mathbf{H}^{o}_{f,C} + \mathbf{d}\Delta \mathbf{H}^{o}_{f,D} - \mathbf{a}\Delta \mathbf{H}^{o}_{f,A} - \mathbf{b}\Delta \mathbf{H}^{o}_{f,B} \quad \Delta \mathbf{H}^{o}_{\text{react}}[=]\,kJ/mol\,A \end{split}$$

Για όλα τα χημικά στοιχεία: $\Delta H_{f}^{o} = 0$

Πολλές αμφίδρομες αντιδράσεις

Πρότυπες ενθαλπίες: $\Delta H_{r1}^{o}, \Delta H_{r2}^{o}$ Βαθμοί μετατροπής: ξ_1, ξ_2

Συνολικό θερμικό αποτέλεσμα:

$$\Delta H_{r1}^{o} = \xi_1 \Delta H_{r1}^{o} + \xi_2 \Delta H_{r2}^{o}$$

Πρότυπες ενθαλπίες σχηματισμού

Paraffins:			J/mol	Miscellaneous organics:			J/mol
Methane	CH ₄	(g)	-74,520	Acetaldehyde	C_2H_4O	(<i>g</i>)	-166,190
Ethane	C_2H_6	(g)	-83,820	Acetic acid	$C_2H_4O_2$	(l)	-484,500
Propane	C ₃ H ₈	(g)	-104,680	Acetylene	C_2H_2	(g)	227,480
<i>n</i> -Butane	C4H10	(2)	-125,790	Benzene	C_6H_6	(g)	82,930
<i>n</i> -Pentane	CsH12	(9)	-146,760	Benzene	C_6H_6	(l)	49,080
n-Heyane	CeHu	(a)	-166,920	1,3-Butadiene	C_4H_6	(g)	109,240
n Hentane	CoH14	(a)	-187780	Cyclohexane	C6H12	(g)	-123,140
n-rieptane	C71116	(8)	-187,780	Cyclohexane	C6H12	(l)	-156,230
<i>n</i> -Octane	C8H18	(8)	-208,750	1,2-Ethanediol	$C_2H_6O_2$	(l)	-454,800
				Ethanol	C_2H_6O	(g)	-235,100
I-Alkenes:				Ethanol	C_2H_6O	(1)	-277,690
Ethylene	C_2H_4	(g)	52,510	Ethylbenzene	C8H10	(g)	29,920
Propylene	C_3H_6	(g)	19,710	Ethylene oxide	C_2H_4O	(g)	-52,630
1-Butene	C_4H_8	(g)	-540	Formaldehyde	CH ₂ O	(g)	-108,570
1-Pentene	C5H10	(g)	-21,280	Methanol	CH_4O	(g)	-200,660
1-Hexene	C6H12	(g)	-41,950	Methanol	CH_4O	(l)	-238,660
1-Heptene	C7H14	(g)	-62,760	Methylcyclohexane	C7H14	(g)	-154,770
1 mp from	0/14	107	,	Methylcyclohexane	$C_{7}H_{14}$	(l)	-190,160
Carbon dioxide	CO_2	(g)	-393,510	Styrene	C ₈ H ₈	(g)	147,360
Water (1)	H_2O	(l)	-285,830	Toluene	C_7H_8	(g)	50,170
Water (v)	H ₂ O	(g)	-241,820	Toluene	C_7H_8	(l)	12,180

Ισοζύγια ενέργειας σε ατμοπαραγωγό

 ΔH_2

Μεθάνιο καίγεται με 20% περίσσεια αέρα σε ατμολέβητα, ο οποίος παράγει κορεσμένο ατμό πίεσης 5 bar. Ποια η αδιαβατική θερμοκρασία φλόγας; Πόση θερμορροή αποδίδεται στον λέβητα αν τα καυσαέρια εισέρχονται στην καμινάδα στους 165°C; Αν ο λέβητας τροφοδοτείται με συμπύκνωμα 50°C, πόσα kg κορεσμένου ατμού παράγονται ανά mol μεθανίου που καίγεται;

Ισοζύγια ενέργειας σε ατμοπαραγωγό (συνέχεια)

Εξίσωση καύσης
$$CH_4 + 2(1+x)O_2 + 2(1+x)\frac{79}{21}N_2 \rightarrow CO_2 + 2H_2O + 2xO_2 + 2(1+x)\frac{79}{21}N_2$$

Σύσταση καυσαερίων ανά mol CH₄ που καίγεται

 $CO_2 : 1 \ mol = 44 \ g$ $H_2O : 2 \ mol = 36 \ g$ $O_2 : 0,4mol = 12,8 \ g$ $N_2 : 9,03 \ mol = 252,8 \ g$ $0,3456 \ kg/mol \ CH_4$ Πρότυπη ενθαλπία καύσης

 $\Delta \mathrm{H_{r}^{o}} = \Delta \mathrm{H_{f,CO2}} + 2 \Delta \mathrm{H_{f,H2O}} - \Delta \mathrm{H_{f,CH4}} = -802.2 \, kJ/mol \, CH_4$

Ισοζύγιο ενέργειας

$$\dot{Q} = \Delta H_1 + \Delta H_r^o + \Delta H_2$$
, $\Delta H_2 = m_g \overline{C}_{pg} (T_g - 25)$

<u>Αδιαβατική θερμοκρασία φλόγας</u> $\dot{Q} = 0$, $T_g \approx 1800^{\circ}C \rightarrow \overline{C}_{pg} = 1,28 \ kJ/kgoC$ $m_g \overline{C}_{pg} (T_g - 25) = -\Delta H_r^o \Rightarrow T_g = 1838^{\circ}C$

Θερμορροή προς το κύκλωμα νερού/ατμού ανά mol CH₄ που καίγεται
T_g = 165°*C* →
$$\bar{C}_{pg}$$
 = 1,07 *kJ/kg*°*C* ⇒ \dot{Q} = ΔH^o_r + m_g \bar{C}_{pg} (T_g - 25) =
ΔH^o_r + m_g \bar{C}_{pg} (T_g - 25) = -802,2 + 0,3456(1,07)(140) ⇒
 \dot{Q} = -750,4 *kJ/mol CH*₄

<u>Παραγωγή κορεσμένου ατμού 5 bar από συμπύκνωμα 50°C</u>

 $\dot{Q}_w = -\dot{Q} = \dot{m}_w (H_{w,out} - H_{w,in}) \Rightarrow \dot{m}_w = 750,4/(2748 - 210) = 0,30 \ kg/mol \ CH_4$

Βαθμός θερμικής απόδοσης ατμοπαραγωγού

$$\eta_{th} = 1 - u_{G} - u_{L} - u_{E}$$

$$\dot{Q} = m_{B} \Delta H_{react} + m_{G} C_{P,G} (T_{G} - T_{0})$$

$$u_{G} = \frac{m_{G} C_{P,G} (T_{G} - T_{0})}{m_{B} \Delta H_{react}} = \frac{\mu_{G} C_{P,G} (T_{G} - T_{0})}{(LHV)}$$

$$\mu_{G} = \mu_{A} + 1 = \lambda \mu_{A0} (1 + w) + 1$$

Αδιαβατική και μέση θερμοκρασία φλόγας

$$m_{B}\Delta H_{react} + m_{G}C_{P,G}(T_{Ga} - T_{0}) = 0 \Rightarrow T_{Ga} \approx \frac{(LHV)}{\mu_{G}C_{P,G}}$$

$$T_{\rm f} = \sqrt{T_{\rm Ga} T_{\rm Ge}}$$

Μηχανές παραγωγής έργου

2° Θερμοδυναμικό Αξίωμα - Μηχανή Carnot

Μηχανή μεταξύ δύο θερμικών δεξαμενών Τ_Η και Τ_C

Δεν υπάρχει μηχανή που το μοναδικό της αποτέλεσμα να είναι η μεταφορά θερμότητας από χαμηλότερη σε υψηλότερη θερμοκρασία

Βαθμός απόδοσης:
$$\eta = \frac{|W|}{|Q_H|} = \frac{|Q_H| - |Q_C|}{|Q_H|} = 1 - \frac{|Q_C|}{|Q_H|}$$

(Ισοζύγιο ενέργειας: $|Q_H| = |W| + |Q_C|$)

Για τυχαίο αντιστρεπτό κύκλο:

$$\oint \frac{dQ_{rev}}{T} = 0 \ \rightarrow dS = \frac{dQ_{rev}}{T}$$

Η εντροπία είναι καταστατικό μέγεθος

2° Θερμοδυναμικό Αξίωμα: $\Delta S_{total} \ge 0$

Πηγές αναντιστρεπτότητας

- Εσωτερικές τριβές
- Μεταφορά θερμότητας με
 πεπερασμένη διαφορά θερμοκρασίας

Μηχανή που λειτουργεί μεταξύ θερμικών δεξαμενών T_H και T_C :

$$\Delta S_{\text{total}} = \frac{-|Q_H|}{T_H} + \frac{|Q_C|}{T_C}$$
$$|W| = -T_C \Delta S_{\text{total}} + |Q_H| \left(1 - \frac{T_C}{T_H}\right)$$

Ανοικτό σύστημα σε μόνιμες συνθήκες:

$$\sum (\dot{m}S)_{out} - \sum (\dot{m}S)_{in} + \frac{dS_{surr}^t}{dt} = \dot{S}_G \ge 0 , \quad \frac{dS_{surr}^t}{dt} = -\sum_{j} \frac{\dot{Q}_j}{T_{\sigma,j}}$$

Αισθητή μεταβολή, εξάρτηση από Τ, Ρ

$$dH = C_P dT + \left[V - T \left(\frac{\partial V}{\partial T} \right)_P \right] dP$$
$$dS = C_P \frac{dT}{T} - \left(\frac{\partial V}{\partial T} \right)_P dP$$

Ιδανικά αέρια

$$dH = C_P dT$$

$$dH = C_P dT + (1 - \beta T)V dP$$

$$dS = C_P \frac{dT}{T} - R \frac{dP}{P}$$

$$dS = C_P \frac{dT}{T} - \beta V dP$$

$$\beta = \frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_P$$

Αλλαγή φάσης α->β (εξάτμιση, τήξη, εξάχνωση)

Για μία διαφορική μάζα που εξατμίζεται

$$P, T = \sigma \tau \alpha \theta \Rightarrow dG = 0 \Rightarrow G^{\alpha} = G^{\beta} \Rightarrow \Delta H^{\alpha\beta} = T \Delta S^{\alpha\beta}$$

Πώς αλλάζει η τάση ατμών αν αλλάξει λίγο η θερμοκρασία; $T \rightarrow T + dT$, $P^{sat} \rightarrow P^{sat} + dP^{sat}$

$$dG^{\alpha} = dG^{\beta} \Rightarrow \qquad \frac{dP^{sat}}{dT} = \frac{\Delta H^{\alpha\beta}}{T\Delta V^{\alpha\beta}} \qquad \begin{array}{l} (E\xi i\sigma\omega\sigma\eta) \\ Clapeyron) \end{array}$$

Συνδυασμός 1^{ου} και 2^{ου} Θερμοδυναμικού Αξιώματος Για <u>κάθε</u> διαφορική μεταβολή (1 mol) ισχύει ότι: $dU = \delta Q_{rev} - \delta W_{rev} = TdS - PdV$ $G = H - TS \Rightarrow dG = -SdT + VdP$

<u>Eξίσωση Antoine (A, B, C από http://vle-calc.com)</u> $log_{10}P^{sat}[bar] = A - \frac{B}{T[oC] + C}$

Κύκλος Rankine

Βελτίωση βαθμού απόδοσης κύκλου Rankine

Μηχανική Ρευστών

Ολοκληρωτικά ισοζύγια στη μηχανική ρευστών (μόνιμες συνθήκες)

Ισοζύγιο μάζας (κινηματική)Ισοζύγιο ορμής (δυναμική) $\int \rho(\underline{u} \cdot \underline{n}) dS = 0$ $\sum \underline{F} = \int \rho \underline{u}(\underline{u} \cdot \underline{n}) dS$ $\rho_1 u_1 A_1 = \rho_2 u_2 A_2 = \dot{m}$ $\sum \underline{F} = \dot{m}(\underline{u}_2 - \underline{u}_1) \quad \dot{n}$ $\sum \underline{F} = \dot{m}(\underline{u}_2 - \underline{u}_1) \quad \dot{n}$ $\sum \underline{F}_{other} = \dot{m}(\underline{u}_2 - \underline{u}_1) + p_1 A_1 \underline{n}_1 + p_2 A_2 \underline{n}_2$

Ισοζύγιο ενέργειας

$$\int \left(H + \frac{1}{2}u^2 + gz\right)\rho(\underline{u} \cdot \underline{n})dS = \dot{Q} - \dot{W}_s \qquad \dot{m}\left[(H_2 - H_1) + \frac{1}{2}(u_2^2 - u_1^2) + g(z_2 - z_1)\right] = \dot{Q} - \dot{W}_s$$

Ισοζύγιο μηχανικής ενέργειας $\dot{m} \left| \frac{1}{2} \Delta(u^2) + g \Delta z + \frac{\Delta p}{\rho} + l_w \right| + \dot{W}_s = 0$

Άγνωστοι: p_2, l_w, F

Παραδείγματα εφαρμογής ολοκληρωτικών ισοζυγίων

Η επίδραση του ιξώδους

<u>ΡΟΗ ΣΕ ΑΓΩΓΟ</u>: Η επίδραση του ιξώδους εκτείνεται σε όλο το πεδίο

<u>ΡΟΗ ΠΑΡΑΛΛΗΛΑ ΣΕ ΕΠΙΠΕΔΟ ΤΟΙΧΩΜΑ ΚΑΙ ΡΟΗ ΓΥΡΩ ΑΠΟ ΣΦΑΙΡΑ</u> Το ιξώδες καθορίζει τη ροή κοντά στο τοίχωμα και πίσω από το σώμα

(Έχω την εξίσωση αλλά δεν μπορώ να την λύσω)
Ο αριθμός Reynolds και η μετάπτωση σε τύρβη

Αριθμός Reynolds

ρ	ud	ud		(Αδρανειακές	δυνάμεια
Re = -	μ =	ν	=	(Ιξώδεις δυ	νάμεις)

Οριακό στρώμα τοιχώματος	$Re pprox 3-5 imes 10^5$
Δέσμη-απόρρευμα	$Re \approx 10 - 100$
Ροή σε αγωγό	$Re \approx 2 - 100 \times 10^3$
Ροή γύρω από κύλινδρο	$Re \approx 5, 40, 200, 300000$

Θέματα έρευνας

- Εξέλιξη της ροής μέσω μίας (υπο-κρίσιμης) ή περισσότερων (υπερ-κρίσιμων) υδροδυναμικών ασταθειών
- Γραμμική και ασθενώς μη-γραμμική θεωρία
- Μεταβατική ενίσχυση διαταραχών (nonmodal growth)
- Δυναμικά συστήματα και χάος

https://www.youtube.com/watch?v=8WtEuw0GLg0

http://web.mit.edu/hml/ncfmf.html

Μαθηματικός φορμαλισμός

Κινηματική Ροών

Περιγραφή κίνησης ρευστού

Περιγραφή κατά Euler: $\underline{u} = \underline{u}(\underline{x}, t)$, $p = p(\underline{x}, t)$ **και κατά Lagrange:** $\underline{x} = \underline{x}(\underline{X}_0, t)$, $\underline{x}(t = 0) = \underline{X}_0$ $\underline{u}(\underline{x}, t) \equiv \underline{u}(\underline{X}_0, t)$

Υλική ή σωματιδιακή παράγωγος

$$T = T(\underline{x}, t) \rightarrow dT = \frac{\partial T}{\partial t} dt + \frac{\partial T}{\partial x} dx + \frac{\partial T}{\partial y} dy + \frac{\partial T}{\partial z} dz$$
$$= \frac{\partial T}{\partial t} dt + \frac{\partial T}{\partial x_i} dx_i$$
$$\frac{DT}{Dt} = \frac{\partial T}{\partial t} + \underline{u} \cdot \underline{\nabla}T$$

(Σύμβαση επαναλαμβανόμενων δεικτών)

Ισοζύγιο μάζας (εξίσωση συνέχειας)

 $\left(\underline{\nabla} \cdot \underline{u}\right) = \frac{\partial u_i}{\partial x_i} = -\frac{1}{\rho} \frac{D\rho}{Dt} = \frac{1}{V} \frac{DV}{Dt}$

Ρυθμός μεταβολής όγκου σωματιδίου ρευστού

Οπτικοποίηση ροών

Τροχιές σωματιδίων: ολοκλήρωση χρονικής εξέλιξης (φωτογράφιση με ανοικτό διάφραγμα)

Ροϊκές γραμμές: στιγμιαία απεικόνιση πεδίου ροής (φωτογράφιση με υψηλή ταχύτητα)

Γραμμές ιχνηθέτη: έγχυση χρωστικής

Ανάλυση κίνησης ρευστού

Ροή Couette (απλή διάτμιση-το όριο κάθε πεδίου ταχύτητας)

AB₁: μετατόπιση
 AB₂: περιστροφή
 AB₁₂: επιμήκυνση
 και περιστροφή

περιστροφή στερεού σώματος = μέση περιστροφή δύο ινών σε ορθή γωνία: **απλή παραμόρφωση** = σχετική κίνηση - περιστροφή στερεού σώματος

απλή	ιξώδες	εσωτερικές
παραμόρφω	τάσεις	

Μαθηματική περιγραφή σχετικής κίνησης ρευστού

 $d_{ij}: \quad \Sigma υμμετρικός τανυστής ρυθμού παραμόρφωσης. Χαρακτηριστικές διευθύνσεις.$ $\underline{\underline{D}} \cdot \underline{\underline{n}}_1 = \lambda_1 \underline{\underline{n}}_1 \Rightarrow \underline{\underline{D}} \cdot (dx \underline{\underline{n}}_1) = \lambda_1 dx \underline{\underline{n}}_1 \Rightarrow \underline{\underline{D}} \cdot d\underline{\underline{x}} = \lambda_1 d\underline{\underline{x}} \quad (\alpha \pi \lambda \dot{\eta} \epsilon \pi \iota \mu \dot{\eta} \kappa \upsilon v \sigma \eta)$

STPOBINOTHTA:
$$\underline{\omega} = \underline{\nabla} \times \underline{u} = \varepsilon_{ijk} \frac{\partial u_j}{\partial x_i} \underline{e}_k = 2\underline{\Omega}$$
 $\pi.\chi. \ \omega_3 = \varepsilon_{ij3} \frac{\partial u_j}{\partial x_i} = \frac{\partial u_2}{\partial x_1} - \frac{\partial u_1}{\partial x_2}$

Φυσική σημασία στροβιλότητας

- Σωματίδια ρευστού κοντά στο τοίχωμα αποκτούν στροβιλότητα λόγω της συνοριακής συνθήκης μη-ολίσθησης
- Η στροβιλότητα μεταφέρεται με τη ροή και απλώνεται κάθετα στη ροή (διαχέεται με διαχυτότητα ν=μ/ρ). Ατριβείς ροές είναι συνήθως αστρόβιλες
- Ρευστό με στροβιλότητα συχνά αποκολλάται και σχηματίζει στροβίλους (περιοχές συγκεντρωμένης στροβιλότητας με κλειστές ροϊκές γραμμές)

Σχηματισμός στροβίλων

 Παραδείγματα: απόρευμα μη-αεροδυναμικών σωμάτων, δίνες vonKarman, smoke rings https://www.youtube.com/watch?v=3mULL6O6f38 https://www.youtube.com/watch?v=IDeGDFZSY08

https://www.youtube.com/watch?v=54Dm3lMwIL4 (Σχηματισμός «μανιταριού» σε θερμικό πλούμιο) https://www.youtube.com/watch?v=5YwnY0wPphA (Αεροτομή σε απώλεια στήριξης)

Δυναμική Ροών

Ανάλυση εσωτερικών δυνάμεων στη ροή

Δύναμη σε επιφάνεια τυχαίου προσανατολισμού x_3 x_2 x_1

$$\underline{f} = \underline{n} \cdot \underline{\sigma} \qquad \dot{\eta} \qquad f_j = n_i \sigma_{ij}$$

π.χ.
$$\underline{f}^{(1)} = (\sigma_{11}, \sigma_{12}, \sigma_{13})$$

Γενική καταστατική εξίσωση ρευστού

$$\sigma_{ij} = -p\delta_{ij} + \tau_{ij}$$
 $p = -\frac{1}{3}\sigma_{ii}$ $\sigma_{ij} = \sigma_{ji}$ $\tau_{ii} = 0$

Η ιξώδης τάση τ_{ii} σε ένα σημείο εξαρτάται από τη σχετική κίνηση σε μια μικρή γειτονία του σημείου και είναι ανεξάρτητη της μεταφοράς ή περιστροφής του συστήματος αναφοράς

Τανυστής ιξώδους τάσης

$$\tau_{ij} = F(d_{ij}) = \kappa_0 \delta_{ij} + \kappa_1 d_{ij} \left(+ \kappa_2 d_{il} d_{lj} \right)$$

$$d_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \qquad \cdot \qquad \cdot \qquad \cdot$$

$$I_D = tr\left(\underline{\underline{D}}\right) = d_{ii} \quad II_D = tr\left(\underline{\underline{D}} \cdot \underline{\underline{D}}\right) = d_{ij}d_{ij} \quad III_D = det\left(\underline{\underline{D}}\right)$$

Ορθές/διατμητικές παραμορφώσεις προκαλούν -ή προκαλούνται από- αντίστοιχα ορθές/διατμητικές τάσεις.

$$\tau_{ij} = \kappa_0 \delta_{ij} + 2\mu \, d_{ij} \Rightarrow \kappa_0 = -\frac{2\mu}{3} d_{kk}$$

$$\sigma_{ij} = -p \delta_{ij} + 2\mu \, d_{ij} - \frac{2\mu}{3} d_{kk} \delta_{ij} = -p \delta_{ij} + \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right)$$

$$\alpha \sigma \nu \mu \pi i \epsilon \sigma \tau \sigma$$

$$I \xi \dot{\omega} \delta \eta \varsigma \ o \rho \theta \dot{\eta} \ \tau \dot{\alpha} \sigma \eta$$

$$I \xi \dot{\omega} \delta \eta \varsigma \ o \rho \theta \dot{\eta} \ \tau \dot{\alpha} \sigma \eta$$

$$I \xi \dot{\omega} \delta \eta \varsigma \ o \rho \theta \dot{\eta} \ \tau \dot{\alpha} \sigma \eta$$

$$I \xi \dot{\omega} \delta \eta \varsigma \ o \rho \theta \dot{\eta} \ \tau \dot{\alpha} \sigma \eta$$

$$I \xi \dot{\omega} \delta \eta \varsigma \ o \rho \theta \dot{\eta} \ \tau \dot{\alpha} \sigma \eta$$

$$I \xi \dot{\omega} \delta \eta \varsigma \ o \rho \theta \dot{\eta} \ \tau \dot{\alpha} \sigma \eta$$

$$I \xi \dot{\omega} \delta \eta \varsigma \ o \rho \theta \dot{\eta} \ \tau \dot{\alpha} \sigma \eta$$

$$I \xi \dot{\omega} \delta \eta \varsigma \ o \rho \theta \dot{\eta} \ \tau \dot{\alpha} \sigma \eta$$

$$I \xi \dot{\omega} \delta \eta \varsigma \ o \rho \theta \dot{\eta} \ \tau \dot{\alpha} \sigma \eta$$

$$I \xi \dot{\omega} \delta \eta \varsigma \ o \rho \theta \dot{\eta} \ \tau \dot{\alpha} \sigma \eta$$

$$I \xi \dot{\omega} \delta \eta \varsigma \ o \rho \theta \dot{\eta} \ \tau \dot{\alpha} \sigma \eta$$

$$I \xi \dot{\omega} \delta \eta \varsigma \ o \rho \theta \dot{\eta} \ \tau \dot{\alpha} \sigma \eta$$

$$I \xi \dot{\omega} \delta \eta \varsigma \ \sigma \theta \dot{\eta} \ \tau \dot{\alpha} \sigma \eta$$

$$I \xi \dot{\omega} \delta \eta \varsigma \ \sigma \theta \dot{\eta} \ \tau \dot{\alpha} \sigma \eta$$

$$I \xi \dot{\omega} \delta \eta \varsigma \ \sigma \theta \dot{\eta} \ \tau \dot{\alpha} \sigma \eta$$

$$I \xi \dot{\omega} \delta \eta \varsigma \ \sigma \theta \dot{\eta} \ \tau \dot{\alpha} \sigma \eta$$

$$I \xi \dot{\omega} \delta \eta \varsigma \ \sigma \theta \dot{\eta} \ \tau \dot{\alpha} \sigma \eta$$

$$I \xi \dot{\omega} \delta \eta \varsigma \ \sigma \theta \dot{\eta} \ \tau \dot{\alpha} \sigma \eta$$

$$I \xi \dot{\omega} \delta \eta \varsigma \ \tau \eta = \frac{1}{2} kg / m \cdot s$$

Γενικευμένα Νευτωνικά ρευστά

 $\tau_{ij}=2\eta(\dot{\gamma})\,d_{ij}$

$$\dot{\gamma} = \sqrt{\Pi_{\mathrm{D}}} = \sqrt{d_{ij}d_{ij}}$$
 (ένταση διάτμησης)

Μη-Νευτωνικά ρευστά (απόκριση σε διάτμηση)

Διάτμηση μη-Νευτωνικού ρευστού προκαλεί ορθές τάσεις

Ιξωδοπλαστική συμπεριφορά $au = \mu \dot{\gamma} + \tau_y$ $au \le \tau_y \Rightarrow \dot{\gamma} = 0$

$$\begin{split} & I \{ \omega \delta \delta \epsilon \lambda a \sigma \tau i \kappa \acute{\eta} \sigma \upsilon \mu \pi \epsilon \rho \iota \varphi \rho \rho \acute{\alpha} \\ (\mu o \nu \tau \acute{\epsilon} \lambda \delta Maxwell) \\ & \tau = \mu \dot{\gamma}_1 \\ & \tau = G \gamma_2 \ (\dot{\tau} = G \dot{\gamma}_2) \end{split} \qquad \begin{array}{c} \tau + \lambda \dot{\tau} = \mu \dot{\gamma} \\ & \lambda = \mu / G : \chi \rho \acute{o} \nu \sigma \varsigma \chi \alpha \lambda \acute{a} \rho \omega \sigma \eta \varsigma \\ & De = \lambda / t_{flow} \\ \end{array} \\ & \begin{array}{c} \tau \\ & \tau \\ & \tau \\ & \sigma \\ & \sigma$$

Rheology_Markovitz(NatlComFluidMech)

https://www.youtube.com/watch?v=Ol6bBB3zuGc&list=PL0EC6527BE871ABA3&index=3&feature=plpp_video

λ

Εξίσωση Navier-Stokes

 $\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial u} + \frac{\partial v_z}{\partial z} = 0$

$$\sigma_{1j}(\underline{x} + dx_1\underline{e}_1) = \sigma_{1j}(\underline{x}) + \frac{\partial\sigma_{1j}}{\partial x_1}dx_1 \Rightarrow \rho \frac{\mathrm{D}u_j}{\mathrm{D}t} = \frac{\partial\sigma_{ij}}{\partial x_i} + \rho g_j \qquad (\varepsilon \xi i \sigma \omega \sigma \eta \ Cauchy)$$

Ασυμπίεστο Νευτωνικό ρευστό

•

 $\begin{aligned} \frac{\partial u_i}{\partial x_i} &= 0\\ \sigma_{ij} &= -p\delta_{ij} + \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \end{aligned} \Rightarrow \rho \frac{\mathrm{D}u_j}{\mathrm{D}t} &= -\frac{\partial p}{\partial x_j} + \mu \left(\frac{\partial^2 u_j}{\partial x_i \partial x_i} \right) + \rho g_j \end{aligned}$

$$\rho\left(\frac{\partial v_x}{\partial t} + v_x\frac{\partial v_x}{\partial x} + v_y\frac{\partial v_x}{\partial y} + v_z\frac{\partial v_x}{\partial z}\right) = -\frac{\partial p}{\partial x} + \mu\left[\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2}\right] + \rho g_x$$

$$\rho\left(\frac{\partial v_y}{\partial t} + v_x\frac{\partial v_y}{\partial x} + v_y\frac{\partial v_y}{\partial y} + v_z\frac{\partial v_y}{\partial z}\right) = -\frac{\partial p}{\partial y} + \mu\left[\frac{\partial^2 v_y}{\partial x^2} + \frac{\partial^2 v_y}{\partial y^2} + \frac{\partial^2 v_y}{\partial z^2}\right] + \rho g_y$$

$$\rho\left(\frac{\partial v_z}{\partial t} + v_x\frac{\partial v_z}{\partial x} + v_y\frac{\partial v_z}{\partial y} + v_z\frac{\partial v_z}{\partial z}\right) = -\frac{\partial p}{\partial z} + \mu\left[\frac{\partial^2 v_z}{\partial x^2} + \frac{\partial^2 v_z}{\partial y^2} + \frac{\partial^2 v_z}{\partial z^2}\right] + \rho g_z$$

Εξισώσεις συνέχειας και Navier-Stokes σε κυλινδρικές συντεταγμένες

Εξισώσεις συνέχειας και Navier-Stokes σε σφαιρικές συντεταγμένες

Χαρακτηριστικές κλίμακες-Ανάλυση τάξης μεγέθους

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) \sim \frac{(\Delta u / \Delta x) - 0}{\Delta x} \sim \frac{\Delta u}{(\Delta x)^2} \sim \frac{U}{L^2}$$

Συνοριακές συνθήκες

Κινηματικές συνοριακές συνθήκες

ΣΤΕΡΕΟ ΤΟΙΧΩΜΑ

$$u_{n} = \underline{u} \cdot \underline{n} \quad \mu\eta \text{-}\delta\iota\epsilon i\sigma\delta\upsilon\sigma\eta$$

$$u_{t} \quad u_{t} = \underline{u} \cdot \underline{t} \quad \mu\eta \text{-}o\lambda i\sigma\theta\eta\sigma\eta$$

$$\underline{u}_{t} = \underline{u} - (\underline{u} \cdot \underline{n})\underline{n} = (I - \underline{nn}) \cdot \underline{u}$$

$$u_{n}$$

ΔΙΕΠΙΦΑΝΕΙΑ ΥΓΡΟΥ-ΑΕΡΙΟΥ

Συνθήκη ολίσθησης σε τοίχωμα

- Ατριβές ρευστό
- Αραιά αέρια (μοριακή ολίσθηση)
- Μικροφυσαλίδες
- Ηλεκτρικό πεδίο (ζ-δυναμικό τοιχωμάτων)

$$u_{slip} = \lambda \left(\frac{du}{dy}\right)_w$$

Παράδειγμα: Διδιάστατα κύματα στο νερό

Ένα σωματίδιο στην ελεύθερη επιφάνεια κινείται παραμένοντας πάντα στην επιφάνεια, άρα DF/Dt = 0

Δυναμικές συνοριακές συνθήκες

ΣΤΕΡΕΟ ΤΟΙΧΩΜΑ Οι τάσεις παραλαμβάνονται από το στερεό υλικό

ΔΙΕΠΙΦΑΝΕΙΑ ΥΓΡΟΥ-ΑΕΡΙΟΥ Οι δυνάμεις ισορροπούν (μηδενική μάζα στη διεπιφάνεια)

Μικροφυσαλίδες στο τοίχωμα

$$\mu_{w} \left(\frac{du}{dy}\right)_{w} = \mu_{air} \frac{u_{slip}}{\delta} \Rightarrow$$
$$u_{slip} = \left(\frac{\mu_{w}\delta}{\mu_{air}}\right) \left(\frac{du}{dy}\right)_{w}$$

Η σημασία της επιφανειακής τάσης

$$\underline{\underline{\sigma}}^{(1)} \cdot \underline{\underline{n}} + \underline{\underline{\sigma}}^{(2)} \cdot (-\underline{\underline{n}}) + \gamma (-2\kappa_{\underline{m}}\underline{\underline{n}}) + \underline{\underline{\nu}}_{\underline{s}}\gamma = 0$$

 γ : επιφανειακή τάση κ_m : μέση καμπυλότητα διεπιφάνειας $\gamma(-2\kappa_m \underline{n})$: κάθετη δύναμη $\underline{\nabla}_s \gamma$: τάση Marangoni

$$P_{in} - P_{out} = \frac{2\gamma}{R}$$

https://www.youtube.com/watch?v= MUImkSnrAzM&list=PL0EC6527BE871 ABA3&index=4&feature=plpp_video

Τριχοειδή φαινόμενα

$$S = (\gamma_{SV} - \gamma_{SL}) - \gamma$$

- $S \ge 0$: τέλεια διαβροχή
- S < 0 : μερική διαβροχή

ΤΡΙΧΟΕΙΔΗΣ ΑΝΥΨΩΣΗ ΥΓΡΟΥ

$$dE = (\gamma_{SL} - \gamma_{SV}) 2\pi R \cdot dx + \gamma \ 2\pi R dx \cdot \cos \theta = 0$$

Επιφανειοδραστικά

Τάσεις Marangoni

$$\underline{\underline{\sigma}}^{(1)} \cdot \underline{\underline{n}} + \underline{\underline{\sigma}}^{(2)} \cdot (-\underline{\underline{n}}) + \gamma (-2\kappa_{\underline{m}}\underline{\underline{n}}) + \underline{\underline{V}}_{\underline{s}}\gamma = 0$$

Δύο πηγές σχηματισμού τάσεων Marangoni $\gamma = \gamma(\Gamma, \mathbf{T}) : \Gamma \uparrow \Rightarrow \gamma \downarrow or \mathbf{T} \uparrow \Rightarrow \gamma \downarrow$ —

රේ ර් ර්ර් ර්ර්ර් ර් 66 \boldsymbol{u}_{s} 6 $- \underbrace{- dx \longrightarrow}_{\gamma} \gamma + \left(\frac{\partial \gamma}{\partial x}\right) dx$ $= \gamma + \left(\frac{d\gamma}{d\Gamma}\right) \left(\frac{\partial \Gamma}{\partial x}\right) dx$

Πνευμονικές κυψελίδες

Το κρασί που δακρύζει

https://www.youtube.com/ watch?v=FeUdsyRZdTs

Ευθύγραμμες ροές και υδραυλικά δίκτυα

The art of the engineer (Richard Feynman)

We know what physical laws mean. We have the mathematical tools to derive exact solutions for a few simple situations. To combine the two in order to estimate precisely enough what will happen in a complex situation is the art of the engineer. This frequently involves the ability to know which simple situation (from the solvable ones) best approaches the real-life problem faced.

Παραδείγματα ευθύγραμμων ροών

$$\underline{u}(x, y, z) = (u_x, 0, 0) \qquad \left(\underline{\nabla} \cdot \underline{u}\right) = 0 \Rightarrow \frac{\partial u_x}{\partial x} = 0 \Rightarrow u_x(x, y, z) = u_x(y)$$

Ροή Couette-Poiseuille σε κανάλι

Βαρυτική ροή υγρού υμένα

$$0 = -\frac{dp}{dx} + \mu \frac{d^2 u_x}{dy^2}$$

$$\frac{dp}{dx} = \frac{p_1 - p_0}{L} = -\frac{\Delta P}{L}$$

$$\Rightarrow u_x(y) = U_w \frac{y}{h} + \frac{\Delta P}{2\mu L} y(h - y)$$

$$g_{y} = -g \cos\theta \Rightarrow p(x, y) = \rho g \cos\theta (h - y)$$
$$g_{x} = g \sin\theta \Rightarrow u_{x}(y) = \frac{\rho g \sin\theta}{2\mu} y(2h - y)$$

$$V = \frac{\rho g sin\theta \ h^2}{3\mu} = \frac{2}{3} u_x(h) , \quad Re = \frac{Vh}{\nu} = \frac{\rho g sin\theta \ h^3}{3\nu^2}$$

Συμπύκνωση ατμών

Υδροδυναμική λίπανση

Περιστροφική ροή μεταξύ κυλίνδρων

Μονοδιάστατη ροή

$$\left(\underline{\nabla} \cdot \underline{u}\right) = 0 \Rightarrow \frac{1}{r} \frac{\partial(ru_r)}{\partial r} + \frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta} + \frac{\partial u_z}{\partial z} = 0$$

Συμμετρία ως προς θ

$$u_{z} = 0 \Rightarrow \left\{ \begin{array}{l} \underline{u}(r,\theta,z) = (0,u_{\theta},0) \\ u_{\theta}(r,\theta,z) = u_{\theta}(r) \end{array} \right.$$

$$0 = -\frac{1}{r}\frac{\partial p}{\partial \theta} + \mu \left[\frac{\partial}{\partial r}\left(\frac{1}{r}\frac{\partial}{\partial r}(ru_{\theta})\right)\right] \Rightarrow u_{\theta} = C_{1}r + \frac{C_{2}}{r}$$

Συμμετρία ως προς θ

$$\begin{aligned} u_{\theta}(r_i) &= r_i \Omega_i \\ u_{\theta}(r_o) &= 0 \end{aligned} \ \Rightarrow u_{\theta} &= r_i \Omega_i \; \frac{\left(\frac{r_o}{r} - \frac{r}{r_o}\right)}{\left(\frac{r_o}{r_i} - \frac{r_i}{r_o}\right)} \end{aligned}$$

Αστάθεια Couette-Taylor

$$Ta_{cr} = \frac{r_i (r_o - r_i)^3 \Omega_i^2}{\nu^2} \approx 1700$$

Ta = 1,2 Ta_{cr}

Ta = 8,5 *Ta_{cr}*

Ροή Poiseuille σε αγωγό

Laminar flow

$$\underline{u}(r,\theta,z) = (0,0,u_z)$$

$$\underline{\nabla} \cdot \underline{u} = 0 \Rightarrow \frac{1}{r} \frac{\partial (ru_r)}{\partial r} + \frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta} + \frac{\partial u_z}{\partial z} = 0 \Rightarrow u_z(r, \theta, z) = u_z(r)$$

Εξίσωση Navier-Stokes σε κυλινδρικές συντεταγμένες (z-opμή)

$$0 = -\frac{dp}{dz} + \mu \frac{1}{r} \frac{d}{dr} \left(r \frac{du_z}{dr} \right), \quad \frac{dp}{dz} = const = -\frac{\Delta P}{L} \Rightarrow u_z(r) = \frac{\Delta P}{4\mu L} (R^2 - r^2)$$

Sunoplakés ouvôjkes $u_z(R) = 0, \quad \left(\frac{du_z}{dr}\right)_{r=0} = 0$

$$Q = V(\pi R^2) = \int_0^R u_z(r) 2\pi r dr \Rightarrow$$
$$V = \frac{\Delta P R^2}{8\mu L} = \frac{u_z(0)}{2} \Rightarrow$$
$$\Delta P = \frac{8\mu L V}{R^2}$$

Αστάθεια και τύρβη

(Turbulent puffs and slugs)

Συντελεστής τριβής και πτώση πίεσης σε αγωγό

0.10 $\frac{1}{\sqrt{4f}} = -2,0 \, \log\left(\frac{2,51}{\operatorname{Re}\sqrt{4f}} + \frac{\varepsilon/d}{3,7}\right)$ 0.09 Laminar-Critical Transition flow zone 0.08 zone 🕂 🔪 Complete turbulence, rough pipes s 0.05 0.07 0.04 0.06 0.03 0.05 0.02 4fε/d inar 0.015 8 0.04 78 10 Συντελεστής τριβής, 0.01 Σχετική τραχύτητα, 0.008 0.006 Re: 0.03 0.004 0.025 0.002 $\begin{array}{c} 0.001\\ 0.0008\end{array}$ 0.02 0.0006 0.0004 Sinooli pipes 0.015 0.0002 0.0001 0.000,05 0.01 0.009 0.008 0.000,01 10^{3} 2(10³) ³ ⁴ ⁵ ⁶ ⁸10⁴ 2(10⁴) ³ ⁴ ⁵ ⁶ ⁸10⁵ 2(10⁵) ³ ⁴ ⁵ ⁶ ⁸10⁶ 2(10⁶) ³ ⁴ $^{8}10^{7}2(10^{7})^{3}$, $^{4}56$, $^{8}10^{8}$ 56 Αριθμός Reynolds, Re=Vd/v

Διάγραμμα Moody

ΙΣΟΖΥΓΙΟ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

$$\left[\dot{m}\left(\frac{p}{\rho}+\frac{u^2}{2}+gz\right)\right]_{in} = \left[\dot{m}\left(\frac{p}{\rho}+\frac{u^2}{2}+gz\right)\right]_{out} + \dot{W}_s + \dot{m} l_{\tau\rho}$$

$$\left[\dot{m}\left(H + \frac{u^2}{2} + gz\right)\right]_{in} = \left[\dot{m}\left(H + \frac{u^2}{2} + gz\right)\right]_{out} + \dot{W}_s + (-\dot{Q})$$

$$(bhp) = \dot{W}_{s}/\eta_{p}$$
, $\dot{W}_{s,electric} = \dot{W}_{s}/(\eta_{p}\eta_{m})$

 η_p : υδραυλικός βαθμός απόδοσης η_m : βαθμός απόδοσης κινητήρα (0,90-0,95) Υδραυλικές αντιστάσεις

$$l_{\tau\rho} = \left(4f\frac{L}{d} + \sum_{i} K_{i}\right) \left(\frac{1}{2}u^{2}\right)$$

$$f = \frac{16}{Re} , \qquad Re = \frac{\rho u d}{\mu} < 2100$$

$$\frac{1}{\sqrt{4f}} = -2,0 \, \log\left(\frac{2,51}{\operatorname{Re}\sqrt{4f}} + \frac{\varepsilon/d}{3,7}\right) \approx$$
$$\approx -1,8 \, \log\left[\frac{6,9}{\operatorname{Re}} + \left(\frac{\varepsilon/d}{3,7}\right)^{1,11}\right], \operatorname{Re} > 4000$$

Απώλειες εξαρτημάτων (βάνες, γωνίες, συστολές)

$$K = \frac{K_1}{Re} + K_{\infty} \left(1 + \frac{K_d}{d_{nom,inch}^{0,3}} \right)$$

https://checalc.com/fluid_flow_fitting_losses.html

Απώλειες εξαρτημάτων

90° Elbow	К1	K∞	Kd	45° Elbow	K1	K∞	Kd	Valves	К1	K∞	Kd
Threaded, r/D = 1	800	0.14	4.0	Standard, r/D = 1	500	0.071	4.2	Angle Valve = 45°, β = 1	950	0.250	4.0
Threaded, Long Radius, r/D = 1.5	800	0.071	4.2	Long Radius, r/D = 1.5	500	0.052	4.0	Angle Valve = 90°, β = 1	1000	0.690	4.0
Flanged, Welded, Bend, r/D = 1	800	0.091	4.0	Mitered, 1 Weld, 45°	500	0.086	4.0	Globe Valve, β = 1	1500	1.700	3.6
				Mitered, 2 Weld, 22.5°	500	0.052	4.0	Plug Valve, Branch Flow	500	0.410	4.0
Flanged, Welded, Bend, r/D = 2	800	0.056 3.9	3.9								
				180° Bend	K 1	K∞	Kd	Plug Valve, Straight Through	300	0.084	3.9
Flanged, Welded, Bend, r/D = 4	800		3.9	Threaded, r/D = 1	1000	0.230	4.0	Plug Valve, 3-way, Flow Through	300	0.140	4.0
Flanged, Welded, Bend, r/D = 6	800	0.075	4.2	Flanged/ Welded, r/D = 1	1000	0.120	4.0	Gate Valve, β = 1	300	0.037	3.9
Mitered, 1 Weld, 90°	1000	0.270	4.0	Long Radius, r/D = 1.5	1000	0.100	4.0	Ball Valve, β = 1	300	0.017	3.5
Mitered, 2 Weld, 45°	800	0.068	4.1					Butterfly Valve	1000	0.690	4.9
Mitered, 3 Weld, 30°	800	0.035	4.2	$K = \frac{K_1}{K_1} + K_{\infty} \left(1 + \frac{K_d}{M_1} \right)$			_)	Swing Check Valve	1500	0.460	4.0
	$Re = \left(\frac{1}{2} d_{nom,inch}^{0,3} \right)$				_{ch})	Lift Check Valve	2000	2,850	3.8		

Υδραυλικά δίκτυα: Εισαγωγή ισχύος

Χαρακτηριστική καμπύλη αντλίας

Χαρακτηριστικά φυγοκεντρικών μηχανών

U.S. gallons per minute \times 1000

Σπηλαίωση

Pipe wall or valve component

Αδιάστατες παράμετροι και ειδική ταχύτητα

Σημείο λειτουργίας υδραυλικού δικτύου

Καμπύλη υδραυλικής αντίστασης δικτύου

Pipe Diameter - ID1 Pipe Length - L1

Καμπύλη αντλίας

Βάνα ελέγχου

Έρπουσα ροή (Re « 1)

Χαρ/κή ταχύτητα: *U* Χαρ/κό μήκος: *L*

Σύγκριση αδρανειακών με ιξώδεις δυνάμεις

$$\frac{\left|\rho\underline{u}\cdot\underline{\nabla}\,\underline{u}\right|}{\left|\mu\underline{\nabla}^{2}\underline{u}\right|}\sim\frac{\rho U(U/L)}{\mu U/L^{2}}=\frac{\rho UL}{\mu}=\mathbf{Re}$$

Αδιαστατοποίηση εξίσωσης Navier-Stokes

 $\underline{\hat{u}} = \underline{u}/U$ $\underline{\hat{x}} = \underline{x}/L$ $\hat{t} = tU/L$

Η πίεση εξισορροπεί την κυρίαρχη δύναμη

 $Re \gg 1 \Rightarrow \Delta p \sim \rho U^{2}$ $Re \ll 1 \Rightarrow \Delta p \sim \mu U/L$

Re<<1: Έρπουσα ροή

$$Re\left(\frac{\partial \underline{\hat{u}}}{\partial \hat{t}} + \underline{\hat{u}} \cdot \underline{\hat{V}} \, \underline{\hat{u}}\right) = -\underline{\hat{V}}\hat{p} + \nabla^2 \underline{\hat{u}}$$

Re>>1: Αδρανειακή ροή

$$\frac{\partial \underline{\hat{u}}}{\partial \hat{t}} + \underline{\hat{u}} \cdot \underline{\hat{V}} \, \underline{\hat{u}} = -\underline{\hat{V}} \hat{p} + \frac{1}{Re} V^2 \underline{\hat{u}}$$

Έρπουσα ροή ή ροή Stokes (Re<<1)

 $-\underline{
abla}p + \mu \underline{
abla}^2 \underline{u} = 0$ Ακριβής ισορροπία ιξωδών δυνάμεων και δυνάμεων πίεσης

 (\underline{u}, p) λύση $\rightarrow (-\underline{u}, -p)$ είναι επίσης λύση

- Ροή με συμμετρικό σύνορο είναι συμμετρική
- Η δύναμη σε σωματίδιο που κινείται κοντά σε τοίχωμα είναι παράλληλη με το τοίχωμα
- Η έρπουσα ροή είναι αντιστρεπτή (χρονική εξάρτηση μόνο μέσω των συνοριακών συνθηκών) <u>www.youtube.com/watch?v=QcBpDVzBPMk</u> (2-3,5 min)

Η μέθοδος των ιδιόμορφων λύσεων

Γραμμική εξίσωση ως προς τους άγνωστους p και \underline{u}

Κατασκευή λύσεων με γραμμικό συνδυασμό απλούστερων

Ροή γύρω από στερεό σώμα
$$\underline{u} = \underline{u}_{\infty} + \underline{u}_{s}$$

<u> u_{∞} </u>: <u>Το πεδίο ταχύτητας μακριά από το σώμα</u>, πχ $u_i = U_i$ (σταθερή ταχύτητα) ή $u_i = A_{ij}x_j$ (γραμμικό πεδίο) <u> u_s </u>: <u>Ιδιόμορφη λύση lim</u> $u_s = 0$ και lim $u_s = \infty$ («διαφοροποιεί» το πεδίο ταχύτητας κοντά στο σώμα)

Παραγωγή ιδιόμορφων λύσεων

$$\frac{\nabla \cdot \underline{u} = 0}{\mu \underline{\nabla}^2 \underline{u} = \underline{\nabla} p} \Rightarrow \nabla^2 p = 0 \qquad \begin{array}{c} \text{Idióμopφες λύσεις} \\ \text{της πίεσης:} \end{array} p(\underline{x}) = 0, \qquad \frac{A_0}{r}, \qquad A_j \frac{\partial}{\partial x_j} \left(\frac{1}{r}\right) = \frac{A_j x_j}{r^3}, \qquad B_{jk} \frac{\partial}{\partial x_k} \left(\frac{x_j}{r^3}\right) \end{array}$$

$$\mu \underline{\nabla}^2 u_i = \frac{\partial p}{\partial x_i} = \frac{\partial}{\partial x_i} \left(\frac{A_j x_j}{r^3} \right) = A_j \left(\frac{\delta_{ij}}{r^3} - 3 \frac{x_i x_j}{r^5} \right)^2$$

Μαντεύουμε λύση της μορφής: $u_i = A_j \left(\frac{a \delta_{ij}}{r^m} + \frac{b x_i x_j}{r^n} \right)$ Πεδίο ταχύτητας λόγω σημειακής δύναμης (Stokeslet)

$$\Rightarrow \quad u_i = \frac{A_j}{2\mu} \left(\frac{\delta_{ij}}{r} + \frac{x_i x_j}{r^3} \right), \qquad p = \frac{A_j x_j}{r^3}$$

Έρπουσα ροή γύρω από σφαίρα

Αναγκαίες συνθήκες για την ιδιόμορφη συνιστώσα

$$\underline{u} = \underline{u}_{\infty} + \underline{u}_{s}$$

$$\underline{u}_{\infty} = \underline{U}$$
$$\Rightarrow r \to \infty : \underline{u}_{s} \to 0$$

$$r = a : \underline{u}_{s} = -\underline{U}$$

Επειδή η συνθήκη έχει μία διανυσματική σταθερά, θα επιλέξουμε αντίστοιχες ιδιόμορφες λύσεις

$$u_{i}(\underline{x}) = A_{j}\left(\frac{\delta_{ij}}{r} + \frac{x_{i}x_{j}}{r^{3}}\right) + B_{j}\left(\frac{-\delta_{ij}}{r^{3}} + 3\frac{x_{i}x_{j}}{r^{5}}\right) \Rightarrow u_{i}(r = a) = -U_{i} = \delta_{ij}\left(\frac{A_{j}}{a} - \frac{B_{j}}{a^{3}}\right) + x_{i}x_{j}\left(\frac{A_{j}}{a^{3}} + 3\frac{B_{j}}{a^{5}}\right) \Rightarrow \begin{bmatrix} B_{j} = -\frac{-3}{3}a^{2}A_{j} \\ A_{j} = -\frac{3}{4}aU_{j} \end{bmatrix}$$
$$u_{i}(\underline{x}) = U_{i} - \frac{3}{4}aU_{j}\left(\frac{\delta_{ij}}{r} + \frac{x_{i}x_{j}}{r^{3}}\right) + \frac{1}{4}a^{3}U_{j}\left(\frac{-\delta_{ij}}{r^{3}} + 3\frac{x_{i}x_{j}}{r^{5}}\right), \qquad p = -\frac{3}{2}\mu aU_{j}\frac{x_{j}}{r^{3}}$$

Η δύναμη στη σφαίρα (νόμος Stokes)

$$F_{i} = \int_{r=a} \sigma_{ij} n_{j} dS \ , \sigma_{ij} = -p \delta_{ij} + \mu \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \right) \Rightarrow F_{i} = 6\pi \mu a U_{i}$$

Εφαρμογές έρπουσας ροής γύρω από σφαίρα

<u>Γενικότερα</u>, συντελεστής οπισθέλκουσας C_D

$$F = C_D \left(\frac{1}{2}\rho U_{\infty}^2\right) (\pi a^2) \quad Re = \frac{\rho U_{\infty} a}{\mu} < 1 \Rightarrow C_D = \frac{12}{Re} = \frac{24}{Re_d}$$

Εφαρμογές

Ταχύτητα ελεύθερης πτώσης - Σχεδιασμός διαχωριστών φάσεων - Φυγοκέντριση

$$\frac{4}{3}\pi a^{3}\rho_{p}g = \frac{4}{3}\pi a^{3}\rho g + 6\pi\mu a u_{p} \Rightarrow u_{p} = \frac{2a^{2}(\rho_{p} - \rho)g}{9\mu} = \frac{d_{p}^{2}(\rho_{p} - \rho)g}{18\mu}$$

Χαρακτηριστικός χρόνος απόκρισης σε αλλαγή ταχύτητας- Αδρανειακή πρόσκρουση

$$m_p \frac{du_p}{dt} = 6\pi\mu a (U - u_p) \Rightarrow u_p = U (1 - e^{-t/\tau}) , \qquad \tau = \frac{m_p}{6\pi\mu a} = \frac{2a^2 \rho_p}{9\mu}$$

Αριθμός Stokes:
$$St = \frac{\tau}{L/U} = \frac{\chi \alpha \rho / \kappa \delta \varsigma \chi \rho \delta v \delta \varsigma \alpha \pi \delta \kappa \rho \iota \sigma \eta \varsigma}{\chi \alpha \rho / \kappa \delta \varsigma \chi \rho \delta v \delta \varsigma \pi \rho \delta \sigma \kappa \rho \delta \sigma \eta \varsigma} = \frac{2a^2 \rho_p U \tan \vartheta}{9\mu R}$$

Μοριακή Θερμοδυναμική-Στατιστική Μηχανική

Κάθε στοιχειώδες σωματίδιο έχει την ίδια μέση κινητική ενέργεια (θερμοκρασία)

Η συγκέντρωση σωματιδίων στο χώρο ικανοποιεί την κατανομή Boltzmann, όπου $U(\underline{x})$ η δυναμική ενέργεια λόγω αλληλεπίδρασης με εξωτερικές δυνάμεις και γειτονικά σωματίδια

$$m\langle u^2\rangle/2 = 3kT/2$$

$$C(\underline{x}) = C_0 e^{-U(\underline{x})/kT}$$

Παράδειγμα σταθερής δύναμης

Poή λόγω διάχυσης (τυχαία κίνηση)

$$n = -\mathcal{D}\frac{dC}{dx} + uC = 0$$

$$F = 6\pi\mu au$$
Poή λόγω δύναμης (συντεταγμένη κίνηση)

$$\frac{dC}{C} = \frac{Fdx}{6\pi\mu a\mathcal{D}} = -\frac{dU}{6\pi\mu a\mathcal{D}}$$

Η συγκέντρωση ισορροπίας θα διαμορφωθεί ώστε $\frac{dC}{C} = -\frac{dU}{kT}$

$$\mathcal{D} = \frac{kT}{6\pi\mu a}$$

(Εξίσωση Einstein)

$$\begin{aligned} x \sim L, y \sim H \qquad \varepsilon = H/L \ll 1 \qquad & \text{Meydaln Siapoponoingn kludkwv unikous} \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + v \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) \qquad v U/H^2 \gg U^2/L \iff \varepsilon^2 Re \ll 1 \qquad \mu \frac{\partial^2 u}{\partial y^2} \approx \frac{\partial p}{\partial x} , \quad \frac{\partial p}{\partial y} \approx 0 \\ \uparrow & \uparrow & \uparrow & \downarrow & \downarrow \\ U^2/L & U^2/L & U^2/L & v U/L^2 & v U/H^2 \end{aligned}$$

Υδροδυναμική λίπανση

Movoδιάστατη ροή για το τοπικό ύψος καναλιού $u(x, y) = U_w \left(1 - \frac{y}{h}\right) - \frac{y}{h} \left(1 - \frac{y}{h}\right) \frac{h^2}{2\mu} \frac{dp}{dx}$

$$Q = \int_{0}^{h} u \, dy = \frac{1}{2} U_{w} h - \frac{h^{3}}{12\mu} \frac{dp}{dx}$$

$$\frac{dp}{dx} = \frac{6\mu U_w}{h^2} - \frac{12\mu Q}{h^3}$$

$$p(0) = p(L)$$
$$\Rightarrow Q = \frac{U_w \int_0^L (1/h^2(x)) \, dx}{2\int_0^L (1/h^3(x)) \, dx}$$

Ροή ασταθούς υγρού υμένα

$$\begin{aligned} \mathbf{Ioo}\zeta\dot{\mathbf{v}}\mathbf{vo}\,\mu\dot{\mathbf{a}}\zeta\mathbf{a}\varsigma \\ H_t + u(H)H_x &= v(H) \\ u_x + v_y &= 0 \end{aligned} \Rightarrow \begin{aligned} H_t + Q_x &= 0 \end{aligned}$$
$$\begin{bmatrix} [Q(x) - Q(x + dx)]dt &= [H(t + dt) - H(t)]dx \end{bmatrix} \\ x \sim L, y \sim H, \ \varepsilon &= H/L \ll 1 \ \Rightarrow \mu \frac{\partial^2 u}{\partial y^2} \approx -\rho g \sin\theta + \frac{\partial p}{\partial x} \\ - \frac{\partial p}{\partial y} + \rho g_y &= 0 \Rightarrow p(x, y) = p(x, H) + \rho g \cos\theta (H - y) \\ p(x, H) &= -\gamma \kappa = -\gamma \frac{H_{xx}}{(1 + H_x^2)^{3/2}} \approx -\gamma H_{xx} \end{aligned}$$

$$u(x,y) = \frac{1}{2\mu} (\rho g \sin\theta - \rho g \cos\theta H_x + \gamma H_{xxx}) y (2H - y) \Rightarrow Q = \int_0^H u \, dy = \frac{H^3}{3\mu} (\rho g \sin\theta - \rho g \cos\theta H_x + \gamma H_{xxx})$$

$$H_t + \left[\frac{\mathrm{H}^3}{3\mu}(\rho g \sin\theta - \rho g \cos\theta H_x + \gamma H_{xxx})\right]_x = 0$$

Ιδανική ροή (Re → ∞)

Ιδανική ροή

$$\rho\left(\frac{\partial \underline{u}}{\partial t} + \underline{u} \cdot \underline{\nabla} \,\underline{u}\right) = \rho \frac{D\underline{u}}{Dt} = -\underline{\nabla}p + \mu \nabla^2 \underline{u} + \rho \underline{g}$$
$$\frac{\left|\rho \underline{u} \cdot \underline{\nabla} \,\underline{u}\right|}{\left|\mu \underline{\nabla}^2 \underline{u}\right|} \sim \frac{UL}{\nu} = Re = \frac{L^2}{\nu} \frac{U}{L} = \frac{\tau_{viscous}}{\tau_{inertial}} \gg 1$$

- Γρήγορες μεταβολές που δεν προλαβαίνουν να επηρεαστούν από ιξώδεις δυνάμεις
- Ικανοποιείται μόνον η συνοριακή συνθήκη μη-διείσδυσης
- Δεν παράγεται στροβιλότητα στα στερεά τοιχώματα

Συνάρτηση δυναμικού

$$\underline{\omega} = \underline{\nabla} \times \underline{u} = 0 \Rightarrow \underline{u} = \underline{\nabla}\varphi$$

Θεώρημα Stokes – Θεώρημα Kelvin
$$\underline{n} = \oint_C \underline{u} \cdot d\underline{l} = \int_A (\underline{\nabla} \times \underline{u}) \cdot \underline{n} dA = \int_A \underline{\omega} \cdot \underline{n} dA$$
 $\underline{n} \quad \overleftarrow{A}$ $\Gamma = \oint_C \underline{u} \cdot d\underline{l} = \int_A (\underline{\nabla} \times \underline{u}) \cdot \underline{n} dA = \int_A \underline{\omega} \cdot \underline{n} dA$ $\underline{\omega} \cdot \underline{n} dA$ $\frac{D\Gamma}{Dt} = 0$, $\underline{\omega} = 0 \Rightarrow \Gamma = 0$ Το ρευστό διατηρεί την αρχική στροβιλότητα

Εξίσωση Bernoulli (αποσύνδεση κινηματικής από δυναμική)

$$\underline{\omega} \times \underline{u} = \underline{u} \cdot \left(\underline{\nabla} \, \underline{u}\right) - \underline{\nabla} \left(\frac{1}{2} \, \underline{u} \cdot \underline{u}\right) = 0 \implies \boxed{\underline{\nabla} \left(\frac{\partial \varphi}{\partial t} + \frac{1}{2} \left|\underline{u}\right|^2 + \frac{p}{\rho} - \underline{g} \cdot \underline{x}\right) = 0$$

Στοιχειώδεις ροές και σύνθεση λύσεων

$$\frac{\nabla \cdot \underline{u} = 0}{\underline{u} = \underline{\nabla}\varphi} \Rightarrow \nabla^2 \varphi = 0$$

- Η εξίσωση Laplace είναι γραμμική: γραμμικός συνδυασμός λύσεων είναι επίσης λύση
- Κάθε ροϊκή γραμμή μπορεί να θεωρηθεί στερεό σύνορο της ροής (συνθήκη ολίσθησης)

Σημειακή πηγή + ομοιόμορφη ροή (2-D)

$$\varphi = U_{\infty}x + \frac{M}{2\pi}\ln r, \quad (u_x, u_y) = (U_{\infty}, 0) + \left(\frac{Mx}{2\pi r^2}, \frac{My}{2\pi r^2}\right)$$

Σημείο ανακοπής: $\left(A = -\frac{M}{2\pi U_{\infty}}, 0\right)$ Εύρος: $h = \frac{M}{U_{\infty}}$

Ροή γύρω από κυλινδρικά στερεά

Πηγή + Καταβόθρα + Ομοιόμορφη ροή ροϊκή γραμμή y r r_{δ} y r r_{δ} y r r_{δ} r_{δ

Ροή γύρω από κύλινδρο ακτίνας α

(πηγή + καταβόθρα ⇒διπλέτα)

 $r^{2} = x^{2} + y^{2}$ $r_{\delta}^{2} = (x - \delta)^{2} + y^{2}$

$$(u_x, u_y) = (U_\infty, 0) + \frac{M}{2\pi} \left[\frac{(x, y)}{r^2} - \frac{(x - \delta, y)}{r_\delta^2} \right]$$

$$\varphi = U_{\infty}x + \frac{M}{2\pi}\ln r - \frac{M}{2\pi}\ln r_{\delta} \approx U_{\infty}x + \frac{M\delta}{2\pi}\frac{x}{x^2 + y^2} \ (\delta \ll x, y)$$

$$\begin{array}{c} \delta \to 0 \\ \delta M = 2\pi U_{\infty} a^{2} \end{array} \right] \Rightarrow \varphi = U_{\infty} \left(x + \frac{a^{2}x}{x^{2} + y^{2}} \right)$$

$$(u_x, u_y) = (U_\infty, 0) + \frac{U_\infty a^2}{r^4} (y^2 - x^2, -2xy)$$

Όμως
$$\underline{F} = \int_{S} p\underline{n}dS = 0 !!!$$

Στρόβιλος σε ιδανική ροή (Ευθύγραμμος ή σημειακός στρόβιλος)

Αναζητούμε ροή με κυκλικές ροϊκές γραμμές

 $(u_r, u_\theta, u_z) = (0, u_\theta(r), 0)$

$$\underline{\omega} = \underline{\nabla} \times \underline{u} = (0,0,\omega_z) = \underline{0} \quad (\underline{\nabla} \cdot \underline{u} = 0)$$
$$\omega_z = \frac{1}{r} \frac{\partial}{\partial r} (ru_\theta) - \frac{1}{r} \frac{\partial u_r}{\partial \theta} = 0 \Rightarrow$$
$$u_\theta = \frac{\Gamma}{2\pi} \frac{1}{r}, \varphi = \frac{\Gamma}{2\pi} \theta$$
$$\dot{\eta} \quad (u_x, u_y) = \frac{\Gamma}{2\pi r^2} (-y, x)$$
$$\Gamma = \oint_C \underline{u} \cdot d\underline{l} = \int_A \underline{\omega} \cdot \underline{n} dA \neq 0$$

Άπειρη στροβιλότητα στο κέντρο της ροής

Ροή με κυκλοφορία γύρω από κύλινδρο

$$(u_x, u_y) = (U_{\infty}, 0) + \frac{U_{\infty}a^2}{r^4}(y^2 - x^2, -2xy) + \frac{\Gamma}{2\pi r^2}(-y, x)$$

Σημείο ανακοπής σε γωνία $\pm \alpha$ $\Gamma = 4\pi a U_{\infty} \sin \alpha$

Η δύναμη από την πίεση στην επιφάνεια

 $\underline{F} = (0, -\rho\Gamma U_{\infty})$

- Στο πλαίσιο της ιδανικής ροής, η κυκλοφορία είναι αυθαίρετη (πολλαπλές λύσεις)
- Στην πραγματικότητα, η κυκλοφορία οφείλεται στο ιξώδες και τη συνθήκη μη-ολίσθησης

Μοντελοποίηση και συμπεριφορά στροβίλου

u_θ r₀

Ευθύγραμμος (ή σημειακός) στρόβιλος

Παραδείγματα

- Ανεμοστρόβιλος «σηκώνει σπίτια»
- Συμπύκνωση υδρατμού στον •

πυρήνα (δίνη πτερύγων)

Ενίσχυση στροβιλότητας με εφελκυσμό

- Δίνη απορροής νεροχύτη ٠

$$u_{\theta} = \Omega r \quad r \le r_0 \Rightarrow \omega_z = 2\Omega$$
$$u_{\theta} = \frac{\Omega r_0^2}{r} \quad r \ge r_0 \Rightarrow \omega_z = 0$$

$$\Gamma = (2\Omega)(\pi r_0^2) \qquad r_0 \to 0 \Rightarrow \Omega \to \infty$$

Σταθερή κυκλοφορία σε όλο το μήκος του στροβίλου

Ισοζύγιο r-ορμής

$$\frac{dp}{dr} = \rho \frac{u_{\theta}^2}{r} \Rightarrow p(r) = p_{\infty} - \frac{\rho \,\Omega^2 r_0^4}{2r^2}$$

Αλληλεπίδραση στροβίλων

Στρόβιλοι (δίνες) στη μπανιέρα

Στρόβιλοι άκρων πτερύγων (tip vortices)

https://www.youtube.com/watch?v=AolOz2AkpiE

Αεροτομές και πτερύγια

Θεώρημα Kutta-Zukowski • Ισχύει για κυλινδρικά σώματα οποιασδήποτε διατομής

 Η κυκλοφορία καθορίζεται από το σχήμα της διατομής, σε συνδυασμό με την συμπεριφορά του οριακού στρώματος

 p_B, u_B

Το παράδειγμα της λεπτής αεροτομής

 $F_L = -\rho U_{\infty} \Gamma$

$$F_L = \int_0^C (p_B - p_T) dx = \int_0^C \frac{1}{2} \rho(u_T^2 - u_B^2) dx \approx \rho U_\infty \int_0^C (u_T - u_B) dx$$
$$= \rho U_\infty (-\oint \underline{u} \, dx) = -\rho U_\infty \Gamma$$

Δίνες γύρω από πτερύγιο αεροσκάφους

Θεωρία οριακού στρώματος

$$\frac{\partial \underline{\hat{u}}}{\partial \hat{t}} + \underline{\hat{u}} \cdot \underline{\hat{\nabla}} \, \underline{\hat{u}} = -\underline{\hat{\nabla}} \hat{p} + \frac{1}{Re} \nabla^2 \underline{\hat{u}}$$

 $Re \gg 1 \Rightarrow$ Αδρανειακές δυνάμεις >> Ιξώδεις δυνάμεις : $u_{inv}(x,0) = u_{\infty}(x)$ Όμως, η σωστή συνοριακή συνθήκη είναι: u(x,0) = 0

Άρα, $u \to 0$ σε πολύ μικρή απόσταση, δ, από το τοίχωμα. (Matched asymptotic expansions: Ταιριασμένα ασυμπτωτικά αναπτύγματα)

Στο πάχος, δ, του οριακού στρώματος οι ιξώδεις δυνάμεις είναι ίσες με τις αδρανειακές. Άρα,

$$\mu \frac{\partial^2 u}{\partial x^2} \ll \mu \frac{\partial^2 u}{\partial y^2} \sim \rho u \frac{\partial u}{\partial x} \Rightarrow \mu \frac{U}{\delta^2} \sim \rho U \frac{U}{L} \Rightarrow \qquad \frac{\delta}{L} \sim R e^{-1/2}$$

Χαρακτηριστικές κλίμακες οριακού στρώματος

$$\begin{array}{ccc} x \sim L & u \sim U \\ y \sim \delta & v \sim V \end{array} \quad \left| \begin{array}{c} \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \end{array} \right| \Rightarrow V \sim \frac{U\delta}{L} \ll U , \quad (\Delta p)_x \sim \Pi , \quad (\Delta p)_y \sim \Lambda$$

Η αναγκαιότητα του οριακού στρώματος

Ανάλυση τάξης μεγέθους και εξισώσεις οριακού στρώματος

Έστω ροή πάνω από τοίχωμα μικρής καμπυλότητας. Η ατριβής λύση δίνει: $u(x,0) = u_{\infty}(x), \quad p(x,0) = p_{\infty}(x)$ (x το μήκος τόξου πάνω στο τοίχωμα στη διεύθυνση ροής)

χ-ορμή

γ-ορμή

$$u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial y} + v\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right)$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$\frac{UV}{L} \sim \frac{U^2}{L}\frac{\delta}{L} \qquad \frac{\Lambda}{\rho\delta} \quad \frac{vV}{L^2} \ll \frac{vV}{\delta^2} \quad \frac{vV}{\delta^2} \sim \frac{U^2}{L}\frac{\delta}{L}$$

κατανομή πίεσης
$$\frac{\Pi}{\rho L} \sim \frac{U^2}{L}$$
 $\frac{\Lambda}{\rho\delta} \sim \frac{U^2}{L} \frac{\delta}{L} \Rightarrow \frac{\Lambda}{\Pi} \sim \frac{\delta^2}{L^2} \ll 1$
Μέσα στο οριακό στρώμα: $\frac{\partial p}{\partial y} \approx 0$, $\frac{\partial p}{\partial x} = \frac{dp_{\infty}}{dx}$
Στο σύνορο: $u_{\infty} \frac{du_{\infty}}{dx} = -\frac{1}{\rho} \frac{dp_{\infty}}{dx}$ (εξίσωση Bernoulli στο τοίχωμα)**Τελικές εξισώσεις οριακού στρώματος (παραβολικές)** $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$, $u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = u_{\infty} \frac{du_{\infty}}{dx} + v \frac{\partial^2 u}{\partial y^2}$, $\frac{du_{\infty}}{dx} > 0$ Ευνοϊκή κλίση πίεσης $\frac{du_{\infty}}{dx} < 0$ Αντίθετη κλίση πίεσης

Ανάπτυξη του οριακού στρώματος: ολοκληρωτικά ισοζύγια vonKarman

Ισοζύγιο μάζας για μηδενική κλίση πίεσης

$$\Pi \dot{a} \chi o \varsigma \ \mu \varepsilon \tau \alpha \tau \dot{\sigma} \pi i \sigma \eta \varsigma, \ \delta_*$$
$$u_{\infty} \delta - \int_0^{\delta} u \ dy = u_{\infty} \delta_* \Rightarrow \left[\delta_* = \int_0^{\delta} \left(1 - \frac{u}{u_{\infty}} \right) \ dy \right]$$

Επίλυση με βάση προσεγγιστικό πεδίο ταχύτητας

 $u(x,y) = u_{\infty} f\left(\frac{y}{\delta(x)}\right)$

- Εύρεση $\delta_* = \delta_*(\delta)$ και $\Theta = \Theta(\delta)$ •
- Εύρεση $au_w = \mu (\partial u / \partial y)_{y=0} = au_w (\delta)$ •
- Αντικατάσταση στο ισοζύγιο vonKarman $\Rightarrow \delta(x)$ •

Οριακό στρώμα με μη-μηδενική κλίση πίεσης

$$\frac{d}{dx}(\rho u_{\infty}^{2}\Theta) = \tau_{w} + \delta_{*}\frac{dp_{\infty}}{dx} \Rightarrow \qquad \frac{d\Theta}{dx} = \frac{f}{2} - \frac{\delta_{*} + 2\Theta}{u_{\infty}}\frac{du_{\infty}}{dx}$$
$$\frac{dp_{\infty}}{dx} \leq 0 \quad \alpha\rho\gamma\eta/\gamma\rho\eta\gamma\rho\eta \quad \alpha\dot{\nu}\xi\eta\sigma\eta \quad \pi\dot{\alpha}\chio\nu\varsigma \qquad \qquad f = \frac{2\tau_{w}}{\rho u_{\infty}^{2}}$$

Αντίθετη κλίση πίεσης

- Κατάντη αύξηση πίεσης επιβραδύνει τα σωματίδια ρευστού κοντά στο τοίχωμα (έχουν μικρή αδράνεια)
- Η κίνηση μπορεί να διατηρηθεί μόνον με μεταφορά ορμής (σύρσιμο) από την κυρίως ροή
- Η αποκόλληση του οριακού στρώματος οδηγεί στη μεταφορά ρευστού με στροβιλότητα μακριά από το τοίχωμα (ακύρωση ιδανικής ροής)

Απομάκρυνση ροϊκής γραμμής από το τοίχωμα

Έστω ροϊκή γραμμή στη θέση y = h(x) κοντά στο τοίχωμα:

$$y \ll \delta \Rightarrow u(y) \approx y \frac{\partial u}{\partial y}\Big|_{y=0} \approx \frac{y\tau_w}{\mu}$$

Παροχή μεταξύ τοιχώματος και y = h(x):
$$\dot{m} = \int_{0}^{h} \rho u dy \approx \int_{0}^{h} \rho \frac{y \tau_w}{\mu} dy \approx \frac{1}{2} h^2 \frac{\tau_w}{\nu} \Rightarrow h(x) \sim \sqrt{\frac{\dot{m}}{\tau_w}}$$

 $\tau_w \to 0 \, \Rightarrow \, h(x) \to \infty$

Με τον μηδενισμό της διατμητικής τάσης, η ροή αποκολλάται από το τοίχωμα

Στρωτή και τυρβώδης αποκόλληση

Στρωτή ροή: μεταφορά ορμής μόνον με μοριακό μηχανισμό

Τυρβώδης ροή: μεταφορά ορμής με δινοδιαχυτότητα

Οπισθέλκουσα δύναμη σε στερεά σώματα

$$F_D = C_D A \frac{1}{2} \rho u_\infty^2$$

Σφαίρα (και άλλα αξονοσυμμετρικά εμπόδια) $c_D \approx 0.4 + \frac{24}{Re} + \frac{6}{Re^{1/2}}$ $10 \le Re \le 10^5$

Εφαρμογή: Διαχύτης ροής

Στόχος

Ανάκτηση πίεσης $p_0 = p_1 + \frac{1}{2}\rho u_1^2$

Ο ρόλος των οριακών στρωμάτων

- Μερική απόφραξη στην είσοδο λόγω πάχους οριακού στρώματος
- Αποκόλληση/δυναμική αλληλεπίδραση λόγω αντίθετης κλίσης πίεσης

$$C_{p} = \frac{p_{2} - p_{1}}{p_{0} - p_{1}} \approx 1 - \left(\frac{u_{2}}{u_{1}}\right)^{2} \approx 1 - \left(\frac{A_{1}}{A_{2}}\right)^{2}$$

Κλάσμα απόφραξης: $B_1 = \frac{(2W_1 + 2b)\delta_1}{W_1 b}$ ($\approx 0.02 - 0.12$)

Τυρβώδης ροή

Χαρακτηριστικά της τυρβώδους ροής

Το παράδειγμα της τυρβώδους δέσμης

- Έντονες διακυμάνσεις
- Δομές σε πολλαπλές χωρικές κλίμακες
- Χρονικές διακυμάνσεις σε μεγάλο εύρος συχνοτήτων
- Ομαλή συμπεριφορά μέσων τιμών

Περιγραφή της τυρβώδους ροής

Κλίμακες της τύρβης

Ισοζύγιο τυρβώδους ενέργειας

- Η κινητική ενέργεια της τύρβης κατανέμεται σε πολλές κλίμακες (δίνες)
- Τυρβώδης ενέργεια παράγεται στην μακρο-κλίμακα και μεταφέρεται προς τα κάτω (energy cascade)
- Η ενέργεια σκεδάζεται στην μικρο-κλίμακα Kolmogorov (viscous dissipation)
- Η μικρο-κλίμακα εξαρτάται μόνον από το ιξώδες, ν[=] m^2/s και το ρυθμό μεταφοράς ενέργειας, ε[=] m^2/s^3

Μακρο-κλίμακα τύρβης

Χαρ/κό μήκος της ροής: L_1

Μέση ταχύτητα: U

Κινητική ενέργεια τύρβης: $u_1^2 = \overline{u'_i u'_i}$ Χαρ/κή ταχύτητα τύρβης: u_1 ($u_1 \sim 0,1$ U) Χαρ/κός χρόνος ζωής δίνης: $t_1 = L_1/u_1$

Μικρο-κλίμακα Kolmogorov

$$\begin{split} L_2, u_2, t_2 &= f(\varepsilon, v) \\ L_2 &= (v^3/\varepsilon)^{1/4}, \ u_2 &= (\varepsilon v)^{1/4}, \ \tau_2 &= (v/\varepsilon)^{1/2} \\ \text{Pubpicg metapopage} \quad Pubpicg okébaong \\ \Rightarrow \frac{u_1^2}{L_1/u_1} &= \varepsilon \\ L_2 &= L_1(Re_1)^{-3/4}, \quad u_2 &= u_1(Re_1)^{-1/4}, \quad t_2 &= t_1(Re_1)^{-1/2} \end{split}$$

Παράδειγμα: Αέρας με U=15 m/s σε αγωγό d=0,1 m: $Re_1=10^4$, $L_2=100$ μm, $t_2=0,7$ ms

Τυρβώδης ροή κοντά σε τοίχωμα

$$\Delta P(W2H) = \tau_w(2WL) \Rightarrow \tau_w = H \frac{\Delta P}{L}$$
$$\underline{\bar{u}} = (0,0, \overline{u}_z(y)), \tau_{zx} = \tau_{yx} = 0$$

$$\frac{d\tau_{yz}}{dy} = \frac{d\overline{p}}{dz} = -\frac{\Delta P}{L} \Rightarrow \frac{\tau_{yz}}{\tau_w} = \left(1 - \frac{y}{H}\right)$$

Χαρακτηριστικές κλίμακες τοιχώματος (ρ, ν, τ_w)

$$u_* = \sqrt{\frac{\tau_w}{\rho}} , y_* = \frac{\nu}{u_*} , \operatorname{Re}_* = \frac{u_* y_*}{\nu} = 1 \qquad \qquad \underbrace{u_+}_{-} = \frac{u}{u_*} , \quad \underbrace{y_+}_{-} = \frac{y}{y_*} = \underbrace{\frac{y u_*}{\nu}}_{TOTIKOS Re}$$

Τυρβώδης ροή σε λείο αγωγό: Ο νόμος του τοιχώματος

Η ροή (καναλιού ή αγωγού) προσδιορίζεται πλήρως από: ρ , ν , Η, $u_* \rightarrow U_0$

$$\overline{u}_{z} = u_{*} F\left(\frac{y}{H}, \frac{u_{*}H}{\nu}\right) \, \eta \qquad \frac{d\overline{u}_{z}}{dy} = \frac{u_{*}}{y} \, \Phi\left(\frac{y}{y_{*}}, \frac{y}{H}\right) \qquad \left(\frac{y}{y_{*}} = \frac{y}{H} \frac{u_{*}H}{\nu}\right)$$

Βασική παραδοχή (Prandtl)

Σε υψηλούς Re, υπάρχει περιοχή κοντά στο τοίχωμα (*y/H<0,1* εσωτερική περιοχή) όπου η μέση ταχύτητα καθορίζεται μόνον από τις κλίμακες του τοιχώματος και είναι ανεξάρτητη των *H*, *U*₀.

$$\frac{d\overline{u}_z}{dy} \approx \frac{u_*}{y} \Phi_1\left(\frac{y}{y_*}\right) \Rightarrow \frac{du_+}{dy_+} \approx \frac{1}{y_+} \Phi_1(y_+)$$

$$y_{+} \sim O(1): \qquad \frac{d\overline{u}_{z}}{dy} \approx \frac{\tau_{w}}{\mu} \Rightarrow \frac{du_{+}}{dy_{+}} \approx 1 \Rightarrow u_{+} = y_{+}$$
$$y_{+} > 50: \qquad \Phi_{1}(y_{+}) \rightarrow \frac{1}{\kappa} \Rightarrow \frac{du_{+}}{dy_{+}} \approx \frac{1}{\kappa y_{+}} \Rightarrow u_{+} = \frac{1}{\kappa} \ln y_{+} + B$$
$$\overbrace{\epsilon \xi \omega \tau \epsilon \rho \iota \kappa \delta \tau \mu \eta \mu \alpha \epsilon \sigma \omega \tau \epsilon \rho \iota \kappa \eta \varsigma}_{\pi \epsilon \rho \iota o \chi \eta \varsigma} (overlap layer)$$

 $u_{+} = 2,44 \ln y_{+} + 5,0$

Τυρβώδης ροή σε τραχύ αγωγό: Ο νόμος του τοιχώματος

Έστω ότι η τραχύτητα χαρακτηρίζεται από το ύψος, s

Εσωτερική περιοχή (Prandtl)

$$\frac{d\overline{u}_z}{dy} \approx \frac{u_*}{y} \Phi\left(\frac{y}{y_*}, \frac{s}{y_*}\right)$$
 $\kappa \approx 0.41 \quad B \approx 5.0 \quad B_2 \approx 8.5$

$$s \ll y_* : \Phi\left(\frac{y}{y_*}, \frac{s}{y_*}\right) \to \Phi_1\left(\frac{y}{y_*}\right) \Rightarrow u_+ = \frac{1}{\kappa} \ln y_+ + B \quad \text{via H} \gg y \gg y_* \text{ (leio toixwha)} \qquad u_+ = 2,44 \ln y_+ + 5,0$$

$$s \gg y_* : \Phi\left(\frac{y}{y_*}, \frac{s}{y_*}\right) \to \Phi_2\left(\frac{y}{s}\right) \Rightarrow \frac{d\overline{u}_z}{dy} \approx \frac{u_*}{y} \Phi_2\left(\frac{y}{s}\right) \Rightarrow u_+ = \frac{1}{\kappa} \ln\left(\frac{y}{s}\right) + B_2 \qquad \text{yia } H \gg y \gg s \qquad u_+ = 2,44 \ln\left(\frac{y}{s}\right) + 8,5$$

Μεταφορά ορμής στο τοίχωμα μέσω οπισθέλκουσας μορφής (αμελητέα συνεισφορά ιξωδών τάσεων: y_{*} εκπίπτει)

Διάγραμμα Moody

$$\varepsilon_{+} = \frac{\varepsilon u_{*}}{\nu} < 5$$

$$u_{+} = 2,44 \ln y_{+} + 5,0$$

$$\frac{\langle u \rangle}{u_{*}} = 2,44 \ln \left(\frac{u_{*}R}{\nu}\right) + 1,34$$

$$\frac{1}{\sqrt{4f}} = -2 \log \left(\frac{2,51}{Re\sqrt{4f}}\right)$$

$$\varepsilon_{+} = \frac{\varepsilon u_{*}}{\nu} > 70$$
$$u_{+} = 2,44 \ln \frac{y}{\varepsilon} + 8,5$$
$$\frac{\langle u \rangle}{u_{*}} = 2,44 \ln \frac{d}{\varepsilon} + 3,2$$

Συμπιεστές ροές

Ασυμπίεστες και συμπιεστές ροές

ho =
ho(p,T) Ασυμπίεστη ροή όταν $\Delta
ho /
ho \ll 1$

$$\frac{\Delta\rho}{\rho} \sim \frac{u^2}{c^2} , \ c = \left(\frac{\partial p}{\partial \rho}\right)_S^{1/2} \Rightarrow Ma = \frac{u}{c}$$

$$\rho, p$$
 \bigcup_{c} $\rho + \Delta \rho,$ $\bigcup_{p + \Delta p}$ \bigcup

$$\rho U_{c} = (\rho + \Delta \rho)(U_{c} - U) \Rightarrow U = \frac{\Delta \rho}{\rho + \Delta \rho} U_{c}$$
$$(p + \Delta p) - p = \rho U_{c}[U_{c} - (U_{c} - U)] \Rightarrow$$
$$\Rightarrow \Delta p = \rho U_{c}U$$

$$U_c^2 = \left(1 + \frac{\Delta\rho}{\rho}\right) \left(\frac{\Delta p}{\Delta\rho}\right) \xrightarrow{\Delta\rho/\rho \approx 0} c^2$$

Αγνοήθηκαν μεταβολές θερμοκρασίας

Κύρια χαρ/κά ασυμπίεστης ροής

- Ακαριαία διάδοση μεταβολών πίεσης
- Ομαλή παράκαμψη σωμάτων

Κύρια φαινόμενα συμπιεστότητας

- Στραγγαλισμός ροής (choking)
- Παράκαμψη σωμάτων με κρουστικά κύματα (shock waves)

ΚΡΟΥΣΤΙΚΑ ΚΥΜΑΤΑ

Χαρακτηριστικά συμπιεστών ροών

- Τα αέρια όταν συμπιέζονται/εκτονώνονται θερμαίνονται/ψύχονται
- Διαταραχές διαδίδονται με την ταχύτητα του ήχου
- Σταδιακές μεταβολές είναι ισεντροπικές
- Αύξηση εντροπίας λόγω τριβών ή κρουστικών κυμάτων

Όμως

- Ακουστική
- Φυσική συναγωγή

Ισεντροπική συμπιεστή ροή σε ακροφύσια

Ιδιότητες ιδανικών αερίων
$$(p = \rho RT, R = \frac{\mathcal{R}}{M})$$

 $c = \left(\frac{\partial p}{\partial \rho}\right)_{S}^{1/2} = \sqrt{\gamma RT}, \qquad \gamma = C_{p}/C_{v}$

Για ισεντροπικές (αδιαβατικές+αντιστρεπτές) μεταβολές

$$T_0, p_0, \rho_0$$
: ιδιότητες ανακοπής: $\frac{p_0}{p} = \left(\frac{T_0}{T}\right)^{\gamma/(\gamma-1)}$, $\frac{\rho_0}{\rho} = \left(\frac{T_0}{T}\right)^{1/(\gamma-1)}$

$$\int \sigma \delta(y) \sigma \varepsilon v \varepsilon \rho \gamma \varepsilon i \alpha \zeta$$

$$C_p T + \frac{1}{2}u^2 = C_p T_0 \Rightarrow \qquad \frac{T_0}{T} = 1 + \frac{\gamma - 1}{2}Ma^2$$

$$T_{*}, p_{*}, \rho_{*}$$
: κρίσιμες ιδιότητες: $\frac{T_{*}}{T_{0}}$

$$= \frac{2}{\gamma+1}, \quad \frac{p_*}{p_0} = \left(\frac{2}{\gamma+1}\right)^{\gamma/(\gamma-1)}$$
$$\frac{\rho_*}{\rho_0} = \left(\frac{2}{\gamma+1}\right)^{1/(\gamma-1)}$$

Εκτόνωση μέσω ακροφυσίου

<u>Έξίσωση συνέχειας</u>

$$\dot{m} = \rho u A \Rightarrow \frac{d\rho}{\rho} + \frac{du}{u} + \frac{dA}{A} = 0$$

 $\frac{I σοζύγιο ενέργειας}{C_p dT + u du = 0 ή \frac{dp}{\rho} + u du = 0}$ <u>Ταχύτητα ήχου</u>

$$dp = c^2 d\rho$$

Μεταβολή u, p με τη διατομή ροής

$$\frac{du}{u} = \frac{dA}{A}\frac{1}{Ma^2 - 1} = -\frac{dp}{\rho u^2}$$

Αντίθετη συμπεριφορά για Ma < 1 και Ma > 1Όταν $Ma = 1 \Rightarrow dA = 0$
Διαρροές και βαλβίδες ασφαλείας

Hole size

12.5 mm

10 mm

7.5 mm

5 mm

3 mm

Στραγγαλισμός της ροής: Μείωση πίεσης \Rightarrow μείωση πυκνότητας \Rightarrow αύξηση ταχύτητας

2010 ASME Boiler and Pressure Vessel Code

Pressure Relief Devices

UG-125	General
UG-126	Pressure Relief Valves
UG-127	Nonreclosing Pressure Relief Devices
UG-128	Liquid Pressure Relief Valves
UG-129	Marking
UG-130	Code Symbol Stamp
UG-131	Certification of Capacity of Pressure Relief Devices
UG-132	Certification of Capacity of Pressure Relief Valves in Combination With
	Nonreclosing Pressure Relief Devices
UG-133	Determination of Pressure Relieving Requirements
UG-134	Pressure Settings and Performance Requirements
UG-135	Installation
UG-136	Minimum Requirements for Pressure Relief Valves
UG-137	Minimum Requirements for Rupture Disk Devices
UG-138	Minimum Requirements for Pin Devices
UG-140	Overpressure Protection by System Design

For tests with air,

$$W_T = 356AP \sqrt{\frac{M}{T}}$$

For tests with natural gas,

$$W_T = CAP \sqrt{\frac{M}{ZT}}$$

For tests with water,

$$W_T = 2407A\sqrt{(P - P_d)w}$$

where

- A = actual discharge area through the device at developed lift, sq in.
- C = constant for gas or vapor based on the ratio of specific heats

$$k = c_p / c_v$$
 (see Fig. 11-1)

M = molecular weight

Βαλβίδες ασφαλείας/διαφυγής

Ακροφύσιο deLaval

$$\frac{A}{A_*} = \frac{1}{Ma} \sqrt{\left[\frac{2 + (\gamma - 1)Ma^2}{(\gamma + 1)}\right]^{(\gamma + 1)/(\gamma - 1)}}$$

Υπερηχητικές ροές

Αλληλεπίδραση ροής-εμποδίου

<u>Ασυμπίεστη ροή</u> $(c = \infty)$: Το πεδίο πίεσης διαδίδεται ακαριαία (ελλειπτική συμπεριφορά) \rightarrow Η ροή εκτρέπεται ομαλά

<u>Υπερηχητική ροή</u> $(c < \infty, u > c)$: Διαταραχές διαδίδονται με την ταχύτητα του ήχου. (υπερβολική συμπεριφορά) \rightarrow Το εμπόδιο κατάντη δεν επηρεάζει τη ροή

Κρουστικό κύμα

Δημιουργείται όταν η ροή δεν μπορεί να εκτραπεί ομαλά (ισεντροπικά)

Κύματα Mach-Κώνος επιρροής

$$\sin \alpha = \frac{c}{u} = \frac{1}{Ma}$$

Συστήματα αναφοράς με το βλήμα κινούμενο ή ακίνητο (στάσιμο κρουστικό κύμα)

Ορθό κρουστικό κύμα

<u>Ισοζύγιο μάζας</u>

 $\rho_1 u_1 = \rho_2 u_2$

Ισοζύγιο ορμής

$$p_1 + \rho_1 u_1^2 = p_2 + \rho_2 u_2^2$$

Ισοζύγιο ενέργειας

$$h_{1} + \frac{1}{2}u_{1}^{2} = h_{2} + \frac{1}{2}u_{2}^{2}$$
$$p = \rho RT, h = C_{p}T = \frac{\gamma}{\gamma - 1}\frac{p}{\rho}$$

- Ισχύουν οι ατριβείς εξισώσεις (Re>>1)
- Η επίδραση του ιξώδους περιορίζεται στο κρουστικό κύμα (ασυνέχεια)

 $u_1 = Ma_1c_1$

- Ταχύτητα προσέγγισης ροής σε στάσιμο κρουστικό κύμα
- Тахи́т
ηта διάδοσης кроиот
ικού κύματος $Ma_1 \to 1 \Rightarrow S_2 S_1 \sim (Ma_1 1)^3$

$$Ma_2^2 = \frac{2 + (\gamma - 1)Ma_1^2}{2\gamma Ma_1^2 - (\gamma - 1)}$$

$$\frac{p_2}{p_1} = 1 + \frac{2\gamma}{\gamma + 1} (Ma_1^2 - 1)$$
$$\frac{\rho_2}{\rho_1} = \frac{u_1}{u_2} = \frac{(\gamma + 1)Ma_1^2}{2 + (\gamma - 1)Ma_1^2}$$
$$\frac{T_2}{T_1} = \frac{p_2}{p_1}\frac{\rho_1}{\rho_2} \quad (u_2 = Ma_2c_2)$$

Έκρηξη στον αέρα, θερμοκρασίας 25°C, δημιουργεί κρουστικό κύμα. Αν μία στιγμή η πίεση στο χώρο έκρηξης είναι 12 atm, υπολογίστε την ταχύτητα διάδοσης του κύματος και την ταχύτητα του αέρα που ακολουθεί το κύμα.

Πλάγιο κρουστικό κύμα

- Ασθενές (Ma₂>1) και ισχυρό (Ma₂<1) πλάγιο κρουστικό κύμα
- $\vartheta \to 0 \Rightarrow \beta = 90^{\circ} \text{ or } \beta \to \sin^{-1}(1/Ma_1) \equiv \alpha$
- Μέγιστη γωνία εκτροπής, θ_{max}
- Ti oumbainer yia $\beta < \sin^{-1}(1/Ma_1) \Rightarrow \vartheta < 0;$

$$u_{1t} \xrightarrow{u_{1n}} u_{2n}$$

$$u_{1t} = u_{2t}$$

$$u_{1n} > u_{2n}$$

$$Ma_1 \rightarrow Ma_{1n} = Ma_1 \sin \beta$$

$$\Omega = \Gamma_{0} u_{0} + Ma_{1n} = Ma_1 \sin \beta$$

θ: Γωνία εκτροπής

u_{1n}	$ ho_2$	$(\gamma + 1)(Ma_1 \sin \beta)^2$	tan β
$\overline{u_{2n}}$	ρ_1	$\frac{1}{2+(\gamma-1)(Ma_1\sin\beta)^2}$	$\overline{\tan(\beta-\vartheta)}$

Εξάρτηση εκτροπής από αριθμό Mach και γωνία προσβολής

Aúξηση γωνίας σφήνας με σταθερό αριθμό Mach (Ma_1) M_1 fixed, supersonic, P_1 , p_1 fixed M_1 fixed, supersonic, P_1 , p_2 fixed M_1 fixed, supersonic, P_1 fixed M_2 fixed supersonic, P_1 fixed M_2 fixed supersonic, P_1 fixed M_2 fixed supersonic, P_2 fixed supersonic, P_2 fixed su

Αύξηση αριθμού Mach προσβολής (Ma_1)

Κύμα εκτόνωσης Prandtl-Meyer

Μικρή (αρνητική) γωνία εκτροπής μέσω αλληλουχίας κυμάτων Mach με σταδιακά μεταβαλλόμενη γωνία $\beta \approx \alpha = \sin^{-1}(1/M_1)$ $\frac{|u+du|}{|u|} = \frac{\cos \alpha}{\cos(a-d\vartheta)} \approx 1 - \frac{d\vartheta}{\sqrt{1-M^2}} \Rightarrow \frac{d|u|}{|u|} \approx \frac{-d\vartheta}{\sqrt{1-M^2}}$

Ισεντροπική μεταβολή

$$\frac{M+dM}{M} = \frac{|u+du|}{|u|} \sqrt{\frac{T}{T+dT}} = \frac{|u+du|}{|u|} \sqrt{\frac{2+(\gamma-1)(M+dM)^2}{2+(\gamma-1)M^2}}$$

$$\frac{dM}{M} = \frac{-d\vartheta}{\sqrt{1-M^2}} + \frac{(\gamma-1)MdM}{2+(\gamma-1)M^2} \Rightarrow \qquad -\vartheta = \int_{M_1}^{M_2} \frac{2\sqrt{1-M^2}}{2+(\gamma-1)M^2} \frac{dM}{M} = \nu(M_2) - \nu(M_1) \qquad (M_1, \vartheta \rightarrow \nu(M_2) \rightarrow M_2)$$

$$\nu(M) = \sqrt{\frac{(\gamma+1)}{(\gamma-1)}} \tan^{-1} \sqrt{\frac{(\gamma-1)}{(\gamma+1)}} (M^2 - 1) - \tan^{-1} \sqrt{M^2 - 1}$$

Παραδείγματα αποκόλλησης λόγω κρουστικού κύματος

Μεταφορά θερμότητας με αγωγή

Μεταφορά θερμότητας με αγωγή

Θερμορροή στη διεύθυνση n

Κλίση θερμοκρασίας προκαλεί ροή θερμότητας

 Θερμορροή: q[=] W/m²
 Συντ. θερμικής αγωγιμότητας: k_s[=] W/m °C

Διαφορική μορφή

$$q_i = -k_s \frac{\partial T}{\partial x_i} \qquad \underline{q} = -k_s \underline{\nabla} T$$

Ισοζύγιο θερμικής ενέργειας

 $\frac{\partial}{\partial t}(C_{Ps}T\rho_s dx_1 dx_2 dx_3) =$

 $[q_1(\underline{x}) - q_1(\underline{x} + dx_1)](dx_2dx_3) + \cdots$ $\Rightarrow \frac{\partial}{\partial t}(\rho_s C_{Ps}T) = -\frac{\partial q_i}{\partial x_i}$

$$\rho_{s} C_{Ps} \frac{\partial T}{\partial t} = k_{s} \left(\frac{\partial^{2} T}{\partial x_{i} \partial x_{i}} \right) = k_{s} \nabla^{2} T$$

Συνοριακές συνθήκες αγωγής

Έστω στερεό σώμα όγκου V με εξωτερική επιφάνεια A $T|_{A} = T_{0} (συνθήκη Dirichlet)$ $\dot{\eta}$ $q|_{A} = \underline{n} \cdot (-k_{s} \underline{\nabla}T)|_{A} = q_{0} (συνθήκη Neumann)$ $\dot{\eta}$ $q|_{A} = \kappa T|_{A} + \lambda \underline{n} \cdot \underline{\nabla}T|_{A} = q_{0} (συνθήκη Robin)$ $\dot{\eta}$ $T|_{A1} = T_{0} \text{ και } q|_{A2} = \underline{n} \cdot (-k_{s} \underline{\nabla}T)|_{A2} = q_{0} , (A1 \cup A2 \equiv A \mu \epsilon_{1} \kappa t \eta \sigma_{1} \sigma_{1} \eta \sigma_{1} \sigma_$

Σύνδεση με τον εξωτερικό χώρο

Συναγωγή (εξαναγκασμένη ή φυσική) $q\Big|_{A,conv} = h_a \left(T\Big|_A - T_a\right)$

Ακτινοβολία (μικρό σώμα με γκρίζα επιφάνεια) $q\Big|_{A,rad} = \sigma \varepsilon \left(T^4\Big|_A - T_a^4\right)$

Σύγκριση αγωγής με συναγωγή

 $\underline{n} \cdot \left(-k_{s} \underline{\nabla} T\right)\Big|_{A} = h_{a} \left(T\Big|_{A} - T_{a}\right)$ $L \sim \frac{V}{A} \Rightarrow \frac{T - T|_{A}}{T|_{A} - T_{a}} \sim \frac{h_{a}L}{k_{s}}$

Αριθμός Biot

$$Bi = \frac{h_a L}{k_s}$$

$$Bi \ll 1 \Rightarrow T(\underline{x}) \approx T\Big|_{A}$$

 $Bi \gg 1 \Rightarrow T\Big|_{A} \approx T_{a}$

Μόνιμη αγωγή - θερμικές αντιστάσεις σε σειρά

$$\begin{aligned} & \nabla^2 T \Rightarrow \frac{d^2 T}{dx^2} = 0 \Rightarrow \\ & Q = Ak_w \frac{(T_{wi} - T_{wo})}{\Delta x} \\ & Q = Ah_i (T_i - T_{wi}) \\ & Q = Ah_o (T_{wo} - T_o) \end{aligned}$$
$$\begin{aligned} & \frac{1}{U} = \frac{1}{h_i} + \frac{\Delta x}{k_w} + \frac{1}{h_o} \end{aligned}$$

$$Q = A U \left(T_i - T_o \right)$$

$$\frac{1}{U} = \frac{1}{h_i} + \frac{\Delta x}{k_w} + \frac{1}{h_o}$$

Έλέγχουσα αντίσταση

$$\frac{k_w}{\Delta x} \ll h_i, h_o \Rightarrow T_{wi} \approx T_i, T_{wo} \approx T_o \quad (\mu \circ v \omega \sigma \eta)$$

$$\frac{k_w}{\Delta x} \gg h_i, h_o \Rightarrow T_{wi} \approx T_{wo} = T_i + (T_o - T_i) \frac{h_o}{h_o + h_i}$$
$$h_i \gg h_o \Rightarrow T_w \approx T_i$$

$$\nabla^2 T \Rightarrow \frac{1}{r} \frac{d}{dr} \left(r \frac{dT}{dr} \right) = 0 \Rightarrow$$

$$Q = 2\pi L k_w \frac{(T_{wi} - T_{wo})}{\ln(r_o/r_i)}$$

$$Q = A_o U \left(T_i - T_o \right)$$

$$\frac{1}{U} = \frac{A_o}{A_i h_i} + \frac{r_o \ln(r_o/r_i)}{k_w} + \frac{1}{h_o}$$

Παράδειγμα αυλών ατμοπαραγωγού

- Ποια η θερμοκρασία του τοιχώματος;
- επίπτωση Τί έχει • 0 σχηματισμός επικαθήσεων;

Διαστασιολόγηση εναλλάκτη θερμότητας

 $\Delta T_1 = T_{h,out} - T_{c,in}$

 $\Delta T_2 = T_{h,in} - T_{c,out}$

$$\begin{aligned} \Delta \iota \alpha \varphi \rho \rho \iota \kappa \delta \delta \epsilon \rho \mu \iota \kappa \delta \iota \sigma \delta \zeta \delta \gamma \iota \sigma \\ dQ &= \underbrace{U \ dA \ (T_h - T_c)}_{Me \tau a \varphi \rho \rho \dot{a}} = \underbrace{m_h C_{ph} (-dT_h)}_{\Theta \epsilon \rho \mu o \delta \upsilon v a \mu \iota \kappa \dot{\eta}} = m_c C_{pc} (dT_c) \Rightarrow \\ \theta \epsilon \rho \mu \sigma \delta \upsilon v a \mu \iota \kappa \dot{\eta} \\ \hline Q &= UA (\Delta T)_{LM} \end{aligned}$$

$$\begin{aligned} Q &= UA (\Delta T)_{LM} \\ O\lambda \iota \kappa \dot{c} \sigma \upsilon \upsilon \tau \epsilon \lambda \epsilon \sigma \tau \dot{\eta} \varsigma \mu \epsilon \tau a \varphi \rho \rho \dot{a} \varsigma \\ \frac{1}{U} &= \frac{A_o}{A_i h_i} + \frac{r_o \ln(r_o/r_i)}{k_w} + \frac{1}{h_o} \end{aligned}$$

$$\begin{aligned} M \dot{\epsilon} \sigma \eta \lambda \delta \gamma \alpha \rho \iota \partial \mu \iota \kappa \dot{\eta} \delta \iota \alpha \varphi \rho \rho \dot{a} \partial \epsilon \rho \mu \delta \kappa \rho \alpha \sigma \delta \alpha \varsigma \\ (\Delta T)_{LM} &= \frac{\Delta T_1 - \Delta T_2}{\ln(\Delta T_1 / \Delta T_2)} \end{aligned}$$

Εκτίμηση θερμοκρασιών εξόδου με βάση τη θερμοκρασιακή προσέγγιση, ΔΤ $T_{c,out} = T_{h,in} - \Delta T \quad (m_h C_{ph} > m_c C_{pc})$ $T_{h,out} = T_{c,in} + \Delta T \quad (m_h C_{ph} < m_c C_{pc})$

 $Q = m_h C_{ph} (T_{h,in} - T_{h,out}) = m_c C_{pc} (T_{c,out} - T_{c,in})$

Λέβητας ανάκτησης θερμότητας καυσαερίων (HRSB)

$$Q = \dot{m}_g C_{p,g} \left(T_{gi} - T_{go} \right) = UA(\Delta T)_{LM}$$

$$(\Delta T)_{LM} = \left[\frac{\left(T_{gi} - T_{sat} \right) - \left(T_{go} - T_{sat} \right)}{\ln\left[\left(T_{gi} - T_{sat} \right) / \left(T_{go} - T_{sat} \right) \right]} \right] \Rightarrow \left[\ln\left[\frac{\left(T_{gi} - T_{sat} \right)}{\left(T_{go} - T_{sat} \right)} \right] = \frac{UA}{\dot{m}_g C_{p,g}}$$

$$\frac{1}{U} = \frac{1}{h_{sat}} + \frac{\Delta x}{k_w} + \frac{1}{h_g} \approx \frac{1}{h_g}$$

ΥΔΡΑΥΛΩΤΟΣ ΛΕΒΗΤΑΣ

$$Nu \sim Re^{0,6} \Rightarrow U \sim \dot{m}_g^{0,6} \Rightarrow ln \left[\frac{(T_{gi} - T_{sat})}{(T_{go} - T_{sat})} \right] = \frac{K_Y}{\dot{m}_g^{0,4}}$$

ΦΛΟΓΑΥΛΩΤΟΣ ΛΕΒΗΤΑΣ

$$Nu \sim Re^{0,8} \Rightarrow U \sim \dot{m}_g^{0,8} \Rightarrow ln\left[\frac{\left(T_{gi} - T_{sat}\right)}{\left(T_{go} - T_{sat}\right)}\right] = \frac{K_{\Phi}}{\dot{m}_g^{0,2}}$$

Αγωγή-συναγωγή σε πτερύγια

 $Bi_{\delta} \ll 1, Bi_{I} \sim 1 \Rightarrow T(x, z) \approx T(x)$ Διαφορικό ισοζύγιο Πτερύγια σταθερής διατομής Q_{conv} $-d\left(-\delta Wk\frac{dT}{dx}\right) = \left[(2W+2\delta)dx\right]h_a(T-T_a) \Rightarrow$ $\dot{Q}_{\text{cond}, x}$ $\dot{Q}_{\text{cond, } x + \Delta x} \Rightarrow \frac{d^2 \Theta}{dx^2} - m^2 \Theta = 0 \text{ , } m = \sqrt{\frac{2h_a}{k\delta}}$ 0 $h_a, T_a \Rightarrow \Theta(x) = \frac{T(x) - T_a}{T_0 - T_a} = \frac{\cosh[m(L - x)]}{\cosh(mL)}$ $x \rightarrow -\Delta x$ h, T_{∞} $Q = h_a (A_0 + \eta A_f) (T_0 - T_a), \qquad \eta = \frac{tanh(mL)}{(mL)}$

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial z^2} = 0$$

$$\overline{T}(x) = \frac{2}{\delta} \int_0^{\delta/2} T \, dz \qquad \Rightarrow \frac{d^2 \overline{T}}{dx^2} + \frac{2}{\delta} \left(\frac{\partial T}{\partial z} \Big|_{z=\delta/2} - \frac{\partial T}{\partial z} \Big|_{z=0} \right) = 0 \Rightarrow \frac{d^2 \overline{T}}{dx^2} - \frac{2h_a}{\delta k} \left[T(x, \delta/2) - T_a \right] = 0$$

Εφαρμογές

- Ηλιακός συλλέκτης
- Πάνελ ακτινοβολίας

Παραδείγματα μεταβατικής αγωγής

- Σχεδιασμός ψυγείου
- Βελτίωση ατμομηχανής
 (James Watt) ε

Αδιαστατοποίηση

$$\frac{\Delta T}{t} \sim \alpha \frac{\Delta T}{L^2} \Rightarrow \tau = \frac{L^2}{\alpha} \qquad Fo = \frac{t}{\tau} = \frac{\alpha t}{L^2}$$

$$-k_s \frac{\partial T}{\partial x}\Big|_{x=L} = h_\alpha (T(L,t) - T_\alpha) \Rightarrow \quad Bi = \frac{h_\alpha L}{k_s}$$

$$T = T(\underline{x}, t, Bi) \Rightarrow \Theta = \frac{T(\underline{x}, t) - T_{\alpha}}{T_0 - T_{\alpha}} = f\left(\frac{\underline{x}}{L}, \frac{\alpha t}{L^2}, \frac{h_a L}{k_s}\right)$$

Το γενικό πρόβλημα μεταβατικής αγωγής

Οριακές καταστάσεις μεταβατικής αγωγής

Απλοποιήσεις με βάση χρονικές κλίμακες

<u>Βάθος διείσδυσης, $\delta(t)$ ~, σε ημιάπειρο στερεό (αργή απόκριση)</u>

 $Bi \ll 1 \Rightarrow T(\underline{x}, t) = T(t)$

$$\rho_s V C_{Ps} \frac{dT}{dt} = h_a A (T - T_a) \Rightarrow$$

$$\frac{T(t) - T_a}{T(0) - T_a} = exp\left[-\left(\frac{h_a A}{\rho_s V C_{Ps}}\right)t\right]$$

$$Bi \gg 1 \Rightarrow T\Big|_{A} \approx T_{a}$$

Λεπτό τοίχωμα σε ψευδο-μόνιμη κατάσταση (γρήγορη απόκριση)

Αριθμητική επίλυση προβλημάτων αγωγής

Μόνιμη αγωγή

Μεταβατική αγωγή $\rightarrow 2L \leftarrow T_i^n = T(x,t) : x = i \Delta x = i \frac{L}{N}, i = 0, N$ $t = n \Delta t = n \frac{\tau}{M}, n = 0, M$

Συνοριακή συνθήκη $k_s \frac{T_{N-1}^{n+1} - T_N^{n+1}}{4\pi} = h_a (T_N^{n+1} - T_a)$

 $T_i^{n+1} \rightarrow X_i$, i = 0, N

 $A_{i,l}X_l = B_i$ N + 1 εξισώσεις με N + 1 αγνώστους

Μεταφορά θερμότητας με συναγωγή

Μαθηματική περιγραφή και υποπεριπτώσεις

Σύζευξη ροής και μεταφοράς

 $\underline{q} = \rho \underline{u} H - k \, \underline{\nabla} T = \rho \underline{u} C_P T - k \, \underline{\nabla} T$ $\underline{\nabla} \cdot \underline{q} = (\underline{\nabla} \cdot \underline{u}) \rho C_P T + \rho C_P \underline{u} \cdot \underline{\nabla} T - k \nabla^2 T \Rightarrow$

$$\rho C_P \left(\frac{\partial T}{\partial t} + \underline{u} \cdot \underline{\nabla} T \right) = k \nabla^2 T$$

$$\rho\left(\frac{\partial \underline{u}}{\partial t} + \underline{u} \cdot \underline{\nabla} \,\underline{u}\right) = -\underline{\nabla}p + \mu \underline{\nabla}^2 \underline{u} + \rho \underline{g}$$

(σταθερές ιδιότητες, αμελητέα θερμότητα τριβών)

Ημι-εμπειρική αντιμετώπιση

$$q = \frac{Q}{A} = h(T_w - T_a)$$

Συντελεστής συναγωγής $h[=] W/m^2 \circ C = f(\rho, \mu, k, C_p, u, L...)$

ΕΞΑΝΑΓΚΑΣΜΕΝΗ ΣΥΝΑΓΩΓΗ

<u>ΦΥΣΙΚΗ ΣΥΝΑΓΩΓΗ</u>

Αδιάστατοι αριθμοί

Εξισώσεις

$$\rho C_P \left(\frac{\partial T}{\partial t} + \underline{u} \cdot \underline{\nabla} T \right) = k \nabla^2 T$$

$$\uparrow \qquad \uparrow$$

$$\sigma \upsilon \sigma \sigma \omega \rho \varepsilon \upsilon \sigma \eta \quad \sigma \upsilon \nu \alpha \gamma \omega \gamma \eta \quad \alpha \gamma \omega \gamma \eta$$

Αριθμός Nusselt

$$\boldsymbol{N}\boldsymbol{u} = \frac{hL}{k} = \frac{h\,\Delta T}{k\,\Delta T/L}$$

(Σύγκριση μεταφοράς με συναγωγή και αγωγή στο ρευστό)

Εξαναγκασμένη συναγωγή

Nu = f(Re, Pr)

Φυσική συναγωγή

Nu = f(Gr, Pr)

Σύγκριση αδρανειακών με ιξώδεις δυνάμεις

$$\frac{\left|\rho\underline{u}\cdot\underline{\nabla}\,\underline{u}\right|}{\left|\mu\underline{\nabla}^{2}\underline{u}\right|}\sim\frac{\rho U(U/L)}{\mu U/L^{2}}=\frac{\rho UL}{\mu}=\mathbf{R}\mathbf{e}$$

Σύγκριση συναγωγής με αγωγή

 $\frac{\left|\rho C_{P} \underline{u} \cdot \underline{\nabla} T\right|}{\left|k \nabla^{2} T\right|} \sim \frac{\rho C_{P}}{k} \frac{U(\Delta T/L)}{\Delta T/L^{2}} = \frac{UL}{\alpha} = \boldsymbol{P}\boldsymbol{e}$

Σύγκριση διάχυσης ορμής και θερμότητας $\frac{\nu}{\alpha} = \frac{\mu C_p}{k} = \frac{\mu / \rho}{k / \rho C_p} = \mathbf{Pr} \quad (Pe = RePr)$

Χαρακτηριστική ταχύτητα φυσικής συναγωγής

$$|\rho \underline{u} \cdot \underline{\nabla} \underline{u}| \sim \Delta \rho \underline{g} \Rightarrow U \sim \sqrt{\beta \Delta T g L}$$
$$"Re"^{2} = \frac{\left(\sqrt{\beta g \Delta T L}\right)^{2} L^{2}}{\nu^{2}} = \frac{\beta g \Delta T L^{3}}{\nu^{2}} = \mathbf{Gr}$$

 $\Rightarrow T^* = f(x^*, y^*, Pr, Re_L, \gamma \varepsilon \omega \mu \varepsilon \tau \rho \iota \alpha)$

Αδιαστατοποίηση

$$T^* = \frac{T - T_{\infty}}{T_s - T_{\infty}} \qquad x^* = \frac{x}{L} \qquad y^* = \frac{y}{L} \qquad u^* = \frac{u}{u_{\infty}} \qquad v^* = \frac{v}{u_{\infty}}$$
$$Re_L = \frac{\rho u_{\infty} L}{\mu} \qquad Pr = \frac{v}{\alpha}$$

Θερμικό οριακό στρώμα

- Η αγωγή μεταφέρει θερμότητα κατά γ
- Η συναγωγή παρασύρει θερμό ρευστό κατά x (οριακό στρώμα)

Αριθμός Nusselt

$$q(x) = -k\frac{\partial T}{\partial y}\Big|_{y=0} \Rightarrow h(x) = \frac{q}{T_s - T_{\infty}} = \frac{-k\frac{\partial T}{\partial y}\Big|_{y=0}}{T_s - T_{\infty}} = -\frac{-k}{T_s - T_{\infty}}\frac{(T_s - T_{\infty})}{L}\frac{\partial T^*}{\partial y^*}\Big|_{y^*=0} \Rightarrow Nu(x) = \frac{h(x)L}{k} = f(x^*, Pr, Re_L)$$

which the the theorem is the theorem i

 $T^* = f(x^*, y^*, u^*, v^*, Pr, Re_L)$ $\underline{u}^* = f(x^*, y^*, Re_L)$

Στρωτό θερμικό οριακό στρώμα

Για τα περισσότερα ρευστά

$$Pr \ge 1 \Rightarrow \delta \ge \delta_{th}: u(\delta_{th}) \approx \frac{\tau_w}{\mu} \delta_{th} \approx u_\infty \frac{\delta_{th}}{\delta}$$
$$\rho C_P u \frac{\partial T}{\partial x} \sim k \frac{\partial^2 T}{\partial y^2} \Rightarrow u_\infty \frac{\delta_{th}}{\delta} \frac{\Delta T}{L} \sim \alpha \frac{\Delta T}{\delta_{th}^2} \Rightarrow \frac{\delta_{th}}{\delta} \sim Pr^{-1/3}$$
$$\Rightarrow Nu_{x.lum} = 0.332 \ Re_x^{1/2} Pr^{1/3}$$

Για υγρά μέταλλα

$$Pr \ll 1 \Rightarrow \frac{\delta_{th}}{\delta} \sim Pr^{-1/2} \Rightarrow Nu_x = 0,565 Re_x^{1/2} Pr^{1/2}$$

Ολοκληρωτικό ισοζύγιο vonKarman

Ρευστό

Ελαφρά οργανικά

0,004-0,030

0,2-1,0

2-14

5-50

50-10⁵

Υγρά μέταλλα

Αέρια

Νερό

Έλαια

$$q_{w}dx = d \left[\int_{0}^{\delta_{th}} \rho c_{p} u T dy \right] + \rho c_{p} T_{\infty} \left[-d \int_{0}^{\delta_{th}} u dy \right] \Rightarrow$$
$$\frac{d}{dx} \int_{0}^{\delta_{th}} \rho c_{p} u (T - T_{\infty}) dy = q_{w}$$

Ava λ oyía Reynolds $St_x = \frac{h}{\rho c_p u_{\infty}} = \frac{N u_x}{R e_x P r} = 0,332 R e_x^{-1/2} P r^{-2/3}$ $St_x = \frac{c_f}{2} P r^{-2/3}$

Μη-θερμαινόμενο	μήκος ξ
-----------------	---------

$$Nu_{x,\xi} = \frac{0,332 \ Re_x^{1/2} Pr^{1/3}}{[1 - (\xi/x)^{3/4}]^{1/3}}$$

Η μεταφορά προσδιορίζεται πλήρως από: ρ , c_p , k, H, T_w , $q_w \rightarrow T_0$

$$T_{+} = \frac{\left(T_{W} - \overline{T}\right)\rho c_{p}u_{*}}{q_{w}} , \quad T_{W} - \overline{T} = \frac{q_{w}}{\rho c_{p}u_{*}}F\left(\frac{y}{H}, \frac{u_{*}H}{\nu}\right) \quad \acute{\eta}$$

$$\frac{d(T_W - \overline{T})}{dy} = \frac{q_W}{\rho c_p u_* y} \Phi\left(\frac{y}{y_*}, \frac{y}{H}\right) \qquad \left(\frac{y}{y_*} = \frac{y}{H} \frac{u_* H}{v}\right)$$

Βασική παραδοχή (Prandtl)

Σε υψηλούς Re, υπάρχει περιοχή κοντά στο τοίχωμα (*y/H<0,1* <u>εσωτερική περιοχή</u>) όπου η μέση θερμοκρασία καθορίζεται μόνον από τις κλίμακες του τοιχώματος και είναι ανεξάρτητη των *H, T₀*.

$$\frac{d(T_W - \overline{T})}{dy} \approx \frac{q_w}{\rho c_p u_* y} \Phi\left(\frac{y}{y_*}\right) \Rightarrow \frac{dT_+}{dy_+} \approx \frac{1}{y_+} \Phi_1(y_+)$$

$$y_{+} \sim O(1): \qquad \frac{d(T_{W} - \overline{T})}{dy} \approx \frac{q_{W}}{k} \Rightarrow \frac{dT_{+}}{dy_{+}} \approx Pr$$
$$y_{+} > 50: \qquad \Phi_{1}(y_{+}) \rightarrow \frac{1}{\kappa} \Rightarrow \frac{dT_{+}}{dy_{+}} \approx \frac{1}{\kappa y_{+}} \Rightarrow T_{+} = \frac{1}{\kappa} \ln y_{+} + A(Pr)$$
$$A(Pr) = 12,7Pr^{2/3} - 7,7$$

Τυρβώδεις αναλογίες

 $Nu_x = 0.03 Re_x^{4/5} Pr^{1/3}$ (Reynolds)

$$St_x = \frac{c_f/2}{1 + 12,7(Pr^{2/3} - 1)\sqrt{c_f/2}}$$

Συνδυασμένη στρωτή και τυρβώδης μεταφορά $Nu_L = (0,037Re_L^{4/5} - 870) Pr^{1/3}$

Μη-θερμαινόμενο μήκος ξ

$$Nu_{x,\xi} = \frac{Nu_{x,0}}{[1 - (\xi/x)^{9/10}]^{1/9}}$$

Ροή και μεταφορά θερμότητας σε αγωγούς

 $Re_d = \frac{\langle u \rangle d}{\nu} \qquad Nu = \frac{hd}{k}$

Θερμικά αναπτυσσόμενη ροή $\frac{L_{th}}{d} \approx 0,05 RePr$ $Nu = 1,86 (RePr)^{1/3} \left(\frac{d}{L}\right)^{1/3} \left(\frac{\mu_b}{\mu_w}\right)^{0,14}$

Θερμική ανάπτυξη: $[T_w - T(r, x)]/[T_w - T_b(x)] \neq f(x)$

Μέση θερμοκρασία ανάμιξης (T_b)

$$\frac{\pi d^2}{4} \langle u \rangle T_b = \int_0^{d/2} T(r) u(r) 2\pi r dr$$
$$q_w = h(T_w - T_b), \qquad h \approx \frac{k}{\delta_{th}}$$

Στρωτή, θερμικά ανεπτυγμένη ροή

 $T_w = \sigma \tau \alpha \theta$: Nu = 3,66, $q_w = \sigma \tau \alpha \theta$: Nu = 4,36

Τυρβώδης ροή

$$Nu = \frac{(f/2)(Re - 1000)Pr}{1 + 12,7\sqrt{f/2}(Pr^{2/3} - 1)}$$

$$\approx 0,027Re^{0.8}Pr^{1/3} \left(\frac{\mu_b}{\mu_w}\right)^{0,14} \quad (\lambda \varepsilon io \tau o i \chi \omega \mu \alpha)$$

$$Nu = (f_{w})^n = 0 \leq 0 Pr^{0.215}$$

 $\overline{Nu_{smooth}} = \left(\frac{f}{f_{smooth}}\right) \quad n = 0,68 \ Pr^{0,2}$

Μεταφορά θερμότητας γύρω από σώματα

Κύλινδρος $Nu_d = \frac{hd}{k} = CRe^m Pr^{1/3}$

Re	С	m
0,4-4	0,989	0,330
4-40	0,911	0,385
40-4x10 ³	0,683	0,466
4x10 ³ -4x10 ⁴	0,193	0,618
4x10 ⁴ -4x10 ⁵	0,027	0,805

Επίσης, $m \approx 0.6$ για συστοιχίες και μη κυκλικές διατομές

Εναλλακτικά

$$Nu = \left(0,4Re^{1/2} + 0,06Re^{2/3}\right)Pr^{0,4} \left(\frac{\mu_b}{\mu_w}\right)^{0,14}$$

 $\theta^{160^{\circ}}$ $c_f \approx 1 + \frac{10}{Re^{2/3}}$ $1 \le Re \le 10^4$

Σφαίρα

$$Nu = 2 + \left(0,4Re^{1/2} + 0,06Re^{2/3}\right)Pr^{0,4} \left(\frac{\mu_b}{\mu_w}\right)^{0,14}$$

 $c_f \approx 0.4 + \frac{24}{Re} + \frac{6}{Re^{1/2}}$ $10 \le Re \le 10^5$

Φυσική συναγωγή σε κατακόρυφη πλάκα

Στρωτή ροή (Gr < 10⁹) $\frac{\delta(x)}{x} = \frac{[336(Pr + 5/9)]^{1/4}}{Pr^{1/2}} Gr_x^{-1/4}$ $u_0(x) = \frac{112[g\beta(T_w - T_b)x]^{1/2}}{[336(Pr + 5/9)]^{1/2}}$

$$Nu_{L} = \frac{(8/3)Pr^{1/2}}{[336(Pr+5/9)]^{1/4}} Gr_{L}^{1/4}$$
$$Q \sim (T_{w} - T_{b})^{1,25}$$

Τυρβώδης ροή $(Gr_x > 10^9)$

$$Nu_{x} = 0,0295 \left(\frac{Pr^{7/6}Gr_{x}}{1+0,494Pr^{2/3}}\right)^{2/5}$$

Γενική συσχέτιση $(10^2 < Gr_L < 10^{11}) Ra_L = Gr_L Pr$

$$Nu_{L} = \left[0,825 + \frac{0,387Ra_{L}^{1/6}}{[1 + (0,492/Pr)^{9/16}]^{8/27}}\right]^{2}$$

Υπολογισμοί για κατακόρυφη πλάκα

Ολοκληρωτικά ισοζύγια vonKarman

$$\tau_w = \int_0^\delta \rho g \beta (T - T_b) dy - \frac{d}{dx} \int_0^\delta \rho u^2 dy$$
$$q_w = \frac{d}{dx} \int_0^{\delta_{th}} \rho c_p u (T - T_\infty) dy$$

Χαρακτηριστικά μεγέθη

Ταχύτητα: $u_0(x)$

Πάχος οριακού στρώματος: $\delta(x)$

Λύση ομοιότητας $\eta = y/\delta(x)$ $u(x, y) = u_0(x)(a\eta + b\eta^2 + c\eta^3 + d\eta^4)$

 $\frac{T(x, y) - T_b}{T_w - T_b} = (1 - \eta)^2$

$$\tau_{w} = \mu \frac{\partial u}{\partial y}\Big|_{w} = \mu \frac{u_{0}(x)}{\delta(x)} \qquad q_{w} = -k \frac{\partial T}{\partial y}\Big|_{w} = 2k \frac{(T_{w} - T_{b})}{\delta(x)}$$
$$u_{0}(x) = C_{1}x^{m}$$
$$\delta(x) = C_{2}x^{n} \qquad \Rightarrow \quad \text{Αντικατάσταση στα ολοκληρωτικά ισοζύγια}$$
$$112[a\beta(T_{w} - T_{b})]^{1/2}$$

$$m = 1/2$$
, $n = 1/4$, $C_1 = \frac{112[g\beta(T_w - T_b)]^{1/2}}{[336(Pr + 5/9)]^{1/2}}$

$$C_2 = \frac{[336(Pr+5/9)]^{1/4}}{Pr^{1/2}} \left[\frac{g\beta(T_w - T_b)}{\nu^2}\right]^{-1/4}$$

Φυσική συναγωγή σε κοιλότητες

Κατακόρυφη στρωμάτωση

$$\frac{\partial p}{\partial x} = \frac{\partial p_d}{\partial x} - \rho_m g = G - \rho_m g$$

$$\mu \frac{\partial^2 u}{\partial y^2} = G + (\rho - \rho_m)g = G - \rho_m \beta (T - T_m)g$$

 $\Gamma\iota\alpha \quad T_m \equiv T_0 \Rightarrow \mathbf{G} = \mathbf{0}$

 $\frac{u(y)b}{v} = \frac{\beta \,\Delta T b^3}{6v^2} \left[\left(\frac{y}{b}\right)^3 - \frac{y}{b} \right]$

Με αύξηση της απόστασης, b (Άρα και του αριθμού Ra)

Ευθύγραμμη ροή → Ροή οριακού στρώματος

Παραδείγματα

- Τζάκια-Ηλιακή καμινάδα
- Ατμόσφαιρα-Αδιαβατική θερμοκρασιακή κλίση

$$\left(\frac{dT}{dz}\right)_{adia} = -\frac{g}{C_p}$$

Οριζόντια στρωμάτωση

 $Ra_d = \frac{g\beta(T_w - T_b)d^3}{v\alpha} > 1708$

Συναγωγή Rayleigh-Benard

Συμπύκνωση και βρασμός

ΕΦΑΡΜΟΓΕΣ

- Συμπυκνωτές αποστακτικών στηλών
- Εναλλάκτες κλιματιστικών μονάδων
- Συμπυκνωτές κενού σε ΑΗΣ
- Συσκευές που λειτουργούν με ατμό θέρμανσης

Συμπύκνωση (και ροή) υγρού υμένα

Το βασικό θερμικό ισοζύγιο

Γιατί αυξάνεται το πάχος του υγρού υμένα προς τα κάτω (στην κατεύθυνση της βαρύτητας); $dm = dQ/\lambda$, $\lambda \equiv h_{lg}$

Προσέγγιση ψευδο-μόνιμης ροής (ως προς x):

$$\Gamma(x) = \frac{m(x)}{b} = \frac{\rho_l (\rho_l - \rho_g) g \delta(x)^3}{3 \mu_l}$$

Συνοριακές συνθήκες θερμοκρασίας στα άκρα του υγρού υμένα

$$\frac{k_l}{\delta}(T_{sat} - T_w)(b \, dx) = \lambda b d\Gamma = \lambda b \frac{\rho_l(\rho_l - \rho_g)g\delta^2}{\mu_l} d\delta \Longrightarrow \delta^3 d\delta = \left[\frac{\mu_l(T_{sat} - T_w)}{\lambda\rho_l(\rho_l - \rho_g)g}\right] dx$$
$$\Rightarrow \delta(x) = \left[\frac{4k_l\mu_l(T_{sat} - T_w)x}{\lambda\rho_l(\rho_l - \rho_g)g}\right]^{1/4}, \quad h(x) = \frac{k_l}{\delta(x)}$$
$$\overline{h_L} = \frac{1}{L} \int_0^L h(x)dx = \frac{1}{L} \int_0^L \frac{k_l}{\delta(x)} dx = 0.943 \left[\frac{k_l^3\lambda\rho_l(\rho_l - \rho_g)g}{\mu_l L(T_{sat} - T_w)}\right]^{1/4}$$
Συντελεστής συμπύκνωσης συναρτήσει Nu και Re

Κατηγοριοποίηση φαινομένων Βρασμού

https://www.youtube.com/watch?v=GA9MBdePwmo&t=2s

Κίνηση του υγρού

- Στάσιμος βρασμός (pool boiling)
- Βρασμός ροής (flow boiling)

Μηχανισμός αλλαγής φάσης

- Εξάτμιση
- Βρασμός πυρήνων (nucleate boiling)
- Βρασμός υμένα (film boiling)

Σφαιρική φυσαλίδα (εξίσωση Young-Laplace)

$$p_B - p_{sat} = \frac{2\sigma}{r}$$

Δυσκολία ομογενούς βρασμού

 $T = 100°C, \sigma = 0,059 N/m$ $r = 10 \mu m \Rightarrow \Delta p = 0,12 \text{ bar}, T_{sat} = 102,8°C$ $r = 1 \mu m \Rightarrow \Delta p = 1,2 \text{ bar}, T_{sat} = 123,3°C \longleftarrow 1,4x10^{11}$ μόρια

Εφαρμογές στάσιμου Βρασμού

Αναβραστήρας/εξατμιστήρας τύπου λέβητα (kettle reboiler-flooded evaporator)

Ατμοπαραγωγός με φλογοσωλήνα (shell boiler)

Εφαρμογές βρασμού ροής

Στάσιμος Βρασμός

Έναρξη βρασμού πυρήνων

 $2\sigma T_{sat}$

p_{sat}

Σφαιρική σταγόνα ή φυσαλίδα
$$p_B - p_{sat} = rac{2\sigma}{r}$$

$$T_{w} = T_{sat} + \frac{dT_{sat}}{dp_{sat}}(p_{B} - p_{sat})$$

$$\frac{dT_{sat}}{dp_{sat}} = \frac{T_{sat}\Delta v^{vl}}{\Delta h^{vl}} \approx \frac{T_{sat}}{\rho_{v}\Delta h^{vl}}$$

$$\Delta T_{w,min} = T_{w} - T_{sat} = \frac{2\sigma T_{sat}}{r\rho_{v}\Delta h^{vl}}$$

$$(r \sim 5\mu m)$$

Επίδραση πλήθους μικρο-εγκοπών

Επίδραση επιφανειακής τάσης (με ιοντικό επιφανειοδραστικό) https://www.youtube.com/watch?v=XtekyM8awWc

Ελάχιστη υπερθέρμανση τοιχώματος

Θερμορροή βρασμού πυρήνων

Χαρακτηριστικές κλίμακες:
$$U = \frac{q}{\lambda \rho_l}$$
 $L = \left[\frac{\sigma}{g(\rho_l - \rho_v)}\right]^{1/2}$

Συσχέτιση Rosenhow

$$Nu = \frac{1}{C_{sl}} Re^{1-m} Pr^{1-n}$$
$$q = h(\Delta T_w) \sim (\Delta T_w)^3$$

$$q = \mu_l \lambda \left[\frac{g(\rho_l - \rho_v)}{\sigma} \right]^{1/2} \left(\frac{c_{p,l} \Delta T_w}{C_{sl} \lambda P r_l^n} \right)^3$$

Νερό: n=1 , Οργανικά: n=1,7

Fluid-Heating Surface Combination	C_{sf}	п
Water-copper (polished)	0.0130	1.0
Water-copper (scored)	0.0068	1.0
Water-stainless steel (mechanically polished)	0.0130	1.0
Water-stainless steel (ground and polished)	0.0060	1.0
Water-stainless steel (teflon pitted)	0.0058	1.0
Water-stainless steel (chemically etched)	0.0130	1.0
Water-brass	0.0060	1.0
Water–nickel	0.0060	1.0
Water–platinum	0.0130	1.0
n-Pentane-copper (polished)	0.0154	1.7
<i>n</i> -Pentane–chromium	0.0150	1.7
Benzene-chromium	0.1010	1.7
Ethyl alcohol-chromium	0.0027	1.7
Carbon tetrachloride-copper	0.0130	1.7
Isopropanol–copper	0.0025	1.7

Τα δύο βασικά προβλήματα μεταφοράς θερμότητας

Συσκευές με θερμαντικό ρευστό $Q = UA(T_b - T_o)$ $T_b \rightarrow Q$

Συσκευές με φλόγα $Q = h_o A (T_w - T_o) \qquad Q \to T_w$

https://www.youtube.com/watch?v=BuXj3obbFfM

Φαινομενολογία Βρασμού ροής

Παρατηρήσεις

- Συνεχής μεταβολή της ποιότητας κατά μήκος του αυλού
- Το τοπικό καθεστώς ροής επηρεάζει τον μηχανισμό ατμοποίησης
- Κύριο φαινόμενο η μετάπτωση από βρασμό πυρήνων σε εξάτμιση (βρασμός με συναγωγή- convective boiling)

Βρασμός με συναγωγή (εξάτμιση) $q = h(T_w - T_{sat}) \approx \frac{k_l}{\delta_l} (T_w - T_{sat})$ $\delta_l \downarrow \Rightarrow h \uparrow \Rightarrow T_w \downarrow$ Διακοπή βρασμού πυρήνων
όταν $T_w - T_{sat} < \Delta T_{w,min}$

Γενικευμένος ορισμός ποιότητας μίγματος

$$x = \frac{H - H_l^{sat}}{H_v^{sat} - H_l^{sat}} = \frac{H - H_l^{sat}}{\lambda} \begin{bmatrix} x < 0 : Yπόψυκτο υγρό \\ x > 1 : Yπέρθερμος ατμός \end{bmatrix}$$

Συσχέτιση Chen

Βρασμός ροής = Πυρηνογένεση + Εξάτμιση

 $q = h(T_w - T_{sat})$

 $h = h_{NB} + h_{CB} = Sh_{PB} + Fh_{sl}$

S < 1 Συντελεστής απόσβεσης πυρηνογένεσης $F \geq 1$ Συντελεστής διφασικής ροής

Σχέση Foster-Zuber για στάσιμο βρασμό

 $h_{PB} = 0,00122 \frac{\Delta T_w^{0,24} \Delta p_w^{0,75} c_{p,l}^{0,45} \rho_l^{0,49} k_l^{0,79}}{\sigma^{0,5} \lambda^{0,24} \mu_l^{0,29} \rho_o^{0,24}}$

Υπόψυκτος βρασμός $q = h_{NB}(T_w - T_{sat}) + h_{sl}(T_w - T_l)$

$$Nu_{sl} = 0.023 Re_{sl}^{0.8} Pr_{l}^{0.4} \quad Re_{sl} = \frac{4 (1 - x)W}{\pi D \mu_{l}}$$

$$F = \begin{cases} 2.35 (0.213 + 1/X_{tt})^{0.736} \gamma \iota \alpha X_{tt} < 10 \\ 1 & \gamma \iota \alpha X_{tt} \ge 10 \end{cases}$$

$$S = \frac{1}{1 + 2.53 \cdot 10^{-6} (Re_{sl}F^{1.25})^{1.17}}$$

$$X_{tt}^{2} = \frac{(dp/dz)_{sl}}{(dp/dz)_{sg}} = \left(\frac{1 - x}{x}\right)^{1.8} \left(\frac{\rho_{g}}{\rho_{l}}\right) \left(\frac{\mu_{l}}{\mu_{g}}\right)^{0.2}$$

$$Single Bubbly + Plug + Slug + Wavy + Intermittently dry how and dry the start of t$$

 $\lambda = 1$

Εξέλιξη ποιότητας μίγματος στον αυλό

q

Ισοζύγιο ενέργειας-ομοιόμορφη θερμορροή

$$q(\pi Dz) = \left(G\frac{\pi D^2}{4}\right)[x(z) - x_{in}]\lambda \Rightarrow q = \frac{GD\lambda}{4L}(x_{out} - x_{in})$$

Ισχύει και για υπόψυκτο υγρό στην είσοδο

$$q(\pi Dz) = \left(G\frac{\pi D^2}{4}\right) \left[xH_v^{sat} + (1-x)H_l^{sat} - H_{l,in}\right] = \left(G\frac{\pi D^2}{4}\right) \left[x(H_v^{sat} - H_l^{sat}) - \left(H_{l,in} - H_l^{sat}\right)\right] = \left(G\frac{\pi D^2}{4}\right) \left[x(z) - x_{in}\right]\lambda$$

Ισοζύγιο ενέργειας-ανομοιόμορφη θερμορροή

$$Q(z) = \int_0^z q(z)\pi Ddz = \left(G\frac{\pi D^2}{4}\right)[x(z) - x_{in}]\lambda$$

$$\Rightarrow x(z) = \cdots$$

$$q(z), x(z) \Rightarrow q(x)$$

Πρόβλεψη φυσικής ανακυκλοφορίας

Κρίση βρασμού ροής-κρίσιμη θερμορροή (CHF)

Στο στάσιμο βρασμό:

 $q_{cr} = 0,149\lambda \rho_v^{1/2} [\sigma g(\rho_l - \rho_v)]^{1/4} = q_{cr}(p_{sat})$

Στο βρασμό ροής:

Δύο μηχανισμοί κρίσης βρασμού:

- Σε χαμηλές ποιότητες: σχηματισμός στρώματος ατμού (DNB)
- Σε υψηλές ποιότητες: ξήρανση υγρού υμένα (Dryout)

CHF:
$$q_{cr} = q_{cr}(p_{sat}, G, x)$$

Πίνακες κρίσιμης θερμορροής για νερό σε αγωγό με D=8 mm (Groeneveld et al 2006)

Εξάρτηση από διάμετρο αγωγού

$$\frac{q_{cr}(D)}{q_{cr}(8mm)} = \left(\frac{8}{D}\right)^{0.5}, \qquad D \le 25 \ mm$$

Εξάρτηση από ιδιότητες ρευστού

$$\frac{\rho_l}{\rho_v}\,, \frac{G}{\sqrt{\rho_l\,\sigma/D}}\,, \frac{q_{cr}}{G\,\lambda} \Rightarrow p_{sat}, G, q_{cr}$$

Pressure	Mass Flux										0	017 0-331	-21		<u></u>			able	· · · ·	0000	unda		(2004	C 1
[kPa]	[kg m ⁻² s ⁻¹]										C	ar ikw	m 1		CH	- 1001	k-up t	.upies	s Gr	oene	vela		2008	ソ
5000	1500	14030	11668	9617	8115	7597	7296	7024	6470	5710	5375	4875	4438	4167	3795	3357	2941	2531	2290	914	592	393	200	0
5000	2000	15633	12936	10401	8530	7889	7408	6946	6107	5170	4836	4340	3913	3599	3257	2909	2412	1979	1182	638	354	188	130	0
5000	2500	17335	14268	11308	8887	7972	7432	6712	5661	4880	4445	4017	3662	3295	2876	2689	1915	955	651	447	195	99	51	0
5000	3000	18794	15433	12150	9231	8180	7463	6490	5427	4718	4265	3857	3476	3104	2578	2283	1429	708	533	405	179	73	41	0
5000	3500	19936	16374	12894	9768	8306	7477	6368	5026	4484	3984	3644	3312	2932	2394	1781	1164	910	706	513	290	103	42	0
5000	4000	20949	17217	13569	9991	8683	7658	6295	4783	4200	3584	3367	3140	2745	2274	1402	1188	1060	922	593	320	111	44	0
5000	4500	21962	18016	14114	10137	9063	7837	6323	4905	4130	3522	3305	3023	2672	2065	1424	1245	1128	1046	649	346	117	46	0
5000	5000	22867	18766	14525	10880	9540	8183	6486	5030	4103	3487	3287	3017	2684	2024	1455	1329	1224	1112	695	362	124	51	0
5000	5500	23661	19456	15309	11569	10048	8548	6741	5245	4051	3480	3299	3060	2672	2047	1628	1480	1351	1176	743	379	135	57	0
5000	6000	24391	20103	15958	12239	10650	8921	7328	5430	4008	3507	3314	3079	2696	2057	1747	1598	1449	1240	793	405	152	67	0
5000	6500	25098	20718	16511	12734	10892	9511	7643	5637	4183	3523	3357	3128	2771	2258	1947	1783	1549	1314	855	437	172	78	0
5000	7000	25860	21312	16907	13189	11608	9908	7949	5781	4373	3553	3386	3182	2857	2430	2136	1893	1639	1396	926	482	197	91	0
5000	7500	26597	21982	17360	13563	11914	10298	8281	6006	4572	3786	3444	3201	2944	2603	2250	1988	1716	1466	990	512	211	98	0
5000	8000	27254	22428	17865	13912	12316	10851	8676	6217	4805	4010	3629	3362	3178	2817	2409	2068	1783	1533	1052	543	225	105	0
		1	[]	l.	90 19		÷													ĺ,				
	×→	-0.50	-0.40	-0.30	-0.20	-0.15	-0.10	-0.05	0.00	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.60	0.70	0.80	0.90	1
7000	0	5445	5059	4676	4323	4139	3937	3677	3322	2696	2256	1848	1479	1243	1036	891	778	692	621	525	389	267	209	0
7000	50	5919	5536	5191	4863	4698	4520	4306	3998	3399	2986	2624	2264	2042	1859	1712	1588	1477	1366	1151	1010	473	325	0
7000	100	6912	6301	5871	5584	5462	5261	5095	4849	4271	3776	3499	3290	3142	3034	2906	2850	2651	2486	2123	1673	1205	768	0
7000	300	7445	6709	6259	6020	5914	5761	5662	5495	5182	4752	4464	4070	3764	3611	3417	3250	3028	2738	2286	1994	1408	869	0
7000	500	7842	6895	6435	6188	5996	5931	5818	5672	5408	4922	4521	4196	3989	3812	3602	3459	3221	2905	2482	1985	1547	869	0
7000	750	9129	7841	6867	6263	6154	5998	5895	5776	5430	4987	4538	4131	3918	3709	3464	3327	3118	2770	2312	1904	1400	742	0
7000	1000	10186	8774	7390	6532	6313	6276	6162	5864	5366	4920	4399	3935	3723	3447	3112	2884	2713	2432	2085	767	506	341	0
7000	1500	11920	10072	8460	7262	6915	6647	6308	5729	5059	4561	4039	3612	3279	2991	2698	2490	2264	1591	599	372	318	191	0
7000	2000	13294	11209	9172	7557	7279	6769	6187	5327	4570	4020	3552	3174	2864	2566	2353	1919	1406	793	483	267	197	134	0
7000	2500	14680	12245	9774	7920	7382	6765	5895	4977	4178	3639	3207	2867	2552	2211	1941	1487	813	521	342	177	103	58	0
7000	3000	15871	13214	10463	8259	7522	6778	5785	4761	3971	3366	3014	2640	2333	2111	1685	951	493	429	307	157	77	43	0
7000	3500	16889	11072	11223	8783	7711	6972	5738	1518	3739	3127	2816	2482	2188	1798	1357	851	631	531	388	224	96	11	0
7000	4000	17783	14824	11868	9277	8077	7118	5593	4226	3539	2855	2616	2362	2104	1710	1251	957	789	681	444	255	99	44	0
7000	4500	18619	15498	12439	9619	8281	7208	5381	4156	3422	2650	2472	2268	2057	1647	1239	1006	867	779	487	266	102	45	0
7000	5000	19434	16132	12870	10084	8686	7415	5486	4350	3409	2611	2486	2251	2040	1619	1279	1052	950	854	526	277	106	47	0
7000	5500	20138	16733	13579	10563	9272	7844	6153	4649	3405	2688	2460	2325	2076	1662	1397	1217	1065	933	576	298	115	52	0
7000	6000	20703	17309	14047	11354	9947	8657	6697	4756	3417	2725	2487	2353	2087	1697	1476	1339	1184	1018	637	327	131	60	0
7000	6500	21284	17855	14610	11951	10355	9156	7135	4905	3437	2733	2525	2442	2241	1938	1688	1515	1303	1103	702	360	149	69	0
7000	7000	21889	18357	15013	12260	10817	9456	7309	4949	3504	2872	2648	2499	2348	2094	1852	1615	1393	1182	771	401	170	80	0
7000	7500	22505	18841	15385	12539	11244	9779	7455	5004	3629	3017	2792	2596	2488	2263	2039	1776	1504	1264	838	433	182	86	0
7000	8000	23064	19305	15794	12917	11519	10059	7792	5163	3777	3222	3120	3063	2927	2605	2282	1893	1592	1345	904	463	193	91	0

Μεταφορά θερμότητας με ακτινοβολία

Βασικές έννοιες-μέλαν σώμα

Ηλεκτρομαγνητική ακτινοβολία

Characterization	Wavelengt
Cosmic rays	< 0.3
Gamma rays	0.3-100
X rays	0.01-30
Ultraviolet light	3-400
Visible light	0.4-0.7
Near infrared radiation	0.7-30
Far infrared radiation	30-1000
Millimeter waves	1-10
Microwaves	10-300 1
Shortwave radio & TV	300 mm-10
Longwave radio	100 m-30

th, λ pm pm nm nm μm μm μm mm mm 0 m km

Αλληλεπίδραση ακτινοβολίας με στερεό

 α_{λ} , ρ_{λ} , τ_{λ} : μονοχρωματικοί βαθμοί απορρόφησης, ανάκλασης και διαπέρασης Μέλαν σώμα (μαύρη επιφάνεια)

 $\alpha_{\lambda,b} = \alpha_b = 1$

 E_b , $E_{b,\lambda}$: ολική και μονοχρωματική εκπεμπόμενη ισχύς[=]J/m² επιφάνειας

Κατανομή Planck $C_1 = 2\pi h c^2$ $C_2 = hc/k_B$

Νόμος Wien

 $E_{b,\lambda}(\lambda,T) = \max \Rightarrow$ $(\lambda T)_{max} = 2898 \ \mu m K$

Νόμος Stefan-Boltzmann $E_{b,\lambda}(\lambda,T) = \frac{C_1}{\lambda^5 [exp(C_2/\lambda T) - 1]} \qquad E_b(T) = \int_0^\infty E_{b,\lambda}(\lambda,T) d\lambda = \sigma T^4$

 $\alpha_{\lambda} + \rho_{\lambda} + \tau_{\lambda} = 1$

Βαθμός εκπομπής

 $\varepsilon_{\lambda} = \frac{E_{\lambda}}{E_{b,\lambda}}$

Γενική συμπεριφορά

 $\varepsilon_{\lambda} = \varepsilon_{\lambda}'(\lambda, \varphi, \theta, T)$

Η εκπεμπόμενη (όπως και η απορροφούμενη και ανακλώμενη) ισχύς εξαρτώνται και από την κατεύθυνση

Ολικός βαθμός εκπομπής

$$\varepsilon(T) = \frac{\int_0^\infty E_\lambda d\lambda}{\int_0^\infty E_{b,\lambda} d\lambda} = \frac{\int_0^\infty \varepsilon_\lambda E_{b,\lambda} d\lambda}{\sigma T^4}$$

Τέχνασμα υπολογισμών

$$\frac{\int_0^{\lambda} E_{b,\lambda} d\lambda}{\sigma T^4} = \int_0^{\lambda T} \frac{C_1/\sigma}{(\lambda T)^5 [exp(C_2/\lambda T) - 1]} d(\lambda T)$$

NOMOΣ KIRCHHOFF

 $\alpha'_{\lambda}(\lambda,\varphi,\theta,T) = \varepsilon'_{\lambda}(\lambda,\varphi,\theta,T)$

Διάχυτη επιφάνεια (ή ακτινοβολία) $\alpha_{\lambda}(\lambda, T) = \varepsilon_{\lambda}(\lambda, T)$

Γκρίζα και διάχυτη επιφάνεια (ή ακτινοβολία*)

Σχέση εκπομπής και απορρόφησης

Θερμική ισορροπία μικρής επιφάνειας σε μαύρη κοιλότητα

 $(\varepsilon_1 E_{b1})A_1 = (\alpha_1 E_{b1})A_1 \Rightarrow$ $\varepsilon_1(T_1) = \alpha_1(T_1)$

Θερμική ισορροπία επιφανειών που ακτινοβολούν

 T_1

$$q_{1} = \varepsilon_{1}E_{b1} + (1 - \alpha_{1})E_{b2}$$

$$q_{2} = E_{b2}$$

$$\Rightarrow q_{1-2} = \varepsilon_{1}E_{b1} - \alpha_{1}E_{b2}$$

$$T_{1} = T_{2} = T \Rightarrow \varepsilon_{1}(T) = \alpha_{1}(T)$$

Απορρόφηση φασματικά ανομοιόμορφων επιφανειών

Διαπερατότητα γυαλιού

 $G,G_\lambda(\lambda)$: ολική και μονοχρωματική έκθεση επιφάνειας

$$G_{\lambda}(\lambda) = G_{\lambda,abs}(\lambda) + G_{\lambda,refl}(\lambda) + G_{\lambda,trans}(\lambda)$$

$$\alpha_{\lambda}(\lambda) = \frac{G_{\lambda,abs}(\lambda)}{G_{\lambda}(\lambda)} \Rightarrow \alpha = \frac{\int_{0}^{\infty} G_{\lambda,abs}(\lambda) d\lambda}{\int_{0}^{\infty} G_{\lambda}(\lambda) d\lambda} = \frac{\int_{0}^{\infty} \alpha_{\lambda} G_{\lambda} d\lambda}{G}$$

Ηλιακή ακτινοβολία

Βασικές παραδοχές

- Εναλλαγή ακτινοβολίας μεταξύ επιφανειών χωρίς επίδραση του ενδιάμεσου ρευστού
- Η ακτινοβολία είναι διάχυτη και οι επιφάνειες είναι γκρίζες
- Κάθε απλή επιφάνεια έχει ομοιόμορφη θερμοκρασία και θερμορροή (διαφορικές επιφάνειες-αριθμητική επίλυση)
- Η ακτινοβολία που φεύγει από μία επιφάνεια και προσπίπτει σε μία άλλη εξαρτάται από την απόσταση και τον σχετικό προσανατολισμό των επιφανειών
- Τα γεωμετρικά χαρακτηριστικά περιγράφονται από τον συντελεστή όψης F_{ij}
- Η έκθεση, G_i , της επιφάνειας A_i προέρχεται από όλες τις υπόλοιπες επιφάνειες του περιβάλλοντος

Ισοζύγιο ενέργειας σε επιφάνει
α A_i

 $q_{i} = q_{i,\varepsilon\kappa\pi} - q_{i,\alpha\pi\sigma\rho} = E_{i} - \alpha_{i}G_{i} \quad \dot{\eta} \, \text{ισοδύναμα},$ $q_{i} = q_{i,out} - q_{i,in} = (q_{i,\varepsilon\kappa\pi} + q_{i,\alpha\nu\alpha\kappa\lambda}) - q_{i,\varepsilon\kappa\theta\varepsilon\sigma\eta} = E_{i} + \rho_{i}G_{i} - G_{i}$

Συντελεστής όψης μεταξύ A_i και A_j

 F_{ij} : το κλάσμα της ακτινοβολίας που φεύγει από την επιφάνεια A_i και προσπίπτει στην επιφάνεια A_j

Ιδιότητες συντελεστή όψης

Κανόνας αμοιβαιότητας

 $A_i F_{ij} = A_j F_{ji} \quad (F_{ij} \neq F_{ji})$

Κανόνας αθροίσματος

$$\sum_{i=1}^{N} F_{ij} = 1$$

$$F_{22} = ?$$

$$F_{11} + F_{12} = 1$$

$$F_{11} = 0$$

$$\Rightarrow F_{12} = 1$$

$$A_1F_{12} = A_2F_{21} \Rightarrow F_{21} = \frac{A_1}{A_2}F_{12} = \frac{r_1^2}{r_2^2}$$

$$F_{21} + F_{22} = 1 \Rightarrow F_{22} = 1 - \frac{r_1^2}{r_2^2}$$

Εναλλαγή ακτινοβολίας μεταξύ μαύρων επιφανειών

Μαύρη επιφάνεια

$$E_i \to E_{bi} = \sigma T_i^4$$

Για κάθε επιφάνεια είναι γνωστή είτε η θερμοκρασία, T_i , είτε η θερμορροή, q_i

Эгрµік аты́ аты́ а тира́ и трос три ј

$$Q_{i \rightarrow j} \equiv Q_{ij}, Q_{j \rightarrow i} = -Q_{i \rightarrow j} = -Q_{ij}$$

 $Q_{ij} = (A_i E_{bi})F_{ij} - (A_j E_{bj})F_{ji}$
 $A_i F_{ij} = A_j F_{ji}$
 $\Rightarrow Q_{ij} = A_i F_{ij} (E_{bi} - E_{bj})$

Συνολική απώλεια επιφάνειας ί

$$Q_i = \sum_{j=1}^N Q_{ij} = \sum_{j=1}^N A_i F_{ij} (E_{bi} - E_{bj}) \Rightarrow$$

$$q_{i} = \sum_{j=1}^{N} F_{ij} (E_{bi} - E_{bj}) = E_{bi} - \sum_{j=1}^{N} F_{ij} E_{bj}$$

Σύστημα Ν γραμμικών εξισώσεων ως προς τους Ν άγνωστους q_i ή E_{bi}

$$Q_{i} = A_{i}J_{i} - A_{i}G_{i} \Rightarrow q_{i} = J_{i} - G_{i}$$

$$J_{i} = \varepsilon_{i}E_{bi} + \rho_{i}G_{i}$$

$$\rho_{i} = 1 - \alpha_{i} = 1 - \varepsilon_{i} \Rightarrow G_{i} = \frac{J_{i} - \varepsilon_{i}E_{bi}}{1 - \varepsilon_{i}} \Rightarrow q_{i} = \frac{\varepsilon_{i}}{1 - \varepsilon_{i}}(E_{bi} - J_{i})$$

νεται από την επιφάνεια

Εναλλαγή ακτινοβολίας της επιφάνειας i με τις υπόλοιπες

$$\begin{array}{l} Q_{ij} = (A_i J_i) F_{ij} - (A_j J_j) F_{ji} \\ A_i F_{ij} = A_j F_{ji} \end{array} \right] \Rightarrow \quad Q_{ij} = A_i F_{ij} (J_i - J_j) = -Q_{ji}$$

$$Q_{i} = \sum_{j=1}^{N} Q_{ij} = \sum_{j=1}^{N} A_{i} F_{ij} (J_{i} - J_{j}) \Rightarrow \qquad q_{i} = \sum_{j=1}^{N} F_{ij} (J_{i} - J_{j})$$

Μαθηματική προσέγγιση

$$q_{i} = \sum_{j=1}^{N} F_{ij} (J_{i} - J_{j})$$

$$q_{i} = \frac{\varepsilon_{i}}{1 - \varepsilon_{i}} (E_{bi} - J_{i})$$

$$\Rightarrow E_{bi} = J_{i} + \frac{1 - \varepsilon_{i}}{\varepsilon_{i}} \sum_{j=1}^{N} E_{j}$$

Για κάθε επιφάνεια είναι γνωστή είτε η θερμοκρασία είτε η θερμορροή

$$q_i$$
, $E_{bi} = \sigma T_i^4$

Σύστημα Ν γραμμικών εξισώσεων ως προς τους Ν άγνωστους J_i

$$q_i = \sum_{j=1}^{N} F_{ij} (J_i - J_j) \qquad \acute{\mathbf{\eta}}$$

$$E_{bi} = J_i + \frac{1 - \varepsilon_i}{\varepsilon_i} \sum_{j=1}^N F_{ij} (J_i - J_j)$$

Κλειστό σύστημα δύο επιφανειών

$$Q_1 = \frac{A_1 \varepsilon_1}{1 - \varepsilon_1} (E_{b1} - J_1) = Q \Rightarrow E_{b1} - J_1 = Q \left(\frac{1 - \varepsilon_1}{A_1 \varepsilon_1}\right)$$

$$Q_{12} = A_1 F_{12} (J_1 - J_2) = Q \Rightarrow J_1 - J_2 = Q \left(\frac{1}{A_1 F_{12}}\right)$$

$$Q_2 = \frac{A_2 \varepsilon_2}{1 - \varepsilon_2} (E_{b2} - J_2) = -Q \Rightarrow J_2 - E_{b2} = Q \left(\frac{1 - \varepsilon_2}{A_2 \varepsilon_2}\right)$$

$$\Rightarrow Q = \frac{E_{b1} - E_{b2}}{\frac{1 - \varepsilon_1}{A_1 \varepsilon_1} + \frac{1}{A_1 F_{12}} + \frac{1 - \varepsilon_2}{A_2 \varepsilon_2}}$$

Ειδικές περιπτώσεις

Παράλληλες πλάκες άπειρου μεγέθους

$$A_1 = A_2 = A$$
, $F_{12} = 1 \Rightarrow Q = \frac{A\sigma(T_1^4 - T_2^4)}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1}$

$$Eπιμήκεις ομοαξονικοί κύλινδροι$$
$$\frac{A_1}{A_2} = \frac{r_1}{r_2}, F_{12} = 1 \Rightarrow Q = \frac{A_1 \sigma (T_1^4 - T_2^4)}{\frac{1}{\varepsilon_1} + \frac{1 - \varepsilon_2}{\varepsilon_2} \left(\frac{r_1}{r_2}\right)}$$

Μικρό σώμα σε μεγάλη κοιλότητα

$$A_1 \ll A_2 \Rightarrow \frac{A_1}{A_2} \approx 0$$
, $F_{12} = 1 \Rightarrow Q = \varepsilon_1 A_1 \sigma (T_1^4 - T_2^4)$

Αδιαβατική θερμοκρασία φλόγας

Ισοζύγιο ενέργειας σε χώρο καύσης

Μέση θερμοκρασία καυσαερίων

$$T_f = \sqrt{T_{Ga}T_{Ge}} \qquad T_{Ge} = ?$$

Ισοζύγιο ενέργειας στα καυσαέρια

$$Q = m_G c_{pG} (T_{Ga} - T_{Ge})$$

Μεταφορά από τη φλόγα προς τα τοιχώματα

$$Q = \frac{\sigma(T_f^4 - T_w^4)}{\frac{1 - \varepsilon_f}{\varepsilon_f A_f} + \frac{1}{A_f F_{fw}} + \frac{1 - \varepsilon_w}{\varepsilon_w A_w}} = \sigma \varepsilon A_w (T_f^4 - T_w^4) \approx \sigma \varepsilon A_w T_f^4$$
$$A_f \approx A_w, F_{fw} = 1, \varepsilon = \left(\frac{1}{\varepsilon_f} + \frac{1}{\varepsilon_w} - 1\right)^{-1} \Rightarrow Q = \sigma \varepsilon A_w T_{Ga}^2 T_{Ge}^2$$

Σχεδιαστική σχέση

$$\left(\frac{T_{Ge}}{T_{Ga}}\right)^{2} = Bo\left(1 - \frac{T_{Ge}}{T_{Ga}}\right) \quad Bo = \frac{m_{G} c_{p,G}}{\sigma \varepsilon A_{w} T_{Ga}^{3}}$$

*ε*_{*f*} =?

Βαθμός εκπομπής φλόγας και καυσαερίων

Θερμική ακτινοβολία Ο₂, Ν₂, Η₂Ο, CO₂, SO₂, αιθάλη, κωκ, τέφρα

Βαθμός απορρόφησης καυσαερίων

Χαρακτηριστική διάσταση φλόγας : $S = 3,6 \frac{V_f}{A_f}$

I(x) : Ένταση ακτινοβολίας

$$dI = -k_f P I(x) dx \Rightarrow I(S) = I_0 e^{-k_f P S}$$

 $k_f: \textit{συντελεστής απόσβεσης φλόγας} \\ P: πίεση σε MPa$

$$a_f(=\varepsilon_f) = \frac{I_0 - I(S)}{I_0} = 1 - e^{-k_f P S}$$

Πρόβλεψη βαθμού εκπομπής

$$\varepsilon_f = x_{lum}(1 - e^{-k_{lum}PS}) + (1 - x_{lum})(1 - e^{-k_{non}PS})$$

Κλάσμα φωτεινού τμήματος: $x_{lum} = 0,55$ (πετρέλαιο) $x_{lum} = 0,10$ (φυσικό αέριο)

φωτεινό τμήμα καυσαερίων: $k_f \equiv k_{lum} = k_G r + k_s$ μη-φωτεινό τμήμα καυσαερίων: $k_f \equiv k_{non} = k_G r$

Συντελεστής απόσβεσης αερίων

$$k_G r = 10 \left[\frac{0.78 + 1.6r_{H_2O}}{(10 P S r)^{1/2}} - 0.1 \right] \left(1 - 0.37 \frac{T_{Ge}}{1000} \right) r$$

Συντελεστής απόσβεσης αιθάλης $k_s = 0,3(1-e)\left(1,6\frac{T_{Ge}}{1000}-0,5\right)\left(\frac{C}{H}\right)_B$

r : κλάσμα όγκου αερίων
 T_{Ge} : ϑερμοκρασία[=]K
 S : [=]m, P : [=]MPa
 e = λ - 1: περίσσεια αέρα
 C/H : κλάσμα μάζας

ΤΕΛΟΣ