

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΕCE119 – Ψηφιακή Σχεδίαση

Διδάσκοντες Εργαστηρίου: Δ. Καραμπερόπουλος

Α. Φεύγας

Δ. Γαρυφάλλου

Lab 7: Multiplexers and Demultiplexers

Περιεχόμενα Εργαστηριακού Μαθήματος

- Εισαγωγή
- Lab 1: Multisim Circuit Simulation and Basic Gates
- Lab 2: Truth Tables and Basic Logic Gates
- Lab 3: Logic Gates Explored and Boolean Algebra
- Lab 4: Karnaugh Maps
- Lab 5: Binary Conversion and Adders
- Lab 6: Encoders and Decoders
- Lab 7: Multiplexers and Demultiplexers
- Lab 8: Latches and Sequential Logic Circuits
- Lab 9: Flip-Flops
- Lab 10: Sequential Circuits FSM

Multiplexers and Demultiplexers

- Multiplexers are combinational logic circuits for which there are multiple potential inputs but there is always only one output.
- Demultiplexers are the opposite in that there is always one input but there are multiple potential outputs.
- Both multiplexers and demultiplexers have a bit (or multiple bits) called selector bit(s) which is responsible for determining which input or output is chosen.
- Like encoders and decoders, multiplexers and demultiplexers can be broken down into circuit components but are typically represented by chips for visual simplification.
- In this lab, we will analyze multiplexers and demultiplexers in both their circuit and chip forms.

Learning Objectives

In this lab, students will:

- Reflect on the similarities and differences between encoders and multiplexers
- Examine the function of a basic 2-to-1 Multiplexer using logic gates

Expected Deliverables

In this lab, you will collect the following deliverables:

- Sum-of-Products Boolean functions for 2-to-1 Multiplexer
- Sum-of-Products Boolean functions for 1-to4 Demultiplexer
- Image of circuit
- Observations of demultiplexer behavior
- Conclusion questions

Multiplexers (1/3)

The multiplexer, abbreviated MUX, is a combinational logic circuit which has multiple data inputs, one or more select inputs and one output.

- It passes the data on one of the inputs, depending on the selection signals, to the output
- With the help of this logic circuit, multiple signals can share the same data output
- Multiplexers have 2^s inputs and s selector lines, which determine which of the inputs to output.
- Multiplexers are one of the most widely used combinational circuits, their application areas include:
 - Data routing
 - Operation sequencing
 - Parallel-to-serial conversion
 - Waveform generation

Multiplexers (2/3)

- The simplest circuit is the 2-to-1 multiplexer, with the graphical symbol presented in the leftmost figure.
- Its functionality is described by the joining truth table.
- The multiplexer below is only 1-bit wide since bit line is connected to a single output bit line.

Multiplexers (3/3)

sel,	sel _o	0
0	0	I _o
0	1	I ₁
1	0	l ₂
1	1	l ₃

4-to-1 MUX

Demultiplexers (1/2)

Demultiplexers (DEMUX) have the opposite function of a multiplexer

- It places the value of a single data input on several data outputs depending on a selection signal
- Usually demultiplexers have s select inputs and 2s outputs
- Since demultiplexers take one input and connect it to many outputs, some of their uses are for communication (two-way communication usually includes both multiplexers and demultiplexers) and for serial to parallel converters

Demultiplexers (2/2)

The graphical symbol for a 1-to-4 demultiplexer is shown below (left) as well as the corresponding 1-to-4 DEMUX truth table (center) and the CLC (right)

sel,	sel _o	03	0,	0,	0,
0	0	0	0	0	ln
0	1	0	0	In	0
1	0	0	In	0	0
1	1	In	0	0	0

1-to-4 DEMUX

Ευχαριστώ για την προσοχή σας!

Ερωτήσεις / Απορίες ;

Επικοινωνία: ece119.uth@gmail.com