
this print for content only—size & color not accurate spine = 1.235" 656 page count

Books for professionals By professionals®

Foundations of GTK+ Development
Dear Reader,

Maybe you have a great idea for the world’s next killer application. Or perhaps
you just want to add a simple graphical interface to that clumsy command-line
utility. No matter the goal, developers regularly look to the open source toolkit
known as GTK+ to build sophisticated graphical interfaces. But learning how
to effectively use GTK+ can be a daunting task. Some features can be difficult
to understand, and online documentation is often scant. Figuring out where to
begin may be even trickier, since GTK+ depends on so many libraries. For these
reasons, I decided to write a practical guide to GTK+ development.

Because so many newcomers struggle with simply getting started using
GTK+, I thought it appropriate to dirty your hands as quickly as possible. After
devoting Chapter 1 to an overview of key concepts, I will show you how to create,
compile, and execute your first application. The chapters that follow introduce
you to the wide variety of widgets and signals at your disposal, which embody
your application’s look and behavior respectively. To cement your knowledge,
along the way we will create several interesting applications such as a file
browser and a text editor. By the time you complete the last chapter, you will be
able to implement very complex GUI applications.

I wrote this book to be not only a practical tutorial but also a reasonably
complete reference. To that end, I’ve included an extensive array of appendixes
covering object properties, widget signals, style properties, stock items, and
GError types; the information they contain will become indispensable as you
begin writing your own applications.

Andrew Krause

US $49.99

Shelve in
Linux

User level:
Beginner–Intermediate

Krause

GTK+
 Developm

ent

The eXperT’s Voice® in open source

Foundations of

GTK+
Development

 cyan
 MaGenTa

 yelloW
 Black
 panTone 123 c

Andrew Krause

Companion
eBook Available

THE APRESS ROADMAP

Foundations of Qt®
Development

Foundations of
GTK+ Development

Beginning C,
Fourth Edition

Beginning SUSE Linux,
Second Edition

Beginning Ubuntu Linux,
Second Edition

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN-13: 978-1-59059-793-4
ISBN-10: 1-59059-793-1

9 781590 597934

54999

Build sophisticated graphical applications using one
of the world's most powerful cross-platform toolkits!

Foundations of

Foundations of
GTK+
Development

■ ■ ■

Andrew Krause

7931.book Page i Wednesday, March 28, 2007 7:35 PM

Foundations of GTK+ Development

Copyright © 2007 by Andrew Krause

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-793-4

ISBN-10 (pbk): 1-59059-793-1

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: Jason Gilmore, Matt Wade
Technical Reviewers: Christiana Evelyn Johnson, Micah Carrick
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Jeff Pepper, Paul Sarknas,
Dominic Shakeshaft, Jim Sumser, Matt Wade

Project Manager: Richard Dal Porto
Copy Edit Manager: Nicole Flores
Copy Editor: Heather Lang
Assistant Production Director: Kari Brooks-Copony
Production Editor: Katie Stence
Compositor: Pat Christenson
Proofreader: Elizabeth Berry
Indexer: Ann Rogers
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/
Download section or at the official book site, http://www.gtkbook.com.

7931.book Page ii Wednesday, March 28, 2007 7:35 PM

I dedicate this book to Mrs. Kaminsky, for never allowing me to settle for anything but my
best. I hope you can look at this book and see everything that you have done for me,

even though I have yet to broaden the scope of my writing beyond technology.

7931.book Page iii Wednesday, March 28, 2007 7:35 PM

7931.book Page iv Wednesday, March 28, 2007 7:35 PM

v

Contents at a Glance

About the Author .xvii

Acknowledgments . xix

Introduction . xxi

■CHAPTER 1 Getting Started . 1

■CHAPTER 2 Your First GTK+ Applications . 15

■CHAPTER 3 Container Widgets . 43

■CHAPTER 4 Basic Widgets . 75

■CHAPTER 5 Dialogs . 111

■CHAPTER 6 Using GLib . 159

■CHAPTER 7 The Text View Widget . 219

■CHAPTER 8 The Tree View Widget . 261

■CHAPTER 9 Menus and Toolbars . 315

■CHAPTER 10 Dynamic User Interfaces . 355

■CHAPTER 11 Creating Custom Widgets . 381

■CHAPTER 12 Additional GTK+ Widgets . 431

■CHAPTER 13 Putting It All Together . 471

■APPENDIX A GTK+ Properties . 481

■APPENDIX B GTK+ Signals . 529

■APPENDIX C GTK+ Styles . 565

■APPENDIX D GTK+ Stock Items . 583

■APPENDIX E GError Types . 587

■APPENDIX F Exercise Solutions and Hints . 595

■INDEX . 605

7931.book Page v Wednesday, March 28, 2007 7:35 PM

7931.book Page vi Wednesday, March 28, 2007 7:35 PM

Contents

vii

About the Author . xvii

Acknowledgments. xix

Introduction . xxi

■CHAPTER 1 Getting Started . 1

A Brief History of GTK+ . 2

The X Window System. 2

GTK+ and Supporting Libraries . 3

GLib . 5

GObject . 6

GDK . 7

GdkPixbuf . 7

Pango . 8

ATK . 9

Language Bindings. 9

Installing GTK+ . 10

Summary . 12

■CHAPTER 2 Your First GTK+ Applications . 15

Hello World. 15

Initializing GTK+ . 16

Widget Hierarchy. 17

GTK+ Windows . 19

The Main Loop Function. 20

Using GCC and pkg-config to Compile . 21

Extending “Hello World” . 23

Signals and Callbacks . 27

Connecting the Signal . 27

Callback Functions . 28

Emitting and Stopping Signals . 29

Events . 29

Event Types . 31

Using Specific Event Structures . 31

7931.book Page vii Wednesday, March 28, 2007 7:35 PM

viii ■C O N T E N T S

Further GTK+ Functions . 32

GtkWidget Functions. 32

GtkWindow Functions. 33

Process Pending Events. 35

Buttons . 36

Widget Properties . 38

Test Your Understanding . 40

Summary . 41

■CHAPTER 3 Container Widgets . 43

GtkContainer . 43

Decorator Containers . 43

Layout Containers . 44

Resizing Children. 44

Container Signals . 46

Horizontal and Vertical Boxes . 46

Horizontal and Vertical Panes . 50

Tables . 53

Table Packing . 55

Table Spacing . 57

Fixed Containers . 57

Expanders . 60

Handle Boxes. 62

Notebooks . 64

GtkNotebook Properties . 66

Tab Operations . 67

Event Boxes . 68

Test Your Understanding . 72

Summary . 73

■CHAPTER 4 Basic Widgets . 75

Using Stock Items. 75

Toggle Buttons . 77

Managing Widget Flags . 78

Check Buttons . 80

Radio Buttons. 82

7931.book Page viii Wednesday, March 28, 2007 7:35 PM

■C O N T E N T S ix

Text Entries . 84

Entry Properties . 86

Inserting Text into a GtkEntry Widget . 87

Manipulating GtkEntry Text . 87

Spin Buttons . 88

Adjustments . 88

A Spin Button Example. 89

Horizontal and Vertical Scales . 91

Widget Styles. 93

The GtkStyle Structure . 93

Resource Files . 94

Additional Buttons. 97

Color Buttons . 97

File Chooser Buttons. 101

Font Buttons. 106

Test Your Understanding . 108

Summary . 110

■CHAPTER 5 Dialogs . 111

Creating Your Own Dialogs . 111

Creating a Message Dialog . 112

Nonmodal Message Dialog . 118

Another Dialog Example. 119

Built-in Dialogs . 122

Message Dialogs . 122

The About Dialog . 126

File Chooser Dialogs . 132

Color Selection Dialogs . 139

Font Selection Dialogs . 143

Dialogs with Multiple Pages . 146

Creating GtkAssistant Pages . 151

GtkProgressBar . 153

Page Forward Functions . 154

Test Your Understanding . 156

Summary . 156

7931.book Page ix Wednesday, March 28, 2007 7:35 PM

x ■C O N T E N T S

■CHAPTER 6 Using GLib . 159

GLib Basics . 160

Basic Data Types. 160

Standard Macros . 161

Message Logging . 164

Memory Management . 165

Memory Slices . 165

Memory Allocation . 168

Memory Profiling . 169

Utility Functions. 171

Environment Variables . 171

Timers . 172

File Manipulation . 174

Directories . 177

File System. 178

The Main Loop. 179

Contexts and Sources. 179

Timeouts . 180

Idle Functions. 183

Data Types . 184

Strings. 184

Linked Lists . 186

Balanced Binary Trees . 188

N-ary Trees . 191

Arrays . 194

Hash Tables . 197

Quarks. 199

Keyed Data Lists . 199

Input-Output Channels. 201

GIOChannels and Files . 201

GIOChannels and Pipes . 203

Spawning Processes. 210

Dynamic Modules . 212

Test Your Understanding . 215

Summary . 217

7931.book Page x Wednesday, March 28, 2007 7:35 PM

■C O N T E N T S xi

■CHAPTER 7 The Text View Widget . 219

Scrolled Windows . 219

Text Views . 224

Text Buffers . 225

Text View Properties . 226

Pango Tab Arrays . 229

Text Iterators and Marks . 231

Editing the Text Buffer . 232

Cutting, Copying, and Pasting Text . 238

Searching the Text Buffer . 242

Scrolling Text Buffers . 245

Text Tags . 246

Inserting Images . 252

Inserting Child Widgets . 254

GtkSourceView . 256

Test Your Understanding . 258

Summary . 259

■CHAPTER 8 The Tree View Widget . 261

Parts of a Tree View . 262

GtkTreeModel. 263

GtkTreeViewColumn and GtkCellRenderer . 265

Using GtkListStore . 266

Creating the Tree View. 270

Renderers and Columns. 271

Creating the GtkListStore. 272

Using GtkTreeStore . 274

Referencing Rows. 278

Tree Paths . 278

Tree Row References . 280

Tree Iterators . 281

Adding Rows and Handling Selections . 282

Single Selections. 282

Multiple Selections . 283

Adding New Rows . 284

Removing Multiple Rows . 289

Handling Double-clicks . 292

7931.book Page xi Wednesday, March 28, 2007 7:35 PM

xii ■C O N T E N T S

Editable Text Renderers. 292

Cell Data Functions . 295

Cell Renderers. 299

Toggle Button Renderers . 299

Pixbuf Renderers . 301

Spin Button Renderers . 302

Combo Box Renderers . 305

Progress Bar Renderers . 308

Keyboard Accelerator Renderers . 309

Test Your Understanding . 313

Summary . 314

■CHAPTER 9 Menus and Toolbars . 315

Pop-up Menus. 315

Creating a Pop-up Menu . 316

Pop-up Menu Callback Functions. 319

Keyboard Accelerators. 321

Status Bar Hints . 323

The Status Bar Widget . 324

Menu Item Information . 325

Menu Items . 328

Submenus . 328

Image Menu Items . 329

Check Menu Items . 329

Radio Menu Items . 330

Menu Bars . 330

Toolbars . 333

Toolbar Items. 335

Toggle Tool Buttons . 336

Radio Tool Buttons . 337

Menu Tool Buttons . 337

Dynamic Menu Creation . 339

Creating UI Files . 339

Loading UI Files . 341

Additional Action Types . 345

Placeholders. 347

Custom Stock Items . 348

7931.book Page xii Wednesday, March 28, 2007 7:35 PM

■C O N T E N T S xiii

Test Your Understanding . 352

Summary . 352

■CHAPTER 10 Dynamic User Interfaces . 355

User Interface Design. 355

Know Your Users . 356

Keep the Design Simple. 356

Always Be Consistent . 357

Keep the User in the Loop . 358

We All Make Mistakes . 358

The Glade User Interface Builder . 359

The Glade Interface. 360

Creating the Window . 362

Adding a Toolbar . 364

Completing the File Browser . 367

Making Changes . 369

Widget Signals . 370

Creating a Menu . 371

Using Libglade. 372

Loading a User Interface . 374

Connecting Signals . 375

Test Your Understanding . 378

Summary . 378

■CHAPTER 11 Creating Custom Widgets . 381

Deriving New Widgets . 381

Creating the MyIPAddress Header File . 382

Creating the Source File. 385

Testing the Widget . 405

Creating a Widget from Scratch . 407

Creating the MyMarquee Header File . 407

Creating the MyMarquee Widget . 409

Realizing the Widget . 413

Specifying Size Requests and Allocations. 417

Exposing the Widget . 418

Drawing Functions . 420

Implementing Public Functions. 421

Testing the Widget . 424

7931.book Page xiii Wednesday, March 28, 2007 7:35 PM

xiv ■C O N T E N T S

Implementing Interfaces . 425

Implementing the Interface . 426

Using the Interface . 428

Test Your Understanding . 429

Summary . 430

■CHAPTER 12 Additional GTK+ Widgets . 431

Drawing Widgets. 431

A Drawing Area Example . 432

The Layout Widget . 436

Calendars . 437

Status Icons . 439

Printing Support . 441

Print Operations. 443

Beginning the Print Operation . 448

Rendering Pages . 449

Finalizing the Print Operation . 452

Cairo Drawing Context . 452

Drawing Paths . 453

Rendering Options. 454

Recent Files . 455

Recent Chooser Menu . 459

Adding Recent Files . 460

Recent Chooser Dialog . 463

Automatic Completion . 466

Test Your Understanding . 468

Summary . 469

■CHAPTER 13 Putting It All Together . 471

File Browser. 471

Calculator . 472

Hangman . 473

Ping Utility . 474

Calendar . 475

Markup Parser Functions. 476

Parsing the XML File. 477

7931.book Page xiv Wednesday, March 28, 2007 7:35 PM

■C O N T E N T S xv

Further Resources . 477

Summary . 479

■APPENDIX A GTK+ Properties . 481

GTK+ Properties . 481

Child Widget Properties . 525

■APPENDIX B GTK+ Signals . 529

Events . 529

Widget Signals . 533

■APPENDIX C GTK+ Styles . 565

Default RC File Styles. 565

Pango Text Markup Language . 567

GtkTextTag Styles. 569

Widget Style Properties . 572

■APPENDIX D GTK+ Stock Items . 583

■APPENDIX E GError Types . 587

■APPENDIX F Exercise Solutions and Hints . 595

Exercise 2-1. Using Events and Properties . 595

Exercise 2-2. GObject Property System . 596

Exercise 3-1. Using Multiple Containers. 596

Exercise 3-2. Even More Containers . 597

Exercise 4-1. Renaming Files. 597

Exercise 4-2. Spin Buttons and Scales . 598

Exercise 5-1. Implementing File Chooser Dialogs 598

Exercise 6-1. Working with Files . 598

Exercise 6-2. Timeout Functions . 599

Exercise 7-1. Text Editor . 599

Exercise 8-1. File Browser . 600

Exercise 9-1. Toolbars. 601

Exercise 9-2. Menu Bars . 601

7931.book Page xv Wednesday, March 28, 2007 7:35 PM

xvi ■C O N T E N T S

Exercise 10-1. Glade Text Editor . 602

Exercise 10-2. Glade Text Editor with Menus . 602

Exercise 11-1. Expanding MyMarquee . 603

Exercise 12-1. Full Text Editor . 604

■INDEX . 605

7931.book Page xvi Wednesday, March 28, 2007 7:35 PM

xvii

About the Author

■ANDREW KRAUSE is the creator of OpenLDev, an integrated develop-
ment environment that focuses on C, C++, and GTK+ projects. He is
currently attending Pennsylvania State University with a major in
computer engineering. Since 1998, Andrew has been developing with
many computer and web programming languages, including C, C++,
Perl, and PHP, as well as the graphical design libraries GTK+, Gtkmm,
and Qt. He also designed flight hardware for the Low Ionosphere
Measurement Satellite project at Penn State. More information about

Andrew can be found at www.andrewkrause.net.

7931.book Page xvii Wednesday, March 28, 2007 7:35 PM

7931.book Page xviii Wednesday, March 28, 2007 7:35 PM

xix

Acknowledgments

I would like to express my gratitude to the many people who have made this book possible.
Many thanks go to Josh Hoy and Aaron Sebold, whose assistance has certainly decreased the
number of errors in the book. I would also like to thank Christiana Johnson and Micah Carrick
for their fine technical reviewing skills. You were very tough on every paragraph I wrote and
every example I coded, but this book is better today because of the hard work you put into the
project.

In addition, I would like to thank the people at Apress who put so many hours of hard
work into the book. I could not imagine writing for any other publisher. It is a great organiza-
tion that makes the writing process enjoyable. I would especially like to thank Matt Wade,
Jason Gilmore, Richard Dal Porto, Heather Lang, and Katie Stence, who put up with all of my
questions and provided quick help whenever it was needed.

Finally, I need to acknowledge my family, who has supported me in every step of the
process. Without all of you, I would not be who I am today and for that I am forever grateful.

7931.book Page xix Wednesday, March 28, 2007 7:35 PM

7931.book Page xx Wednesday, March 28, 2007 7:35 PM

xxi

Introduction

One of the most important aspects of an application is the interface that is provided to
interact with the user. With the unprecedented popularity of computers in society today,
people have come to expect those user interfaces to be graphical, and the question of which
graphical toolkit to use quickly arises for any developer. For many, the cross-platform, feature-
rich GTK+ library is the obvious choice.

Learning GTK+ can be a daunting task, because many features lack documentation, and
even more are difficult to understand from only the API documentation. Foundations of GTK+
Development aims to decrease the learning curve and set you on your way to creating cross-
platform graphical user interfaces for your applications.

Each chapter in this book contains multiple examples that will help you further your
understanding. In addition to these examples, the final chapter of this book provides five
complete applications that incorporate topics from the previous chapters. These applications
will show you how to bring together what you have learned to accomplish various projects.

The beginning of each chapter provides an overview of what that chapter will cover, so that
you are able to skip around if you want. Most chapters also contain exercises to test your under-
standing of the material. I recommend that you complete all of the exercises before continuing,
because the best way to learn GTK+ is to use it.

At the end of this book, you will find multiple appendixes that can serve as references for
various aspects of GTK+. These appendixes include tables listing signals, styles, and properties
for every widget in GTK+ and a complete list of stock items and GError types. These appendixes
will remain a useful reference even after you have finished reading the book and begin creating
your own applications. In addition, Appendix F contains explanations of the solutions to all of
the exercises throughout the book.

Who Should Read This Book
Because this book begins with the basics and works up to more difficult concepts, you do not
need any previous knowledge of GTK+ development to use this book. This book does assume
that you have a decent grasp of the C programming language. You should also be comfortable
with running commands and terminating applications (Ctrl+C) in a Linux terminal.

In addition to a grasp of the C programming language, some parts of this book may be diffi-
cult to understand without some further knowledge about programming for Linux in general.
You will get more out of this book if you already comprehend basic object-oriented concepts. It
is also helpful to know how Linux handles processes.

You can still use this book if you do not already know how to implement object orienta-
tion or manage processes in Linux, but you may need to supplement this book with one or
more online resources. A list of helpful links and tutorials can be found on the book’s web

7931.book Page xxi Wednesday, March 28, 2007 7:35 PM

xxii ■I N T R O D U C T I O N

site, which is located at www.gtkbook.com. You can also find more information about the book
at www.apress.com.

How This Book Is Organized
Foundations of GTK+ Development is composed of 13 chapters. Each chapter will give you a
broad understanding of its topic. For example, Chapter 3 covers container widgets and will
introduce many of the most important widgets derived from the GtkContainer class.

Because of this structure, some chapters can be somewhat lengthy. Do not feel as though
you have to complete a whole chapter in one sitting, because it can be difficult to remember all of
the information presented. Also, because many examples span multiple pages, consider focusing
on just a few examples at a time and really trying to understand their syntax and intent.

Each chapter provides important information and unique perspectives that will help you
to become a proficient GTK+ developer. They are as follows:

Chapter 1 teaches you how to install the GTK+ libraries and their dependencies on your
Linux system. It also gives an overview of each of the GTK+ libraries including GLib, GObject,
GDK, GdkPixbuf, Pango, and ATK.

Chapter 2 steps through two “Hello World” applications. The first shows you the basic
essentials that are required by every GTK+ application. The second expands on the first while
also covering signals, callback functions, events, and child widgets. You will then learn about
widget properties and the GtkButton widget.

Chapter 3 begins by introducing the GtkContainer structure. Next, it teaches you about
horizontal and vertical boxes, tables, fixed containers, horizontal and vertical panes, note-
books, and event boxes.

Chapter 4 covers basic widgets that provide a way for you to interact with users. These
include toggle buttons, specialized buttons, text entries, and spin buttons.

Chapter 5 introduces you to the vast array of built-in dialogs available to you. It also
teaches you how to create your own custom dialogs.

Chapter 6 is a general overview of the most useful features in GLib. It covers many of the
data types available to you. It also introduces idle functions, timeouts, spawning processes,
loading dynamic modules, file utility functions, timers, and other general utility functions.

Chapter 7 introduces you to scrolled windows. It also gives in-depth instructions on using
the text view widget. Other topics include the clipboard and the GtkSourceView library.

Chapter 8 covers two types of widgets that use the GtkTreeModel object. It gives an in-depth
overview of the tree view widget and shows you how to use combo boxes with tree models
or strings.

Chapter 9 provides two methods of menu creation: manual and dynamic. It covers menus,
toolbars, pop-up menus, keyboard accelerators, and the status bar widget.

Chapter 10 is a short chapter about how to design user interfaces with the Glade User Interface
Builder. It also shows you how to dynamically load your user interfaces using Libglade.

Chapter 11 teaches you how to create your own custom GTK+ widgets by deriving them
from other widgets or creating them from scratch. It also introduces you to implementing and
using interfaces.

Chapter 12 covers many of the remaining widgets that do not quite fit into other chapters.
This includes several widgets that were introduced in GTK+ 2.10 including recent files and tray
icon support.

7931.book Page xxii Wednesday, March 28, 2007 7:35 PM

■I N T R O D U C T I O N xxiii

Chapter 13 gives you a few longer, real-world examples. They take the concepts you have
learned throughout the book and show you how they can be used together.

In addition to the chapters, six appendixes are provided as references to widget properties,
signals, styles, stock items, GError types, and descriptions of exercise solutions.

Conventions
This book uses various typefaces to help you distinguish between GTK+ code and regular
English phrases. Actual code is typeset in a monospace font. This can include whole lines of code
or function names, signals, and properties in a paragraph.

There are other types of conventions used in this book, which follow.

Exercise 0-0. Sample Exercise

These boxes show exercises that test your understanding of the material in the section. They can include
questions, code challenges, or various other types of material.

You should complete each of these exercises before proceeding, because they will help you practice the
concepts you have learned throughout the current chapter and put them together with concepts from past
chapters.

■Note These boxes give important notes, tips, and cautions. It is essential that you pay attention to them,
because they give you information that you will need when developing your own applications.

Textual output in the terminal is shown in a monospace font between these lines,

although most output will be in the form of an image, since GTK+ is graphical.

What You Need
Before proceeding, you will need a few things: a compiler, a text editor, a terminal emulator, the
GTK+ libraries, the pkg-config application, and this book.

All compiler commands provided by this book are for the GCC compiler available at
http://gcc.gnu.org or through your package manager. Most standard C or C++ compilers
will work, but if you use a compiler other than GCC, you will have to use a different set of
commands than those provided.

7931.book Page xxiii Wednesday, March 28, 2007 7:35 PM

xxiv ■I N T R O D U C T I O N

Any text editor will do, so you should choose the one that suits you best. Some popular text
editors that you might consider include Vim, Emacs, Leafpad, and GEdit. Vim and Emacs are
terminal-based editors, while Leafpad and GEdit are graphical text editors.

Instructions on installing the GTK+ libraries and the pkg-config application are provided
in the last section of Chapter 1.

Official Web Site
You can find additional resources on the book’s official web site, found at www.gtkbook.com.
This web site includes up-to-date documentation, links to useful resources, and articles that will
supplement what you learn in this book. You can also find at this site a link to the downloadable
source code for every example in this book. The Apress web site, found at www.apress.com, is
another great place to find more information about this book.

When you unzip the source code from the web site, you will find a folder that contains the
examples in each chapter and an additional folder that holds exercise solutions. You can run
make to build all of the files within the current folder. It is also possible to make a single file by
using the compile command given in Chapter 2 or by running make sourcefile. For example,
to build exercise2-1.c, you should type make exercise2-1.

7931.book Page xxiv Wednesday, March 28, 2007 7:35 PM

1

■ ■ ■

C H A P T E R 1

Getting Started

Welcome to Foundations of GTK+ Development! In this book, you will acquire a comprehen-
sive understanding of GIMP Toolkit (GTK+) that can help you to become a proficient graphical
programmer. Before continuing, you should be aware that this book is aimed at C program-
mers, so we will jump right into using GTK+. Time will not be spent covering information you
already know.

To get the most out of this book, you should follow along with each of the examples and try
the exercises found at the end of most chapters. Getting started with GTK+ on Linux is quite
simple, because the majority of modern distributions are typically bundled with the necessary
libraries and tools.

Nevertheless, you need to make sure that you already have a few tools installed including
the GNU Compiler Collection (GCC), the GTK+ 2.0 libraries, and the associated development
packages. Later in this chapter, you will learn how to install these applications. If you do not
have a compiler, you can still use this book, but you will get more out of it if you do the exer-
cises. The best way to learn GTK+ is to use it!

■Note The compiler of choice for this book is GCC, available for download at http://gcc.gnu.org. Any
standard C or C++ compiler will work, but you will have to use a different set of commands than those pro-
vided. Alternative compiler commands will not be covered in this book.

At the end of most chapters, you will find one or two exercises that illustrate what you have
learned up to that point. Make sure you complete each of the exercises before moving on to the
next chapter, because they will help reaffirm your knowledge. Each chapter builds on concepts
presented in previous chapters, so you will need a firm foundation in the basics to understand
more complex examples.

In this chapter, you will learn the following:

• The history of GTK+ and the X Window System, which will provide you with some con-
text regarding the tremendous impact these two technologies have had on developers

• What GTK+ and its supporting libraries provide to the graphical application developer

• What GTK+ language bindings are available and where to download them

• How to install GTK+ and its dependencies on your computer

7931.book Page 1 Friday, February 2, 2007 8:28 PM

2 C H A P T E R 1 ■ G E T T I N G S T A R T E D

A Brief History of GTK+
The GIMP Toolkit (GTK+) was originally designed for a raster graphics editor called the GNU
Image Manipulation Program (GIMP). Three individuals, Peter Mattis, Spencer Kimball, and
Josh MacDonald created GTK+ in 1997 while working in the eXperimental Computing Facility
at the University of California, Berkeley.

Licensed under the Lesser General Public License (LGPL), GTK+ was adopted as the
default graphical toolkit of GNOME and XFCE, two of the most popular Linux desktop environ-
ments. While it was originally used on the Linux operating system, GTK+ has since been
expanded to support other UNIX-like operating systems: Microsoft Windows, BeOS, Solaris,
Mac OS X, and others.

■Note The LGPL is one of the things that distinguish GTK+ from other open source graphical toolkits. The
LGPL is easier to use alongside proprietary software, unlike many other popular open source licenses. This
makes the GNOME desktop environment, which utilizes GTK+, a popular choice throughout commercial
industry.

GTK+ is currently in its second stable release cycle, GTK+ 2. The original branch, GTK+ 1,
needed to be changed dramatically to include new features and its developers saw fit to break
API compatibility.

Since the two branches of GTK+ are not compatible, they can be installed in parallel. You
will need to make the distinction to the compiler that you want to use the second branch
instead of the first when building an application, which you will learn how to do with GCC in
the next chapter.

GTK+ 2 introduced a lot of new features including a font-rendering engine called Pango
and a newly enhanced theme engine. Furthermore, improved accessibility support was imple-
mented through the Accessibility Toolkit (ATK).

This book uses version 2 of GTK+ for all code examples. While GTK+ 2.10 has already been
released, most of the examples should work with any version in the second branch. GTK+ 2
maintains backward compatibility, which means that any application that works for an earlier
release of GTK+ 2 will work on later releases of version 2.

The X Window System
In 1984, Jim Gettys and Bob Scheifler created the X Window System (X11) at Massachusetts
Institute of Technology as a platform-independent display environment for debugging the
Argus system. Currently developed by The X.Org Foundation, X11 is the standard display man-
ager on Linux and other UNIX-like operating systems. In the most basic terms, X11 provides
windowing functionality for bitmap displays.

While the X Window System is used on Linux, many other operating systems such as
Microsoft Windows do not use it. Therefore, another advantage of GTK+ is that it masks the
need to interact with the underlying rendering system, regardless of what it is. Your code will
look the same whether you are writing it for Linux, Windows, or Mac OS X.

7931.book Page 2 Friday, February 2, 2007 8:28 PM

C H A P T E R 1 ■ G E T T I N G S T A R T E D 3

Returning to Linux, X11 manages windows in their most basic and abstract form. It draws
windows on the screen and handles their movements. X11 also controls input devices, such as
mice and keyboards, in graphical environments.

X11’s basic programming interface, Xlib, provides the tools necessary to create graphical
user interfaces. Although developing with Xlib is possible, most programmers prefer to use a
graphical toolkit such as GTK+, since all of the low-level calls are hidden and managed by the
library’s methods.

One of the major features that makes X11 unique among display managers is that it
assumes the client and server are treated independently of each other. This allows the client to
exist at a remote location independent of the server.

■Note The definitions of client and server in the X Window System differ from their traditional ones. The
client is the machine where the application is run. The server refers to the user’s local display, rather than the
remote machine.

Another advantage of the X Window System is that it does not strictly mandate user
interfaces. This allows the graphical user interfaces (GUI) of window managers to be highly
customizable. It is also why window managers can provide such differing interfaces and
themes. This enables the freedom of choice Linux users enjoy today.

Ironically, this freedom is also one of the biggest criticisms of X11. Many people fear that it
will encourage fragmentation within the community of Linux developers. But for now, we can
continue to enjoy the ability to choose the window manager that best suits our own needs.

The GTK+ libraries were created so that you, as the programmer, do not need to interface
with the X Window System directly. You can create windows and widgets, and you can handle
interactions between those widgets and the user, but all direct rendering to the screen and Xlib
function calls are handled automatically.

Therefore, this book will not cover the X Window System any further and will focus on the
GTK+ libraries instead. You are welcome to find more information about X11 and the X.Org
Foundation at www.x.org.

GTK+ and Supporting Libraries
GTK+ relies on multiple libraries, each providing the graphical application developer a specific
class of functionality.

GTK+ is an object-oriented application programming interface (API) written in the
C programming language. It is implemented with the concept of classes in mind to create an
extensible system that builds upon itself. The object-oriented framework used was originally
developed as a part of the GTK+ library itself, but has since been split from GTK+ and added to
GLib as a separate supporting library called GObject. GObject enables full object-orientated
development in C, including object inheritance, polymorphism, and, to the extent permissible
in C, data hiding.

While making a great deal of functionality from the other libraries transparently available
through its own API, the GTK+ library focuses only on providing the necessities of building

7931.book Page 3 Friday, February 2, 2007 8:28 PM

4 C H A P T E R 1 ■ G E T T I N G S T A R T E D

graphical user interfaces. The elements implemented in GTK+ itself include widgets such as
buttons, labels, text boxes, and windows. It also provides more abstract components used for
application layout and extended event capturing functionality. For example, Figure 1-1 is a
screenshot of the GIMP application, which uses GTK+.

Figure 1-1. The GIMP

Other, less visible basics of GUI development, such as synchronous and asynchronous
event processing, are supported mainly by other libraries. Yet, GTK+ does give access to many
of them through its own API.

A 2-D vector graphics rendering library called Cairo has provided the rendering capabili-
ties to GTK+ since the release of version 2.8. Cairo was created to render vector graphics
consistently across all platforms and systems. It also allows the window manager to take
advantage of hardware acceleration where available.

Cairo itself will not be covered in this book, with the exception of how it relates to GTK+’s
printing API, since its calls lie underneath the layers of GTK+ that you will be interacting with.
It is an important aspect you will want to explore if you later choose to hack the GTK+ source
code. You can visit www.cairographics.org to find more information about Cairo.

7931.book Page 4 Friday, February 2, 2007 8:28 PM

C H A P T E R 1 ■ G E T T I N G S T A R T E D 5

GLib
GLib is a general-purpose utility library that is used to implement many useful nongraphical
features. While it is required by GTK+, it can also be used independently. Because of this, some
applications use GLib without the other GTK+ libraries for the many capabilities it provides.

One of the main benefits of using GLib is that it provides a cross-platform interface that
allows your code to be run on any of its supported operating systems with little to no rewriting
of code! Another advantageous aspect of GLib is the vast array of data types it provides to devel-
opers. A list of a few of the data types provided by GLib follows and will be covered in further
detail in Chapter 6:

• GLib provides a number of data types to C programmers that are usually included by
default in other languages, such as singly and doubly linked lists. Other basic data types
include double-ended queues, self-balancing binary trees, and unbalanced n-ary trees.

• Hash tables allow you to create lists of pointers to data. They differ from linked lists,
because, instead of accessing elements by an integer reference, you specify a second
pointer as the key.

• Strings in GLib are similar to strings in C++, because they are text buffers that grow auto-
matically as data is added. These are also easy to integrate with calls to the printf()
function family.

• Memory slices are an efficient way to create chunks of memory that are all of the same
size. They can be used to create arrays of evenly sized elements. This structure replaced
memory chunks when it was introduced in the release of GLib 2.10.

• Caches allow you to share large, complex data structures in an easy API, which helps you
to save space. These are used by GTK+ for styles and graphics contexts, since both of
these objects consume a lot of resources.

GLib provides other data types, many of which will be introduced in Chapter 6. Further-
more, GLib implements other features besides data types. It also provides you with numerous
types of utility functions. For instance, you’ll find utility functions for file manipulation, inter-
nationalization support, strings, warnings, debugging flags, dynamic module loading, and
automatic string completion, just to name a few.

In Chapter 6, you will also learn about idle functions, time-out functions, and timers—all
of which open up a variety of interesting possibilities to developers. Idle functions allow you to
call a function when the processor is not doing anything else for the application. Timeouts are
used to call a function at a specified interval of time provided by you. A timer keeps track of
how much time has passed since it was initiated. These could be used to check for updates
when the application is idle, implement automatic save functionality, or track elapsed time,
respectively.

Because of the cross-platform characteristics of GLib, it makes a convenient library to use
for spawning processes, file manipulation, memory allocation, and threads. Any of these can
be a nightmare when trying to develop for multiple platforms. GLib takes care of the hassles, so
you do not have to worry about cross-platform compatibility issues.

7931.book Page 5 Friday, February 2, 2007 8:28 PM

6 C H A P T E R 1 ■ G E T T I N G S T A R T E D

GObject
The GLib Object System (GObject) was originally a part of the GTK+ 1 library in the form of the
GtkObject class. With the release of GTK+ 2.0, it was moved into its own library, distributed
along with GLib.

GObject is often criticized for its complexity, since its APIs can seem extremely drawn out.
However, it was originally created to allow easy access to C objects from other programming lan-
guages. The ability to easily access C objects from other languages facilitates the large variety of
bindings available for other programming languages, even though it is implemented in C.

This is so difficult because each programming language provides a different approach to
data types, whether the differences appear on the surface or the internals of each language. For
example, in C, you have data types including char, long, and integer. Other languages, such as
Perl, do not have similar data types, since the type of each object is decided by how it is used.
GObject gets around these limitations, the drawback being that deriving new objects is a con-
voluted process.

GObject also implements a fully featured object-oriented interface in C, which will be covered
in detail throughout this section and the rest of this book. This system is the base for the GTK+ wid-
get hierarchical structure as well as for many of the objects implemented in GTK+’s supporting
libraries. GObject’s object-oriented interface is implemented in part by a generic, dynamic type
system called GType. GType allows programmers to implement many different dynamic data types
through singly-inherited class structure. A singly-inherited class is an object hierarchy where each
child class can only be derived directly from a single parent class. This will be discussed in more
detail in Chapter 2, after you are introduced to GTK+ widgets.

Along with the ability to create extensible data types, GObject provides programmers with
many nonclassed (or fundamental) data types. A nonclassed data type is a root class from
which others are derived. It is important to note that the root class is not derived from any
other classes itself.

Table 1-1 provides a list of the most important nonclassed data types. The GType macro,
C variable descriptor, and a description is shown for each, along with its range if applicable.

Table 1-1. Standard GObject Nonclassed Data Types

GType C Type Description

G_TYPE_NONE An empty type that is equivalent to void.

G_TYPE_CHAR gchar Equivalent to the standard C char type.

G_TYPE_INT gint Equivalent to the standard C int type. Values must be within
the range of G_MININT to G_MAXINT.

G_TYPE_LONG glong Equivalent to the standard C long type. Values must be within
the range of G_MINLONG to G_MAXLONG.

G_TYPE_BOOLEAN gboolean A standard Boolean type that holds either TRUE or FALSE.

G_TYPE_ENUM GEnumClass A standard enumeration equivalent to the C enum type.

G_TYPE_FLAGS GFlagsClass Bit fields holding Boolean flags.

G_TYPE_FLOAT gfloat Equivalent to the standard C float type. Values must be within
the range of negative G_MAXFLOAT to G_MAXFLOAT.

7931.book Page 6 Friday, February 2, 2007 8:28 PM

C H A P T E R 1 ■ G E T T I N G S T A R T E D 7

GObject provides GTK+ with two other vital data types: GValue and GObject. GValue is a
generic container that can hold any structure of which the system is already aware. This allows
functions to return a piece of data of an arbitrary type. Without GValue, the object-oriented
nature of GTK+ would not be possible.

G_TYPE_GOBJECT, or GObject, is the fundamental type that the widget class inheritance
structure of GTK+ is based on. It allows widgets to inherit the properties of their parents,
including style properties and signals.

GObject is a singly-inherited system, where each child class can only have one parent
class. The derived child inherits all characteristics of the parent, because in every way, the
child is the parent. You will learn how to use this system to derive custom GTK+ widgets in
Chapter 11.

GObject also provides widgets with a signal system, an object properties system, and
memory management. We will explore all of these concepts in the next chapter.

GDK
The GIMP Drawing Kit (GDK) is a computer graphics library originally designed for the
X Window System that wraps around low-level drawing and window functions. GDK acts as
the intermediary between Xlib and GTK+.

It renders drawings, raster graphics, cursors, and fonts in all GTK+ applications. Also,
since it is implemented in every GTK+ program, GDK provides drag-and-drop support and
window events.

GDK provides GTK+ widgets the ability to be drawn to the screen. To do this, every widget
has an associated GdkWindow object, except for a few widgets that will be discussed in a later
chapter. A GdkWindow is essentially a rectangular area located on the screen in which the widget
is drawn. GdkWindow objects also allow widgets to detect X Window System events, which will
be covered in the next chapter.

GDK has been ported to Windows and Mac OS X. It has also included support for Cairo
since the release of GTK+ 2.8.

GdkPixbuf
GdkPixbuf is a small library that provides client-side image manipulation functions. It was cre-
ated as a replacement for the GNOME Imaging Model (Imlib). Images can be loaded from files
or image data can be fed directly into the library functions. We will use this library when adding
images to tree views and when creating new GtkImage widgets in later chapters.

One advantage of GdkPixbuf images is that images can be reference-counted. This means
that a GdkPixbuf image can be displayed in multiple locations, while only being stored in
memory once. It will only be destroyed when all reference counts are decremented.

G_TYPE_DOUBLE gdouble Equivalent to the standard C double type. Values must be
within the range of negative G_MAXDOUBLE to G_MAXDOUBLE.

G_TYPE_STRING gchar* Equivalent to NULL-terminated C strings.

G_TYPE_POINTER gpointer An untyped pointer type similar to void*.

GType C Type Description

7931.book Page 7 Friday, February 2, 2007 8:28 PM

8 C H A P T E R 1 ■ G E T T I N G S T A R T E D

The GdkPixbuf library takes advantage of Libart, a 2-D drawing library distributed with
GNOME, to apply transformations to images. Because of this, you can shear, scale, and rotate
images to your heart’s delight. The images are then rendered using the GdkRGB library and
drawable areas. By using such a wide variety of specialized tools, GdkPixbuf can provide image
rendering of a very high class.

GdkPixbuf, while it is a small library, provides a wide variety of functions for manipulating
and displaying images. The library will be put to only the most basic of uses throughout this
book. For more information on advanced GdkPixbuf topics, you should reference its API
documentation.

Pango
While GDK handles rendering images and windows, Pango controls text and font output in
conjunction with Cairo or Xft, depending on your GTK+ version. It can also render directly to
an in-memory buffer without the use of any secondary libraries.

■Note Pango originated from the Greek word pan, which means “all,” and the Japanese word go, which
means “language.” It was chosen because one of the design goals of Pango is to support all languages by
creating a fully internationalized font-rendering system.

On Linux, Pango uses the FreeType and fontconfig libraries for client-side fonts. The thing
that makes Pango stand out from the crowd is that it supports a vast array of languages. Virtu-
ally all of the world’s major scripts are supported, which makes rendering internationalized
text a nonissue in your applications.

All text within Pango is represented internally with UTF-8 encoding. UTF-8 is used
because it is compatible with 8-bit software, which is prevalent on UNIX platforms. Offsets in
UTF-8 are calculated based on characters, not bits, because each character can take up more
than one byte. This will be important in Chapter 7 when you learn how to use the GtkTextView
widget, because you will have to step by character offset, which may not always be one byte.

Pango supports a wide variety of text attributes. These include but are not limited to
language, font family, style, weight, stretch, size, foreground color, background color,
underline, strikethrough, rise, shape, and scale. Many of these attributes support multiple
options themselves.

For convenience, the Pango Text Markup Language provides a simple set of tags that rep-
resent the text attributes in a form similar to HTML. With this markup language, you can easily
change the font styles for arbitrary parts of text in a widget. This is especially useful when cre-
ating user interfaces with Glade User Interface Builder, because you can type tags directly into
a widget’s textual content field.

We will utilize Pango for many examples in later chapters when we need to change the font
of a widget to something other than the user’s default. Using the PangoFontDescription object
or the Pango Text Markup Language can do this.

7931.book Page 8 Friday, February 2, 2007 8:28 PM

C H A P T E R 1 ■ G E T T I N G S T A R T E D 9

ATK
When designing an application, it is important to take into consideration the disabilities that
some of your users may have. Therefore, the Accessibility Toolkit (ATK) provides all GTK+ wid-
gets with a built-in method of handling accessibility issues.

Some examples of things ATK adds support for are screen readers and high-contrast visual
themes for people who are visually impaired and keyboard behavior modifiers, such as sticky
keys, for those with diminished motor control.

Although this is an important part of designing an application for production use, this
book will not cover ATK. You need to learn how to use GTK+ widgets and how to create your
own custom widgets before you can use ATK. Therefore, I will focus on GTK+ and other essen-
tials for the remainder of this book.

It is important that you keep accessibility in the back of your mind and revisit the library
when you are ready to deal with ATK in your own applications.

Language Bindings
GTK+, in its original form, can be used with the C programming language, but bindings have
been created for many others. The most popular language bindings are in the following list,
although a full list is available at www.gtk.org/bindings.html:

• Gtkmm is the official set of C++ bindings. You can use GTK+ with C++ because of back-
ward compatibility, but Gtkmm provides all of the GTK+ features in a series of classes,
the style of which will be familiar to all C++ programmers. The sources for Gtkmm,
GLibmm, Libglademm, and other dependencies are available at www.gtkmm.org.

• PyGTK, available at www.pygtk.org, provides Python bindings for the GTK+ libraries.
The advantage of using PyGTK is that it takes care of memory management and type
casting for you. This alleviates problems that can plague programmers using other lan-
guage bindings.

• Gtk2-perl, available at http://gtk2-perl.sf.net, provides all of the GTK+ libraries in
an object-oriented Perl toolkit. Each of the libraries is split into modules called Glib,
Gtk2, and Gtk2::GladeXML. Like most GTK+ bindings for scripting languages, memory
management is handled by the language’s facilities.

• PHP-GTK allows for handling PHP language bindings for GTK+. The PHP bindings allow
you to create client-side cross-platform GUI applications. PHP-GTK is available at
http://gtk.php.net. This topic is also covered in the Apress book Pro PHP-GTK,
authored by Scott Mattocks (Berkeley, 2006).

• Java-Gnome, much like Gtkmm, provides a true object-oriented platform for the GTK+
libraries. Available at http://java-gnome.sf.net, it provides all of the essential librar-
ies for developing GTK+ applications in Java.

• Gtk# provides GTK+ bindings for C# applications on a wide variety of operating systems.
It is provided by the Mono Project at www.mono-project.com.

7931.book Page 9 Friday, February 2, 2007 8:28 PM

10 C H A P T E R 1 ■ G E T T I N G S T A R T E D

Installing GTK+
Before you can begin programming, you must install GTK+ and its dependencies on your sys-
tem. This section covers installing GTK+ on Linux and other UNIX-like operating systems.

It is important to note, if you are using a Linux distribution with a package manager
including Ubuntu, Debian, Fedora Core, or one of many others, you should install the precom-
piled binaries provided. You will need the GTK+ 2 libraries, pkg-config, and their
dependencies.

The development packages of GTK+ and each of its dependencies are also required. In
Debian and Debian-based distributions, these packages will end in -dev. In Fedora Core and
other distributions that use the RedHat Package Manager (RPM), they will end in -devel. If you
install the development package of GTK+, most modern package managers will take care of all
of the necessary dependencies automatically. You should reference your Linux distribution’s
documentation for more information on installing distributed packages.

If you are going to install GTK+ and its dependencies from the source archives, the rest of
this section is for you. GTK+ uses the standard GNU tools for compiling: autoconf is used for
configuration and dealing with portability issues, automake for building makefiles, libtool for
building shared libraries, and make for compiling and installing binaries.

The most recent GTK+ sources can be found at www.gtk.org/download. You will need to
download the latest versions of ATK, GLib, GTK+, and Pango. You will also need Cairo, JPEG,
libpng, pkg-config, and tiff from the dependencies directory.

If you are using an older version of Linux, you will need to install libiconv. Most systems
already have this package, so it is safe to continue without it and install the library in the future
if you run into any problems. You may also need to install libintl, fontconfig, and FreeType,
although these are packages provided as standard on most modern Linux distributions.

You should also note that these packages must be installed in a precise order for the
following procedure to work. After installing all of the packages from the dependencies
directory on the GTK+ FTP site, you will need to install GLib, Pango, ATK, and GTK+ in that
specific order.

The following procedure should be used on each source package, one at a time. Each
library must be successfully installed before continuing on to the next, or the procedure will
not work.

You are now ready to install GTK+, so let’s begin. Once you have downloaded a package
from the GTK+ FTP site, you can use one of the following commands to extract the file, depend-
ing on the type of archive you downloaded.

tar –xvzf package-name.tar.gz
tar –xvjf package-name.tar.bz2

By moving into the directory of the extracted archive, you will see a shell script called
configure. This script will recursively parse through each of the directories in the source dis-
tribution and create template makefiles that are customized for your operating system. Each
template file will be named Makefile.in. The following is a sample configure command that
you can use:

./configure --prefix=/usr

7931.book Page 10 Friday, February 2, 2007 8:28 PM

C H A P T E R 1 ■ G E T T I N G S T A R T E D 11

The configure script can be passed a number of options. By using --prefix=/usr, the pre-
ceding example tells make to install the package with /usr as the root directory. There are
many other options that can be passed to the GTK+ configure script.

Table 1-2 shows a short list of parameters that can be passed specifically to the GTK+ con-
figure. You can use ./configure --help to view a full list of parameters for any package.

Table 1-2. GTK+ Configuration Options

After configuring a package, you can build and install it using the following set of com-
mands; it is important to note that make install and ldconfig need to be run as the root user:

make
make install
ldconfig

The ldconfig command is not necessary on all systems, but you should run it to be on the
safe side. It will make sure your system recognizes the libraries you installed before compiling
the next package.

Option Description

--enable-debug If you set this to no, debugging and asserts are disabled. Setting it to
yes enables runtime debugging. The default is minimum, which
disables only cast checks.

--enable-shm Turns on shared memory if available; disable it with --disable-shm.

--enable-xkb Supports X Window System keyboard extension; disable it with
--disable-xkb.

--disable-rebuilds Disables all source autogeneration rules; enable it with --enable-
rebuilds.

--enable-visibility Uses ELF visibility attributes; disable it with --disable-visibility.

--with-xinput Use yes to support XInput extension in your application or no to
disable it.

--with-gdktarget= Selects a non-default GDK target. Options for this parameter are
x11, linux-fb, win32, quartz, and directfb.

--disable-shadowfb Disable support for shadowfb in linux-fb or enable it with --enable-
shadowfb.

--enable-fbmanager Enable frame buffer manager support through GtkFB.

--disable-modules This indicates that all image file format loaders for GdkPixbuf should
be built statically into the GTK+ library. You can build them as
shared libraries with --enable-modules.

--with-included-loaders This allows you to specify which image loaders to include such as
PNG and JPEG.

7931.book Page 11 Friday, February 2, 2007 8:28 PM

12 C H A P T E R 1 ■ G E T T I N G S T A R T E D

Exercise 1-1. Verifying Your Install

If you install the GTK+ libraries from the source packages, you are provided with a simple way to verify a successful
install. To do this, you have to run the gtk-demo application installed in /usr/bin. Run the following command
from a terminal or by double-clicking the executable file:

/usr/bin/gtk-demo

If your install was successful, you will be presented with a window with the title “GTK+ Code Demos”. In that win-
dow, you can view information and source code for each of the widgets listed. This also gives you a good opportunity
to sample many of the widgets that you will be learning about.

If you run into any problems launching the application, pay close attention to the errors shown in your terminal. They
will give you a good idea of which library is causing the problem.

Once you have all of the GTK+ libraries and their dependencies installed, you are ready to
continue on to the next chapter, which begins with a simple example showing the most basic
elements required by every GTK+ application.

Summary
In this chapter, you learned the history of the GTK+ libraries and the X Window System and for
what each can be used.

You were then introduced to GTK+ as a graphical widget library as well as its supporting
libraries. These libraries include the following:

• GLib is a general-purpose utility library that is used to implement many useful non-
graphical features including data types, file management, pipes, threads, and more.

• The GLib Object System (GObject) implements the object-oriented GType system. It also
provides signal and property systems.

• The GIMP Drawing Kit (GDK) is a computer graphics library originally designed for the
X Window System that wraps around low-level drawing and window functions.

• GdkPixbuf is a small library that provides client-side image manipulation functions. It
was created as a replacement for Imlib.

• Pango is used for font rendering. It uses UTF-8 encoding, so it is able to support all forms
of internationalized text.

• The Accessibility Toolkit (ATK) provides all GTK+ widgets with a built-in method of han-
dling accessibility.

7931.book Page 12 Friday, February 2, 2007 8:28 PM

C H A P T E R 1 ■ G E T T I N G S T A R T E D 13

The last two sections of the chapter showed you all of the available language bindings that
implement GTK+ in other programming languages and how to install the GTK+ libraries. Lan-
guage bindings are possible because of the way GObject was originally designed.

In Chapter 2, you will be introduced to the widget hierarchy system as well as window,
label, and button widgets. You will learn how to use these widgets in basic GTK+ applications.

7931.book Page 13 Friday, February 2, 2007 8:28 PM

7931.book Page 14 Friday, February 2, 2007 8:28 PM

15

■ ■ ■

C H A P T E R 2

Your First GTK+ Applications

In Chapter 1, you were given an overview of the things available to you in the GTK+ libraries as
a graphical application developer. In this chapter, you’ll learn how to write your own GTK+
applications.

While we will begin with simple examples, there are many important concepts presented
in this chapter. We will cover the topics that every other GTK+ application you write will rely
on. Therefore, as with any chapter, make sure you understand the concepts presented to you
in the next few pages before continuing on.

In this chapter, you will learn the following:

• The basic function calls required by all GTK+ applications

• How to compile GTK+ code with GCC

• The object-oriented nature of the GTK+ widget system

• What role signals, callbacks, and events play in your applications

• How to alter textual styles with the Pango Text Markup Language

• Various other useful functions provided for the widgets presented in this chapter

• How to use the GtkButton widget to make a clickable GtkLabel

• How to get and set properties of objects using GObject methods

Hello World
Every programming book I have read in my lifetime has begun with a “Hello World” example
application. I do not want to be the one to break with tradition.

Before we get to the example, you should know that all of the source code for every exam-
ple is downloadable from this book’s web site, found at www.gtkbook.com. You can compile
each example with the method presented in a later section of this chapter or follow the instruc-
tions found in the base folder of the package.

Listing 2-1 is the first and most simple GTK+ application in this book. It initializes GTK+,
creates a window, displays it to the user, and waits for the program to be terminated. It is very
basic, but it shows the essential code that every GTK+ application you create must have!

7931ch02.fm Page 15 Wednesday, March 28, 2007 7:35 PM

16 C H A P T E R 2 ■ Y O U R F I R S T G T K + A P P L I C A T I O N S

■Note The application in Listing 2-1 does not provide a way for you to terminate it. If you click the X in the
corner of the window, the window will close, but the application will remain running. Therefore, you will have
to press Ctrl+C in your terminal window to force the application to exit!

Listing 2-1. Greeting the World (helloworld.c)

#include <gtk/gtk.h>

int main (int argc,
 char *argv[])
{
 GtkWidget *window;

 /* Initialize GTK+ and all of its supporting libraries. */
 gtk_init (&argc, &argv);

 /* Create a new window, give it a title and display it to the user. */
 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Hello World");
 gtk_widget_show (window);

 /* Hand control over to the main loop. */
 gtk_main ();
 return 0;
}

The <gtk/gtk.h> file includes all of the widgets, variables, functions, and structures
available in GTK+ as well as header files from other libraries that GTK+ depends on, such as
<glib/glib.h> and <gdk/gdk.h>. In most of your applications, <gtk/gtk.h> will be the only
GTK+ header file you will need to include for GTK+ development, although some more
advanced applications may require further inclusions.

Listing 2-1 is one of the simplest applications that you can create with GTK+. It produces a
top-level GtkWindow widget with a default width and height of 200 pixels. There is no way of
exiting the application except to kill it in the terminal where it was launched. You will learn how
to use signals to exit the application when necessary in the next example.

This example is rather simple, but it shows the bare essentials you will need for every GTK+
application you create. The first step in understanding the “Hello World” application is to look
at the content of the main() function.

Initializing GTK+
Initializing the GTK+ libraries is extremely simple for most applications. By calling gtk_init(),
all initialization work is automatically performed for you.

It begins by setting up the GTK+ environment, including obtaining the GDK display and
preparing the GLib main event loop and basic signal handling. If gtk_init() does more than

7931ch02.fm Page 16 Wednesday, March 28, 2007 7:35 PM

C H A P T E R 2 ■ Y O U R F I R S T G T K + A P P L I C A T I O N S 17

you need, you may create your own, small initialization function that calls fewer of the func-
tions, such as gdk_init() and g_main_loop_new(), although this is not necessary for most
applications.

One of the great benefits of using open source libraries is the ability to read the code
yourself to see how things are done. You can easily view the GTK+ source code to figure out
everything that is called by gtk_init() and choose what needs to be performed by your appli-
cation. However, you should use gtk_init() for now until you learn more about how each of
the libraries are used and how they interrelate.

You will also notice that we passed the standard main() argument parameters argc and
argv to gtk_init(). The GTK+ initialization function parses through all of the arguments and
strips out any it recognizes. Any parameters it uses will be removed from the list, so you should
do any argument parsing of your own after calling gtk_init(). This means that a standard list
of parameters can be passed and parsed by all GTK+ applications without any extra work per-
formed by you, the developer.

It is important to call gtk_init() before any other function calls to the GTK+ libraries.
Otherwise, your application will not function properly and will likely crash.

The gtk_init() function will terminate your application if it is unable to initialize the GUI
or has any other significant problems that cannot be resolved. If you would like your applica-
tion to fall back on a text interface when GUI initialization fails, you need to use
gtk_init_check().

gboolean gtk_init_check (int *argc,
 char ***argv);

If the initialization fails, FALSE is returned. Otherwise, gtk_init_check() will return TRUE.
You should only use this function if you have a textual interface to fall back on!

Widget Hierarchy
I consider widget hierarchy one of the most important topics of discussion when learning
GTK+. While it is not difficult to understand, without it, widgets would not be possible as they
exist today.

To understand this topic, we will look at gtk_window_new(), the function used to create a
new GtkWindow object. You will notice in the following line that, while we want to create a new
GtkWindow, gtk_window_new() returns a pointer to a GtkWidget. This is because every widget in
GTK+ is actually a GtkWidget itself.

GtkWidget* gtk_window_new (GtkWindowType type);

Widgets in GTK+ use the GObject hierarchy system, which allows you to derive new wid-
gets from those that already exist. Child widgets inherit properties, functions, and signals from
their parent, their grandparent, and so on, because they are actually implementations of their
ancestors themselves.

Widget hierarchy in GTK+ is a singly inherited system, which means that each child can
have only one direct parent. This creates a simple linear relationship that every widget imple-
ments. You will learn how to derive your own child widgets in Chapter 11. Until then, we will
use widget hierarchy to take advantage of inherited methods and properties.

In Figure 2-2, a simple outline of the widget hierarchy of the GtkWindow class is illustrated.

7931ch02.fm Page 17 Wednesday, March 28, 2007 7:35 PM

18 C H A P T E R 2 ■ Y O U R F I R S T G T K + A P P L I C A T I O N S

Figure 2-1. The widget hierarchy of GtkWindow

Figure 2-1 may look daunting at first, but let’s look at each class type one at a time to make
things easier to understand:

• GObject is the fundamental type providing common attributes for all libraries based
on it including GTK+ and Pango. It allows objects derived from it to be constructed,
destroyed, referenced, and unreferenced. It also provides the signal system and object
property functions. You can cast an object as a GObject with G_OBJECT(). If you try to
cast an object with G_OBJECT() that is not a GObject or derived from it, GLib will throw a
critical error, and the cast will fail. This will occur with any other GTK+ casting function.

• GInitiallyUnowned should never be accessed by the programmer, since all of its mem-
bers are private. It exists so that references can be floating. A floating reference is one
that is not owned by anyone.

• GtkObject is the base class for all GTK+ objects. It was replaced as the absolute base
class of all objects in GTK+ 2.0, but GtkObject was kept for backward compatibility of
nonwidget classes like GtkAdjustment. You can cast an object as a GtkObject with
GTK_OBJECT().

• GtkWidget is an abstract base class for all GTK+ widgets. It introduces style properties
and standard functions that are needed by all widgets. The standard practice is to store
all widgets as a GtkWidget, which can be seen in Listing 2-1. Therefore, you will rarely
need to use GTK_WIDGET() to cast an object.

• GtkContainer is an abstract class that is used to contain one or more widgets. It is an
extremely important structure, since you could not add any other widgets to a window
without it. Therefore, the whole of Chapter 3 is dedicated to widgets derived from this
class. You can cast an object as a GtkContainer with GTK_CONTAINER().

• GtkBin is another abstract class that allows a widget to contain only one child. It allows
multiple widgets to have this functionality without the need for reproduction of code.
You can cast an object as a GtkBin with GTK_BIN().

• GtkWindow is the standard window object you saw in Listing 2-1. You can use
GTK_WINDOW() to cast an object.

7931ch02.fm Page 18 Wednesday, March 28, 2007 7:35 PM

C H A P T E R 2 ■ Y O U R F I R S T G T K + A P P L I C A T I O N S 19

Every widget in this book will use a similar widget hierarchy. It is useful to have the API
documentation handy, so you can reference the hierarchy of the widgets you are using. The
API documentation is available at www.gtk.org/api, if you did not install it along with the
libraries.

For now, it is enough to know how to cast objects and what the basic abstract types are
used for. In Chapter 11, you will learn how to create your own widgets. At that point, we will
delve further into the workings of the GObject system.

GTK+ Windows
The code in Listing 2-1 creates a GtkWindow object that is set to the default width and height of
200 pixels. This default size was chosen because a window with a width and height of 0 pixels
cannot be resized. You should note that the title bar and window border are included in the
total size, so the working area of the window is smaller than 200 pixels by 200 pixels.

We passed GTK_WINDOW_TOPLEVEL to gtk_window_new(). This tells GTK+ to create a new
top-level window. Top-level windows use window manager decorations, have a border frame,
and allow themselves to be placed by the window manager. This means that you do not have
absolute control over your window position and should not assume that you do.

GtkWidget *window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

It is important to make the distinction between what GTK+ controls and what the window
manager controls. You are able to make recommendations and requests for the size and place-
ment of top-level widgets. However, the window manager has ultimate control of these
features.

Conversely, you can use GTK_WINDOW_POPUP to create a pop-up window, although its name
is somewhat misleading in GTK+. Pop-up windows are used for things that are not normally
thought of as windows, such as tooltips and menus.

Pop-up windows are ignored by the window manager, and therefore, they have no deco-
rations or border frame. There is no way to minimize or maximize a pop-up window, because
the window manager does not know about them. Resize grips are not shown, and default key
bindings will not work.

GTK_WINDOW_TOPLEVEL and GTK_WINDOW_POPUP are the only two elements available in the
GtkWindowType enumeration. In most cases, you will want to use GTK_WINDOW_TOPLEVEL, unless
there is a compelling reason not to.

■Note You should not use GTK_WINDOW_POPUP if you only want window manager decorations turned off
for the window. Instead, use gtk_window_set_decorated (GtkWindow *window, gboolean show)
to turn off window decorations.

7931ch02.fm Page 19 Wednesday, March 28, 2007 7:35 PM

20 C H A P T E R 2 ■ Y O U R F I R S T G T K + A P P L I C A T I O N S

The following function requests the title bar and taskbar to display “Hello World!” as the
title of the window. Since gtk_window_set_title() requires a GtkWindow object as it’s the first
parameter, we must cast our window using the GTK_WINDOW() function.

void gtk_window_set_title (GtkWindow *window,
 const gchar *title);

The second parameter of gtk_window_set_title() is the title that will be displayed by the
window. It uses GLib’s implementation of char, which is called gchar. When you see a param-
eter listed as gchar*, it will also accept const char*, because gchar* is defined as a typedef of
the standard C string object.

The last function of interest in this section is gtk_widget_show(), which tells GTK+ to
set the specified widget as visible. The widget may not be immediately shown when you call
gtk_widget_show(), because GTK+ queues the widget until all preprocessing is complete
before it is drawn onto the screen.

It is important to note that gtk_widget_show() will only show the widget it is called on. If
the widget has children that are not already set as visible, they will not be drawn on the screen.
Furthermore, if the widget’s parent is not visible, it will not be drawn on the screen. Instead, it
will be queued until its parent is set as visible as well.

In addition to showing a widget, it is also possible to use gtk_widget_hide() to hide a wid-
get from the user’s view.

void gtk_widget_hide (GtkWidget *widget);

This will hide all child widgets from view, but you should be careful. This function only sets
the specified widget as hidden. If you show the widget at a later time, its children will be visible
as well, since they were never marked as hidden. This will become an important distinction to
make when you learn how to show and hide multiple widgets at once.

The Main Loop Function
After all initialization is complete and necessary signals are connected in a GTK+ application,
there will come a time when you want to let the GTK+ main loop take control and start process-
ing events. To do this, you will call gtk_main(), which will continue to run until you call
gtk_main_quit() or the application terminates. This should be the last GTK+ function called
in main().

After you call gtk_main(), it is not possible to regain control of the program until a call-
back function is initialized. In GTK+, signals and callback functions are triggered by user
actions such as button clicks, asynchronous input-output events, programmable timeouts,
and others. We will start exploring signals, events, and callback functions in the next example.

7931ch02.fm Page 20 Wednesday, March 28, 2007 7:35 PM

C H A P T E R 2 ■ Y O U R F I R S T G T K + A P P L I C A T I O N S 21

■Note It is also possible to create functions that are called at a specified interval of time; these are referred
to as timeouts. Another type of callback function, referred to as an idle function, is called when the operating
system is not busy processing other tasks. Both of these features are a part of GLib and will be explored in
detail in Chapter 6.

Other than those few situations, control of the application is managed by signals, timeout
functions, and various other callback functions once gtk_main() is called. Later in this chap-
ter, you will see how to use signals and callbacks in your own applications.

Using GCC and pkg-config to Compile
Now that you understand how Listing 2-1 works, it is time to compile the code into an execut-
able. To do this, you run the following command from a terminal:

gcc -Wall -g helloworld.c -o helloworld `pkg-config --cflags gtk+-2.0` \
 `pkg-config --libs gtk+-2.0`

This command can be used for all of the examples in this book except those in Chapter 10,
which will require libglade as well. I decided to use the GCC compiler, because it is the stan-
dard C compiler on Linux, but most C and C++ compilers will work. To use another compiler,
you will need to reference its documentation.

The previous compile command is parsed with multiple provided options. The -Wall
option enables all types of compiler warnings. While this may not always be desirable, it can
help you detect simple programming errors as you begin programming with GTK+. Debugging
is enabled with -g, so that you will be able to use your compiled application with GDB or your
debugger of choice.

The next set of commands, helloworld.c -o helloworld, compiles the specified file and
outputs it to an executable file named helloworld. One or many source files may be specified
for compilation by GCC.

■Caution The single, slanted quotation mark used in the compile command is a backquote, which is
found on the key in the top-left corner of most keyboards. This tells your terminal that the command between
the quotes should be run and replaced by the output before the rest of the line is executed.

In addition to the GCC compiler, you need to use the pkg-config application, which
returns a list of specified libraries or paths.

7931ch02.fm Page 21 Wednesday, March 28, 2007 7:35 PM

22 C H A P T E R 2 ■ Y O U R F I R S T G T K + A P P L I C A T I O N S

The first instance, pkg-config --cflags gtk+-2.0, returns directory names to the com-
piler’s include path. This will make sure that the GTK+ header files are available to the
compiler. Try running pkg-config --cflags gtk+-2.0 in your terminal to see an example
of what is being output to the compiler.

The second call, pkg-config --libs gtk+-2.0, appends options to the command line
used by the linker including library directory path extensions and a list of libraries needed for
linking to the executable. The libraries that are returned in a standard Linux environment
follow:

• GTK+ (-lgtk): Graphical widgets

• GDK (-lgdk): The standard graphics rendering library

• GdkPixbuf (-lgdk_pixbuf): Client-side image manipulation

• Pango (-lpango): Font rendering and output

• GObject (-lgobject): Object-oriented type system

• GModule (-lgmodule): Dynamically loading libraries

• GLib (-lglib): Data types and utility functions

• Xlib (-lX11): X Window System protocol library

• Xext (-lXext): X extensions library routines

• GNU math library (-lm): The GNU library from which GTK+ uses many routines

As you can see, pkg-config provides a convenient way for you to avoid hard-coding a long
list of includes and libraries manually every time you compile a GTK+ application.

Listing 2-1 is one of the simplest applications that you can create with GTK+. It produces
a top-level GtkWindow widget with a default width and height of 200 pixels, as displayed in
Figure 2-2.

Figure 2-2. The Hello World window at the default size

Even though the window includes the standard X on the right side of the title bar, you’ll
notice that clicking that X will only cause the window to disappear. The application continues
to wait for events, and control will not be returned to the launching terminal until you press
Ctrl+C. You will learn how to implement a shutdown callback with signals in the next example.

7931ch02.fm Page 22 Wednesday, March 28, 2007 7:35 PM

C H A P T E R 2 ■ Y O U R F I R S T G T K + A P P L I C A T I O N S 23

Extending “Hello World”
Every GTK+ application you write requires the function calls shown in Listing 2-1, but the
example on its own is clearly not exceptionally useful. Now that you understand how to get
started, it is time for us to say “hello” to the world in a more useful manner.

Listing 2-2 expands upon our “Hello World” application in two ways. First, it connects call-
back functions to window signals, so the application can terminate itself. Secondly, this
example introduces the GtkContainer structure, which allows a widget to contain one or more
other widgets.

Listing 2-2. Greeting the World Again (helloworld2.c)

#include <gtk/gtk.h>

static void destroy (GtkWidget*, gpointer);
static gboolean delete_event (GtkWidget*, GdkEvent*, gpointer);

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *label;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Hello World!");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);
 gtk_widget_set_size_request (window, 200, 100);

 /* Connect the main window to the destroy and delete-event signals. */
 g_signal_connect (G_OBJECT (window), "destroy",
 G_CALLBACK (destroy), NULL);
 g_signal_connect (G_OBJECT (window), "delete_event",
 G_CALLBACK (delete_event), NULL);

 /* Create a new GtkLabel widget that is selectable. */
 label = gtk_label_new ("Hello World");
 gtk_label_set_selectable (GTK_LABEL (label), TRUE);

 /* Add the label as a child widget of the window. */
 gtk_container_add (GTK_CONTAINER (window), label);
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

7931ch02.fm Page 23 Wednesday, March 28, 2007 7:35 PM

24 C H A P T E R 2 ■ Y O U R F I R S T G T K + A P P L I C A T I O N S

/* Stop the GTK+ main loop function when the window is destroyed. */
static void
destroy (GtkWidget *window,
 gpointer data)
{
 gtk_main_quit ();
}

/* Return FALSE to destroy the widget. By returning TRUE, you can cancel
 * a delete-event. This can be used to confirm quitting the application. */
static gboolean
delete_event (GtkWidget *window,
 GdkEvent *event,
 gpointer data)
{
 return FALSE;
}

In Figure 2-3, you can see a screenshot of Listing 2-2 in action. It shows the GtkLabel con-
tained by a GtkWindow. Let us now take a look at the new features presented by this example.

Figure 2-3. The extended Hello World window

The GtkLabel Widget

In Listing 2-2, a new type of widget called GtkLabel was created. As the name implies, GtkLabel
widgets are normally used to label other widgets. However, they can also be used for such
things as creating large blocks of noneditable, formatted, or wrapped text.

You can create a new label widget by calling gtk_label_new(). Passing NULL to
gtk_label_new() is equivalent to passing an empty string. This will cause the label to be
displayed without any text.

GtkWidget* gtk_label_new (const gchar *str);

It is not possible for users to edit a normal GtkLabel with the keyboard or mouse (without
some extra work by the programmer, that is), but by using gtk_label_set_selectable(), the
user will be able to select and copy the text. The widget will also be able to accept cursor focus,
so you can use the Tab key to move between the label and other widgets.

void gtk_label_set_selectable (GtkLabel *label,
 gboolean selectable);

7931ch02.fm Page 24 Wednesday, March 28, 2007 7:35 PM

C H A P T E R 2 ■ Y O U R F I R S T G T K + A P P L I C A T I O N S 25

The ability to select labels is turned off by default, because this feature should only be used
when there is a need for the user to retain the information. For example, error messages should
be set as selectable, so they can easily be copied into other applications such as a web browser.

The text in a GtkLabel does not have to remain in the same state as the text string you
specified during creation. You can easily change it with gtk_label_set_text(). Any text cur-
rently contained by the label will be overwritten as well as any mnemonics.

void gtk_label_set_text (GtkLabel *label,
 const gchar *str);

■Note A mnemonic is a combination of keys that, when pressed by the user, will perform some type of
action. It is possible to add a mnemonic to a GtkLabel that will activate a designated widget when pressed.

The string currently being displayed by the label can be retrieved with gtk_label_get_text().
The returned string will not include any markup or mnemonic information. The label also uses it
internally, so you should never modify the returned string!

The last GtkLabel method you should know about is gtk_label_set_markup(), which
allows you to define custom styles for the displayed text. There are a number of tags provided by
the Pango Text Markup Language, which can be found in Appendix C in the back of this book.

void gtk_label_set_markup (GtkLabel *label,
 const gchar *str);

The Pango Text Markup Language provides two types of style methods. You can use the
 tag with some attributes such as the font type, size, weight, foreground color, and oth-
ers. It also provides various other tags such as , <tt>, and <i>, which make the enclosed text
bold, monospace, or italic.

Container Widgets and Layout

Recall from the first example in this chapter that the GtkWindow structure is derived indirectly
from GtkContainer. This indicates that GtkWindow is a GtkContainer and inherits all of the
GtkContainer functions, signals, and properties.

By using gtk_container_add(), you can add a widget as the child of the container. It fol-
lows that the container is now the widget’s parent. The language popularly used to describe
this container and contained relationship is “parent and child,” where the parent is the con-
taining widget, and the child is contained in the parent.

void gtk_container_add (GtkContainer *container,
 GtkWidget *child);

This language unfortunately often causes confusion, because GTK+ is object oriented in
every sense. Because of this, when using and talking about GTK+, one must be aware of the
context in which “parent” and “child” is used. They are used to talk about both container wid-
get relationships and about widget derivation relationships.

7931ch02.fm Page 25 Wednesday, March 28, 2007 7:35 PM

26 C H A P T E R 2 ■ Y O U R F I R S T G T K + A P P L I C A T I O N S

The purpose of the GtkContainer class is to allow a parent widget to contain one or more
children. GtkWindow is derived from a type of container called GtkBin. GtkBin allows the parent
to contain only one child. Windows, as containers, are therefore limited to directly containing
a single child. Fortunately, that single child may be a more complex container widget itself,
which, in turn, may contain more than one child widget.

It is important to notice that our window is no longer the default 200 by 200 pixels in size
and that the square aspect ratio is not retained. This is because GTK+ uses, primarily, an auto-
matic and dynamically sized layout system. This dynamic sizing is the reason behind the
existence of container objects. The sizing system will be discussed in more detail in the next
chapter, which covers container widgets.

Because our window is a GtkContainer, we can also use the function gtk_container_
set_border_width() to place a 10-pixel border around the inside edge of the window. The
border is set on all four sides of the child widget.

void gtk_container_set_border_width (GtkContainer *container,
 guint border_width);

Without adding the border, the layout manager would allow the window to shrink to the
default size of the GtkLabel widget. In Listing 2-1, the window is set to a width of 200 pixels and
a height of 100 pixels. With this size, there will be more than a 10-pixel border around the label
on most systems. The border will prevent the user from resizing the window to a smaller size
than allocated by the widget and the border.

We then call gtk_widget_show_all() on the window. This function recursively draws the
window, its children, its children’s children and so on. Without this function, you would have to
call gtk_widget_show() on every single child widget. Instead, by using gtk_widget_show_all(),
GTK+ does all of the work for you by showing each widget until they are all visible on the screen.

void gtk_widget_show_all (GtkWidget *widget);

Like the nonrecursive gtk_widget_show(), if you call this function on a widget whose par-
ent is not set as visible, it will not be shown. The widget will be queued until its parent is set as
visible.

GTK+ also provides gtk_widget_hide_all(), which will set the specified widget and all of
its children as hidden. Because contained widgets are invisible when their container is hidden,
it will appear that gtk_widget_hide(), when called on the containing object, does the same
thing as gtk_widget_hide_all(), because both will hide the container and all of its children.
However, there is an important difference. Calling gtk_widget_hide() sets the visible property
to FALSE on only one widget, while gtk_widget_hide_all() changes that property on the
passed widget and recursively on all contained widgets.

void gtk_widget_hide_all (GtkWidget *widget);

The gtk_widget_show() and gtk_widget_show_all() set of functions have the same
relationship. So, if you use gtk_widget_hide_all() but call gtk_widget_show() on the
same widget, all of its children will remain invisible.

Container widgets and managing the application layout will be covered in more detail
in the next chapter. Since you have enough information to understand the GtkContainer in
Listing 2-2, we will continue on to signals and callback functions.

7931ch02.fm Page 26 Wednesday, March 28, 2007 7:35 PM

C H A P T E R 2 ■ Y O U R F I R S T G T K + A P P L I C A T I O N S 27

Signals and Callbacks
GTK+ is a system that relies on signals and callback functions. A signal is a notification to your
application that the user has performed some action. You can tell GTK+ to run a function when
the signal is emitted. These are named callback functions.

■Caution GTK+ signals are not the same thing as POSIX signals! Signals in GTK+ are propagated by
events from the X Window System. Each provides separate methods, and these two signal types should not
be used interchangeably.

After you initialize your user interface, control is given to the gtk_main() function, which
sleeps until a signal is emitted. At this point, control is passed to other functions called callback
functions.

You, as the programmer, connect signals to their callback functions before calling
gtk_main(). The callback function will be called when the action has occurred and the signal is
emitted or when you have explicitly emitted the signal. You also have the capability of stopping
signals from being emitted at all.

■Note It is possible to connect signals at any point within your applications. For example, new signals can
be connected within callback functions. However, you should try to initialize mission-critical callbacks before
calling gtk_main().

There are many types of signals, and just like functions, they are inherited from parent
structures. Many signals are generic to all widgets such as hide and grab-focus or specific to
the widget such as the GtkRadioButton signal group-changed. In either case, widgets derived
from a class can use all of the signals available to all of its ancestors.

Connecting the Signal
The first instance of a signal you have encountered was in Listing 2-2. The GtkWindow was con-
nected to the destroy() callback function. This function will be called when the destroy signal
is emitted.

g_signal_connect (G_OBJECT (window), "destroy",
 G_CALLBACK (destroy), NULL);

GTK+ emits the destroy signal when gtk_widget_destroy() is called on the widget or
when FALSE is returned from a delete_event() callback function. If you reference the API doc-
umentation, you will see that the destroy signal belongs to the GtkObject class. This means
that every class in GTK+ inherits the signal, and you can be notified of the destruction of any
GTK+ structure.

7931ch02.fm Page 27 Wednesday, March 28, 2007 7:35 PM

28 C H A P T E R 2 ■ Y O U R F I R S T G T K + A P P L I C A T I O N S

There are four parameters to every g_signal_connect() call. The first is the widget that is
to be monitored for the signal. Next, you specify the name of the signal you want to track. Each
widget has many possible signals, all of which can be found in the API documentation.
Remember that widgets are free to use the signals of their ancestors, since each widget is actu-
ally an implementation of each of its ancestors. You can use the “Object Hierarchy” section of
the API to reference parent classes.

gulong g_signal_connect (gpointer object,
 const gchar *signal_name,
 GCallback handler,
 gpointer data);

When typing the signal name, the underscore and dash characters are interchangeable.
They will be parsed as the same character, so it does not make any difference which one you
choose. I will use the underscore character for all of the examples in this book.

The third parameter in g_signal_connect() is the callback function that will be called
when the signal is emitted, cast with G_CALLBACK(). The format of the callback function
depends on the function prototype requirements of each specific signal. An example callback
function is shown in the next section.

The last parameter in g_signal_connect() allows you to send a pointer to the callback
function. In Listing 2-2, we passed NULL, so the pointer was void, but let us assume for a
moment that we wanted to pass the GtkLabel to the callback function.

In this instance of g_signal_connect(), the GtkLabel was cast as a gpointer, which will
be passed to the callback function. A gpointer is simply a type definition of a void pointer. You
can recast this in the callback function, but g_signal_connect() requires a gpointer type.

g_signal_connect (G_OBJECT (window), "destroy",
 G_CALLBACK (destroy),
 (gpointer) label);

The return value for g_signal_connect() is the handler identifier of the signal. You
can use this with g_signal_handler_block(), g_signal_hander_unblock(), and
g_signal_handler_disconnect(). These functions will stop a callback function from
being called, re-enable the callback function, and remove the signal handler from memory,
respectively. More information can be found in the API documentation.

Callback Functions
Callback functions specified in g_signal_connect() will be called when the signal is emitted
on the widget to which it was connected. For all signals, with the exception of events, which will
be covered in the next section, callback functions are in the following form.

static void
callback_function (GtkWidget *widget,
 ... /* Other Possible Arguments */ ...,
 gpointer data);

You can find an example format of a callback function for each signal in the API documenta-
tion, but this is the generic format. The first parameter is the object from g_signal_connect(),

7931ch02.fm Page 28 Wednesday, March 28, 2007 7:35 PM

C H A P T E R 2 ■ Y O U R F I R S T G T K + A P P L I C A T I O N S 29

except it must always be cast as the widget type for which the signal was created. If you need access
to a widget type from which the widget was derived, you can use the built-in casting functions.

There are other possible arguments that may appear in the middle as well, although this is
not always the case. For these parameters, you need to reference the documentation of the sig-
nal you are utilizing.

The last parameter of your callback function corresponds to the last parameter of
g_signal_connect(). Since the data is passed as a void pointer, you can place the data type
you want it cast to as the last parameter of the callback function. Let us assume that you passed
a GtkLabel to the fourth parameter of g_signal_connect().

static void
destroy (GtkWidget *window,
 GtkLabel *label)

In this example, we were sure that the object was of the type GtkLabel, so we used
GtkLabel as the last parameter of the callback function. This will avoid having to recast the
object from a gpointer to the desired data type.

In Chapter 11, you will be covering how to create your own signals when you are taught
how to create custom widgets.

Emitting and Stopping Signals
Before we move onto events, there are two interesting functions that you should know about
that relate to signals. By using g_signal_emit_by_name(), you can emit a signal on an object by
using its textual name. You can use the signal identifier to emit a signal as well, but it is much
more likely that you will have access to the signal’s name. If you have the signal identifier, you
can emit the signal with g_signal_emit().

void g_signal_emit_by_name (gponter instance,
 const gchar *signal_name,
 ...);

The last parameters of g_signal_emit_by_name() are a list of parameters that should be
passed to the signal and the location to store the return value. The return value can safely be
ignored if it is a void function.

You can also use g_signal_stop_emission_by_name() to stop the current emission of a
signal. This allows you to temporarily disable a signal that will be emitting because of some
action performed by your code.

void g_signal_stop_emission_by_name (gpointer instance,
 const gchar *signal_name);

Events
Events are special types of signals that are emitted by the X Window System. They are initially
emitted by the X Window System and then sent from the window manager to your application
to be interpreted by the signal system provided by GLib. For example, the destroy signal is
emitted on the widget, but the delete-event event is first recognized by the underlying
GdkWindow of the widget and then emitted as a signal of the widget.

7931ch02.fm Page 29 Wednesday, March 28, 2007 7:35 PM

30 C H A P T E R 2 ■ Y O U R F I R S T G T K + A P P L I C A T I O N S

The first instance of an event you encountered was delete-event in Listing 2-2. The
delete-event signal is emitted when the user tries to close the window. The window can be
exited by clicking the close button on the title bar, using the close pop-up menu item in the
taskbar, or by any other means provided by the window manager.

Connecting events to a callback function is done in the same manner with
g_signal_connect() as with other GTK+ signals. However, your callback function will
be set up slightly differently.

static gboolean
callback_function (GtkWidget *widget,
 GdkEvent *event,
 gpointer data);

The first difference in the callback function is the gboolean return value. If TRUE is returned
from an event callback, GTK+ assumes the event has already been handled and will not con-
tinue. By returning FALSE, you are telling GTK+ to continue handling the event. FALSE is the
default return value for the function, so you do not need to use the delete-event signal in most
cases. This is only useful if you want to override the default signal handler.

For example, in many applications, you may want to confirm the exit of the program. By
using the following code, you can prevent the application from exiting if the user does not want
to quit.

static gboolean
delete_event (GtkWidget *window,
 GdkEvent *event,
 gpointer data)
{
 gboolean answer = /* Ask the user if exiting is desired. */

 if (answer)
 return FALSE;
 else
 return TRUE;
}

By returning FALSE from the delete-event callback function, gtk_widget_destroy() is
automatically called on the widget. As stated before, this signal will automatically continue
with the action, so there is no need to connect to it unless you want to override the default.

In addition, the callback function includes the GdkEvent parameter. GdkEvent is a C union
of the GdkEventType enumeration and all of the available event structures. Let’s first look at the
GdkEventType enumeration.

7931ch02.fm Page 30 Wednesday, March 28, 2007 7:35 PM

C H A P T E R 2 ■ Y O U R F I R S T G T K + A P P L I C A T I O N S 31

Event Types
The GdkEventType enumeration provides a list of available event types. These can be used to
determine the type of event that has occurred, since you may not always know what has
happened.

For example, if you connect the button-press-event signal to a widget, there are three differ-
ent types of events that can cause the signal’s callback function to be run: GDK_BUTTON_PRESS,
GDK_2BUTTON_PRESS, and GDK_3BUTTON_PRESS. Double-clicks and triple-clicks emit the
GDK_BUTTON_PRESS as a second event as well, so being able to distinguish between different types
of events is necessary.

In Appendix B, you can see a complete list of the events available to you. It shows the signal
name that is passed to g_signal_connect(), the GdkEventType enumeration value, and a
description of the event.

Let’s look at the delete-event callback function from Listing 2-2. We already know that
delete-event is of the type GDK_DELETE, but let us assume for a moment that we did not know
that. We can easily test this by using the following conditional statement:

static gboolean
delete_event (GtkWidget *window,
 GdkEvent *event,
 gpointer data)
{
 if (event->type == GDK_DELETE)
 return FALSE;

 return TRUE;
}

In this example, if the event type is GDK_DELETE, FALSE is returned, and gtk_widget_destroy()
will be called on the widget. Otherwise, TRUE is returned, and no further action is taken.

Using Specific Event Structures
Sometimes, you may already know what type of event has been emitted. In the following exam-
ple, we know that a key-press-event will always be emitted:

g_signal_connect (G_OBJECT (widget), "key-press-event"
 G_CALLBACK (key_press), NULL);

In this case, it is safe to assume that the type of event will always be GDK_KEY_PRESS, and
the callback function can be declared as such.

static gboolean
key_press (GtkWidget *widget,
 GdkEventKey *event,
 gpointer data)

7931ch02.fm Page 31 Wednesday, March 28, 2007 7:35 PM

32 C H A P T E R 2 ■ Y O U R F I R S T G T K + A P P L I C A T I O N S

Since we know that the type of event is a GDK_KEY_PRESS, we will not need access to all of
the structures in GdkEvent. We will only have a use for GdkEventKey, which we can use instead
of GdkEvent in the callback function. Since the event is already cast as GdkEventKey, we will
have direct access to only the elements in that structure.

typedef struct
{
 GdkEventType type; // GDK_KEY_PRESS or GDK_KEY_RELEASE
 GdkWindow *window; // The window that received the event
 gint8 send_event; // TRUE if the event used XSendEvent
 guint32 time; // The length of the event in milliseconds
 guint state; // The state of Control, Shift, and Alt
 guint keyval; // The key that was pressed <gdk/gdkkeysyms.h>
 gint length; // The length of string
 gchar *string; // A string approximating the entered text
 guint16 hardware_keycode; // Raw code of the key that was pressed or released
 guint8 group; // The keyboard group
 guint is_modifier : 1; // Whether hardware_keycode was mapped (since 2.10)
} GdkEventKey;

There are many useful properties in the GdkEventKey structure that we will use throughout
the book. At some point it would be useful for you to browse some of the GdkEvent structures
in the API documentation. We will cover a few of the most important structures in this book,
including GdkEventKey and GdkEventButton.

The only variable that is available in all of the event structures is the event type, which
defines the type of event that has occurred. It is a good idea to always check the event type to
avoid handling it in the wrong way.

Further GTK+ Functions
Before continuing on to further examples, I would like to draw your attention to a few functions
that will come in handy in later chapters and when you create your own GTK+ applications.

GtkWidget Functions
The GtkWidget structure contains many useful functions that you can use with any widget.
This section outlines a few that you will need in a lot of your applications.

It is possible to destroy a widget by explicitly calling gtk_widget_destroy() on the object.
When invoked, gtk_widget_destroy() will drop the reference count on the widget and all of
its children recursively. The widget, along with its children, will then be destroyed, and all
memory freed.

void gtk_widget_destroy (GtkWidget *widget);

7931ch02.fm Page 32 Wednesday, March 28, 2007 7:35 PM

C H A P T E R 2 ■ Y O U R F I R S T G T K + A P P L I C A T I O N S 33

Generally, this is only called on top-level widgets. It is usually only used to destroy dialog
windows and to implement menu items that quit the application. It will be used in the next
example in this chapter to quit the application when a button is clicked

You can use gtk_widget_set_size_request() to set the minimum size of a widget. It will
force the widget to be either smaller or larger than it would normally be. It will not, however,
resize the widget so that it is too small to be functional or able to draw itself on the screen.

void gtk_widget_set_size_request (GtkWidget *widget,
 gint width,
 gint height);

By passing -1 to either parameter, you are telling GTK+ to use its natural size, or the size
that the widget would normally be allocated to if you do not define a custom size. This can be
used if you want to specify either only the height or only the width parameter. It will also allow
you to reset the widget to its original size.

There is no way to set a widget with a width or height of less than 1 pixel, but by passing 0
to either parameter, GTK+ will make the widget as small as possible. Again, it will not be resized
so small that it’s nonfunctional or unable to draw itself.

Because of internationalization, there is a danger by setting the size of any widget. The text
may look great on your computer, but on a computer using a German translation of your appli-
cation, the widget may be too small or large for the text. Themes also present issues with widget
sizing, because widgets are defaulted to different sizes depending on the theme. Therefore, it is
best to allow GTK+ to choose the size of widgets and windows in most cases.

You can use gtk_widget_grab_focus() to force a widget to grab keyboard focus. This
will only work on widgets that can handle keyboard interaction. One example of a use for
gtk_widget_grab_focus() is sending the cursor to a text entry when the search toolbar is
shown in Firefox. This could also be used to give focus to a GtkLabel that is selectable.

void gtk_widget_grab_focus (GtkWidget *widget);

Often, you will want to set a widget as inactive. By calling gtk_widget_set_sensitive(),
the specified widget and all of its children are disabled or enabled. By setting a widget as inac-
tive, the user will be prevented from interacting with the widget. Most widgets will also be
grayed out when set as inactive.

void gtk_widget_set_sensitive (GtkWidget *widget,
 gboolean sensitive);

If you want to re-enable a widget and its children, you need only to call this function on the
same widget. Children are affected by the sensitivity of their parents, but they only reflect the
parent’s setting instead of changing their properties.

GtkWindow Functions
You have now seen two examples using the GtkWindow structure. You have learned how to add
border padding between the inner edge of the window and its child. You have also learned how
to set the title of a window and add a child widget. Now, let us explore a few more functions that
will allow you to further customize windows.

7931ch02.fm Page 33 Wednesday, March 28, 2007 7:35 PM

34 C H A P T E R 2 ■ Y O U R F I R S T G T K + A P P L I C A T I O N S

All windows are set as resizable by default. This is desirable in most applications, because
each user will have different size preferences. However, if there is a specific reason for doing so,
you can use gtk_window_set_resizable() to prevent the user from resizing the window.

void gtk_window_set_resizable (GtkWindow *window,
 gboolean resizable);

■Caution You should note that the ability to resize is controlled by the window manager, so this setting
may not be honored in all cases!

The note directly above brings up an important point. Much of what GTK+ does interacts
with the functionality provided by the window manager. Because of this, not all of your win-
dow settings may be followed on all window managers. This is because your settings are merely
hints given that are then either used or ignored. You should keep in mind that your requests
may or may not be honored when designing applications with GTK+.

The default size of a GtkWindow can be set with gtk_window_set_default_size(), but
there are a few things to watch out for when using this function. If the minimum size of the
window is larger than the size you specify, this function will be ignored by GTK+. It will also be
ignored if you have previously set a larger size request.

void gtk_window_set_default_size (GtkWindow *window,
 gint width,
 gint height);

Unlike gtk_widget_set_size_request(), gtk_window_set_default_size() only sets
 the initial size of the window—it does not prevent the user from resizing it to a larger or smaller
size. If you set a height or width parameter to 0, the window’s height or width will be set to
the minimum possible size. If you pass -1 to either parameter, the window will be set to its nat-
ural size.

You can request that the window manager move the window to the specified location with
gtk_window_move(). However, the window manager is free to ignore this request. This is true
of all “request” functions that require action from the window manager.

void gtk_window_move (GtkWindow *window,
 gint x,
 gint y);

By default, the position of the window on the screen is calculated with respect to the
top-left corner of the screen, but you can use gtk_window_set_gravity() to change this
assumption.

void gtk_window_set_gravity (GtkWindow *window,
 GdkGravity gravity);

7931ch02.fm Page 34 Wednesday, March 28, 2007 7:35 PM

C H A P T E R 2 ■ Y O U R F I R S T G T K + A P P L I C A T I O N S 35

This function defines the gravity of the widget, which is the point that layout calcu-
lations will consider (0, 0). Possible values for the GdkGravity enumeration include
GDK_GRAVITY_NORTH_WEST, GDK_GRAVITY_NORTH, GDK_GRAVITY_NORTH_EAST, GDK_GRAVITY_WEST,
GDK_GRAVITY_CENTER, GDK_GRAVITY_EAST, GDK_GRAVITY_SOUTH_WEST, GDK_GRAVITY_SOUTH,
GDK_GRAVITY_SOUTH_EAST, and GDK_GRAVITY_STATIC.

North, south, east, and west refer to the top, bottom, right, and left edges of the screen.
They are used to construct multiple gravity types. GDK_GRAVITY_STATIC refers to the top-left
corner of the window itself, ignoring window decorations.

If your application has more than one window, you can set one as the parent with
gtk_window_set_transient_for(). This allows the window manager to do things such as
center the child above the parent or make sure one window is always on top of the other. We
will explore the idea of multiple windows and transient relationships in Chapter 5 when dis-
cussing dialogs.

void gtk_window_set_transient_for (GtkWindow *window,
 GtkWindow *parent);

You can set the icon that will appear in the task bar and title bar of the window by calling
gtk_window_set_icon_from_file(). The size of the icon does not matter, because it will
be resized when the desired size is known. This allows for the best quality possible of the
scaled icon.

gboolean gtk_window_set_icon_from_file (GtkWindow *window,
 const gchar *filename,
 GError **err); // NULL

TRUE is returned if the icon was successfully loaded and set. Therefore, unless you want
 in-depth information on why the icon loading failed, it is safe to pass NULL to the third param-
eter for now. We will discuss the GError structure in Chapter 4.

Process Pending Events
At times, you may want to process all pending events in an application. This is extremely useful
when you are running a piece of code that will take a long time to process. This will cause your
application to appear frozen, because widgets will not be redrawn if the CPU is taken up by
another process. For example, in an integrated development environment that I have created
called OpenLDev, I have to update the user interface while a build command is being pro-
cessed. Otherwise, the window would lock up, and no build output would be shown until the
build was complete.

The following loop is the solution for this problem. It is the answer to a great number of
questions presented by new GTK+ programmers.

while (gtk_events_pending ())
 gtk_main_iteration ();

The loop calls gtk_main_iteration(), which will process the first pending event for your
application. This is continued while gtk_events_pending() returns TRUE, which tells you
whether there are events waiting to be processed.

7931ch02.fm Page 35 Wednesday, March 28, 2007 7:35 PM

36 C H A P T E R 2 ■ Y O U R F I R S T G T K + A P P L I C A T I O N S

Using this loop is an easy solution to the freezing problem, but a better solution would be
to use coding strategies that avoid the problem altogether. For example, you can use idle func-
tions, which will be covered in Chapter 6, to call a function only when there are no actions of
greater importance to process.

Buttons
The GtkButton widget is a special type of container that turns its child into a clickable entity. It
is only capable of holding one child. However, that child can be a container itself, so the button
can theoretically be the ancestor of large amounts of children. This allows the button to hold,
for example, a label and an image at the same time.

Because the purpose of a GtkButton widget is to make the child clickable, you will almost
always need to use the clicked signal to get notification of when the button is activated. You
will use this signal in the following example.

The GtkButton widget is usually initialized with gtk_button_new_with_label(), which
creates a new button with a GtkLabel as its child. If you want to create an empty GtkButton and
add your own child at a later time, you can use gtk_button_new(), although this is not what
you will want to do in most cases.

Figure 2-4 shows a button with mnemonic capabilities. You can recognize a mnemonic
label by the underlined character. In the case of the button below, when Alt+C is pressed, the
button will be clicked.

Figure 2-4. A GtkButton widget with a mneumonic label

The function gtk_button_new_with_mnemonic() will initialize a new button with mne-
monic label support. When the user presses the Alt key along with the specified accelerator key,
the button will be activated. An accelerator is a key or set of keys that can be used to activate a
predefined action.

■Note When the mnemonic option is available for a widget that provides some type of user interaction, it
is recommended that you take advantage of that capability. Even if you do not use keyboard shortcuts, some
users prefer to navigate user interfaces using a keyboard instead of a mouse.

Listing 2-3 is a simple demonstration of GtkButton capabilities using the clicked signal.
When the button is pressed, the window will be destroyed, and the application will quit. The
button in this example also takes advantage of the mnemonic and keyboard accelerator fea-
tures. You saw a screenshot of this example in Figure 2-4.

7931ch02.fm Page 36 Wednesday, March 28, 2007 7:35 PM

C H A P T E R 2 ■ Y O U R F I R S T G T K + A P P L I C A T I O N S 37

Listing 2-3. The GtkButton Widget (buttons.c)

#include <gtk/gtk.h>

static void destroy (GtkWidget*, gpointer);

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *button;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Buttons");
 gtk_container_set_border_width (GTK_CONTAINER (window), 25);
 gtk_widget_set_size_request (window, 200, 100);

 g_signal_connect (G_OBJECT (window), "destroy",
 G_CALLBACK (destroy), NULL);

 /* Create a new button that has a mnemonic key of Alt+C. */
 button = gtk_button_new_with_mnemonic ("_Close");
 gtk_button_set_relief (GTK_BUTTON (button), GTK_RELIEF_NONE);

 /* Connect the button to the clicked signal. The callback function recieves the
 * window followed by the button because the arguments are swapped. */
 g_signal_connect_swapped (G_OBJECT (button), "clicked",
 G_CALLBACK (gtk_widget_destroy),
 (gpointer) window);

 gtk_container_add (GTK_CONTAINER (window), button);
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

/* Stop the GTK+ main loop function. */
static void
destroy (GtkWidget *window,
 gpointer data)
{
 gtk_main_quit ();
}

In Listing 2-3, gtk_widget_destroy() is called on the main window when the button
 is clicked. This is a very simple example, but it has a practical use in most applications.

7931ch02.fm Page 37 Wednesday, March 28, 2007 7:35 PM

38 C H A P T E R 2 ■ Y O U R F I R S T G T K + A P P L I C A T I O N S

The GNOME Human Interface Guidelines, which can be viewed or downloaded at
http://developer.gnome.org/projects/gup/hig, state that preferences dialogs should apply
settings immediately after a setting is changed.

Therefore, if you create a preferences dialog, there is a good chance that you will only need
one button. The purpose of the button would be to destroy the window that contains the but-
ton and save the changes.

After creating the button, gtk_button_set_relief() can be used to add a certain magni-
tude of relief around the GtkButton. Relief is a type of 3-D border that distinguishes the button
from surrounding widgets. Values of the GtkReliefStyle enumeration follow:

• GTK_RELIEF_NORMAL: Add relief around all edges of the button.

• GTK_RELIEF_HALF: Add relief around only half of the button.

• GTK_RELIEF_NONE: Add no relief around the button.

Listing 2-3 introduces g_signal_connect_swapped(), a new signal connection function.
This function swaps the position of the object on which the signal is being emitted and the data
parameter when running the callback function.

g_signal_connect_swapped (G_OBJECT (button), "clicked",
 G_CALLBACK (gtk_widget_destroy),
 (gpointer) window);

This allows you to use gtk_widget_destroy() on the callback function, which will call
gtk_widget_destroy (window). If the callback function only receives one parameter, the
object will be ignored.

Widget Properties
GObject provides a property system, which allows you to customize how widgets interact with
the user and how they are drawn on the screen. In this section, you will learn how to use styles,
resource files and GObject’s property system.

Every class derived from the GObject class can install any number of properties. In GTK+,
these properties store information about how the widget will act. For example, GtkButton has
a property called relief that defines the relief style used by the button.

In the following code, g_object_get() is used to retrieve the current value stored by the
button’s relief property. This function accepts a NULL-terminated list of properties and vari-
ables to store the returned value.

g_object_get (button, "relief", &value, NULL);

Each object can have many properties, so a full list will not be found in this book. For
more information on properties available for a specific widget, you should reference the API
documentation.

7931ch02.fm Page 38 Wednesday, March 28, 2007 7:35 PM

C H A P T E R 2 ■ Y O U R F I R S T G T K + A P P L I C A T I O N S 39

Setting Widget Properties

Setting a new value for a property is easily done with g_object_set(). In this example, the
relief property of the button was set to GTK_RELIEF_NORMAL:

g_object_set (button, "relief", GTK_RELIEF_NORMAL, NULL);

Functions are provided to set and retrieve many of the properties of each widget. How-
ever, not every property has that option. These functions will become extremely important
when you learn about the GtkTreeView widget in Chapter 8, because many objects used in that
chapter do not provide get or set functions for any properties.

It is also possible to monitor a specific property with GObject’s notify signal. You can
monitor a property by connecting to the notify::property-name signal. The example in
Listing 2-4 calls property_changed() when the relief property is changed.

Listing 2-4. Using the Notify Property

g_signal_connect (G_OBJECT (button), "notify::relief",
 G_CALLBACK (property_changed), NULL);

...

static void
property_changed (GObject *button,
 GParamSpec *property,
 gpointer data)
{
 /* Handle the property change ... */
}

■Caution While it is acceptable to use either a dash or an underscore when typing signal names, you must
always use dashes when using the notify signal. For example, if you need to monitor GtkWidget’s can-focus
property, notify::can_focus is not acceptable! Remember that notify is the signal name, and can-focus
is the name of the widget property.

The callback function receives a new type of object called GParamSpec, which holds infor-
mation about the property that was changed. For now, all you need to know is that you can
retrieve the name of the property that was changed with property->name. You will learn more
about the GParamSpec structure in Chapter 11 when you learn how to add properties to your
own custom widgets.

7931ch02.fm Page 39 Wednesday, March 28, 2007 7:35 PM

40 C H A P T E R 2 ■ Y O U R F I R S T G T K + A P P L I C A T I O N S

In addition to the property system, every GObject has a table that associates a list of strings
to a list of pointers. This allows you to add data to an object that can easily be accessed, which
is useful when you need to pass additional data to a signal handler. To add a new data field to
an object, all you have to do is call g_object_set_data(). This function accepts a unique string
that will be used to point to data. If an association already exists with the same key name, the
new data will replace the old.

void g_object_set_data (GObject *object,
 const gchar *key,
 gpointer data);

When you need to access the data, you can call g_object_get_data(), which returns the
pointer associated with key. You should use this method of passing data instead of trying to
pass arbitrary pieces of data with g_signal_connect().

Test Your Understanding
In Chapter 2, you have learned about the window and label widgets. It is time to put that

knowledge into practice. In the following two exercises, you will employ your knowledge of the
structure of GTK+ applications, signals, and the GObject property system.

Exercise 2-1. Using Events and Properties

This exercise will expand on the first two examples in this chapter by creating a GtkWindow that has the ability to
destroy itself. You should set your first name as the title of the window. A selectable GtkLabel with your last name
as its default text string should be added as the child of the window.

Other properties of this window are that it should not be resizable and the minimum size should be 300 pixels by
100 pixels. Functions to perform these tasks can be found in this chapter.

Next, by looking at the API documentation, connect the key-press-event signal to the window. In the skey-
press-event callback function, switch the window title and the label text. For example, the first time the callback
function is called, the window title should be set to your last name and the label text to your first.

You may also find this function useful:

gint g_ascii_strcasecmp (const gchar *str1, const gchar *str2);

When the two strings in g_ascii_strcasesmp() are the same, 0 is returned. If str1 is less than str2, a neg-
ative number is returned. Otherwise, a positive number is returned.

Once you have completed Exercise 2-1, you can find a description of the solution in
Appendix F, or the solution’s complete source code is downloadable at www.gtkbook.com.

7931ch02.fm Page 40 Wednesday, March 28, 2007 7:35 PM

C H A P T E R 2 ■ Y O U R F I R S T G T K + A P P L I C A T I O N S 41

Exercise 2-2. GObject Property System

In this exercise, you will expand on Exercise 2-1, but the title, height, and width of the window should be set by
using the functions provided by GObject. Also, within the callback function, all operations involving the window title
and label text should be performed with the functions provided by GObject. Additionally, you should monitor the win-
dow’s title with the notify signal. When the title is changed, you should notify the user in the terminal output.

Hint: You can use a function provided by GLib, g_message(), to output a message to the terminal. This function
follows the same formatting supported by printf().

Once you have completed both of these exercises, you are ready to move on to the next
chapter, which covers container widgets. These widgets allow your main window to contain
more than just a single widget, which was the case in all of the examples in this chapter.

However, before you continue, you should know about www.gtkbook.com, which can be
used to supplement the content of Foundations of GTK+ Development. This web site is filled
with downloads, links to further GTK+ information, C refresher tutorials, API documentation,
and more. You can use it as you go through this book to aid in your quest to learn GTK+.

Summary
In this chapter, you learned about the most basic GTK+ widget and applications. The first
application was a simple “Hello World” example that showed the fundamental calls required
by all GTK+ applications. These include the following:

• Initialize GTK+ with gtk_init().

• Create your top-level GtkWindow.

• Show the GtkWindow.

• Move into the main loop with gtk_main().

In the second example, you learned the purpose of signals, events, and callback functions
within GTK+ applications. The GtkContainer structure was introduced as it relates to
GtkWindow. You also saw the purpose of the widget hierarchy system implemented by the
GObject library.

You then saw useful functions that relate to GtkWidget, GtkWindow, and GtkLabel. Many of
these will be used throughout the book. In fact, both of the exercises required that you put a
few of them into practice.

The last example introduced you to the GtkButton widget. GtkButton is a type of container
that makes its child widget a clickable button. It can be used to display labels, mnemonics, or
arbitrary widgets. Buttons will be covered in further detail in Chapter 4.

In the next chapter, you will learn more about the GtkContainer structure and how it
relates to the vast array of container widgets at your disposal.

7931ch02.fm Page 41 Wednesday, March 28, 2007 7:35 PM

7931ch02.fm Page 42 Wednesday, March 28, 2007 7:35 PM

43

■ ■ ■

C H A P T E R 3

Container Widgets

Chapter 2 showed you the basic essentials you will need in every GTK+ application you
create. It also introduced you to signals, events, callback functions, the GtkLabel widget, the
GtkButton widget, and the GtkContainer class.

In this chapter, you will cover the two types of container widgets: decorators and layout
containers. Then you will gain knowledge of many important container widgets including
boxes, notebooks, handle boxes, and event boxes.

The last widget covered, GtkEventBox, allows all widgets that would otherwise be unable to
do so to take advantage of GDK events.

In this chapter, you will learn the following:

• The purpose of the GtkContainer class and its descendents

• How to use layout containers including boxes, panes, and tables

• The pros and cons of using fixed containers

• How to create multipaged notebook containers

• How to provide events to all widgets using event boxes

GtkContainer
The GtkContainer class has briefly been covered in past sections, but more in-depth coverage
of the class is required for you to become a competent GTK+ developer. Therefore, this section
covers all of the important aspects of this abstract class.

The main purpose of a container class is to allow a parent widget to contain one or more
children. There are two types of container widgets in GTK+, those used for laying out children
and decorators and those that add some sort of functionality beyond positioning to a child.

Decorator Containers
In Chapter 2, you were introduced to GtkWindow, a widget derived from GtkBin. GtkBin is a type
of container class that has the capability of holding only one child widget. Widgets derived
from this class are called decorator containers, because they add some type of functionality to
the child widget.

7931ch03.fm Page 43 Wednesday, March 7, 2007 8:54 PM

44 C H A P T E R 3 ■ C O N T A I N E R W I D G E T S

For example, a GtkWindow provides its child with the extra functionality of being placed in
a top-level widget. Other examples of decorators include the GtkFrame widget, which draws a
frame around its child, a GtkButton, which makes its child into a clickable button, and a
GtkExpander, which can hide or show its child from the user. All of these widgets use
gtk_container_add() for adding a child widget.

The GtkBin class only provides one function, gtk_bin_get_child(), which allows you to
retrieve a pointer to the container’s child widget. The actual purpose of the GtkBin class is
to provide an instantiable widget from which all subclasses that only require one child widget
can be derived. It is a central class used for a common base.

GtkWidget* gtk_bin_get_child (GtkBin *bin);

Widgets that derive from GtkBin include windows, alignments, frames, buttons, items,
combo boxes, event boxes, expanders, handle boxes, scrolled windows, and tool items. Many
of these containers will be covered in this chapter and later chapters.

Layout Containers
Another type of container widget provided by GTK+ is called a layout container. These are wid-
gets that are used to arrange multiple widgets. Layout containers can be recognized by the fact
that they are derived directly from GtkContainer.

As the name implies, the purpose of layout containers is to correctly arrange their children
according to the user’s preferences, your instructions, and built-in rules. User preferences
include the use of themes and font preferences. These can be overridden, but in most cases,
you should honor the user’s preferences. There are also resizing rules that govern all container
widgets, which will be covered in the next section.

Layout containers include boxes, fixed containers, paned widgets, icon views, layouts,
menu shells, notebooks, sockets, tables, text views, toolbars, and tree views. We will be cover-
ing most of the layout widgets throughout this chapter and the rest of the book. More
information on those we do not cover is available in the API documentation.

Resizing Children
In addition to arranging and decorating children, containers are tasked with resizing child wid-
gets. Resizing is performed in two phases: size requisition and size allocation. In short, these
two steps negotiate the size that is available to a widget. This is a recursive process of commu-
nication between the widget, its ancestors, and its children.

Size requisition refers to the desired size of the child. The process begins at the top-level
widget, which asks its children for their preferred sizes. The children ask their children and so
on, until the last child is reached.

7931ch03.fm Page 44 Wednesday, March 7, 2007 8:54 PM

C H A P T E R 3 ■ C O N T A I N E R W I D G E T S 45

At this point, the last child decides what size it wants to be based on the space it needs to
be shown correctly on the screen and any size requests from the programmer. For example, a
GtkLabel widget will ask for enough space to fully display its text on the screen or more space if
you requested it to have a larger size.

The child then passes this size to its ancestors until the top-level widget receives the
amount of space needed based on its children’s requisitions.

typedef struct
{
 gint width;
 gint height;
} GtkRequisition;

Each widget stores its size preferences as width and height values in a GtkRequisition
object. Keep in mind that a requisition is only a request; it does not have to be honored by the
parent widget.

When the top-level widget has determined the amount of space it wants, size allocation
begins. If you have set the top-level widget as nonresizable, the widget will never be resized; no
further action will occur and requisitions will be ignored. Otherwise, the top-level widget will
resize itself to the desired size. It will then pass the amount of available space to its child wid-
get. This process is repeated until all widgets have resized themselves.

typedef struct
{
 gint x;
 gint y;
 gint width;
 gint height;
} GtkAllocation;

Size allocations for every widget are stored in one instance of the GtkAllocation structure for
each child. This structure is passed to child widgets for resizing with gtk_widget_size_allocate().
This function can be called explicitly by the programmer as well, but doing so is not a good idea in
the majority of cases.

In most situations, children will be given the space they request, but there are certain cir-
cumstances when this cannot happen. For example, a requisition will not be honored when
the top-level widget cannot be resized.

Conversely, once a widget has been given a size allocation by its parent, the widget has no
choice but to redraw itself with the new size. Therefore, you should be careful where you call
gtk_widget_size_allocate(). In most cases, gtk_widget_set_size_request() is best to use for
resizing widgets.

7931ch03.fm Page 45 Wednesday, March 7, 2007 8:54 PM

46 C H A P T E R 3 ■ C O N T A I N E R W I D G E T S

Container Signals
The GtkContainer class currently provides four signals. These are add, check_resize, remove,
and set_focus_child:

• add: A child widget was added or packed into the container. This signal will be emitted
even if you do not explicitly call gtk_container_add() but use the widget’s built-in pack-
ing functions instead.

• check_resize: The container is checking whether it needs to resize for its children before
taking further action.

• remove: A child has been removed from the container.

• set_focus_child: A child of the container has received focus from the window manager.

Now that you know the purpose of the GtkContainer class, we will progress onto other
types of container widgets. You have already learned about windows, a type of GtkBin widget,
so we will begin this chapter with a layout container called GtkBox.

Horizontal and Vertical Boxes
GtkBox is an abstract container widget that allows multiple children to be packed in a one-
dimensional, rectangular area. There are two types of boxes: GtkVBox packs children into a
single column, and GtkHBox packs them into a single row.

■Note For the rest of the book, code listings will only include portions of text significant to the section.
Therefore, you will need to download the source code to view the full examples. For example, the destroy
callback function will not be included in any further examples, because you should know how to use it by this
point. It will, however, be included in the source code downloadable from www.gtkbook.com.

Listing 3-1. Vertical Boxes with Default Packing (boxes.c)

#include <gtk/gtk.h>

#define NUM_NAMES 4
const gchar* names[] = { "Andrew", "Joe", "Samantha", "Jonathan" };

int main (int argc,
 char *argv[])
{
 gint i;
 GtkWidget *window, *vbox;

 gtk_init (&argc, &argv);

7931ch03.fm Page 46 Wednesday, March 7, 2007 8:54 PM

C H A P T E R 3 ■ C O N T A I N E R W I D G E T S 47

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Boxes");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);
 gtk_widget_set_size_request (window, 200, -1);

 vbox = gtk_vbox_new (TRUE, 5);

 /* Add four buttons to the vertical box. */
 for (i = 0; i < NUM_NAMES; i++)
 {
 GtkWidget *button = gtk_button_new_with_label (names[i]);
 gtk_box_pack_start_defaults (GTK_BOX (vbox), button);

 g_signal_connect_swapped (G_OBJECT (button), "clicked",
 G_CALLBACK (gtk_widget_destroy),
 (gpointer) button);
 }

 gtk_container_add (GTK_CONTAINER (window), vbox);
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

Listing 3-1 shows a simple illustration of a GtkVBox widget. The graphical output of the
application is shown in Figure 3-1. Notice that the names are shown in the same order as they
were added to the array, even though each was packed at the start position.

Figure 3-1. A vertical box packed from the start position

In analyzing Listing 3-1, you should note that the GtkVBox and GtkHBox widgets use the
same set of functions, because they are both derived from the GtkBox class. The only difference
is that vertical boxes are created with gtk_vbox_new() and horizontal boxes with
gtk_hbox_new(), although the parameters of each function are the same.

7931ch03.fm Page 47 Wednesday, March 7, 2007 8:54 PM

48 C H A P T E R 3 ■ C O N T A I N E R W I D G E T S

As with every widget, you need to initialize GtkVBox before using the object. The first
parameter in gtk_vbox_new() indicates whether all of the children in the box should be homo-
geneous. If it is set to TRUE, all of the children will be given the smallest amount of space that
can fit every widget.

GtkWidget* gtk_vbox_new (gboolean homogeneous,
 gint spacing);

The second parameter places a default number of pixels of spacing between each child
and its neighbor. This value can be changed for individual cells as children are added, if the box
is not set as equally spaced.

Since you do not need further access to the labels in Listing 3-1 after they are added to the
GtkBox widget, the application does not store individual pointers to each object. They will all be
cleaned up automatically when the parent is destroyed. Each button is then added to the box
using a method called packing.

By adding widgets to the box with gtk_box_pack_start_defaults(), the child has three
properties automatically set: Expanding is set to TRUE, which will automatically provide the cell
with the extra space allocated to the box. This space is distributed evenly to all of the cells that
request it. The fill property is also set to TRUE, which means the widget will expand into all of the
extra space provided instead of filling it with padding. Lastly, the amount of padding placed
between the cell and its neighbors is set to zero pixels.

void gtk_box_pack_start_defaults (GtkBox *box,
 GtkWidget *widget);

Packing boxes can be slightly unintuitive because of the naming of functions. The best way
to think about it is in terms of where the packing begins. If you pack at the start position, chil-
dren will be added with the first child appearing at the top or left. If you pack at the end
position, the first child will appear at the bottom or right of the box.

In other words, the reference position for start moves as you add widgets. When adding wid-
gets to the end position, the same process occurs. Therefore, you should use gtk_box_pack_end() or
gtk_box_pack_end_defaults() to add elements in reverse order. An example of this can be seen in
the code excerpt in Listing 3-2.

Listing 3-2. Specifying Packing Parameters (boxes2.c)

vbox = gtk_vbox_new (TRUE, 5);

/* Add four buttons to the vertical box, packing at the end. */
for (i = 0; i < NUM_NAMES; i++)
{
 GtkWidget *button = gtk_button_new_with_label (names[i]);
 gtk_box_pack_end (GTK_BOX (vbox), button, FALSE, FALSE, 5);

 g_signal_connect_swapped (G_OBJECT (button), "clicked",
 G_CALLBACK (gtk_widget_destroy),
 (gpointer) button);
}

7931ch03.fm Page 48 Wednesday, March 7, 2007 8:54 PM

d5014bfb03de489b6d7267ee0c61b2db

C H A P T E R 3 ■ C O N T A I N E R W I D G E T S 49

Figure 3-2 shows the graphical output of Listing 3-2. Since we packed each of the widgets
starting at the end, they are shown in reverse order. The packing began at the end of the box
and packed each child before the previous one. You are free to intersperse calls to start and end
packing functions. GTK+ keeps track of both reference positions.

Figure 3-2. A vertical box packed from the end position

If you do not want to use the default values for expanding, filling, and spacing, you can use
gtk_box_pack_end() or gtk_box_pack_start() to specify different values for each packing
property.

By setting the expand property to TRUE, the cell will expand so that it takes up additional
space allocated to the box that is not needed by the widgets. By setting the fill property to
TRUE, the widget itself will expand to fill extra space available to the cell. Table 3-1 offers a brief
description of all possible combinations of the expand and fill properties.

Table 3-1. expand and fill Properties

In the previous gtk_box_pack_end() call, each cell is told to place five pixels of spacing
between itself and any neighbor cells. Also, according to Table 3-1, neither the cell nor its child
widget will expand to take up additional space provided to the box.

expand fill Result

TRUE TRUE The cell will expand so that it takes up additional space allocated to the box,
and the child widget will expand to fill that space.

TRUE FALSE The cell will expand so that it takes up additional space, but the widget will
not expand. Instead, the extra space will be empty.

FALSE TRUE Neither the cell nor the widget will expand to fill extra space. This is the same
thing as setting both properties to FALSE.

FALSE FALSE Neither the cell nor the widget will expand to fill extra space. If you resize the
window, the cell will not resize itself.

7931ch03.fm Page 49 Wednesday, March 7, 2007 8:54 PM

50 C H A P T E R 3 ■ C O N T A I N E R W I D G E T S

void gtk_box_pack_end (GtkBox *box,
 GtkWidget *child,
 gboolean expand,
 gboolean fill,
 guint padding);

■Note If you have experience programming with other graphical toolkits, the size negotiation system pro-
vided by GTK+ may seem odd. However, you will quickly learn its benefits. GTK+ automatically takes care of
resizing everything if you change a user interface, instead of requiring you to reposition everything program-
matically. You will come to view this as a great benefit as you continue learning GTK+.

While you should try to finalize the order of elements in a GtkBox widget before displaying
it to the user, it is possible to reorder child widgets in a box with gtk_box_reorder_child().

void gtk_box_reorder_child (GtkBox *box,
 GtkWidget *child,
 gint position);

By using this function, you can move a child widget to a new position in the GtkBox. The
position of the first widget in a GtkBox container is indexed from zero. The widget will be placed
in the last position of the box if you specify a position value of -1 or a value greater than the
number of children.

Horizontal and Vertical Panes
GtkPaned is a special type of container widget that holds exactly two widgets. A resize bar is
placed between them, which allows the user to resize the two widgets by dragging the bar in
one direction or the other. When the bar is moved, either by user interaction or programmatic
calls, one of the two widgets will shrink while the other expands.

There are two types of paned widgets: GtkHPaned for horizontal resizing and GtkVPaned for
vertical resizing. As with boxes, the horizontal and vertical pane classes only provide functions
to create the widget. All other functionality is defined in the common parent class, GtkPaned.
Listing 3-3 shows a simple example where two GtkButton widgets are placed as the children of
a horizontal pane.

7931ch03.fm Page 50 Wednesday, March 7, 2007 8:54 PM

C H A P T E R 3 ■ C O N T A I N E R W I D G E T S 51

Listing 3-3. Horizontal Pane (panes.c)

#include <gtk/gtk.h>

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *hpaned, *button1, *button2;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Panes");

 gtk_container_set_border_width (GTK_CONTAINER (window), 10);
 gtk_widget_set_size_request (window, 225, 150);

 hpaned = gtk_hpaned_new ();
 button1 = gtk_button_new_with_label ("Resize");
 button2 = gtk_button_new_with_label ("Me!");

 g_signal_connect_swapped (G_OBJECT (button1), "clicked",
 G_CALLBACK (gtk_widget_destroy),
 (gpointer) window);
 g_signal_connect_swapped (G_OBJECT (button2), "clicked",
 G_CALLBACK (gtk_widget_destroy),
 (gpointer) window);

 /* Pack both buttons as the two children of the GtkHPaned widget. */
 gtk_paned_add1 (GTK_PANED (hpaned), button1);
 gtk_paned_add2 (GTK_PANED (hpaned), button2);

 gtk_container_add (GTK_CONTAINER (window), hpaned);
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

7931ch03.fm Page 51 Wednesday, March 7, 2007 8:54 PM

52 C H A P T E R 3 ■ C O N T A I N E R W I D G E T S

As you can see in Figure 3-3, the GtkHPaned widget places a vertical bar between its two
children. By dragging the bar, one widget will shrink while the other expands. In fact, it is pos-
sible to move the bar so that one child is completely hidden from the user’s view. You will learn
how to prevent this with gtk_paned_pack1() and gtk_paned_pack2().

Figure 3-3. The graphical output of Listing 3-3

In Listing 3-3, we created a GtkHPaned object with gtk_hpaned_new(). If you want to use a
vertical paned widget instead, you need only to call gtk_vpaned_new(). All of the GtkPaned func-
tions will then work with either type of paned widget.

Since GtkPaned can only handle two children, GTK+ provides a function for packing each
child. In the example below, gtk_paned_add1() and gtk_paned_add2() were used to add both
children to hpaned. These functions use the default values for the resize and shrink properties
of the GtkPaned widget.

gtk_paned_add1 (GTK_PANED (hpaned), label1);
gtk_paned_add2 (GTK_PANED (hpaned), label2);

The preceding gtk_paned_add1() and gtk_paned_add2() calls are from Listing 3-3 and are
equivalent to the following:

gtk_paned_pack1 (GTK_PANED (hpaned), label1, FALSE, TRUE);
gtk_paned_pack2 (GTK_PANED (hpaned), label2, TRUE, TRUE);

The third parameter in gtk_paned_pack1() and gtk_paned_pack2() specifies whether the
child widget should expand when the pane is resized. If you set this to FALSE, no matter how
much larger you make the available area, the child widget will not be expanded.

The last parameter specifies whether the child can be made smaller than its size requisi-
tion. In most cases, you will want to set this to TRUE so that a widget can be completely hidden
by the user by dragging the resize bar. If you want to prevent the user from doing this, set the
fourth parameter to FALSE. Table 3-2 illustrates how the resize and shrink properties
interrelate.

Table 3-2. resize and shrink Properties

resize shrink Result

TRUE TRUE The widget will take up all available space when the pane is resized, and the
user will be able to make it smaller than its size requisition.

TRUE FALSE The widget will take up all available space when the pane is resized, but
available space must be greater than or equal to the widget’s size requisition.

7931ch03.fm Page 52 Wednesday, March 7, 2007 8:54 PM

C H A P T E R 3 ■ C O N T A I N E R W I D G E T S 53

You can easily set the exact position of the resize bar with gtk_paned_set_position(). The
position is calculated in pixels with respect to the top or left side of the container. If you set the
position of the bar to zero, it will be moved all the way to the top or left if the widget allows
shrinking.

void gtk_paned_set_position (GtkPaned *paned,
 gint position);

Most applications will want to remember the position of the resize bar, so it can be
restored to the same location when the user next loads the application. The current position
of the resize bar can be retrieved with gtk_paned_get_position().

gint gtk_paned_get_position (GtkPaned *paned);

GtkPaned provides multiple signals, but one of the most useful is move-handle, which will
tell you when the resizing bar has been moved. If you want to remember the position of the
resize bar, this will tell you when you need to retrieve a new value. A full list of GtkPaned signals
can be found in Appendix B.

Tables
So far, all of the layout container widgets I have covered only allow children to be packed in one
dimension. The GtkTable widget, however, allows you to pack children in two-dimensional space.

One advantage of using the GtkTable widget over using multiple GtkHBox and GtkVBox wid-
gets is that children in adjacent rows and columns are automatically aligned with each other,
which is not the case with boxes within boxes. However, this is also a disadvantage, because
you will not always want everything to be lined up in this way.

Figure 3-4 shows a simple table that contains three widgets. Notice that the single label
spans two columns. This illustrates the fact that tables allow one widget to span multiple col-
umns and/or rows as long as the region is rectangular.

Figure 3-4. A table containing a label widget that spans multiple columns

FALSE TRUE The widget will not resize itself to take up additional space available in the
pane, but the user will be able to make it smaller than its size requisition.

FALSE FALSE The widget will not resize itself to take up additional space available in the
pane, and the available space must be greater than or equal to the widget’s size
requisition.

resize shrink Result

7931ch03.fm Page 53 Wednesday, March 7, 2007 8:54 PM

54 C H A P T E R 3 ■ C O N T A I N E R W I D G E T S

Listing 3-4 creates the GtkTable widget shown in Figure 3-4, inserting two GtkLabel wid-
gets and a GtkEntry widget into the two-by-two area (you will learn how to use the GtkEntry
widget in Chapter 4, but this gives you a taste of what is to come).

Listing 3-4. GtkTable Displaying Name (tables.c)

#include <gtk/gtk.h>

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *table, *label, *label2, *name;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Tables");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);
 gtk_widget_set_size_request (window, 150, 100);

 table = gtk_table_new (2, 2, TRUE);
 label = gtk_label_new ("Enter the following information ...");
 label2 = gtk_label_new ("Name: ");
 name = gtk_entry_new ();

 /* Attach the two labels and entry widget to their parent container. */
 gtk_table_attach (GTK_TABLE (table), label, 0, 2, 0, 1,
 GTK_EXPAND, GTK_SHRINK, 0, 0);
 gtk_table_attach (GTK_TABLE (table), label2, 0, 1, 1, 2,
 GTK_EXPAND, GTK_SHRINK, 0, 0);
 gtk_table_attach (GTK_TABLE (table), name, 1, 2, 1, 2,
 GTK_EXPAND, GTK_SHRINK, 0, 0);

 /* Add five pixels of spacing between every row and every column. */
 gtk_table_set_row_spacings (GTK_TABLE (table), 5);
 gtk_table_set_col_spacings (GTK_TABLE (table), 5);

 gtk_container_add (GTK_CONTAINER (window), table);
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

7931ch03.fm Page 54 Wednesday, March 7, 2007 8:54 PM

C H A P T E R 3 ■ C O N T A I N E R W I D G E T S 55

Table Packing
When creating a table with gtk_table_new(), you must specify the number of columns, the
number of rows, and whether table cells should be homogeneous.

GtkWidget* gtk_table_new (guint rows,
 guint columns,
 gboolean homogeneous);

The number of columns and rows can be changed after creating the table with
gtk_table_resize(), but you should use the correct numbers initially, if possible, to avoid
confusion on the part of the user. You do not want to get in the habit of liberally changing
user interfaces when it is not completely necessary.

void gtk_table_resize (GtkTable *table,
 guint rows,
 guint columns);

The function gtk_table_set_homogeneous() can also be used to reset the homogeneous
property after creation, but you should use the desired value initially here as well. The user
should have control of resizing after the initial user interface is set.

void gtk_table_set_homogeneous (GtkTable *table,
 gboolean homogeneous);

Packing a new widget is performed with gtk_table_attach(). The second parameter,
child, refers to the child widget that you are adding to the table.

void gtk_table_attach (GtkTable *table,
 GtkWidget *child,
 guint left,
 guint right,
 guint top,
 guint bottom,
 GtkAttachOptions xoptions,
 GtkAttachOptions yoptions,
 guint xpadding,
 guint ypadding);

The left, right, top, and bottom variables describe the location where the child widget
should be placed within the table. For example, the first GtkLabel in Listing 3-4 was attached
with the following command:

gtk_table_attach (GTK_TABLE (table), label, 0, 2, 0, 1,
 GTK_EXPAND, GTK_SHRINK, 0, 0);

7931ch03.fm Page 55 Wednesday, March 7, 2007 8:54 PM

56 C H A P T E R 3 ■ C O N T A I N E R W I D G E T S

The GtkLabel widget is attached directly to the first column and row of the table, because
x coordinates are added, followed by y coordinates. It is then attached to the second row on the
bottom and the third column on the right. The packing from the example in Listing 3-4 is
shown in Figure 3-5.

Figure 3-5. Table packing

If you choose to have two columns, there will be three zero-indexed column attach points
labeled. The same logic applies to row attach points if there are two columns.

As previously stated, if a widget spans multiple cells, it must take up a rectangular area. A
widget could span two rows and one column with (0,1,0,2) or the whole table with (0,2,0,2).
The best way to remember the order in which the attach points are specified is that both x coor-
dinates come first, followed by the y coordinates. After specifying attach points, you need to
give attach options for the horizontal and vertical directions. In our example, children are set
to expand in the x direction and shrink in the y direction. There are three values in the
GtkAttachOptions enumeration:

• GTK_EXPAND: The widget should take up extra space allocated to it by the table. This space
is allocated evenly between all children that specify this option.

• GTK_SHRINK: The widget should shrink so that it will only take up enough space to be ren-
dered. This is often used so that extra space is taken up by other widgets.

• GTK_FILL: The widget should fill all allocated space instead of filling the extra space with
padding.

It is possible to give multiple attach option parameters by using a bitwise or operator. For
example, you can use GTK_EXPAND | GTK_FILL, so the child will take up extra space and fill it
instead of adding padding.

7931ch03.fm Page 56 Wednesday, March 7, 2007 8:54 PM

C H A P T E R 3 ■ C O N T A I N E R W I D G E T S 57

The last two parameters of gtk_table_attach() specify pixels of horizontal and vertical
padding that should be added between the child and its neighbor cells.

void gtk_table_attach_defaults (GtkTable *table,
 GtkWidget *child,
 guint left,
 guint right,
 guint top,
 guint bottom);

As with boxes, you do not need to specify the full set of parameters when adding a child.
You can use gtk_table_attach_defaults() to add a child without specifying attach and pad-
ding options. When using this function, GTK_EXPAND | GTK_FILL will be used for each attach
option, and no padding will be added.

Table Spacing
You can specify the spacing between columns or rows with gtk_table_attach(), but GTK+
provides four methods for changing these after adding a child.

If you want to set the spacing for every column in a table, you can use
gtk_table_set_col_spacings(). This function was used in Listing 3-4 to add five pixels
of spacing. GTK+ also provides gtk_table_set_row_spacings() to add padding between
rows. These functions will override any previous settings of the table.

void gtk_table_set_col_spacings (GtkTable *table,
 guint spacing);

You may also set the spacing of one specific column or row with gtk_table_set_col_spacing()
or gtk_table_set_row_spacing(). These functions will add spacing between the child and its neigh-
bors to the left and right of the widget or above and below it.

void gtk_table_set_col_spacing (GtkTable *table,
 guint column,
 guint spacing);

Fixed Containers
The GtkFixed widget is a type of layout container that allows you to place widgets by the pixel.
There are many problems that can arise when using this widget, but before we explore the
drawbacks, let us look at a simple example.

Listing 3-5 creates a GtkFixed widget that contains two buttons, one found at each of the
locations (0,0) and (20,30), with respect to the top-left corner of the widget.

7931ch03.fm Page 57 Wednesday, March 7, 2007 8:54 PM

58 C H A P T E R 3 ■ C O N T A I N E R W I D G E T S

Listing 3-5. Specifying Exact Locations (fixed.c)

#include <gtk/gtk.h>

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *fixed, *button1, *button2;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Fixed");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);

 fixed = gtk_fixed_new ();
 button1 = gtk_button_new_with_label ("Pixel by pixel ...");
 button2 = gtk_button_new_with_label ("you choose my fate.");

 g_signal_connect_swapped (G_OBJECT (button1), "clicked",
 G_CALLBACK (gtk_widget_destroy),
 (gpointer) window);
 g_signal_connect_swapped (G_OBJECT (button2), "clicked",
 G_CALLBACK (gtk_widget_destroy),
 (gpointer) window);

 /* Place two buttons on the GtkFixed container. */
 gtk_fixed_put (GTK_FIXED (fixed), button1, 0, 0);
 gtk_fixed_put (GTK_FIXED (fixed), button2, 20, 30);

 gtk_container_add (GTK_CONTAINER (window), fixed);
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

The GtkFixed widget, initialized with gtk_fixed_new(), allows you to place widgets with a
specific size in a specific location. Placing widgets is performed with gtk_fixed_put(), at spec-
ified horizontal and vertical positions.

void gtk_fixed_put (GtkFixed *fixed,
 GtkWidget *child,
 gint x,
 gint y);

7931ch03.fm Page 58 Wednesday, March 7, 2007 8:54 PM

C H A P T E R 3 ■ C O N T A I N E R W I D G E T S 59

The top-left corner of the fixed container is referred to by location (0,0). You should only
be able to specify real locations for widgets or locations in positive space. The fixed container
will resize itself, so every widget is completely visible.

If you need to move a widget after it has been placed within a GtkFixed container, you can
use gtk_fixed_move(). You need to be careful not to overlap a widget that has already been
placed. The GtkFixed widget will not provide notification in the case of overlap. Instead, it will
try to render the window with unpredictable results.

void gtk_fixed_move (GtkFixed *fixed,
 GtkWidget *child,
 gint x_position,
 gint y_position);

This brings us to the inherent problems with using the GtkFixed widget. The first problem
is that your users are free to use whatever theme they want. This means that the size of text on
the user’s machine may differ from the size of text on your machine unless you explicitly set the
font. The sizes of widgets vary among different user themes as well. This can cause misalign-
ment and overlap. This is illustrated in Figure 3-6, which shows two screenshots of Listing 3-5,
one with a small font size and one with a larger font size.

Figure 3-6. Problems caused by different font sizes in a GtkFixed container

You can explicitly set the size and font of text to avoid overlap, but this is not advised in
most cases. Accessibility options are provided for users with low vision. If you change their
fonts, some users may not be able to read the text on the screen.

Another problem with using GtkFixed arises when your application is translated into other
languages. A user interface may look great in English, but the displayed strings in other lan-
guages may cause display problems, because the width will not be constant. Furthermore,
languages that are read right to left, such as Hebrew and Arabic, cannot be properly mirrored
with the GtkFixed widget. It is best to use a variable-sized container such as GtkBox or GtkTable
in this case.

Finally, it can be quite a pain adding and removing widgets from your graphical interface
when using a GtkFixed container. Changing the user interface will require you to reposition all
of your widgets. If you have an application with a lot of widgets, this presents a long-term
maintenance problem.

On the other hand, you have tables, boxes, and various other automatically formatting
containers. If you need to add or remove a widget from the user interface, it is as easy as adding
or removing a cell. This makes maintenance much more efficient, which is something you
should consider in large applications.

7931ch03.fm Page 59 Wednesday, March 7, 2007 8:54 PM

60 C H A P T E R 3 ■ C O N T A I N E R W I D G E T S

Therefore, unless you know that none of the presented problems will plague your applica-
tion, you should use variable-sized containers instead of GtkFixed. This container was presented
only so you know it is available if a suitable situation arises. Even in suitable situations, flexible
containers are almost always a better solution and are the proper way of doing things.

Expanders
The GtkExpander container can handle only one child. The child can be shown or hidden by
clicking the triangle to the left of the expander’s label. A before-and-after screenshot of this
action can be viewed in Figure 3-7.

Figure 3-7. A GtkExpander container

Listing 3-6 was used to create Figure 3-7. The example introduces you to the most impor-
tant GtkExpander methods.

Listing 3-6. Showing and Hiding Widgets (expanders.c)

#include <gtk/gtk.h>

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *expander, *label;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Expander");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);
 gtk_widget_set_size_request (window, 200, 100);

 expander = gtk_expander_new_with_mnemonic ("Click _Me For More!");
 label = gtk_label_new ("Hide me or show me,\nthat is your choice.");

7931ch03.fm Page 60 Wednesday, March 7, 2007 8:54 PM

C H A P T E R 3 ■ C O N T A I N E R W I D G E T S 61

 gtk_container_add (GTK_CONTAINER (expander), label);
 gtk_expander_set_expanded (GTK_EXPANDER (expander), TRUE);
 gtk_container_add (GTK_CONTAINER (window), expander);

 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

Listing 3-6 uses gtk_expander_new_with_mnemonic() to initialize the GtkExpander. If you
place an underscore in the initialization string of this function, a keyboard accelerator will be
created. For example, whenever the user presses Alt+M on the keyboard in Listing 3-6, the wid-
get will be activated. Activating a GtkExpander widget will cause it to be expanded or retracted
depending on its current state.

■Tip Mnemonics are available in almost every widget that displays a label. Where available, you should
always use this feature, because some users prefer to navigate through applications with the keyboard.

If you wish to include an underscore character in the expander label, you should prefix it
with a second underscore. If you do not want to take advantage of the mnemonic feature, you
can use gtk_expander_new() to initialize the GtkExpander with a standard string as the label, but
providing mnemonics as an option to the user is always a good idea. In normal expander
labels, underscore characters will not be parsed but will be treated as just another character.

The GtkExpander widget itself is derived from GtkBin, which means that it can only contain
one child. As with other containers that hold one child, you need to use gtk_container_add()
to add the child widget.

In Listing 3-6, I wanted the child widget to be visible by default, so I set the GtkExpander
widget to be expanded. The child widget of a GtkExpander container can be shown or hidden by
calling gtk_expander_set_expanded().

void gtk_expander_set_expanded (GtkExpander *expander,
 gboolean expanded);

By default, GTK+ does not add any spacing between the expander label and the child wid-
get. To add pixels of spacing, you can use gtk_expander_set_spacing() to add padding.

void gtk_expander_set_spacing (GtkExpander *expander,
 gint spacing);

7931ch03.fm Page 61 Wednesday, March 7, 2007 8:54 PM

62 C H A P T E R 3 ■ C O N T A I N E R W I D G E T S

Handle Boxes
The GtkHandleBox widget is another type of GtkBin container that allows its child to be removed
from the parent window by dragging it with the mouse.

When removed, the child is placed in its own window that is without decorations. A ghost
is placed where the widget was originally located. If there are other widgets in the window, they
will be resized to fill the void of space if possible.

This widget is most commonly used to contain toolbars and other toolkit displays. An
example of a GtkHandleBox widget is shown in Figure 3-8. It shows the handle box attached to
the window and then removed. The handle box can be reattached by aligning it with the origi-
nal location.

Figure 3-8. A handle box attached and then detached

In Listing 3-7, we create a GtkHandleBox widget that contains a GtkLabel child. The exam-
ple shows all of the properties available to you through the GtkHandleBox class.

Listing 3-7. Detachable Widgets (handleboxes.c)

#include <gtk/gtk.h>

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *handle, *label;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Handle Box");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);
 gtk_widget_set_size_request (window, 200, 100);

7931ch03.fm Page 62 Wednesday, March 7, 2007 8:54 PM

C H A P T E R 3 ■ C O N T A I N E R W I D G E T S 63

 handle = gtk_handle_box_new ();
 label = gtk_label_new ("Detach Me");

 /* Add a shadow to the handle box, set the handle position on the left and
 * set the snap edge to the top of the widget. */
 gtk_handle_box_set_shadow_type (GTK_HANDLE_BOX (handle), GTK_SHADOW_IN);
 gtk_handle_box_set_handle_position (GTK_HANDLE_BOX (handle), GTK_POS_LEFT);
 gtk_handle_box_set_snap_edge (GTK_HANDLE_BOX (handle), GTK_POS_TOP);

 gtk_container_add (GTK_CONTAINER (handle), label);
 gtk_container_add (GTK_CONTAINER (window), handle);
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

When you create a GtkHandleBox widget, you need to decide where the handle and the
snap edge will be placed. The handle is the area on the side of the child widget that you grab
onto in order to detach the GtkHandleBox child from its parent. When the handle box is
detached from the parent, a slim ghost is drawn in the original location.

The function gtk_handle_box_set_handle_position() is used to set the position of the
handle. The GtkPositionType enumeration provides four options for the placement of the han-
dle. By default, the handle position is set to GTK_POS_LEFT, but you can place it on any side with
GTK_POS_RIGHT, GTK_POS_TOP, or GTK_POS_BOTTOM.

void gtk_handle_box_set_handle_position (GtkHandleBox *handle_box,
 GtkPositionType position);

Based on the handle position, GTK+ chooses the position for the snap edge, which is
where the handle box must realign itself for it to be reattached to its parent. The snap edge
is where the ghost will appear after detachment.

You can specify a new GtkPositionType value for the snap edge with
gtk_handle_box_set_snap_edge(). It is important for you to pay attention to where
you place the snap edge with respect to the handle to avoid confusing the user.

void gtk_handle_box_set_snap_edge (GtkHandleBox *handle_box,
 GtkPositionType position);

For example, if the handle box is at the top of a GtkVBox widget and the handle is on the left
side, you should set the snap edge position as GTK_POS_TOP. This way, the ghost is in the same
position as the snap edge without the need for resizing.

7931ch03.fm Page 63 Wednesday, March 7, 2007 8:54 PM

64 C H A P T E R 3 ■ C O N T A I N E R W I D G E T S

GtkHandleBox also provides gtk_handle_box_set_shadow_type(), which allows you to set
the type of border to place around the child widget. Values for the GtkShadowType enumeration
follow.

• GTK_SHADOW_NONE: No border will be placed around the child.

• GTK_SHADOW_IN: The border will be skewed inwards.

• GTK_SHADOW_OUT: The border will be skewed outwards, like a button.

• GTK_SHADOW_ETCHED_IN: The border will have a sunken 3-D appearance.

• GTK_SHADOW_ETCHED_OUT: The border will have a raised 3-D appearance.

Notebooks
The GtkNotebook widget organizes child widgets into a number of pages. The user can switch
between these pages by clicking the tabs that appear along one edge of the widget.

You are able to specify the location of the tabs, although they appear along the top by
default. You can also hide the tabs altogether. Figure 3-9 shows a GtkNotebook widget with two
tabs that was created with the code in Listing 3-8.

Figure 3-9. A notebook container with two pages

When creating a notebook container, you must specify a tab label widget and a child wid-
get for each tab. Tabs can be added to the front or back, inserted, reordered, and removed.

Listing 3-8. Container with Multiple Pages (notebooks.c)

#include <gtk/gtk.h>

static void switch_page (GtkButton*, GtkNotebook*);

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *notebook;
 GtkWidget *label1, *label2, *child1, *child2;

7931ch03.fm Page 64 Wednesday, March 7, 2007 8:54 PM

C H A P T E R 3 ■ C O N T A I N E R W I D G E T S 65

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Notebook");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);
 gtk_widget_set_size_request (window, 250, 100);

 notebook = gtk_notebook_new ();
 label1 = gtk_label_new ("Page One");
 label2 = gtk_label_new ("Page Two");
 child1 = gtk_label_new ("Go to page 2 to find the answer.");
 child2 = gtk_label_new ("Go to page 1 to find the answer.");

 /* Notice that two widgets were connected to the same callback function! */
 g_signal_connect (G_OBJECT (child1), "clicked",
 G_CALLBACK (switch_page),
 (gpointer) notebook);
 g_signal_connect (G_OBJECT (child2), "clicked",
 G_CALLBACK (switch_page),
 (gpointer) notebook);

 /* Append to pages to the notebook container. */
 gtk_notebook_append_page (GTK_NOTEBOOK (notebook), child1, label1);
 gtk_notebook_append_page (GTK_NOTEBOOK (notebook), child2, label2);

 gtk_notebook_set_tab_pos (GTK_NOTEBOOK (notebook), GTK_POS_BOTTOM);

 gtk_container_add (GTK_CONTAINER (window), notebook);
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

/* Switch to the next or previous GtkNotebook page. */
static void
switch_page (GtkButton *button,
 GtkNotebook *notebook)
{
 gint page = gtk_notebook_get_current_page (notebook);

 if (page == 0)
 gtk_notebook_set_current_page (notebook, 1);
 else
 gtk_notebook_set_current_page (notebook, 0);
}

7931ch03.fm Page 65 Wednesday, March 7, 2007 8:54 PM

66 C H A P T E R 3 ■ C O N T A I N E R W I D G E T S

After you create a GtkNotebook, it is not very useful until you add tabs to it. To add a
tab to the end or beginning of the list of tabs, you can use gtk_notebook_append_page() or
gtk_notebook_prepend_page(), respectively. Each of these functions accepts GtkNotebook, a
child widget, and a widget to display in the tab as shown below.

gint gtk_notebook_append_page (GtkNotebook *notebook,
 GtkWidget *child,
 sGtkWidget *tab_label);

■Tip The tab label does not have to be a GtkLabel widget. For example, you could use a GtkHBox widget
that contains a label and a close button. This allows you to embed other useful widgets such as buttons and
images into the tab label.

Each notebook page can only display one child widget. However, each of the children can
be another container, so each page can display many widgets. In fact, it is possible to use
GtkNotebook as the child widget of another GtkNotebook tab.

■Caution Placing notebooks within notebooks is possible but should be done with caution, because it can
easily confuse the user. If you must do this, make sure that you place the child notebook’s tabs on a different
side of the notebook than its parent’s tabs. By doing this, the user will be able to figure out what tabs belong
to which notebook.

If you want to insert a tab in a specific location, you can use gtk_notebook_insert_page().
This function will allow you to specify the integer location of the tab. The index of all tabs
located after the inserted tab will increase by one.

gint gtk_notebook_insert_page (GtkNotebook *notebook,
 GtkWidget *child,
 GtkWidget *tab_label,
 gint position);

All three of the functions used to add tabs to a GtkNotebook will return the integer location
of the tab you added or -1 if the action has failed.

GtkNotebook Properties
In Listing 3-8, the tab-position property was set for the GtkNotebook, which was done with the
following call.

void gtk_notebook_set_tab_pos (GtkNotebook *notebook,
 GtkPositionType position);

7931ch03.fm Page 66 Wednesday, March 7, 2007 8:54 PM

C H A P T E R 3 ■ C O N T A I N E R W I D G E T S 67

Tab position can be set in gtk_notebook_tab_pos() by using the GtkPositionType enumer-
ation you used to set the handle and snap edge locations of a GtkHandleBox. These include
GTK_POS_TOP, GTK_POS_BOTTOM, GTK_POS_LEFT, and GTK_POS_RIGHT.

Notebooks are useful if you want to give the user multiple options, but you want
to show them in multiple stages. If you place a few in each tab and hide the tabs with
gtk_notebook_set_show_tabs(), you can progress the user back and forth through the options.
An example of this concept would be many of the wizards you see throughout your operating
system, similar to the functionality provided by the GtkAssistant widget.

void gtk_notebook_set_show_tabs (GtkNotebook *notebook,
 gboolean show_tabs);

At some point, the GtkNotebook will run out of room to store tabs in the allocated
space. In order to remedy this problem, you can set notebook tabs as scrollable with
gtk_notebook_set_scrollable().

void gtk_notebook_set_scrollable (GtkNotebook *notebook,
 gboolean scrollable);

This property will force tabs to be hidden from the user. Arrows will be provided so that the
user will be able to scroll through the list of tabs. This is necessary because tabs are only shown
in one row or column.

If you resize the window so that all of the tabs cannot be shown, the tabs will be made
scrollable. Scrolling will also occur if you make the font size large enough that the tabs cannot
all be drawn. You should always set this property to TRUE if there is any chance that the tabs will
take up more than the allotted space.

Tab Operations
GTK+ provides multiple functions that allow you to interact with tabs that already exist. Before
learning about these methods, it is useful to know that most of these will cause the change-
current-page signal to be emitted. This signal is emitted when the current tab that is in focus is
changed.

If you can add tabs, there has to be a method to remove tabs as well. By using
gtk_notebook_remove_page(), you can remove a tab based on its index reference. If you
did not increase the reference count before adding the widget to the GtkNotebook, this function
will release the last reference and destroy the child.

void gtk_notebook_remove_page (GtkNotebook *notebook,
 gint page_number);

You can manually reorder the tabs by calling gtk_notebook_reorder_child(). You must
specify the child widget of the page you want to move and the location to where it should be
moved. If you specify a number that is greater than the number of tabs or a negative number,
the tab will be moved to the end of the list.

void gtk_notebook_reorder_child (GtkNotebook *notebook,
 GtkWidget *child,
 gint position);

7931ch03.fm Page 67 Wednesday, March 7, 2007 8:54 PM

68 C H A P T E R 3 ■ C O N T A I N E R W I D G E T S

There are three methods provided for changing the current page. If you know the specific
index of the page you want to view, you can use gtk_notebook_set_current_page() to move to
that page.

void gtk_notebook_set_current_page (GtkNotebook *notebook,
 gint page_number);

At times, you may also want switch to the next or previous tab, which can be done with call
gtk_notebook_next_page() or gtk_notebook_prev_page(). If a call to either of these functions
would cause the current tab to drop below zero or go above the current number of tabs, noth-
ing will occur; the call will be ignored.

When deciding what page to move to, it is often useful to know the current page and the
total number of tabs. These values can be obtained with gtk_notebook_get_current_page()
and gtk_notebook_get_n_pages() respectively.

Event Boxes
Various widgets including GtkLabel do not respond to GDK events, because they do not have
an associated GDK window. To fix this, GTK+ provides a container widget called GtkEventBox.
Event boxes catch events for the child widget by providing a GDK window for the object.

Listing 3-9 connects the button-press-event signal to a GtkLabel by using an event box.
The text in the label is changed based on its current state when the label is double-clicked.
Nothing visible happens when a single click occurs, although the signal is still emitted in
that case.

Listing 3-9. Adding Events to a GtkLabel (eventboxes.c)

#include <gtk/gtk.h>

static gboolean button_pressed (GtkWidget*, GdkEventButton*, GtkLabel*);

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *eventbox, *label;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Event Box");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);
 gtk_widget_set_size_request (window, 200, 50);

7931ch03.fm Page 68 Wednesday, March 7, 2007 8:54 PM

C H A P T E R 3 ■ C O N T A I N E R W I D G E T S 69

 eventbox = gtk_event_box_new ();
 label = gtk_label_new ("Double-Click Me!");

 /* Set the order in which widgets will receive notification of events. */
 gtk_event_box_set_above_child (GTK_EVENT_BOX (eventbox), FALSE);

 g_signal_connect (G_OBJECT (eventbox), "button_press_event",
 G_CALLBACK (button_pressed), (gpointer) label);

 gtk_container_add (GTK_CONTAINER (eventbox), label);
 gtk_container_add (GTK_CONTAINER (window), eventbox);

 /* Allow the event box to catch button presses, realize the widget, and set the
 * cursor that will be displayed when the mouse is over the event box. */
 gtk_widget_set_events (eventbox, GDK_BUTTON_PRESS_MASK);
 gtk_widget_realize (eventbox);
 gdk_window_set_cursor (eventbox->window, gdk_cursor_new (GDK_HAND1));
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

/* This is called every time a button-press event occurs on the GtkEventBox. */
static gboolean
button_pressed (GtkWidget *eventbox,
 GdkEventButton *event,
 GtkLabel *label)
{
 if (event->type == GDK_2BUTTON_PRESS)
 {
 const gchar *text = gtk_label_get_text (label);

 if (text[0] == 'D')
 gtk_label_set_text (label, "I Was Double-Clicked!");
 else
 gtk_label_set_text (label, "Double-Click Me Again!");
 }

 return FALSE;
}

7931ch03.fm Page 69 Wednesday, March 7, 2007 8:54 PM

70 C H A P T E R 3 ■ C O N T A I N E R W I D G E T S

When using an event box, you need to decide whether the event box’s GdkWindow should be
positioned above the windows of its child or below them. If the event box window is above, all
events inside the event box will go to the event box. If the window is below, events in windows
of child widgets will first go to that widget and then to its parents.

■Note If you set the window’s position as below, events do go to child widgets first. However, this is
only the case for widgets that have associated GDK windows. If the child is a GtkLabel widget, it does not
have the ability to detect events on its own. Therefore, it does not matter whether you set the window’s posi-
tion as above or below in Listing 3-9.

The location of the event box window can be moved above or below its children with
gtk_event_box_set_above_child(). By default, this property is set to FALSE for all event boxes.
This means that all events will be handled by the widget for which the signal was first emitted.
The event will then be passed to its parent after the widget is finished.

void gtk_event_box_set_above_child (GtkEventBox *event_box,
 gboolean above_child);

Next, you need to add an event mask to the event box so that it knows what type of events
the widget will receive. Values for the GdkEventMask enumeration that specify event masks are
shown in Table 3-3. A bitwise list of GdkEventMask values can be passed to
gtk_widget_set_events() if you need to set more than one.

Table 3-3. GdkEventMask Values

Value Description

GDK_EXPOSURE_MASK Accept events when a widget is exposed.

GDK_POINTER_MOTION_MASK Accept all pointer motion events.

GDK_POINTER_MOTION_HINT_MASK Limit the number of GDK_MOTION_NOTIFY events, so they are not
emitted every time the mouse moves.

GDK_BUTTON_MOTION_MASK Accept pointer motion events while any button is pressed.

GDK_BUTTON1_MOTION_MASK Accept pointer motion events while button 1 is pressed.

GDK_BUTTON2_MOTION_MASK Accept pointer motion events while button 2 is pressed.

GDK_BUTTON3_MOTION_MASK Accept pointer motion events while button 3 is pressed.

GDK_BUTTON_PRESS_MASK Accept mouse button press events.

GDK_BUTTON_RELEASE_MASK Accept mouse button release events.

GDK_KEY_PRESS_MASK Accept key press events from a keyboard.

GDK_KEY_RELEASE_MASK Accept key release events from a keyboard.

7931ch03.fm Page 70 Wednesday, March 7, 2007 8:54 PM

C H A P T E R 3 ■ C O N T A I N E R W I D G E T S 71

You must call gtk_widget_set_events() before you call gtk_widget_realize() on the widget. If
a widget has already been realized by GTK+, you will have to instead use gtk_widget_add_events()
to add event masks.

Before calling gtk_widget_realize(), your GtkEventBox does not yet have an associated
GdkWindow or any other GDK widget resources. Normally, realization occurs when the
parent is realized, but event boxes are an exception. When you call gtk_widget_show() on
a widget, it is automatically realized by GTK+. Event boxes are not realized when you call
gtk_widget_show_all(), because they are set as invisible. Calling gtk_widget_realize() on the
event box is an easy way to work around this problem.

When you realize your event box, you need to make sure that it is already added as a child
to a top-level widget, or it will not work. This is because, when you realize a widget, it will
automatically realize its ancestors. If it has no ancestors, GTK+ will not be happy and realiza-
tion will fail.

After the event box is realized, it will have an associated GdkWindow. GdkWindow is a class that
refers to a rectangular region on the screen where a widget is drawn. It is not the same thing as
a GtkWindow, which refers to a top-level window with a title bar and so on. A GtkWindow will con-
tain many GdkWindow objects, one for each child widget. They are used for drawing widgets on
the screen.

Since we are allowing the GtkLabel widget to be clicked, it makes sense to change the cur-
sor to a hand when it is hovering over the label, which is done with gdk_window_set_cursor()
and gdk_cursor_new(). There are many cursor types available in GDK. To see a full list of avail-
able cursors, view the GdkCursorType enumeration in the API documentation.

gdk_window_set_cursor (eventbox->window, gdk_cursor_new (GDK_HAND1));

GDK_ENTER_NOTIFY_MASK Accept events emitted when the proximity of the window is
entered.

GDK_LEAVE_NOTIFY_MASK Accept events emitted when the proximity of the window is left.

GDK_FOCUS_CHANGE_MASK Accept change of focus events.

GDK_STRUCTURE_MASK Accept events emitted when changes to window configura-
tions occur.

GDK_PROPERTY_CHANGE_MASK Accept changes to object properties.

GDK_VISIBILITY_NOTIFY_MASK Accept change of visibility events.

GDK_PROXIMITY_IN_MASK Accept events emitted when the mouse cursor enters the
proximity of the widget.

GDK_PROXIMITY_OUT_MASK Accept events emitted when the mouse cursor leaves the
proximity of the widget.

GDK_SUBSTRUCTURE_MASK Accept events that change the configuration of child windows.

GDK_SCROLL_MASK Accept all scroll events.

GDK_ALL_EVENTS_MASK Accept all types of events.

Value Description

7931ch03.fm Page 71 Wednesday, March 7, 2007 8:54 PM

72 C H A P T E R 3 ■ C O N T A I N E R W I D G E T S

■Note The GtkWidget structure includes multiple public members. One of them is window, which is the
GdkWindow associated with the given widget. In the preceding code, the new cursor was associated with
the event box’s GdkWindow.

Test Your Understanding
This chapter has introduced you to a number of container widgets that are included in GTK+.
The following two exercises will allow you to practice what you have learned about a few of
these new widgets.

Exercise 3-1. Using Multiple Containers

One important characteristic of containers is that each container can hold other containers. To really drive this point
home, in this example, you will use a large number of containers. The main window will show a GtkNotebook and
two buttons along the bottom.

The notebook should have four pages. Each notebook page should hold a GtkButton that moves to the next page
(The GtkButton on the last page should wrap around to the first page.)

Create two buttons along the bottom of the window. The first should move to the previous page in the
GtkNotebook, wrapping to the last page if necessary. The second button should close the window and exit
the application when clicked.

Exercise 3-1 is a simple application to implement, but it illustrates a few important points.
First, it shows the usefulness of GtkVBox and GtkHBox, and how they can be used together to cre-
ate complex user interfaces.

It is true that this same application could be implemented with a GtkTable as the direct
child of the window, but it is significantly easier to align the buttons along the bottom with a
horizontal box. You will notice that the buttons were packed at the end of the box, which aligns
them to the right side of the box, and this is easier to implement with boxes.

Also, you saw that containers can, and should, be used to hold other containers. For exam-
ple, in Exercise 3-1, a GtkWindow holds a GtkVBox, which holds a GtkHBox and a GtkNotebook. This
structure can become even more complex as your application grows in size.

Once you have completed Exercise 3-1, move on to Exercise 3-2. In the next problem, you
will use the paned container instead of a vertical box.

7931ch03.fm Page 72 Wednesday, March 7, 2007 8:54 PM

C H A P T E R 3 ■ C O N T A I N E R W I D G E T S 73

Exercise 3-2. Even More Containers

In this exercise, you will expand upon the code you wrote in Exercise 3-1. Instead of using a GtkVBox to hold the
notebook and horizontal box of buttons, create a GtkVPaned widget.

In addition to this change, you should hide the GtkNotebook tabs, so the user is not able to switch between pages
without pressing buttons. In this case, you will not be able to know when a page is being changed. Therefore, each
button that is in a GtkNotebook page should be contained by its own expander. The expander labels will allow you
to differentiate between notebook pages.

Once you have completed Exercise 3-2, you will have had practice with GtkBox, GtkPaned,
GtkNotebook, and GtkExpander— four important containers that will be used throughout the
rest of this book.

Before continuing on to the next chapter, you may want to test out a few of the containers
covered in this chapter that you did not need for Exercises 3-1 and 3-2. This will give you prac-
tice using all of the containers, because later chapters will not review past information.

Summary
In this chapter, you learned about the two types of container widgets: decorators and layout
containers. Types of decorators covered were expanders, handle boxes, and event boxes. Types
of layout containers covered were boxes, panes, tables, fixed containers, and notebooks.

The event box container will be seen in later chapters, because there are other widgets
besides GtkLabel that cannot handle GDK events. This will be specified when you learn about
these widgets. You will see most of the containers covered in this chapter in later chapters
as well.

While these containers are necessary for GTK+ application development, merely display-
ing GtkLabel and GtkButton widgets in containers is not very useful (or interesting) in most
applications. This type of application does little to accommodate anything beyond basic user
interaction.

Therefore, in the next chapter, you are going to learn about many widgets that allow you to
interact with the user. These widgets include types of buttons, toggles, text entries, and spin
buttons.

As mentioned before, make sure you understand container widgets before continuing on
to Chapter 4. Later chapters will assume that you have a decent grasp of the most important
container widgets and other concepts covered in this chapter.

7931ch03.fm Page 73 Wednesday, March 7, 2007 8:54 PM

7931ch03.fm Page 74 Wednesday, March 7, 2007 8:54 PM

75

■ ■ ■

C H A P T E R 4

Basic Widgets

So far, you have not learned about any widgets that are designed to facilitate user interaction
except GtkButton. That changes in this chapter, as we will cover many types of widgets that
allow the user to make choices, change settings, or input information.

These widgets include stock buttons, toggle buttons, check buttons, radio buttons, color
selection buttons, file chooser buttons, font selection buttons, text entries, and number selec-
tion buttons.

The exercise at the end of the chapter will give you the opportunity to combine many of
these widgets into larger applications.

In this chapter, you will learn the following:

• How to use clickable buttons with stock items

• How to use types of toggle buttons, including check buttons and radio buttons

• How to use the entry widget for one-line, free-form text input

• How to use the spin button widget for integer or floating-point number selection

• What sort of specialized buttons are available

Using Stock Items
When you create applications in GTK+, you will begin to notice that you are using the same
buttons and menu items across many applications. Because of this, GTK+ includes stock items,
which are pairs of images and strings that accommodate often-used menu items and buttons.

GTK+ provides gtk_button_new_from_stock(), which will create a new button using a pre-
defined stock item. Each stock item contains an image and a mnemonic label that are applied
to the button. A full list of stock items can be found in Appendix D. Each item is included in
GTK+, because each is used by a wide number of applications.

While Appendix D includes all of the stock icons available in GTK+ 2.10, you may notice
when running applications that the icons are not the same on your system. This is because,
while you will always have these stock items available, the default image may be replaced by
the user’s theme of choice or by the developer.

7931ch04.fm Page 75 Monday, February 5, 2007 8:25 PM

76 C H A P T E R 4 ■ B A S I C W I D G E T S

■Note If the stock item provided to gtk_button_new_from_stock() or any other stock retrieval function
in GTK+ is not found, it will be treated as a mnemonic label. This prevents buttons from being rendered in an
unpredictable way.

It is possible for you to define your own stock icons, but this will not be covered
until Chapter 9, which covers menus and toolbars. An example of a button using the
GTK_STOCK_CLOSE stock item can be seen in Figure 4-1.

Figure 4-1. A GTK_STOCK_CLOSE stock item

Each stock item can be referred to by its string value or its macro definition. For example,
the close stock item used in Listing 4-1 can be referred to as gtk-close or GTK_STOCK_CLOSE.
However, the preprocessor directives are merely convenient aliases of the string values, so
there is no reason to learn both identifiers.

■Tip You should always use the preprocessor directives, because unsupported items will be flagged when
you compile the code. If you use the stock item’s string, the compiler will not flag the error, and the invalid
icon will be displayed.

Listing 4-1. Stock Items (stockitems.c)

button = gtk_button_new_from_stock (GTK_STOCK_CLOSE);

g_signal_connect_swapped (G_OBJECT (button), "clicked",
 G_CALLBACK (gtk_widget_destroy),
 (gpointer) window);

There are 98 stock items provided by GTK+ as of the release of 2.10. A list of these items can
be viewed in Appendix D. We will use stock items again when covering menus and toolbars in
Chapter 9.

It is important to note that some stock items have been added since the release of GTK+
2.0, so a few items may not be available to you if you are not running the most current version
of GTK+. This is essential to keep in mind when creating new applications. Your users may not
have the most current version of GTK+!

7931ch04.fm Page 76 Monday, February 5, 2007 8:25 PM

C H A P T E R 4 ■ B A S I C W I D G E T S 77

Toggle Buttons
The GtkToggleButton widget is a type of GtkButton that holds its active or inactive state after it
is clicked. It is shown as pressed down when active. Clicking an active toggle button will cause
it to return to its normal state. There are two widgets derived from GtkToggleButton:
GtkCheckButton and GtkRadioButton.

You can create a new GtkToggleButton with one of three functions. To create an empty tog-
gle button, use gtk_toggle_button_new(). If you want the toggle button to include a label by
default, use gtk_toggle_button_new_with_label(). Lastly, GtkToggleButton also supports mne-
monic labels with gtk_toggle_button_new_with_mnemonic().

Figure 4-2 shows two GtkToggleButton widgets that were created with two mnemonic
labels by calling the gtk_toggle_button_new_with_mnemonic() initializer. The widgets in the
screenshot were created with the code in Listing 4-2.

Figure 4-2. Two GtkToggleButton widgets

In the example in Listing 4-2, when one toggle button is activated, the other is disabled.
The only way to make it sensitive is to deactivate the original toggle button.

Listing 4-2. Using Toggle Buttons (togglebuttons.c)

#include <gtk/gtk.h>

static void button_toggled (GtkToggleButton*, GtkWidget*);

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *vbox, *toggle1, *toggle2;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Toggle Buttons");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);

 vbox = gtk_vbox_new (TRUE, 5);
 toggle1 = gtk_toggle_button_new_with_mnemonic ("_Deactivate the other one!");
 toggle2 = gtk_toggle_button_new_with_mnemonic ("_No! Deactivate that one!");

7931ch04.fm Page 77 Monday, February 5, 2007 8:25 PM

78 C H A P T E R 4 ■ B A S I C W I D G E T S

 g_signal_connect (G_OBJECT (toggle1), "toggled",
 G_CALLBACK (button_toggled),
 (gpointer) toggle2);
 g_signal_connect (G_OBJECT (toggle2), "toggled",
 G_CALLBACK (button_toggled),
 (gpointer) toggle1);

 gtk_box_pack_start_defaults (GTK_BOX (vbox), toggle1);
 gtk_box_pack_start_defaults (GTK_BOX (vbox), toggle2);

 gtk_container_add (GTK_CONTAINER (window), vbox);
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

/* If the toggle button was activated, set the other as disabled. Otherwise,
 * enable the other toggle button. */
static void
button_toggled (GtkToggleButton *toggle,
 GtkWidget *other_toggle)
{
 if (gtk_toggle_button_get_active (toggle))
 gtk_widget_set_sensitive (other_toggle, FALSE);
 else
 gtk_widget_set_sensitive (other_toggle, TRUE);
}

The only signal added by the GtkToggleButton class is toggled, which is emitted when the
user activates or deactivates the button. This signal was triggered in Listing 4-2 by one toggle
button in order to disable the other.

In Listing 4-2, another important piece of information was shown: multiple widgets can
use the same callback function. We did not need to create a separate callback function for each
toggle button, since each required the same functionality. It is also possible to connect one sig-
nal to multiple callback functions, although this is not recommended. Instead, you should just
implement the whole functionality in a single callback function.

Managing Widget Flags
One important property of a widget is its ability to become disabled or inactive. This is
managed by the sensitive property, which will disable the widget when set to FALSE with
gtk_widget_set_sensitive().

gtk_widget_set_sensitive (other_toggle, FALSE);

7931ch04.fm Page 78 Monday, February 5, 2007 8:25 PM

C H A P T E R 4 ■ B A S I C W I D G E T S 79

Sensitivity is actually only one of many widget flags provided by the GtkWidgetFlags enu-
meration. Widget flags, which are in the following list, can be set with GTK_WIDGET_SET_FLAGS()
or disabled with GTK_WIDGET_UNSET_FLAGS(). You can also get a list of the flags that are set for a
widget with GTK_WIDGET_FLAGS().

• GTK_TOPLEVEL: The widget does not have a parent widget. This is usually set for widgets
such as windows and menus. This flag should always be set throughout a top-level wid-
get’s lifetime.

• GTK_NO_WINDOW: The widget does not have its own GdkWindow, so drawing is done with the
GdkWindow of the parent. You can use this flag to test whether a widget needs a
GtkEventBox to catch GDK events.

• GTK_REALIZED: The widget was realized with gtk_widget_realize(). This flag will be
automatically unset when you unrealize the widget.

• GTK_MAPPED: The widget was mapped with gtk_widget_map(). This basically means that
the widget was shown to the user if its parent is visible.

• GTK_VISIBLE: This flag does not mean that the user is able to see the widget, but that the
widget will only be visible if its parent is also visible to the user.

• GTK_SENSITIVE: The widget is able to interact with the user and receive certain events
such as button and key-press events.

• GTK_PARENT_SENSITIVE: A widget’s parent must be sensitive for the widget itself to be set
as sensitive. Therefore, GTK_SENSITIVE is dependent on this property.

• GTK_CAN_FOCUS: The widget is able to grab focus if requested.

• GTK_HAS_FOCUS: The widget has focus, which can be set with gtk_widget_grab_focus().
This property depends on GTK_CAN_FOCUS.

• GTK_CAN_DEFAULT: The widget is able to become the default widget of the window.

• GTK_HAS_DEFAULT: The widget is the default widget of the window. You can set the default
widget with gtk_widget_grab_default().

• GTK_HAS_GRAB: The widget is in the stack of grab widgets, which shows preference for
receiving events.

• GTK_RC_STYLE: GTK+ searched for a style for the widget in a resource (RC) definition. This
can be set even if no style was found for the widget.

• GTK_COMPOSITE_CHILD: The widget exists to give details about the implementation of its
parent widget and should not be shown to the user.

• GTK_APP_PAINTABLE: If set, the application should be able to draw on the widget. This pre-
vents GTK+ from overwriting the current content.

• GTK_RECEIVES_DEFAULT: If set, the widget will automatically receive the default action
even if it is not the default widget of the window.

7931ch04.fm Page 79 Monday, February 5, 2007 8:25 PM

80 C H A P T E R 4 ■ B A S I C W I D G E T S

• GTK_DOUBLE_BUFFERED: When the widget is exposed to the user, it should be double-
buffered. This helps the window to be updated for the user in one step, which is
smoother to the eye.

• GTK_NO_SHOW_ALL: If you set this flag, calls to gtk_widget_show_all() will not affect the
widget. You will need to manually show the widget yourself. This allows you to prevent
a widget from being shown with the rest of the application.

When the toggled signal is emitted, you will most often want to check whether a toggle
button is active, because it is emitted both when the widget is activated and deactivated. This
can be performed with gtk_toggle_button_get_active(). TRUE is returned if the button is
active or FALSE if it is inactive. The current state of a toggle button can also be set with
gtk_toggle_button_set_active().

void gtk_toggle_button_set_active (GtkToggleButton *toggle,
 gboolean active);

Check Buttons
In most cases, you will not want to use the GtkToggleButton widget, because it looks exactly like
a normal GtkButton. Instead, GTK+ provides the GtkCheckButton widget, which places a dis-
crete toggle next to the display text. GtkCheckButton is derived from the GtkToggleButton class.
Two instances of this widget can be viewed in Figure 4-3.

Figure 4-3. Check buttons

As with toggle buttons, three functions are provided for GtkCheckButton initialization.
These include gtk_check_button_new(), gtk_check_button_new_with_label(), and
gtk_check_button_new_with_mnemonic(). GtkCheckButton also inherits the important toggled
signal, which is used in Listing 4-3.

Listing 4-3. Check Button Interaction (checkbuttons.c)

#include <gtk/gtk.h>

static void check_toggled (GtkToggleButton*, GtkWidget*);

int main (int argc,
 char *argv[])

7931ch04.fm Page 80 Monday, February 5, 2007 8:25 PM

C H A P T E R 4 ■ B A S I C W I D G E T S 81

{
 GtkWidget *window, *vbox, *check1, *check2, *close;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Check Buttons");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);

 check1 = gtk_check_button_new_with_label ("I am the main option.");
 check2 = gtk_check_button_new_with_label ("I rely on the other guy.");

 /* Only enable the second check button when the first is enabled. */
 gtk_widget_set_sensitive (check2, FALSE);
 g_signal_connect (G_OBJECT (check), "toggled",
 G_CALLBACK (check_toggled),
 (gpointer) check2);

 close = gtk_button_new_from_stock (GTK_STOCK_CLOSE);
 g_signal_connect_swapped (G_OBJECT (close), "clicked",
 G_CALLBACK (gtk_widget_destroy),
 (gpointer) window);

 vbox = gtk_vbox_new (FALSE, 5);
 gtk_box_pack_start (GTK_BOX (vbox), check1, FALSE, TRUE, 0);
 gtk_box_pack_start (GTK_BOX (vbox), check2, FALSE, TRUE, 0);
 gtk_box_pack_start (GTK_BOX (vbox), close, FALSE, TRUE, 0);

 gtk_container_add (GTK_CONTAINER (window), table);
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

/* If the main check button is active, enable the other. Otherwise, disable
 * the supplementary check button. */
static void
check_toggled (GtkToggleButton *check1,
 GtkWidget *check2)
{
 if (gtk_toggle_button_get_active (check1))
 gtk_widget_set_sensitive (check2, TRUE);
 else
 gtk_widget_set_sensitive (check2, FALSE);
}

7931ch04.fm Page 81 Monday, February 5, 2007 8:25 PM

82 C H A P T E R 4 ■ B A S I C W I D G E T S

Excluding the initialization methods, all functionality for check boxes is implemented in
the GtkToggleButton class and its ancestors. GtkCheckButton is merely a convenience widget,
which provides the graphical differences from standard GtkButton widgets.

Radio Buttons
The second type of widget derived from GtkToggleButton is the radio button widget. In fact,
GtkRadioButton is actually derived from GtkCheckButton. Radio buttons are toggles that are
generally grouped together.

In a group, when one radio button is selected, all others will be deselected. The group for-
bids selecting multiple radio buttons at once. This allows you to provide multiple options to
the user where only one should be selected.

■Note There is no way provided by GTK+ to deselect a radio button, so a group of one radio button is not
desirable. The user will not be able to deselect the option! In the case that you only need one button, you
should use a GtkCheckButton or GtkToggleButton widget.

Radio buttons are drawn as a discrete circular toggle to the side of the label widget, so they
can be differentiated from other types of toggle buttons. It is possible to draw radio buttons
with the same toggle as GtkCheckButton, but this should not be done, because it can confuse
and frustrate the user. A group of four radio buttons in a vertical box is shown in Figure 4-4.

Figure 4-4. Radio buttons

For radio buttons to work correctly, they must all be referenced to another radio button in
the group. Otherwise, all of the buttons would act as independent toggle buttons. An example
of how to use multiple radio buttons is shown in Listing 4-4.

7931ch04.fm Page 82 Monday, February 5, 2007 8:25 PM

C H A P T E R 4 ■ B A S I C W I D G E T S 83

Listing 4-4. Selfish Toggle Buttons (radiobuttons.c)

#include <gtk/gtk.h>

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *vbox, *radio1, *radio2, *radio3;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Radio Buttons");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);

 /* Create three radio buttons where the second two join radio1's group. */
 radio1 = gtk_radio_button_new_with_label (NULL, "I want to be clicked!");
 radio2 = gtk_radio_button_new_with_label_from_widget (GTK_RADIO_BUTTON (radio1),
 "Click me instead!");
 radio3 = gtk_radio_button_new_with_label_from_widget (GTK_RADIO_BUTTON (radio1),
 "No! Click me!");

 /* Note: The radio button you create the new widget from does not matter as
 * long as it is already a member of the group! */
 radio4 = gtk_radio_button_new_with_label_from_widget (GTK_RADIO_BUTTON (radio3),
 "No! Click me instead!");

 vbox = gtk_vbox_new (FALSE, 5);
 gtk_box_pack_start_defaults (GTK_BOX (vbox), radio1);
 gtk_box_pack_start_defaults (GTK_BOX (vbox), radio2);
 gtk_box_pack_start_defaults (GTK_BOX (vbox), radio3);
 gtk_box_pack_start_defaults (GTK_BOX (vbox), radio4);

 gtk_container_add (GTK_CONTAINER (window), vbox);
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

7931ch04.fm Page 83 Monday, February 5, 2007 8:25 PM

84 C H A P T E R 4 ■ B A S I C W I D G E T S

The first radio button in a group can be created with any of the following three functions.
However, if you want to use a GtkLabel widget as the child, it is also possible to use a mnemonic
widget, so the toggle can be activated from the keyboard.

GtkWidget* gtk_radio_button_new (GSList *group);
GtkWidget* gtk_radio_button_new_with_label (GSList *group,
 const gchar *label);
GtkWidget* gtk_radio_button_new_with_mnemonic (GSList *group,
 const gchar *label);

You will notice that NULL is specified for the radio group in each call. This is because the sim-
plest way to create a group of radio buttons is to associate them to another widget in the group.
By using this method, you avoid having to use the GLib with singly linked lists, since the list will
be created and managed for you automatically. (GSList data structures will be covered later in
Chapters 5 and 6.)

You can create any type of toggle button, including radio buttons, without a label, in which
case you would add your own child widget with gtk_container_add(). You can also create radio
buttons with a programmatically defined label or a mnemonic label.

The easiest way to create the rest of the radio buttons is with one of the following three
_from_widget() functions. Similar to creating the first radio button, these can be created with a
label, a mnemonic label, or without an initial child widget.

GtkWidget* gtk_radio_button_new_from_widget (GtkRadioButton *group);
GtkWidget* gtk_radio_button_new_with_label_from_widget (GtkRadioButton *group,
 const gchar *label);
GtkWidget* gtk_radio_button_new_with_mnemonic_from_widget (GtkRadioButton *group,
 const gchar *label);

Referring the initialization function to a radio button that already exists creates each of
these. GTK+ will add the new radio button to the group from the specified widget. Because
of this, you need only refer to any widget that already exists within the desired radio group.

Lastly, every radio button in the group must be connected to the toggled signal. When a
radio button is selected, only two radio buttons will emit the toggled signal, because one will
be selected, and another will be deselected. You will not be able to catch all radio button signals
if you do not connect every radio button to toggled.

Text Entries
The GtkEntry widget is a single line, free-form text entry widget. It is implemented in a general
manner, so that it can be molded to fit many types of solutions. It can be used for text entry,
password entry, and even number selections.

GtkEntry also implements the GtkEditable interface, which provides a large number of
functions that are created to handle selections of text. An example GtkEntry widget is shown in
Figure 4-5. This text entry is used for password entry.

7931ch04.fm Page 84 Monday, February 5, 2007 8:25 PM

C H A P T E R 4 ■ B A S I C W I D G E T S 85

Figure 4-5. A password text entry

■Note GtkEditable is a special type of object called an interface. An interface is a set of APIs that are
implemented by multiple widgets and used for consistency. You will learn how to implement and utilize inter-
faces in your own widgets in Chapter 11.

The GtkEntry widget considers all text to be standard strings. The only way it differentiates
between normal text and passwords is that a special character called an invisibility character is
shown instead of password content. Listing 4-5 shows you how to use a GtkEntry widget for
password entry. If you want to use a GtkEntry widget for normal text entry, you need only to
turn visibility on.

Listing 4-5. Retrieving User Information (entries.c)

#include <gtk/gtk.h>

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *vbox, *hbox, *question, *label, *pass;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Password?");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);

 str = g_strconcat ("What is the password for ", g_get_user_name(), "?", NULL);
 question = gtk_label_new (str);
 label = gtk_label_new ("Password:");

 /* Create a new GtkEntry widget and hide its content from view. */
 pass = gtk_entry_new ();
 gtk_entry_set_visibility (GTK_ENTRY (pass), FALSE);
 gtk_entry_set_invisible_char (GTK_ENTRY (pass), '*');

7931ch04.fm Page 85 Monday, February 5, 2007 8:25 PM

86 C H A P T E R 4 ■ B A S I C W I D G E T S

 hbox = gtk_hbox_new (FALSE, 5);
 gtk_box_pack_start_defaults (GTK_BOX (hbox), label);
 gtk_box_pack_start_defaults (GTK_BOX (hbox), pass);

 vbox = gtk_vbox_new (FALSE, 5);
 gtk_box_pack_start_defaults (GTK_BOX (vbox), question);
 gtk_box_pack_start_defaults (GTK_BOX (vbox), hbox);

 gtk_container_add (GTK_CONTAINER (window), vbox);
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

Entry Properties
The GtkEntry widget is a highly flexible widget, because it was designed to be employed in the
maximum number of instances. This can be seen from the wide array of properties provided by
the class. A sampling of the most important of those is included in this section. For a full list of
properties, you should reference Appendix A.

Text does not always have to be editable in a GtkEntry widget. If you set the entry as non-
editable with gtk_editable_set_editable(), the user will not be able to edit the text. However,
the user will still be able to use the selection and copy functionality of the GtkEntry widget,
because this property is not the same thing as setting the widget as insensitive.

void gtk_editable_set_editable (GtkEditable *editable,
 gboolean is_editable);

Oftentimes, you will want to restrict the length of the free-form text entered into an
entry widget because of string limitations of the value. In the following function prototype,
gtk_entry_set_max_length() limits the text of the entry to max_length characters. This can be
useful when you want to limit the length of user names, passwords, or other length-sensitive
information.

void gtk_entry_set_max_length (GtkEntry *entry,
 gint max_length);

Invisibility characters facilitate password entries in GTK+. The invisibility character is the
character that will replace the actual password content in the entry, which can be set with
gtk_entry_set_invisible_char(). The default character for the entry is an asterisk.

void gtk_entry_set_invisible_char (GtkEntry *entry,
 gunichar inv_char);
void gtk_entry_set_visibility (GtkEntry *entry,
 gboolean visible);

After specifying the invisibility character, you can hide all entered text by setting visibility
to FALSE with gtk_entry_set_visiblity(). You will still be able to retrieve the actual content of
the entry programmatically even though it is hidden from view.

7931ch04.fm Page 86 Monday, February 5, 2007 8:25 PM

C H A P T E R 4 ■ B A S I C W I D G E T S 87

Inserting Text into a GtkEntry Widget
There are multiple ways to insert text to a GtkEntry widget. The simplest way is to use
gtk_entry_set_text(), which will overwrite the whole content of the text entry with the
given string. However, this is only useful if you no longer care about the current text displayed
by the widget.

void gtk_entry_set_text (GtkEntry *entry,
 const gchar *text);

The current text displayed by GtkEntry can be retrieved with gtk_entry_get_text(). This
string is used internally by the widget and must never be freed or modified in any way.

It is also possible to use gtk_editable_insert_text() to insert text into a GtkEntry widget.
This function accepts the text to insert, the length of the text in bytes, and the position where
the text should be inserted.

void gtk_editable_insert_text (GtkEditable *editable,
 const gchar *text,
 gint length_of_text,
 gint *position);

There are also functions provided for prepending and appending text, but these are not
needed, since you can perform these functions by providing positions of 0 and -1, respectively,
to gtk_editable_insert_text().

Manipulating GtkEntry Text
Deleting specific content from a text entry is easy with gtk_editable_delete_text(). It will
remove all of the text between the two positions specified but not the character at the end
position.

void gtk_editable_delete_text (GtkEditable *editable,
 gint start_pos,
 gint end_pos);

When using gtk_editable_delete_text(), the order of the positions that you specify does
not matter. Also, if you specify -1 as the end position, the characters from the start position to
the end of the text will be deleted.

If you need a specific region of text to be selected automatically, this can be done with
gtk_editable_select_region(). As with deleting text, an end position of -1 will select all of the
text from the start position to the end of the content. Manual and automatic selections are
what facilitate the following few functions.

void gtk_editable_select_region (GtkEditable *editable,
 gint start_pos,
 gint end_pos);

Once you are able to select text, it would be useful to be able to delete the selection. This is
very easy to do with gtk_editable_delete_selection(). This function will delete all of the
selected text, leaving any nonselected text.

7931ch04.fm Page 87 Monday, February 5, 2007 8:25 PM

88 C H A P T E R 4 ■ B A S I C W I D G E T S

void gtk_editable_delete_selection (GtkEditable *editable);

In addition to retrieving the whole textual content of the widget, it is possible to retrieve
only a section of the text with gtk_editable_get_chars(). This will return a copy of the speci-
fied string, which must be freed with g_free() when you are finished with it.

gchar* gtk_editable_get_chars (GtkEditable *editable,
 gint start_pos,
 gint end_pos);

The following three functions perform various clipboard functions. There are keyboard
accelerators for cutting (Ctrl+X), copying (Ctrl+C), and pasting (Ctrl+V) built into entries by
default. Therefore, you will not usually need to implement clipboard functionality when using
a GtkEntry widget.

void gtk_editable_cut_clipboard (GtkEditable *editable);
void gtk_editable_copy_clipboard (GtkEditable *editable);
void gtk_editable_paste_clipboard (GtkEditable *editable);

Spin Buttons
The GtkSpinButton widget is a number selection widget that is capable of handling integers and
floating-point numbers. It is derived from GtkEntry, so GtkSpinButton inherits all of its func-
tions and signals.

Adjustments
Before covering the GtkSpinButton widget, you must understand the GtkAdjustment class.
GtkAdjustment is one of the few classes in GTK+ that is not considered a widget, because it is
derived directly from GtkObject. It is used for several widgets including spin buttons, view
ports, and the multiple widgets derived from GtkRange.

New adjustments are created with gtk_adjustment_new(), although they are usually cast
with GTK_ADJUSTMENT() upon initialization, because storage as a GtkObject is not practical.
Once added to a widget, memory management of the adjustment is handled by the widget, so
you do not have to worry about this aspect of the object.

GtkObject* gtk_adjustment_new (gdouble initial_value,
 gdouble lower_range,
 gdouble upper_range,
 gdouble step_increment,
 gdouble page_increment,
 gdouble page_size);

7931ch04.fm Page 88 Monday, February 5, 2007 8:25 PM

C H A P T E R 4 ■ B A S I C W I D G E T S 89

New adjustments are initialized with six parameters. A list of these parameters follows.

• initial_value: The value stored by the adjustment when it is initialized. This corre-
sponds to the value property of the GtkAdjustment class.

• lower_range: The minimum value the adjustment will be allowed to hold. This corre-
sponds to the lower property of the GtkAdjustment class.

• upper_range: The maximum value the adjustment will be allowed to hold. This corre-
sponds to the upper property of the GtkAdjustment class.

• step_increment: The increment to make the smallest change possible. If you want to
count all integers between 1 and 10, the increment would be set to 1.

• page_increment: The increment to make when Page Up or Page Down is pressed. This is
almost always larger than the step_increment.

• page_size: The size of a page. This value does not have much use in a GtkSpinButton, so
it should be set to the same value as page_increment or to 0.

There are two useful signals provided by the GtkAdjustment class: changed and value-
changed. The changed signal is emitted when one or more properties of the adjustment have
been altered, excluding the value property. The value-changed signal is emitted when the cur-
rent value of the adjustment has been altered.

A Spin Button Example
The spin button widget allows the user to select an integer or floating-point number by incre-
menting or decrementing with the up or down arrows. The user can still type in a value with the
keyboard, and it will be displayed as the nearest acceptable value if it is out of range. Figure 4-6
shows two spin buttons in action that display an integer and a floating-point number.

Figure 4-6. Spin buttons

As previously stated, spin buttons can be used to show integer or floating-point numbers.
In actuality, numbers are stored as gdouble values. The spin button handles rounding the num-
ber to the correct number of decimal places. Listing 4-6 is a simple example that creates both
integer and floating-point number spin buttons.

7931ch04.fm Page 89 Monday, February 5, 2007 8:25 PM

90 C H A P T E R 4 ■ B A S I C W I D G E T S

Listing 4-6. Integer and Floating-point Number Selection (spinbuttons.c)

#include <gtk/gtk.h>

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *spin_int, *spin_float, *vbox;
 GtkAdjustment *integer, *float_pt;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Spin Buttons");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);
 gtk_widget_set_size_request (window, 150, 100);

 /* Create two new adjustments. The first spans between 0 and 10, starting at 5 and
 * moves in increments of 1. The second spans between 0 and 1, starting at 0.5 and
 * moves in increments of 0.1. */
 integer = GTK_ADJUSTMENT (gtk_adjustment_new (5.0, 0.0, 10.0, 1.0, 2.0, 2.0));
 float_pt = GTK_ADJUSTMENT (gtk_adjustment_new (0.5, 0.0, 1.0, 0.1, 0.5, 0.5));

 /* Create two new spin buttons. The first will display no decimal places and the
 * second will display one decimal place. */
 spin_int = gtk_spin_button_new (integer, 1.0, 0);
 spin_float = gtk_spin_button_new (float_pt, 0.1, 1);

 vbox = gtk_vbox_new (FALSE, 5);
 gtk_box_pack_start_defaults (GTK_BOX (vbox), spin_int);
 gtk_box_pack_start_defaults (GTK_BOX (vbox), spin_float);

 gtk_container_add (GTK_CONTAINER (window), vbox);
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

Before creating the spin buttons, you should create the adjustments. You can also
initialize the spin button with a NULL adjustment, but it will be set as insensitive.

After your adjustments are initialized, you can create new spin buttons with
gtk_spin_button_new(). The other two parameters in the initialization function specify
the climb rate of the spin button and the number of decimal places to display. The climb

7931ch04.fm Page 90 Monday, February 5, 2007 8:25 PM

C H A P T E R 4 ■ B A S I C W I D G E T S 91

rate is how much the value should be incremented or decremented when an arrow button
is pressed.

GtkWidget *gtk_spin_button_new (GtkAdjustment *adjustment,
 gdouble climb_rate,
 guint digits);

Alternatively, you can create a new spin button with gtk_spin_button_new_with_range(),
which will automatically create a new adjustment based on the minimum, maximum, and step
values you specify. The initial value is set to the minimum value plus a page increment of ten
times the step_increment by default. The precision of the widget is automatically set to the
value of step_increment.

GtkWidget* gtk_spin_button_new_with_range (gdouble minimum_value,
 gdouble maximum_value,
 gdouble step_increment);

You can call gtk_spin_button_set_digits() to set a new precision of the spin button and
gtk_spin_button_set_value() to set a new value. The value will automatically be altered if it is
out of bounds of the spin button.

void gtk_spin_button_set_value (GtkSpinButton *spin_button,
 gdouble value);

Horizontal and Vertical Scales
Another type of widget called a scale allows you to provide a horizontal or vertical slider that
can choose an integer or a floating-point number. GtkHScale is a horizontal scale widget, and
GtkVScale is a vertical scale widget. Both of these classes are derived from GtkScale, which pro-
vides properties, signals, and functions.

The functionality of the GtkScale widget is not much different from GtkSpinButton. It is
often used when you want to restrict the user from entering values, since the value is chosen by
moving the slider. Figure 4-7 shows a screenshot of two horizontal scale widgets.

Figure 4-7. Horizontal scale widgets

Scales provide essentially the same functionality as spin buttons, except using a slider
chooses the number. To show the similarities between the widgets, Listing 4-7 implements
the same functionality as Listing 4-6: two sliders allow the user to select an integer and a
floating-point number.

7931ch04.fm Page 91 Monday, February 5, 2007 8:25 PM

92 C H A P T E R 4 ■ B A S I C W I D G E T S

Listing 4-7. Integer and Floating-point Number Selection with Scales (scales.c)

#include <gtk/gtk.h>

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *scale_int, *scale_float, *vbox;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Scales");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);
 gtk_widget_set_size_request (window, 250, -1);

 /* Create a scale that scrolls integers and one that scrolls floating point. */
 scale_int = gtk_hscale_new_with_range (0.0, 10.0, 1.0);
 scale_float = gtk_hscale_new_with_range (0.0, 1.0, 0.1);

 /* Set the number of decimal places to display for each widget. */
 gtk_scale_set_digits (GTK_SCALE (scale_int), 0);
 gtk_scale_set_digits (GTK_SCALE (scale_float), 1);

 /* Set the position of the value with respect to the widget. */
 gtk_scale_set_value_pos (GTK_SCALE (scale_int), GTK_POS_RIGHT);
 gtk_scale_set_value_pos (GTK_SCALE (scale_float), GTK_POS_LEFT);

 vbox = gtk_vbox_new (FALSE, 5);
 gtk_box_pack_start_defaults (GTK_BOX (vbox), scale_int);
 gtk_box_pack_start_defaults (GTK_BOX (vbox), scale_float);

 gtk_container_add (GTK_CONTAINER (window), vbox);
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

There are two ways to create new scale widgets. The first is with gtk_hscale_new() or
gtk_vscale_new(), which accepts a GtkAdjustment that defines how the scale will work.

GtkWidget *gtk_hscale_new (GtkAdjustment *adjustment);

Alternatively, you can create scales with gtk_hscale_new_with_range() or
gtk_vscale_new_with_range(). This function accepts the minimum value, the maximum
value, and the step increment of the scale.

7931ch04.fm Page 92 Monday, February 5, 2007 8:25 PM

C H A P T E R 4 ■ B A S I C W I D G E T S 93

GtkWidget *gtk_hscale_new_with_range (gdouble minimum,
 gdouble maximum,
 gdouble step);

Since the value of the scale is always stored as a gdouble, you will need to define the num-
ber of decimal places to show with gtk_scale_set_digits() if the default value is not what you
want. The default number of decimal places is calculated based on the number of decimal
places provided for the step increment. For example, if you provide a step increment of 0.01,
two decimal places will be displayed by default.

void gtk_scale_set_digits (GtkScale *scale,
 gint digits);

Depending on what type of scale widget you are using, you may want to change where the
value is displayed with gtk_scale_set_value_pos(). Positions are defined by the GtkPositionType
enumeration, and they are GTK_POS_LEFT, GTK_POS_RIGHT, GTK_POS_TOP, and GTK_POS_BOTTOM. You
can also use gtk_scale_set_draw_value() to hide the value from the user’s view altogether.

void gtk_scale_set_value_pos (GtkScale *scale,
 GtkPositionType pos);

GtkScale is derived from a widget called GtkRange. This widget is an abstract type that provides
the ability to handle an adjustment. Because of this, you should use gtk_range_get_value() to
retrieve the current value of the scale. GtkRange also provides the value-changed signal, which is
emitted when the user changes the position of the scale.

Widget Styles
In the next few sections, you will be editing widget style properties, so it is time to learn about
the GtkStyle structure and resource files. Resource files are external collections of style settings
that can be loaded and applied to your application during runtime to allow for further
customization.

The GtkStyle Structure
Every GtkWidget has five public members, which are shown in the following code snippet.
These are style information, size requisition, size allocation, a GdkWindow that is used to draw
the widget on the screen, and a pointer to the parent widget.

typedef struct
{
 GtkStyle *style;
 GtkRequisition requisition;
 GtkAllocation allocation;
 GdkWindow *window;
 GtkWidget *parent;
} GtkWidget;

7931ch04.fm Page 93 Monday, February 5, 2007 8:25 PM

94 C H A P T E R 4 ■ B A S I C W I D G E T S

The GtkStyle structure stores drawing information about the widget. The content of the
structure follows:

typedef struct
{
 GdkColor fg[5] /* The foreground color for most widgets. */
 GdkColor bg[5] /* The background color for most widgets. */
 GdkColor light[5] /* Lighter colors used for creating widget shadows. */
 GdkColor dark[5] /* Darker colors used for creating widget shadows. */
 GdkColor mid[5] /* The color midway between light and dark. */
 GdkColor text[5] /* The text color for most text widgets. */
 GdkColor base[5] /* The background color used for text-editing widgets. */
 GdkColor text_aa[5]; /* Used for anti-aliased text colors. */
 GdkColor black, white; /* Colors that represent "Black" and "White". */

 PangoFontDescription *font_desc; /* The default text font. */
 gint xthickness, ythickness; /* Thickness of lines. */
 GdkPixmap *bg_pixmap[5]; /* Background image to use for a widget. */

 /* Graphics contexts that hold drawing properties for each color and state. */
 GdkGC *fg_gc [5], *bg_gc [5], *light_gc[5], *dark_gc[5], *mid_gc[5], *text_gc[5],
 *base_gc[5], *text_aa_gc[5];
 GdkGC *black_gc, *white_gc;
} GtkStyle;

There are many objects in the GtkStyle structure. Each of these will have a default value
set by the user’s style, so overriding them may not always be a good idea. However, if it is nec-
essary, editing a widget’s GtkStyle is a simple way to change how it is displayed.

You will notice that many of the style properties are arrays of file elements. This is
because each of these elements can have different values for one of the following five possible
widget states:

• GTK_STATE_NORMAL: The widget during normal operation.

• GTK_STATE_ACTIVE: An active widget, such as when a toggle is depressed.

• GTK_STATE_PRELIGHT: A widget when the mouse pointer is over the widget; it will respond
to button clicks.

• GTK_STATE_SELECTED: A widget when the widget or its text has been selected.

• GTK_STATE_INSENSITIVE: A widget is deactivated and will not respond to the user.

Resource Files
GTK+ provides a way for applications to use user-defined styles called resource files (RC files).
RC files allow the user to define styles for widget types or individual widgets, which can be
changed to fit the user’s preferences. These are usually stored in the user’s home directory
along with other application data, so that the user has permissions to alter the settings.

7931ch04.fm Page 94 Monday, February 5, 2007 8:25 PM

C H A P T E R 4 ■ B A S I C W I D G E T S 95

To load a resource file, you should call gtk_rc_parse() when loading your application.
This will automatically apply the styles on all appropriate widgets.

void gtk_rc_parse (const gchar *filename);

Also, if you want to directly reference a widget from an RC file, you need to use
gtk_widget_set_name() to set a unique name for the widget. This name will be used in the
RC file to set the widget’s style and/or the styles of its children.

In Listing 4-8, a simple example RC file is shown. In this example, multiple widget styles
are created, each style containing a number of properties.

Listing 4-8. Defining Widget Styles (.gtkrc)

style "widgets"
{
 xthickness = 2
 ythickness = 2

 fg[ACTIVE] = "#FFFFFF"
 fg[SELECTED] = "#003366"
 fg[NORMAL] = "#CCCCCC"
 fg[PRELIGHT] = "#FFFFFF"
 fg[INSENSITIVE] = "#999999"

 bg[ACTIVE] = "#003366"
 bg[SELECTED] = "#FFFFFF"
 bg[NORMAL] = "#666666"
 bg[PRELIGHT] = "#003366"
 bg[INSENSITIVE] = "#666666"
}

style "labels" = "widgets" {
 font_name = "Sans Bold 14"
}

style "buttons" = "widgets" {
 GtkButton::inner-border = { 10, 10, 10, 10 }
}

style "checks" = "buttons" {
 GtkCheckButton::indicator-size = 25
}

class "GtkWindow" style "widgets"
class "GtkLabel" style "labels"
class "GtkCheckButton" style "checks"
class "Gtk*Button" style "buttons"

7931ch04.fm Page 95 Monday, February 5, 2007 8:25 PM

96 C H A P T E R 4 ■ B A S I C W I D G E T S

Figure 4-8 shows an application that is taking advantage of the RC file shown in Listing 4-8.
The colors and font are different from the examples found in the past few chapters.

Figure 4-8. An example application using .gtkrc

If you would like to explore the standard styles available to all widgets in RC files, you
should read Appendix C. This section will teach you how to apply those styles in your own
applications.

Styles can be applied by the widget type with the class directive as shown in the preceding
example. In this example, the buttons style is applied to all Gtk*Button* widgets, where the
asterisk is used as a wildcard. This is applied to every widget in the application that has a
matching class name.

class "Gtk*Button" style "buttons"

The second method for applying a widget style is based on a hierarchy pattern with the
widget directive. This example applies the stylename style to all direct and indirect children of
widgetname that are of the type GtkButton.

widget "widgetname.*.GtkButton" style "stylename"

In addition to the asterisk wildcard that matches zero or more of any character, you can
use a question mark wildcard to match one or more of any character. Also, widget hierarchy is
shown by using a period, where the widget to the right of the period is the child of the widget to
the left.

The problem with the widget directive is that if a name is specified for the widget, it must
be used instead of the class name. If you only want to use widget classes, you can use the
widget_class directive. This allows you to ignore all widget names and apply a style to all wid-
gets that follow the specified pattern.

7931ch04.fm Page 96 Monday, February 5, 2007 8:25 PM

C H A P T E R 4 ■ B A S I C W I D G E T S 97

widget_class "GtkWindow.*.GtkLabel" style "stylename"

In addition to basic style directives, the following list shows other top-level directives sup-
ported in RC files:

• include: Include another resource file. You can specify either an absolute or relative
filename.

• module_path: A list of paths separated by colons that will be searched for theme engines
referenced by the RC file.

• *pixmap_path: A list of paths separated by colons that will be searched for theme engines
referenced by the RC file.

If you are planning on using RC files in an application, you should make sure to provide an
example file to the user. You can use the pound (#) symbol to add comments to an RC file to
give the user help in editing the content.

This section only gave you a very basic introduction to RC files. For more information, you
should reference Appendix C. There are also a lot of resources for learning about RC files and
themes with GTK+ found at http://art.gnome.org.

Additional Buttons
While the GtkButton widget allows you to create your own custom buttons, GTK+ provides
three additional button widgets that are at your disposal: the color selection button, file
chooser button, and font selection button.

Each of the sections covering these three widgets will also cover other important concepts
such as the GdkColor structure, file filters, and Pango fonts. These concepts will be used in later
chapters, so it is a good idea to get a grasp of them now.

Color Buttons
The GtkColorButton widget provides a simple way for you to allow your users to select a specific
color. These colors can be specified as six-digit hexadecimal values or the RGB value. The color
button itself displays the selected color in a rectangular block set as the child widget of the but-
ton. An example of this can be viewed in Figure 4-9.

7931ch04.fm Page 97 Monday, February 5, 2007 8:25 PM

98 C H A P T E R 4 ■ B A S I C W I D G E T S

Figure 4-9. A color selection dialog

A GtkColorButton Example

When clicked, the color button opens a dialog that allows the user to enter in the color value or
browse for a choice on the color wheel. The color wheel is provided so the user is not required
to know the numeric values of the colors. Listing 4-9 shows how to use the GtkColorButton wid-
get in an application.

Listing 4-9. Color Buttons and GdkColors (colorbuttons.c)

#include <gtk/gtk.h>

static void color_changed (GtkColorButton*, GtkWidget*);

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *button, *label, *hbox;
 GdkColor color;

 gtk_init (&argc, &argv);

7931ch04.fm Page 98 Monday, February 5, 2007 8:25 PM

C H A P T E R 4 ■ B A S I C W I D G E T S 99

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Color Button");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);

 /* Set the initial color as #003366 and set the dialog title. */
 gdk_color_parse ("#003366", &color);
 button = gtk_color_button_new_with_color (&color);
 gtk_color_button_set_title (GTK_COLOR_BUTTON (button), "Select a Color");

 label = gtk_label_new ("Look at my color!");
 gtk_widget_modify_fg (label, GTK_STATE_NORMAL, &color);

 g_signal_connect (G_OBJECT (button), "color_set",
 G_CALLBACK (color_changed),
 (gpointer) label);

 hbox = gtk_hbox_new (FALSE, 5);
 gtk_box_pack_start_defaults (GTK_BOX (hbox), button);
 gtk_box_pack_start_defaults (GTK_BOX (hbox), label);

 gtk_container_add (GTK_CONTAINER (window), hbox);
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

/* Retrieve the selected color and set it as the GtkLabel's foreground color. */
static void
color_changed (GtkColorButton *button,
 GtkWidget *label)
{
 GdkColor color;
 gtk_color_button_get_color (button, &color);
 gtk_widget_modify_fg (label, GTK_STATE_NORMAL, &color);
}

In most cases, you will want to create a GtkColorButton with an initial color value, which is
done by specifying a GdkColor object to gtk_color_button_new_with_color(). The default
color, if none is provided, is opaque black with the alpha option disabled.

7931ch04.fm Page 99 Monday, February 5, 2007 8:25 PM

100 C H A P T E R 4 ■ B A S I C W I D G E T S

Storing Colors in GdkColor

GdkColor is a structure that stores red, green, and blue values for a color as shown in the follow-
ing code snippet. The pixel object automatically stores the index of the color when it is
allocated in a color map, so there is usually no need for you to alter this value.

struct GdkColor
{
 guint32 pixel;
 guint16 red;
 guint16 green;
 guint16 blue;
};

After creating a new GdkColor object, if you already know the red, green, and blue values of
the color, you can specify them in the following manner. Red, green, and blue values are stored
as unsigned integer values ranging from 0 to 65,535, where 65,535 indicates full color intensity.
For example, the following color refers to white:

color.red = 65535;
color.green = 65535;
color.blue = 65535;

In most cases, you will be more familiar with the six-digit hexadecimal value for the color,
such as #FFFFFF that refers to the color white. Therefore, GDK provides gdk_color_parse(),
which parses the hexadecimal color into the correct RGB values. This function was used in
Listing 4-9.

gboolean gdk_color_parse (const gchar *color_string,
 GdkColor *color);

Using the Color Button

After setting your initial color, you can choose the title that will be given to the color selection
dialog with gtk_color_button_set_title(). By default, the title is “Pick a Color”, so it is not
necessary to set this value if you are content with this title.

void gtk_color_button_set_title (GtkColorButton *button,
 const gchar *title);

The color selection dialog, covered in the next chapter in more detail, is shown when the
user clicks the button. It allows the user to change the selected color. You can view the color
selection dialog in Figure 4-9.

When the color value is changed, the color-set signal is emitted for the widget. In Listing 4-5,
the signal is caught and the foreground color of a GtkLabel changed with gtk_widget_modify_fg()
as follows:

gtk_color_button_get_color (button, &color);
gtk_widget_modify_fg (label, GTK_STATE_NORMAL, &color);

7931ch04.fm Page 100 Monday, February 5, 2007 8:25 PM

C H A P T E R 4 ■ B A S I C W I D G E T S 101

In Listing 4-9, the foreground color was set in the normal widget state, which is what state
all labels will be in, by and large, unless they are selectable. There are five options for the
GtkStateType enumeration that can be used in gtk_widget_modify_fg(), which were presented
in the “Widget Styles” section. You can reset the widget’s foreground color to the default value
by passing a NULL color.

File Chooser Buttons
The GtkFileChooserButton widget provides an easy method for you to ask users to choose a file
or a folder. It implements the functionality of the GtkFileChooser interface, the file selection
framework provided by GTK+. Figure 4-10 shows a file chooser button set to select a folder and
a button set to select a file.

Figure 4-10. File chooser buttons

When the user clicks a GtkFileChooserButton, an instance of GtkFileChooserDialog is
opened that allows the user to browse and select one file or one folder, depending on the type
of button you created.

■Note You will not learn how to use the GtkFileChooserDialog widget until Chapter 5, but you do not
need to directly interface with it at this point, because GtkFileChooserButton will handle all interactions
with the dialog.

A GtkFileChooserButton Example

You are able to change basic settings such as the currently selected file, the current folder, and
the title of the file selection window. Listing 4-10 shows you how to use both types of file
chooser buttons.

7931ch04.fm Page 101 Monday, February 5, 2007 8:25 PM

102 C H A P T E R 4 ■ B A S I C W I D G E T S

Listing 4-10. Using the File Chooser Button (filechooserbuttons.c)

#include <gtk/gtk.h>

static void folder_changed (GtkFileChooser*, GtkFileChooser*);
static void file_changed (GtkFileChooser*, GtkLabel*);

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *chooser1, *chooser2, label, *vbox;
 GtkFileFilter *filter;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "File Chooser Button");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);

 label = gtk_label_new ("");

 /* Create two buttons, one to select a folder and one to select a file. */
 chooser1 = gtk_file_chooser_button_new ("Chooser a Folder",
 GTK_FILE_CHOOSER_ACTION_SELECT_FOLDER);
 chooser2 = gtk_file_chooser_button_new ("Chooser a Folder",
 GTK_FILE_CHOOSER_ACTION_OPEN);

 /* Monitor when the selected folder or file are changed. */
 g_signal_connect (G_OBJECT (chooser1), "selection_changed",
 G_CALLBACK (folder_changed),
 (gpointer) chooser2);
 g_signal_connect (G_OBJECT (chooser2), "selection_changed",
 G_CALLBACK (file_changed),
 (gpointer) label);

 /* Set both file chooser buttons to the location of the user's home directory. */
 gtk_file_chooser_set_current_folder (GTK_FILE_CHOOSER (chooser1),
 g_get_home_dir());
 gtk_file_chooser_set_current_folder (GTK_FILE_CHOOSER (chooser2),
 g_get_home_dir());

7931ch04.fm Page 102 Monday, February 5, 2007 8:25 PM

C H A P T E R 4 ■ B A S I C W I D G E T S 103

 /* Provide a filter to show all files and one to show only 3 types of images. */
 filter1 = gtk_file_filter_new ();
 filter2 = gtk_file_filter_new ();
 gtk_file_filter_set_name (filter1, "Image Files");
 gtk_file_filter_set_name (filter2, "All Files");
 gtk_file_filter_add_pattern (filter1, "*.png");
 gtk_file_filter_add_pattern (filter1, "*.jpg");
 gtk_file_filter_add_pattern (filter1, "*.gif");
 gtk_file_filter_add_pattern (filter2, "*");

 /* Add both the filters to the file chooser button that selects files. */
 gtk_file_chooser_add_filter (GTK_FILE_CHOOSER (chooser2), filter1);
 gtk_file_chooser_add_filter (GTK_FILE_CHOOSER (chooser2), filter2);

 vbox = gtk_vbox_new (FALSE, 5);
 gtk_box_pack_start_defaults (GTK_BOX (vbox), chooser1);
 gtk_box_pack_start_defaults (GTK_BOX (vbox), chooser2);
 gtk_box_pack_start_defaults (GTK_BOX (vbox), label);

 gtk_container_add (GTK_CONTAINER (window), vbox);
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

/* When a folder is selected, use that as the new location of the other chooser. */
static void
folder_changed (GtkFileChooser *chooser1,
 GtkFileChooser *chooser2)
{
 gchar *folder = gtk_file_chooser_get_filename (GTK_FILE_CHOOSER (chooser1));
 gtk_file_chooser_set_current_folder (GTK_FILE_CHOOSER (chooser2), folder);
}

/* When a file is selected, display the full path in the GtkLabel widget. */
static void
file_changed (GtkFileChooser *chooser2,
 GtkLabel *label)
{
 gchar *file = gtk_file_chooser_get_filename (GTK_FILE_CHOOSER (chooser2));
 gtk_label_set_text (label, file);
}

7931ch04.fm Page 103 Monday, February 5, 2007 8:25 PM

104 C H A P T E R 4 ■ B A S I C W I D G E T S

File chooser button widgets are created with gtk_file_chooser_button_new(). This widget
is able to serve two purposes: selecting a single file or a single folder. There are four types of file
choosers that can be created (the remaining two are covered in Chapter 5), but file chooser
buttons support only GTK_FILE_CHOOSER_ACTION_OPEN and GTK_FILE_CHOOSER_ACTION_SELECT_
FOLDER.

• GTK_FILE_CHOOSER_ACTION_OPEN: The user will be able to select a single file that already
exists on the system. You are able to provide filters to this type of action so that only spe-
cific file patterns are shown to the user.

• GTK_FILE_CHOOSER_ACTION_SELECT_FOLDER: The user will be able to select a single folder
that already exists on the system.

The other parameter in gtk_file_chooser_button_new() allows you to set the title of the
file chooser dialog that is shown when the user clicks the button. By default, the title is “Select
A File,” so you will want to make sure to reset the title if you use GTK_FILE_CHOOSER_ACTION_
SELECT_FOLDER.

GtkFileChooser

The GtkFileChooserButton widget is an implementation of the functionality provided by the
GtkFileChooser interface. This means that, while the button is not derived from GtkFileChooser,
it can be treated as a file chooser if you cast it with GTK_FILE_CHOOSER(). You will notice that quite
a few of the functions in Listing 4-10 utilize functions provided by GtkFileChooser.

In Listing 4-10, gtk_file_chooser_set_current_folder() was used to set the current folder
of each file chooser button to the user’s home directory. The contents of this folder will be
shown when the user initially clicks a file chooser button unless it is changed through some
other means. This function will return TRUE if the folder was successfully changed.

gboolean gtk_file_chooser_set_current_folder (GtkFileChooser *chooser,
 const gchar *filename);

The g_get_home_dir() function is a utility function provided by GLib that returns the cur-
rent user’s home directory. As with most features in GLib, this function is cross platform.

This brings up a useful characteristic of the file chooser interface; it can be used to browse
many types of file structures, whether it is on a UNIX or Windows machine. This is especially
useful if you want your application to be compiled for multiple operating systems.

Since the file chooser button only allows one file to be selected at a time, you can use
gtk_file_chooser_get_filename() to retrieve the currently selected file or folder, depending
on the type of file chooser button. If no file is selected, this function will return NULL. The
returned string should be freed with g_free() when you are finished with it.

gchar* gtk_file_chooser_get_filename (GtkFileChooser *chooser);

At this point, you have enough information about the GtkFileChooser interface to imple-
ment file chooser buttons. GtkFileChooser will be covered in more depth in the next chapter
when you learn about the GtkFileChooserDialog widget.

7931ch04.fm Page 104 Monday, February 5, 2007 8:25 PM

C H A P T E R 4 ■ B A S I C W I D G E T S 105

File Filters

GtkFileFilter objects allow you to restrict the files shown in the file chooser. For example, in
Listing 4-10, only PNG, JPG, and GIF files could be viewed and chosen by the user when the
Image Files filter was selected.

File filters are created with gtk_file_filter_new(). Therefore, you need to use
gtk_file_filter_set_name() to set a displayed name for the filter type. If you provide more
than one filter, this name will allow the user to switch between them.

GtkFileFilter* gtk_file_filter_new ();
void gtk_file_filter_set_name (GtkFileFilter *filter,
 const gchar *name);

Lastly, for a filter to be complete you need to add types of files to show. The standard way
of doing this is with gtk_file_filter_add_pattern() as shown in the following code snippet.
This function allows you to specify a format for the filenames that are to be shown. Usually
identifying file extensions that should be shown does this. You can use the asterisk character as
a wildcard for any type of filtering function.

void gtk_file_filter_add_pattern (GtkFileFilter *filter,
 const gchar *pattern);

■Tip As in Listing 4-10, you may want to provide an All Files filter that shows every file in the directory.
To do this, you should create a filter with only one pattern set to the wildcard character. If you do not provide
this filter, the user will never be able to view any files that do not match a pattern provided by another filter.

You can also specify filter patterns with gtk_file_filter_add_mime_type() by specifying
the Multipurpose Internet Mail Extensions (MIME) type. For example, image/* will show all
files that are an image MIME type. The problem with this function is that you need to be famil-
iar with MIME types. However, the advantage of using MIME types is that you do not need to
specify every file extension for a filter. It allows you to generalize to all files in a specific MIME
category.

void gtk_file_filter_add_mime_type (GtkFileFilter *filter,
 const char *mime_type);

After you create the filter, it needs to be added to the file chooser, which can be done with
gtk_file_chooser_add_filter(). Once you supply the filters, the first specified filters will be
used by default in the file chooser. The user will be able to switch between types if you have
specified multiple filters.

void gtk_file_chooser_add_filter (GtkFileChooser *chooser,
 GtkFileFilter *filter);

7931ch04.fm Page 105 Monday, February 5, 2007 8:25 PM

106 C H A P T E R 4 ■ B A S I C W I D G E T S

Font Buttons
GtkFontButton is another type of specialized button that allows the user to select font parame-
ters that correspond to fonts currently residing on the user’s system. Font options are chosen
in a font selection dialog that is displayed when the user clicks the button. These options
include the font name, style options, and font size. An example GtkFontButton widget is dis-
played in Figure 4-11.

Figure 4-11. Font selection buttons

Font button widgets are initialized with gtk_font_button_new_with_font(), which allows
you to specify the initial font. The font is provided as a string in the following format: Family
Style Size. Each of the parameters is optional; the default font for GtkFontButton is Sans 12,
which provides no style parameters.

“Family” refers to the formal font name such as "Sans", "Serif" or "Arial". Style options
can vary between fonts, but they normally include "Italic", "Bold" and "Bold Italic". If you
choose a font style of Regular, no font style will be specified. The size is point size of the text to
be shown, such as "12" or "12.5".

A GtkFontButton Example

Listing 4-11 creates a GtkFontButton widget that is initialized with a font of "Sans Bold 12".
When the chosen font in the button is changed, the new font is applied to a GtkLabel widget
packed below the font button.

Listing 4-11. Using the Font Selection Button (fontbuttons.c)

#include <gtk/gtk.h>

static void font_changed (GtkFontButton*, GtkWidget*);

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *vbox, *button, *label;
 PangoFontDescription *initial_font;

 gtk_init (&argc, &argv);

7931ch04.fm Page 106 Monday, February 5, 2007 8:25 PM

C H A P T E R 4 ■ B A S I C W I D G E T S 107

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Font Button");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);

 label = gtk_label_new ("Look at the font!");
 initial_font = pango_font_description_from_string ("Sans Bold 12");
 gtk_widget_modify_font (label, initial_font);

 /* Create a new font selection button with the given default font. */
 button = gtk_font_button_new_with_font ("Sans Bold 12");
 gtk_font_button_set_title (GTK_FONT_BUTTON (button), "Choose a Font");

 /* Monitor for changes to the font chosen in the font button. */
 g_signal_connect (G_OBJECT (button), "font_set",
 G_CALLBACK (font_changed),
 (gpointer) label);

 vbox= gtk_vbox_new (FALSE, 5);
 gtk_box_pack_start_defaults (GTK_BOX (vbox), button);
 gtk_box_pack_start_defaults (GTK_BOX (vbox), label);

 gtk_container_add (GTK_CONTAINER (window), vbox);
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

/* When the font is changed, display the font both as the text of a label and as
 * the label's physical font. */
static void
font_changed (GtkFontButton *button,
 GtkWidget *label)
{
 const gchar *font, buffer[512];
 PangoFontDescription *desc;

 font = gtk_font_button_get_font_name (button);
 desc = pango_font_description_from_string (font);

 g_snprintf (buffer, sizeof (buffer), "Font: %s", font);
 gtk_label_set_text (GTK_LABEL (label), buffer);
 gtk_widget_modify_font (label, desc);
}

7931ch04.fm Page 107 Monday, February 5, 2007 8:25 PM

108 C H A P T E R 4 ■ B A S I C W I D G E T S

Using Font Selection Buttons

The code in Listing 4-11 gives the first sampling of the PangoFontDescription type that you
have run across. The PangoFontDescription structure is used to parse font style strings. You
can create a new font description from a font string such as "Sans Bold 12" by calling
pango_font_description_from_string() as follows:

initial_font = pango_font_description_from_string ("Sans Bold 12");
gtk_widget_modify_font (label, initial_font);

After creating a font description, gtk_widget_modify_font() can be called to set the font of
the widget’s text. This function will edit the font description object stored by the widget’s
GtkStyle property.

In Listing 4-11, the label’s text was set to the font stored by the GtkFontButton when the
font-set signal was emitted. You can retrieve the whole font description string stored by
the font button with gtk_font_button_get_font_name(), which was used to retrieve the font
string displayed by the label. The returned string should never be modified or freed.

const gchar* gtk_font_button_get_font_name (GtkFontButton *button);

In Listing 4-11, the new font style was applied to the GtkLabel. However, if you set
gtk_font_button_set_use_font() and gtk_font_button_set_use_size() to TRUE, the font but-
ton will use the font family and size when rendering its text. This allows the user to preview the
text in the font button. This is turned off for font buttons by default.

void gtk_font_button_set_use_font (GtkFontButton *button,
 gboolean use_font);
void gtk_font_button_set_use_size (GtkFontButton *button,
 gboolean use_size);

Test Your Understanding
In this chapter, you learned about a number of basic widgets such as GtkEntry, GtkSpinButton,
and various types of toggles and buttons. In the following two exercises, you will be creating
two applications to practice using these widgets.

7931ch04.fm Page 108 Monday, February 5, 2007 8:25 PM

C H A P T E R 4 ■ B A S I C W I D G E T S 109

Exercise 4-1. Renaming Files

In this exercise, use a GtkFileChooserButton widget to allow the user to choose a file on the system. Next, use
a GtkEntry widget that allows the user to specify a new name for the file. (Note that you can find functions for the
file utilities required by this exercise in the GLib API documentation.)

If the file was successfully renamed, you should disable the GtkEntry widget and button until the user chooses
a new file. If the user does not have permission to rename the file that is selected, then the GtkEntry widget
and button should be set as insensitive as well. When you complete this exercise, you can find the solution in
Appendix F.

This exercise makes use of two widgets covered in this chapter: GtkEntry and
GtkFileChooserButton. It also requires you to use multiple utility functions provided by
GLib, including functions to rename a file and retrieve information about the permissions
of an existing file.

While you will not be learning about GLib until Chapter 6, you may also want to experi-
ment with some other file-related utility functions such as the ability to create directories,
change file permissions, and move throughout a directory structure. GLib provides a lot of
functionality, and it is worth your while to explore the API documentation in your free time.

Exercise 4-2. Spin Buttons and Scales

In this exercise, create three widgets: a spin button, a horizontal scale, and a check button. The spin button and
horizontal scale should be set with the same initial value and bounds. If the check button is selected, the two adjust-
ment widgets should be synchronized to the same value. This means that when the user changes the value of one
widget, the other will be changed to the same value.

Since both widgets support integers and floating-point numbers, you should implement this exercise with various
numbers of decimal places. You should also practice creating spin buttons and scales both with adjustments and
by using the convenience initializers.

7931ch04.fm Page 109 Monday, February 5, 2007 8:25 PM

110 C H A P T E R 4 ■ B A S I C W I D G E T S

Since there were a large number of widgets introduced in this chapter, the exercises do not
require you to use every one. However, after you have completed both exercises, you should
make sure that you understand each of the widgets covered thus far.

I encourage you to continue to experiment with these basic widgets, since you will use
many of them throughout the rest of this book and in your future applications. You should also
visit the API documentation to learn about features provided by these widgets that were not
covered in this chapter.

Summary
In this chapter, you have learned about the following nine new widgets that provide you with a
meaningful way to interact with your users:

• GtkToggleButton: A type of GtkButton widget that holds its active or inactive state after it
is clicked. It is shown as pressed down when it is active.

• GtkCheckButton: Derived from GtkToggleButton, this widget is drawn as a discrete toggle
next to the displayed text. This allows it to be differentiated from a GtkButton.

• GtkRadioButton: You can group multiple radio button widgets together so that only one
toggle can be activated at once.

• GtkEntry: This widget allows the user to enter free-form text on a single line. It also facil-
itates password entry.

• GtkSpinButton: Derived from GtkEntry, spin buttons allow the user to select or enter an
integer or floating-point number within a predefined range.

• GtkScale: Similar to the spin button, this widget allows the user to select an integer or
floating-point number by moving a vertical or horizontal slider.

• GtkColorButton: This special type of button allows the user to select a specific color
along with an optional alpha value.

• GtkFileChooserButton: This special type of button allows the user to select a single file or
folder that already exists on the system.

• GtkFontButton: This special type of button allows the user to select a font family, style,
and size.

In the next chapter, you will learn how to create your own custom dialogs using the
GtkDialog class and about a number of dialogs that are built into GTK+. By the end of Chapter 5,
you will have a decent grasp of the most important simple widgets available to you in GTK+.
From there, we will continue on to more complex topics.

7931ch04.fm Page 110 Monday, February 5, 2007 8:25 PM

111

■ ■ ■

C H A P T E R 5

Dialogs

This chapter introduces you to a special type of window called a dialog. Dialogs are windows
that supplement the top-level window. The dialog is provided by GtkDialog, a child class of
GtkWindow, extended with additional functionality. This means it is possible to implement your
entire interface in one or more dialogs, while leaving the main window hidden.

You can do anything with a dialog, such as display a message or prompt the user to select
an option. Their purpose is to enhance user experience by providing some type of transient
functionality.

In the first part of the chapter, you will learn how to use GtkDialog to create your own
custom dialogs. The next section will introduce you to the large number of built-in dialogs pro-
vided by GTK+. Lastly, you will learn about a widget called GtkAssistant that allows you to
create dialogs with multiple pages; assistants are meant to help the user through a multistage
process.

In this chapter, you will learn the following:

• How to create your own custom dialogs using the GtkDialog widget

• How to give general information, error messages, and warnings to the user with the
GtkMessageDialog widget

• How to provide information about your application with GtkAboutDialog

• What types of file chooser dialogs are available

• The ways to collect information with font and color selection dialogs

• How to create dialogs with multiple pages using the GtkAssistant widget

Creating Your Own Dialogs
A dialog is a special type of GtkWindow that is used to supplement the top-level window. It can
be used to give the user a message, retrieve information from the user, or provide some other
transient type of action.

Dialog widgets are split in half by a horizontal separator. The top part is where you place
the main part of the dialog’s user interface. The bottom half is called the action area, and it
holds a collection of buttons. When clicked, each button will emit a unique response identifier
that tells the programmer which button was clicked.

7931ch05.fm Page 111 Friday, February 9, 2007 12:36 AM

112 C H A P T E R 5 ■ D I A L O G S

In most ways, the dialog widget can be treated as a window, because it is derived from the
GtkWindow class. However, when you have multiple windows, a parent-child relationship
should be established between the dialog and the top-level window when the dialog is meant
to supplement the top-level window.

typedef struct
{
 GtkWidget *vbox;
 GtkWidget *action_area;
} GtkDialog;

GtkDialog provides two public members that include a horizontal button box called the
action area and a vertical box. The action area holds all of the buttons along the bottom of the
dialog. You can manually add buttons to this with GtkHButtonBox, but you should usually use
the functions provided by GtkDialog for adding action area widgets.

■Note It is possible to manually implement the functionality of GtkDialog by creating a GtkWindow with
all of the same widgets and establishing window relationships with gtk_window_set_transient_for() in
addition to other functions provided by GtkWindow. GtkDialog is simply a convenience widget that provides
standard methods.

Both the action area and a separator are packed at the end of the dialog’s vertical box. The
GtkVBox (vbox) is used to hold all of the dialog content. Because the action area is packed at the
end, you should use gtk_box_pack_start() or gtk_box_pack_start_defaults() to add widgets
to a GtkDialog as follows:

gtk_box_pack_start_defaults (GTK_BOX (dialog->vbox), child);

By packing widgets at the start of the box, the action area and the separator will always
remain at the bottom of the dialog.

Creating a Message Dialog
One advantage of GtkDialog is that, no matter how complex the content of your dialog is, the
same basic concepts can be applied to every dialog. To illustrate this, we will begin by creating
a very simple dialog that gives the user a message. Figure 5-1 is a screenshot of this dialog.

Figure 5-1. A message dialog created programmatically

7931ch05.fm Page 112 Friday, February 9, 2007 12:36 AM

C H A P T E R 5 ■ D I A L O G S 113

Listing 5-1 creates a simple dialog that notifies the user when the clicked signal is emitted
by the button. This functionality is provided by the GtkMessageDialog widget, which will be
covered in a later section of this chapter.

Listing 5-1. Your First Custom Dialog (dialogs.c)

#include <gtk/gtk.h>

static void button_clicked (GtkButton*, GtkWindow*);

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *button;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Dialogs");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);

 button = gtk_button_new_with_mnemonic ("_Click Me");

 g_signal_connect (G_OBJECT (button), "clicked",
 G_CALLBACK (button_clicked),
 (gpointer) window);

 gtk_container_add (GTK_CONTAINER (window), button);
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

/* Create a new GtkDialog that will tell the user that the button was clicked. */
static void
button_clicked (GtkButton *button,
 GtkWindow *parent)
{
 GtkWidget *dialog, *label, *image, *hbox;

 /* Create a new dialog with one OK button. */
 dialog = gtk_dialog_new_with_buttons ("Information", parent,
 GTK_DIALOG_MODAL,
 GTK_STOCK_OK, GTK_RESPONSE_OK,
 NULL);

7931ch05.fm Page 113 Friday, February 9, 2007 12:36 AM

114 C H A P T E R 5 ■ D I A L O G S

 gtk_dialog_set_has_separator (GTK_DIALOG (dialog), FALSE);

 label = gtk_label_new ("The button was clicked!");
 image = gtk_image_new_from_stock (GTK_STOCK_DIALOG_INFO,
 GTK_ICON_SIZE_DIALOG);

 hbox = gtk_hbox_new (FALSE, 5);
 gtk_container_set_border_width (GTK_CONTAINER (hbox), 10);
 gtk_box_pack_start_defaults (GTK_BOX (hbox), image);
 gtk_box_pack_start_defaults (GTK_BOX (hbox), label);

 /* Pack the dialog content into the dialog's GtkVBox. */
 gtk_box_pack_start_defaults (GTK_BOX (GTK_DIALOG (dialog)->vbox), hbox);
 gtk_widget_show_all (dialog);

 /* Create the dialog as modal and destroy it when a button is clicked. */
 gtk_dialog_run (GTK_DIALOG (dialog));
 gtk_widget_destroy (dialog);
}

Creating the Dialog

The first thing you need to do when the button in the main window is clicked is create the
GtkDialog widget with gtk_dialog_new_with_buttons(). The first two parameters of this func-
tion specify the title of the dialog and a pointer to the parent window.

GtkWidget* gtk_dialog_new_with_buttons (const gchar *title,
 GtkWindow *parent,
 GtkDialogFlags flags,
 const gchar *first_button_text,
 ...);

The dialog will be set as the transient window of the parent window, which allows the win-
dow manager to center the dialog over the main window and keep it on top if necessary. This
can be achieved for arbitrary windows by calling gtk_window_set_transient_for(). You can
also provide NULL if you do not want the dialog to have or recognize a parent window.

Next, you can specify one or more dialog flags. Options for this parameter are given by the
GtkDialogFlags enumeration. There are three available values, which are shown in the follow-
ing list:

• GTK_DIALOG_MODAL: Force the dialog to remain in focus on top of the parent window until
closed. The user will be prevented from interacting with the parent.

• GTK_DIALOG_DESTROY_WITH_PARENT: Destroy the dialog when the parent is destroyed, but
do not force the dialog to be in focus. This will create a nonmodal dialog unless you call
gtk_dialog_run().

• GTK_DIALOG_NO_SEPARATOR: If set, a separator will not be placed between the action area
and the dialog content.

7931ch05.fm Page 114 Friday, February 9, 2007 12:36 AM

C H A P T E R 5 ■ D I A L O G S 115

In Listing 5-1, specifying GTK_DIALOG_MODAL created a modal dialog. It is not necessary to
specify a title or parent window; the values can be set to NULL. However, you should always set
the title, so it can be drawn in the window manager. Otherwise, the user will have difficulties
choosing the desired window.

Lastly, a NULL-terminated list of action area buttons and their response identifiers should
be specified. In Listing 5-1, an OK button with a response of GTK_RESPONSE_OK was added to the
dialog.

Alternatively, you can create an empty dialog with gtk_dialog_new(), but in that case, you
will need to manually add buttons with gtk_dialog_add_button() or gtk_dialog_add_buttons().
In most cases, it is easier to create dialogs in the same manner as shown in Listing 5-1.

By default, all dialogs place a horizontal separator between the main content and the
action area of the dialog. However, in some cases, as shown in this example, it is desirable to
hide the separator. This can be done with gtk_dialog_set_has_separator().

void gtk_dialog_set_has_separator (GtkDialog *dialog,
 gboolean has_separator);

After the child widgets are created, they need to be added to the dialog. As I previously
stated, child widgets are added to the dialog by calling gtk_box_pack_start_defaults() or
gtk_box_pack_start(). The dialog has a public member called vbox into which child widgets
are packed as follows:

gtk_box_pack_start_defaults (GTK_BOX (GTK_DIALOG (dialog)->vbox), hbox);
gtk_widget_show_all (dialog);

At this point, you need to show the dialog and its child widgets, because gtk_dialog_run()
will only call gtk_widget_show() on the dialog itself. To do this, call gtk_widget_show_all() on
the dialog or its GtkVBox. If you do not show the widgets, only the separator and action area will
be visible when gtk_dialog_run() is called.

Response Identifiers

When a dialog is fully constructed, one method of showing the dialog is by calling
gtk_dialog_run(). This function will return an integer called a response identifier when
complete. It will also prevent the user from interacting with anything outside of the dialog
until it is destroyed or an action area button is clicked.

gint gtk_dialog_run (GtkDialog *dialog);

Internally, gtk_dialog_run() creates a new main loop for the dialog, which prevents you
from interacting with its parent window until a response identifier is emitted or the user closes
the dialog. Regardless of what dialog flags you set, the dialog will always be modal when you
call this function, because it calls gtk_window_set_modal().

If the dialog is manually destroyed by using a method provided by the window manager,
GTK_RESPONSE_NONE is returned. Otherwise, gtk_dialog_run() returns the response identifier
referring to the button that was clicked. A full list of available response identifiers from the
GtkResponseType enumeration is shown in Table 5-1. You should always use the identifier’s
preprocessor directive instead of random integer values, since they could change in future ver-
sions of GTK+.

7931ch05.fm Page 115 Friday, February 9, 2007 12:36 AM

116 C H A P T E R 5 ■ D I A L O G S

Table 5-1. GtkResponseType Enumeration Values

Of course, when you create your own dialogs and when using many of the built-in dialogs
that will be covered in the next few pages, you are free to choose which response identifier to
use. However, you should try to resist the urge to apply a GTK_RESPONSE_CANCEL identifier to an
OK button, or some other type of absurdity along those lines.

■Note You are free to create your own response identifiers, but you should use positive numbers, since all
of the built-in identifiers are negative. This will allow you to avoid conflicts when more identifiers are added
in future versions of GTK+.

After the dialog returns a response identifier, you need to make sure to call
gtk_widget_destroy(), or it will cause a memory leak. GTK+ will make sure all of the
dialog’s children are destroyed, but you need to remember to initiate the process.

By calling gtk_widget_destroy(), all of the parent’s children will be destroyed and its
reference count will drop. When an object’s reference count reaches zero, the object is
finalized, and its memory freed.

Identifier Value Description

GTK_RESPONSE_NONE -1 The dialog was destroyed by the window manager or
programmatically destroyed with gtk_widget_destroy().
This is also returned if a response widget does not have a
response identifier set.

GTK_RESPONSE_REJECT -2 This identifier is not associated with buttons in built-in
dialogs, but you are free to use it yourself.

GTK_RESPONSE_ACCEPT -3 This identifier is not associated with buttons in built-in
dialogs, but you are free to use it yourself.

GTK_RESPONSE_DELETE_EVENT -4 Each dialog is automatically connected to the delete-
event signal. While gtk_dialog_run() is running, this
identifier will be returned, and delete-event will be
stopped from destroying the window as usual.

GTK_RESPONSE_OK -5 A GTK_STOCK_OK button was clicked in a built-in dialog.
You are free to use this button or any of the following in
your own dialogs.

GTK_RESPONSE_CANCEL -6 A GTK_STOCK_CANCEL button was clicked in a built-in
dialog.

GTK_RESPONSE_CLOSE -7 A GTK_STOCK_CLOSE button was clicked in a built-in dialog.

GTK_RESPONSE_YES -8 A GTK_STOCK_YES button was clicked in a built-in dialog.

GTK_RESPONSE_NO -9 A GTK_STOCK_NO button was clicked in a built-in dialog.

GTK_RESPONSE_APPLY -10 A GTK_STOCK_APPLY button was clicked in a built-in dialog.

GTK_RESPONSE_HELP -11 A GTK_STOCK_HELP button was clicked in a built-in dialog.

7931ch05.fm Page 116 Friday, February 9, 2007 12:36 AM

C H A P T E R 5 ■ D I A L O G S 117

The GtkImage Widget

Listing 5-1 introduces another new widget called GtkImage. Images can be loaded in a wide vari-
ety of ways, but one advantage of GtkImage is that it will display the GTK_STOCK_MISSING_IMAGE
icon if the loading has failed. It is also derived from GtkWidget, so it can be added as a child of a
container unlike other image objects, such as GdkPixbuf.

In our example, gtk_image_new_from_stock() created the GtkImage widget from a stock item.

GtkWidget* gtk_image_new_from_stock (const gchar *stock_id,
 GtkIconSize size);

When loading an image, you also need to specify a size for the image. GTK+ will automat-
ically look for a stock icon for the given size and resize the image to that size if none is found.
Available size parameters are specified by the GtkIconSize enumeration and can be viewed in
the following list:

• GTK_ICON_SIZE_INVALID: Unspecified size

• GTK_ICON_SIZE_MENU: 16 ×16 pixels

• GTK_ICON_SIZE_SMALL_TOOLBAR: 18 ×18 pixels

• GTK_ICON_SIZE_LARGE_TOOLBAR: 24 × 24 pixels

• GTK_ICON_SIZE_BUTTON: 24 × 24 pixels

• GTK_ICON_SIZE_DND: 32 × 32 pixels

• GTK_ICON_SIZE_DIALOG: 48 × 48 pixels

As you can see, stock GtkImage objects are usually used for smaller images, such as those that
appear in buttons, menus, and dialogs, since stock images are provided in a discrete number of
standard sizes. In Listing 5-1, the image was set to GTK_ICON_SIZE_DIALOG or 48 × 48 pixels.

Multiple initialization functions for GtkImage are provided, which can be viewed in the API
documentation, but gtk_image_new_from_file() and gtk_image_new_from_pixbuf() are espe-
cially important to future examples in this book.

GtkWidget *gtk_image_new_from_file (const gchar *filename);

GtkImage will automatically detect the image type of the file specified to gtk_image_new_
from_file(). If the image cannot be loaded, it will display a broken-image icon. Therefore, this
function will never return a NULL object. GtkImage also supports animations that occur within
the image file.

Calling gtk_image_new_from_pixbuf() creates a new GtkImage widget out of a previously
initialized GdkPixbuf. Unlike gtk_image_new_from_file(), you can use this function to easily
figure out whether the image is successfully loaded since you first have to create a GdkPixbuf.

GtkWidget *gtk_image_new_from_pixbuf (GdkPixbuf *pixbuf);

You need to note that the GtkImage will create its own references to the GdkPixbuf, so you
will need to release your reference to the object if it should be destroyed with the GtkImage.

7931ch05.fm Page 117 Friday, February 9, 2007 12:36 AM

118 C H A P T E R 5 ■ D I A L O G S

Nonmodal Message Dialog
By calling gtk_dialog_run(), your dialog will always be set as modal, which is not always desir-
able. In order to create a nonmodal dialog, you need to connect to GtkDialog’s response signal.

In Listing 5-2, the message dialog from Figure 5-1 is reimplemented as a nonmodal dialog.
You should try clicking the button in the main window multiple times in a row. This will show
how you can not only create multiple instances of the same dialog but also access the main
window from a nonmodal dialog.

Listing 5-2. A Nonmodal Message Dialog (dialogs2.c)

static void
button_clicked (GtkButton *button,
 GtkWindow *parent)
{
 GtkWidget *dialog, *label, *image, *hbox;

 /* Create a nonmodal dialog with one OK button. */
 dialog = gtk_dialog_new_with_buttons ("Information", parent,
 GTK_DIALOG_DESTROY_WITH_PARENT,
 GTK_STOCK_OK, GTK_RESPONSE_OK,
 NULL);

 gtk_dialog_set_has_separator (GTK_DIALOG (dialog), FALSE);

 label = gtk_label_new ("The button was clicked!");
 image = gtk_image_new_from_stock (GTK_STOCK_DIALOG_INFO,
 GTK_ICON_SIZE_DIALOG);

 hbox = gtk_hbox_new (FALSE, 5);
 gtk_container_set_border_width (GTK_CONTAINER (hbox), 10);
 gtk_box_pack_start_defaults (GTK_BOX (hbox), image);
 gtk_box_pack_start_defaults (GTK_BOX (hbox), label);

 gtk_box_pack_start_defaults (GTK_BOX (GTK_DIALOG (dialog)->vbox), hbox);
 gtk_widget_show_all (dialog);

 /* Call gtk_widget_destroy() when the dialog emits the response signal. */
 g_signal_connect (G_OBJECT (dialog), "response",
 G_CALLBACK (gtk_widget_destroy), NULL);
}

Creating a nonmodal dialog is very similar to the previous example, except you do not
want to call gtk_dialog_run(). By calling this function, a modal dialog is created by blocking
the parent window’s main loop regardless of the dialog flags.

7931ch05.fm Page 118 Friday, February 9, 2007 12:36 AM

C H A P T E R 5 ■ D I A L O G S 119

■Tip You can still create a modal dialog without using gtk_dialog_run() by setting the GTK_DIALOG_MODAL
flag. You can then connect to the response signal. This function simply provides a convenient way to create modal
dialogs and handle response identifiers within one function.

By connecting to GtkDialog’s response signal, you can wait for a response identifier to be
emitted. By using this method, the dialog will not automatically be unreferenced when a
response identifier is emitted. The response callback function receives the dialog, the response
identifier that was emitted, and the optional data parameter.

One of the most important decisions you have to make when designing a dialog is whether
it will be modal or nonmodal. As a rule of thumb, if the action needs to be completed before the
user can continue working with the application, the dialog should be modal. Examples of this
would be message dialogs, dialogs that ask the user a question, and dialogs to open a file.

If there is no reason why the user cannot continue working while the dialog is open, you
should use a nonmodal dialog. You also need to remember that multiple instances of non-
modal dialogs can be created unless you prevent this programmatically, so dialogs that must
have only one instance should be created as modal.

Another Dialog Example
Now that you have created a simple message dialog from scratch, it is time to produce a more
complex dialog. In Listing 5-3, a few pieces of basic information about the user are propagated
using GLib’s utility functions. A dialog, which is shown in Figure 5-2, allows you to edit each
piece of information.

Figure 5-2. A simple GtkDialog widget

This information is, of course, not actually changed within the user’s system; the new text
is simply output to the screen. This example illustrates the fact that, regardless of the complex-
ity of the dialog, the basic principles of how to handle response identifiers are still the only ones
that are necessary.

7931ch05.fm Page 119 Friday, February 9, 2007 12:36 AM

120 C H A P T E R 5 ■ D I A L O G S

You could easily implement this as a nonmodal dialog as well, although this would not be
of much use since the dialog itself is the application’s top-level window.

Listing 5-3. Editing Information in a Dialog (dialogs3.c)

#include <gtk/gtk.h>

int main (int argc,
 char *argv[])
{
 GtkWidget *dialog, *table, *user, *real, *home, *host;
 GtkWidget *lbl1, *lbl2, *lbl3, *lbl4;
 gint result;

 gtk_init (&argc, &argv);

 dialog = gtk_dialog_new_with_buttons ("Edit User Information", NULL
 GTK_DIALOG_MODAL,
 GTK_STOCK_OK, GTK_RESPONSE_OK,
 GTK_STOCK_CANCEL, GTK_RESPONSE_CANCEL,
 NULL);

 gtk_dialog_set_default_response (GTK_DIALOG (dialog), GTK_RESPONSE_OK);

 /* Create four entries that will tell the user what data to enter. */
 lbl1 = gtk_label_new ("User Name:");
 lbl2 = gtk_label_new ("Real Name:");
 lbl3 = gtk_label_new ("Home Dir:");
 lbl4 = gtk_label_new ("Host Name:");

 user = gtk_entry_new ();
 real = gtk_entry_new ();
 home = gtk_entry_new ();
 host = gtk_entry_new ();

 /* Retrieve the user's information for the default values. */
 gtk_entry_set_text (GTK_ENTRY (user), g_get_user_name());
 gtk_entry_set_text (GTK_ENTRY (real), g_get_real_name());
 gtk_entry_set_text (GTK_ENTRY (home), g_get_home_dir());
 gtk_entry_set_text (GTK_ENTRY (host), g_get_host_name());

 table = gtk_table_new (4, 2, FALSE);
 gtk_table_attach_defaults (GTK_TABLE (table), lbl1, 0, 1, 0, 1);
 gtk_table_attach_defaults (GTK_TABLE (table), lbl2, 0, 1, 1, 2);
 gtk_table_attach_defaults (GTK_TABLE (table), lbl3, 0, 1, 2, 3);
 gtk_table_attach_defaults (GTK_TABLE (table), lbl4, 0, 1, 3, 4);

7931ch05.fm Page 120 Friday, February 9, 2007 12:36 AM

C H A P T E R 5 ■ D I A L O G S 121

 gtk_table_attach_defaults (GTK_TABLE (table), user, 1, 2, 0, 1);
 gtk_table_attach_defaults (GTK_TABLE (table), real, 1, 2, 1, 2);
 gtk_table_attach_defaults (GTK_TABLE (table), home, 1, 2, 2, 3);
 gtk_table_attach_defaults (GTK_TABLE (table), host, 1, 2, 3, 4);

 gtk_table_set_row_spacings (GTK_TABLE (table), 5);
 gtk_table_set_col_spacings (GTK_TABLE (table), 5);
 gtk_container_set_border_width (GTK_CONTAINER (table), 5);

 gtk_box_pack_start_defaults (GTK_BOX (GTK_DIALOG (dialog)->vbox), table);
 gtk_widget_show_all (dialog);

 /* Run the dialog and output the data if the user clicks the OK button. */
 result = gtk_dialog_run (GTK_DIALOG (dialog));
 if (result == GTK_RESPONSE_OK)
 {
 g_print ("User Name: %s\n", gtk_entry_get_text (GTK_ENTRY (user)));
 g_print ("Real Name: %s\n", gtk_entry_get_text (GTK_ENTRY (real)));
 g_print ("Home Folder: %s\n", gtk_entry_get_text (GTK_ENTRY (home)));
 g_print ("Host Name: %s\n", gtk_entry_get_text (GTK_ENTRY (host)));
 }

 gtk_widget_destroy (dialog);
 return 0;
}

The proper way to handle any modal dialog is to use the response identifiers, deriving the
correct response based on the clicked button. Since there was only one response that needed
to be deliberately detected, a conditional if statement was used in Listing 5-3.

However, let us assume that you need to handle multiple response identifiers. In this case,
a switch() statement would be a better solution, since it was created to compare a single vari-
able to multiple selections, as shown in the following code snippet.

result = gtk_dialog_run (GTK_DIALOG (dialog));
switch (result)
{
 case (GTK_RESPONSE_OK):
 /* ... Handle the response ... */
 break;
 case (GTK_RESPONSE_APPLY):
 /* ... Handle the response ... */
 break;
 default:
 break;
}

gtk_widget_destroy (dialog);

7931ch05.fm Page 121 Friday, February 9, 2007 12:36 AM

122 C H A P T E R 5 ■ D I A L O G S

Since the dialog will need to be destroyed in each case, you can break from the switch()
statement. If you only needed to check one case with a switch() statement, you could fall
through to the default case, which would be set to destroy the dialog no matter what response
identifier is emitted.

Built-in Dialogs
There are many types of dialogs already built into GTK+. Although not all of the available dia-
logs will be covered in this chapter, you will be given a strong understanding of the concepts
needed to use any built-in dialog. This section will cover GtkMessageDialog, GtkAboutDialog,
GtkFileChooserDialog, GtkFontSelectionDialog, and GtkColorSelectionDialog.

Message Dialogs
Message dialogs are used to give one of four types of informational messages: general informa-
tion, error messages, warnings, and questions. The type of dialog is used to decide the icon to
display, the title of the dialog, and the buttons to add.

There is also a general type provided that makes no assumption as to the content of the
message. In most cases, you will not want to use this, since the four provided types will fill most
of your needs.

It is very simple to re-create the GtkMessageDialog widget. The first two examples imple-
mented a simple message dialog, but GtkMessageDialog already provides this functionality, so
you should not need to re-create the widget. Using GtkMessageDialog saves on typing and
avoids the need to recreate this widget many times, since most applications make heavy use of
GtkMessageDialog. It also provides a uniform look for message dialogs across all GTK+
applications.

Figure 5-3 shows an example of a GtkMessageDialog (compare this to Figure 5-1) that is
being used to give the user visual notification of a button’s clicked signal.

Figure 5-3. A GtkMessageDialog widget

 Since the content of the message is not critical, its type is set to a general message. This
message dialog can be produced using the code shown in Listing 5-4.

7931ch05.fm Page 122 Friday, February 9, 2007 12:36 AM

C H A P T E R 5 ■ D I A L O G S 123

Listing 5-4. Using a GtkMessageDialog (messagedialogs.c)

#include <gtk/gtk.h>

static void button_clicked (GtkButton*, GtkWindow*);

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *button;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Message Dialogs");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);

 button = gtk_button_new_with_mnemonic ("_Click Me");

 g_signal_connect (G_OBJECT (button), "clicked",
 G_CALLBACK (button_clicked),
 (gpointer) window);

 gtk_container_add (GTK_CONTAINER (window), button);
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

/* Create a new message dialog that tells the user that the button was clicked. */
static void
button_clicked (GtkButton *button,
 GtkWindow *parent)
{
 GtkWidget *dialog;

 dialog = gtk_message_dialog_new (parent, GTK_DIALOG_MODAL,
 GTK_MESSAGE_INFO, GTK_BUTTONS_OK,
 "The button was clicked!");
 gtk_window_set_title (GTK_WINDOW (dialog), "Information");

 gtk_dialog_run (GTK_DIALOG (dialog));
 gtk_widget_destroy (dialog);
}

7931ch05.fm Page 123 Friday, February 9, 2007 12:36 AM

124 C H A P T E R 5 ■ D I A L O G S

After the button in the main window is clicked, this example creates a new GtkMessageDialog
with gtk_message_dialog_new(). The first parameter in this function is the dialog’s parent
GtkWindow.

The parent window can be set to NULL if necessary, but in most cases, a parent-child rela-
tionship should be established. If you do not set a parent widget, the message dialog will not be
centered above the parent window.

Message dialogs are meant to be addressed by the user immediately, because they present
some type of important message or critical question that needs the user’s attention. By not set-
ting a parent window, the message dialog can be easily ignored, which is not the desired action
in most cases.

GtkWidget* gtk_message_dialog_new (GtkWindow *parent,
 GtkDialogFlags flags,
 GtkMessageType type,
 GtkButtonsType buttons,
 const gchar *message_format,
 ...);

Next, you can specify one or more dialog flags. Options for this parameter are given by the
GtkDialogFlags enumeration that was used when creating custom dialogs in the previous three
examples.

The third parameter of gtk_message_dialog_new() is used to specify what type of message
dialog you want to create. The title and image shown in the dialog are set based on the type you
choose. For instance, in Listing 5-4 a GTK_MESSAGE_INFO dialog was created. Therefore, a light-
bulb image (GTK_STOCK_DIALOG_INFO) is placed in the dialog and the title is set to “Information”.
The five available types of messages from the GtkMessageType enumeration follow:

• GTK_MESSAGE_INFO: General message that provides information to the user.

• GTK_MESSAGE_WARNING: A warning that a nonfatal error has happened.

• GTK_MESSAGE_QUESTION: Asks the user a question that requires a choice. You need to pro-
vide multiple buttons for this type of message.

• GTK_MESSAGE_ERROR: A warning that a fatal error has happened.

• GTK_MESSAGE_OTHER: Generic type of message that makes no assumptions as to the con-
tent of the message.

7931ch05.fm Page 124 Friday, February 9, 2007 12:36 AM

C H A P T E R 5 ■ D I A L O G S 125

The next decision you need to make is what type of button or buttons will appear in the
dialog. This decision is based on the type of message dialog you have created. For example, if
you choose GTK_MESSAGE_QUESTION as the type, it is logical to choose either GTK_BUTTONS_YES_NO
or GTK_BUTTONS_OK_CANCEL so that the user will be able to provide a response for the question. A
list of the six available GtkButtonsType values follows:

• GTK_BUTTONS_NONE: No buttons will be added.

• GTK_BUTTONS_OK: Add the button GTK_STOCK_OK.

• GTK_BUTTONS_CLOSE: Add the button GTK_STOCK_CLOSE.

• GTK_BUTTONS_CANCEL: Add the button GTK_STOCK_CANCEL.

• GTK_BUTTONS_YES_NO: Add the buttons GTK_STOCK_YES and GTK_STOCK_NO.

• GTK_BUTTONS_OK_CANCEL: Add the buttons GTK_STOCK_OK and GTK_STOCK_CANCEL.

■Note While dialog flags can be a bitwise list, in addition to many enumeration parameters in GTK+, it is
not possible to do the same with the buttons you choose for a GTK_MESSAGE_DIALOG. If you are not happy
with the available button selection, you can remove the buttons from the dialog’s GtkHButtonBox container
and add your own with the functions provided by GtkDialog.

The last parameter (or parameters depending on your needs) of gtk_message_dialog_new() is
the message that will be displayed by the dialog. The string should be formatted similarly to those
supported by printf(). For more information on the available printf() options, you should refer-
ence your preferred C language manual or book.

You have no control over the visual formatting of the message provided to gtk_message_
dialog_new(). If you would like to use the Pango Text Markup Language to format the message
dialog’s text, you can use gtk_message_dialog_new_with_markup() to create the dialog. This is
the same as creating the dialog with gtk_message_dialog_new() and setting its text with
gtk_message_dialog_set_markup().

void gtk_message_dialog_set_format_secondary_text (GtkMessageDialog *dialog,
 const gchar *message_format,
 ...);

7931ch05.fm Page 125 Friday, February 9, 2007 12:36 AM

126 C H A P T E R 5 ■ D I A L O G S

It is possible to add a secondary text to the message dialog, which will cause the first mes-
sage to be set as bold with gtk_message_dialog_set_format_secondary_text(). The text string
provided to this function should be similar to the format supported by printf().

This feature is very useful, because it allows you to give a quick summary in the
primary text and go into detail with the secondary text. You can also set the markup of the
secondary text with gtk_message_dialog_set_format_secondary_markup().

The About Dialog
The GtkAboutDialog widget provides you with a simple way to provide the user with informa-
tion about an application. This dialog is usually displayed when the GTK_STOCK_ABOUT item in
the Help menu is chosen. However, since menus will not be covered until Chapter 9, our exam-
ple dialog will be used as the top-level window.

There are many types of information that can be shown with the GtkAboutDialog. These
include the name of the application, copyright, current version, license content, authors, doc-
umenters, artists, and translators. Because every application will not have all of these, every
property is optional. The main window displays only the basic information, which can be
viewed along with the author credits in Figure 5-4.

Figure 5-4. An About dialog and author credits

By clicking the Credits button, the user will be presented with any authors, documenters,
translators, and artists that are provided. Each category of contributors is shown in a separate tab.

The License button will pop up a new dialog that shows the given license content.
Listing 5-5 is a simple example that shows you how to use every available property of the
GtkAboutDialog widget.

7931ch05.fm Page 126 Friday, February 9, 2007 12:36 AM

C H A P T E R 5 ■ D I A L O G S 127

Listing 5-5. Using a GtkAboutDialog (aboutdialogs.c)

#include <gtk/gtk.h>

int main (int argc,
 char *argv[])
{
 GtkWidget *dialog;
 GdkPixbuf *logo;
 GError *error = NULL;

 gtk_init (&argc, &argv);

 const gchar *authors[] = {
 "Author #1",
 "Author #2",
 NULL
 };

 const gchar *documenters[] = {
 "Documenter #1",
 "Documenter #2",
 NULL
 };

 dialog = gtk_about_dialog_new ();

 /* You should edit '/path/to/logo.png' to point to the location of logo.png
 * from the chapter_5 source directory on your system. */
 logo = gdk_pixbuf_new_from_file ("/path/to/logo.png", &error);

 /* Set the application logo or handle the error. */
 if (error == NULL)
 gtk_about_dialog_set_logo (GTK_ABOUT_DIALOG (dialog), logo);
 else
 {
 if (error->domain == GDK_PIXBUF_ERROR)
 g_print ("GdkPixbufError: %s\n", error->message);
 else if (error->domain == G_FILE_ERROR)
 g_print ("GFileError: %s\n", error->message);
 else
 g_print ("An error in the domain: %d has occurred!\n", error->domain);

 g_error_free (error);
 }

7931ch05.fm Page 127 Friday, February 9, 2007 12:36 AM

128 C H A P T E R 5 ■ D I A L O G S

 /* Set application data that will be displayed in the main dialog. */
 gtk_about_dialog_set_name (GTK_ABOUT_DIALOG (dialog), "GtkAboutDialog");
 gtk_about_dialog_set_version (GTK_ABOUT_DIALOG (dialog), "1.0");
 gtk_about_dialog_set_copyright (GTK_ABOUT_DIALOG (dialog),
 "(C) 2007 Andrew Krause");
 gtk_about_dialog_set_comments (GTK_ABOUT_DIALOG (dialog),
 "All About GtkAboutDialog");

 /* Set the license text, which is usually loaded from a file. Also, set the
 * web site address and label. */
 gtk_about_dialog_set_license (GTK_ABOUT_DIALOG (dialog), "Free to all!");
 gtk_about_dialog_set_website (GTK_ABOUT_DIALOG (dialog),
 "http://book.andrewkrause.net");
 gtk_about_dialog_set_website_label (GTK_ABOUT_DIALOG (dialog),
 "book.andrewkrause.net");

 /* Set the application authors, documenters and translators. */
 gtk_about_dialog_set_authors (GTK_ABOUT_DIALOG (dialog), authors);
 gtk_about_dialog_set_documenters (GTK_ABOUT_DIALOG (dialog), documenters);
 gtk_about_dialog_set_translator_credits (GTK_ABOUT_DIALOG (dialog),
 "Translator #1\nTranslator #2");

 gtk_dialog_run (GTK_DIALOG (dialog));
 gtk_widget_destroy (dialog);
 return 0;
}

Many properties are available for you to set when creating your own GtkAboutDialog
instance. Table 5-2 summarizes those options that were used in Listing 5-5. If the license is not
specified, the License button will not be visible. The Credits button will not be visible if there
are no credits.

Table 5-2. GtkAboutDialog Options

Option Description

Name The application’s name.

Version The current version of the application the user is running.

Copyright A short copyright string that should not span more than one or two lines.

Comments A short description of the application that should not span more than one
or two lines.

7931ch05.fm Page 128 Friday, February 9, 2007 12:36 AM

C H A P T E R 5 ■ D I A L O G S 129

Unlike author, artist, and documenter credits, the translator credits are only a single
string. The reason for this is because the translator string should be set to the person that trans-
lated the language currently in use. Internationalization and gettext are not topics for this
book. For more information, you should visit www.gnu.org/software/gettext.

GdkPixbuf

GdkPixbuf is a class that contains information about an image stored in memory. It allows you
to build images manually by placing shapes or pixels or to load a prebuilt image from a file. The
latter is preferred in most cases, so that is what will be covered in this book.

Since GdkPixbuf is derived from GObject, it supports referencing. This means that the same
image can be used in multiple locations in a program by increasing the reference count with
g_object_ref(). Dereferencing GdkPixbuf objects (pixbufs) is performed automatically in
almost all cases.

To load a pixbuf from a file, you can use gdk_pixbuf_new_from_file(), which was used
in Listing 5-5. This function will load the image with an initial size set to the actual size of
the image.

GdkPixbuf* gdk_pixbuf_new_from_file (const char *filename,
 GError **error);

After you load the image, you can resize it with gdk_pixbuf_scale_simple(). This function
accepts the new size parameters of the GdkPixbuf and the interpolation mode to use for the
scaling.

GdkPixbuf* gdk_pixbuf_scale_simple (const GdkPixbuf *src,
 int destination_width,
 int destination_height,
 GdkInterpType interpolation);

License License information that is displayed in a secondary dialog. Setting this to
NULL hides the License button.

Web Site The homepage URL of the application.

Web Site Label A label that is displayed instead of the URL.

Authors A NULL-terminated array of authors who have contributed code to the
project.

Artists A NULL-terminated array of artists who have created graphics for the
project.

Documenters A NULL-terminated array of documenters who have written documentation.

Translator Credits A string that specifies the translator(s) of the current language.

Logo Usually loaded from a file, this GdkPixbuf object is the application’s logo.

Option Description

7931ch05.fm Page 129 Friday, February 9, 2007 12:36 AM

130 C H A P T E R 5 ■ D I A L O G S

The four GdkInterpType modes follow:

• GDK_INTERP_NEAREST: Sampling is performed on the nearest neighboring pixel. This
mode is very fast, but it produces the lowest quality of scaling. It should never be used for
scaling an image to a smaller size!

• GDK_INTERP_TILES: This mode renders every pixel as a shape of color and uses anti-
aliasing for the edges. This is similar to using GDK_INTERP_NEAREST for making an image
larger or GDK_INTERP_BILINEAR for reducing its size.

• GDK_INTERP_BILINEAR: This mode is the best mode for resizing images in both directions,
because it has a balance between its speed and the quality of the image.

• GDK_INTERP_HYPER: While it is very high quality, this method is also very slow. It should
only be used when speed is not a concern. Therefore, it should never be used for any
application that the user would expect a fast display time. For your convenience,
gtk_pixbuf_new_from_file_at_size() can be used to resize the image to the new size
immediately after it is loaded from the file in one function call.

Many other features are provided in the GdkPixbuf library, but only a few of these will be
covered, as needed. For further information on GdkPixbuf, you should reference the API
documentation.

GError

Runtime errors are something that every programmer has to contend with. To make your life
easier, GLib provides a standard method for error propagation called the GError structure,
which follows:

struct GError
{
 GQuark domain;
 gchar *message;
 gint code;
};

The GError structure contains three values. The domain is a group that encompasses simi-
lar types of errors. In Listing 5-5, we check for errors in the GDK_PIXBUF_ERROR and G_FILE_ERROR
domains.

■Caution You may be tempted to check the domain of an error in a switch() statement. However, you
should not do so, because it will not work. The error domains are resolved at runtime, so this will not compile,
because case statements must already be determined at this time.

7931ch05.fm Page 130 Friday, February 9, 2007 12:36 AM

C H A P T E R 5 ■ D I A L O G S 131

The message is a human-readable string that describes the specific error that has occurred.
If the error requires you to give visual feedback to the user, this message should be used. This
string is freed when you call g_error_free().

The last element, code, is an error code that falls under the specified domain. For example,
Table 5-3 shows the six types of errors that can occur under the GDK_PIXBUF_ERROR domain. This
is a full list of possible errors, but not all of the errors can occur in every GdkPixbuf function.

Table 5-3. GdkPixbufError Enumeration Values

GLib uses a standard type of naming for error elements. The error domain is always for-
matted <NAMESPACE>_<MODULE>_ERROR, where the namespace is the library containing the
function and the module is the widget or object type.

Appending the error type to the end of the domain’s name creates the error code. Every
error code enumeration also includes <NAMESPACE>_<MODULE>_ERROR_FAILED, a generic fail code
called. This will be returned if a specific error is not available.

If you are checking error codes, you should pick and choose the most likely to occur,
because checking every error type is neither efficient nor sensible. You should only check the
types of errors that you can recover from. In all other cases, the human-readable message is
provided for more precise user feedback.

There is one pitfall with the GError structure called piling up. If you use the same GError
structure in two consecutive functions, the second error will replace the first. The original error
will be forever lost.

To prevent this problem, you should handle errors immediately after the first function call.
Then use g_clear_error() to reset the GError structure values to their initial states. At that
point, you can reuse the GError structure for the next function.

if (error && * error)
{
 g_error_free (*error);
 *error = NULL;
}

Error Value Description

GDK_PIXBUF_ERROR_CORRUPT_IMAGE The image file is broken in some way.

GDK_PIXBUF_ERROR_INSUFFICIENT_MEMORY Not enough memory is available to store the image.

GDK_PIXBUF_ERROR_BAD_OPTION A bad option was passed. This error can occur
while saving an image.

GDK_PIXBUF_ERROR_UNKNOWN_TYPE GdkPixbuf was unable to detect the image type.

GDK_PIXBUF_ERROR_UNSUPPORTED_OPERATION GdkPixbuf does not know how to perform the
operation on the specified image.

GDK_PIXBUF_ERROR_FAILED A generic failure code for all other errors.

7931ch05.fm Page 131 Friday, February 9, 2007 12:36 AM

132 C H A P T E R 5 ■ D I A L O G S

You should note that g_clear_error() is simply a convenience function, which performs
the functionality shown in the preceding code snippet. If the error is set, call g_error_free(),
which frees first the message string and then the slice allocated by the GError object. It then
points the error to NULL.

A complete list of error domains in GTK+ and its supporting libraries, along with the cor-
responding error types, can be found in Appendix E.

File Chooser Dialogs
In the last chapter, you learned about GtkFileChooser and the GtkFileChooserButton widget.
Recall that GtkFileChooser is not a widget, but an interface. Interfaces differ from classes,
because you cannot derive from them, and they do not implement the functionality they
declare.

GTK+ provides the following three widgets that implement the GtkFileChooser interface:

• GtkFileChooserButton: The file chooser button was covered in the previous chapter. It
allows the user to choose one file or folder by displaying a GtkFileChooser dialog when
clicked.

• GtkFileChooserDialog: This widget is simply a dialog that uses a GtkFileChooserWidget
as its child. Since it implements the GtkFileChooser interface, you do not ever have to
directly access its child widget.

• GtkFileChooserWidget: This is the actual widget that allows the user to choose a file or
folder. It can also facilitate the creation of a folder or saving of a file. When you use a
GtkFileChooserDialog, you are actually using a file chooser widget packed into a
GtkDialog.

You have already learned about GtkFileChooserButton and have used a file chooser to
open one file and to select a directory. There are three other abilities provided by the file
chooser widget. In the next three examples, you will learn how to use a file chooser dialog to
save a file, create a directory, and choose multiple files.

Saving Files

Figure 5-5 shows a GtkFileChooserDialog widget that is being used to save a file. You will notice
that it is similar to the next two figures as well, because all types of file chooser dialogs have a
consistent look so that it is minimally confusing to new users and maximally efficient to all. The
widget also uses the same code to implement each dialog type to minimize the amount of nec-
essary code.

7931ch05.fm Page 132 Friday, February 9, 2007 12:36 AM

C H A P T E R 5 ■ D I A L O G S 133

Figure 5-5. A file chooser dialog for saving

File chooser dialogs are used in the same way as the previous two dialogs covered in this
chapter, except you need to handle the response code returned by gtk_dialog_new(). Listing 5-6
allows the user to choose a file name and sets the button’s text to that file name if the correct
response identifier is returned.

Listing 5-6. Using a GtkFileChooserDialog to Save a File (savefile.c)

#include <gtk/gtk.h>

static void button_clicked (GtkButton*, GtkWindow*);

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *button;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Save a File");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);

 gtk_widget_set_size_request (window, 200, 100);

 button = gtk_button_new_with_label ("Save As ...");

7931ch05.fm Page 133 Friday, February 9, 2007 12:36 AM

134 C H A P T E R 5 ■ D I A L O G S

 g_signal_connect (G_OBJECT (button), "clicked",
 G_CALLBACK (button_clicked),
 (gpointer) window);

 gtk_container_add (GTK_CONTAINER (window), button);
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

/* Allow the user to enter a new file name and location for the file and
 * set the button to the text of the location. */
static void
button_clicked (GtkButton *button,
 GtkWindow *window)
{
 GtkWidget *dialog;
 gchar *filename;

 dialog = gtk_file_chooser_dialog_new ("Save File As ...", window,
 GTK_FILE_CHOOSER_ACTION_SAVE,
 GTK_STOCK_CANCEL, GTK_RESPONSE_CANCEL,
 GTK_STOCK_SAVE, GTK_RESPONSE_ACCEPT,
 NULL);

 gint result = gtk_dialog_run (GTK_DIALOG (dialog));
 if (result == GTK_RESPONSE_ACCEPT)
 {
 filename = gtk_file_chooser_get_filename (GTK_FILE_CHOOSER (dialog));
 gtk_button_set_label (button, filename);
 }

 gtk_widget_destroy (dialog);
}

7931ch05.fm Page 134 Friday, February 9, 2007 12:36 AM

C H A P T E R 5 ■ D I A L O G S 135

All file chooser dialogs are created with the gtk_file_chooser_dialog_new() regardless of
what options you choose. As with other dialogs, you begin by setting the title of the dialog and
the parent window. The parent window should always be set, because file chooser dialogs
should be modal.

GtkWidget* gtk_file_chooser_dialog_new (const gchar *title,
 GtkWindow *parent,
 GtkFileChooserAction action,
 const gchar *first_button_text,
 ...);

Next, as with file chooser buttons, you have to choose the action of file chooser that will
be created. All four action types provided by the GtkFileChooser interface are available to
GtkFileChooserDialog. These can be viewed in the following list:

• GTK_FILE_CHOOSER_ACTION_SAVE: The user is prompted to enter a file name and browse
throughout the file system for a location. The returned file will be the chosen path with
the new file name appended to the end. GtkFileChooser provides methods that allow
you to ask for confirmation if the user enters a file name that already exists.

• GTK_FILE_CHOOSER_ACTION_OPEN: The file chooser will only allow the user to select one
or more files that already exist on the user’s system. The user will be able to browse
throughout the file system or choose a bookmarked location.

• GTK_FILE_CHOOSER_ACTION_SELECT_FOLDER: The file chooser will only allow the user to
select a folder that already exists. Since the user can only select a folder, other files on the
file system will not be displayed.

• GTK_FILE_CHOOSER_ACTION_CREATE_FOLDER: This is very similar to the save action, because
it allows the user to choose a location and specify a new folder name. The user can enter
a new folder name that will be created when the file chooser returns or click the Create
Folder button, shown in Figure 5-6, which will create a new folder in the current
directory.

Lastly, you have to provide a NULL-terminated list of buttons along with their response identifi-
ers that will be added to the action area. In Listing 5-6, when the Cancel button is clicked,
GTK_RESPONSE_CANCEL is emitted, and when the Save button is clicked, GTK_RESPONSE_ACCEPT is
emitted.

7931ch05.fm Page 135 Friday, February 9, 2007 12:36 AM

136 C H A P T E R 5 ■ D I A L O G S

Creating a Folder

GTK+ allows you not only to select a folder but also to create a folder. A GtkFileChooserDialog
widget using this type can be seen in Figure 5-6, which is a screenshot of Listing 5-7.

Figure 5-6. A file chooser dialog for creating a folder

The dialog in Listing 5-7 will handle creating the new folder when accepted by the user, so
you do not need to take any further action beyond destroying the dialog.

Listing 5-7. Using a GtkFileChooserDialog to Create a Folder (createfolder.c)

#include <gtk/gtk.h>

int main (int argc,
 char *argv[])
{
 GtkWidget *dialog;
 gchar *filename;
 gint result;

 gtk_init (&argc, &argv);

7931ch05.fm Page 136 Friday, February 9, 2007 12:36 AM

C H A P T E R 5 ■ D I A L O G S 137

 /* Create a new GtkFileChooserDialog that will be used to create a new folder. */
 dialog = gtk_file_chooser_dialog_new ("Create a Folder ...", NULL,
 GTK_FILE_CHOOSER_ACTION_CREATE_FOLDER,
 GTK_STOCK_CANCEL, GTK_RESPONSE_CANCEL,
 GTK_STOCK_OK, GTK_RESPONSE_OK,
 NULL);

 result = gtk_dialog_run (GTK_DIALOG (dialog));
 if (result == GTK_RESPONSE_OK)
 {
 filename = gtk_file_chooser_get_filename (GTK_FILE_CHOOSER (dialog));
 g_print ("Creating directory: %s\n", filename);
 }

 gtk_widget_destroy (dialog);
 return 0;
}

The full folder name of the dialog can be retrieved by using the same function that
retrieved the file name in the previous example, gtk_file_chooser_get_filename(). The stan-
dard GLib function g_mkdir() will create a folder in the specified location on all supported
operating systems.

Selecting Multiple Files

Figure 5-7 shows a standard file chooser dialog that will allow the user to choose a file. The
difference between GtkFileChooserDialog and GtkFileChooserButton using the GTK_FILE_
CHOOSER_ACTION_OPEN type is that dialogs are capable of selecting multiple files while buttons
are restricted to one file.

Figure 5-7. A file chooser dialog for selecting multiple files

7931ch05.fm Page 137 Friday, February 9, 2007 12:36 AM

138 C H A P T E R 5 ■ D I A L O G S

Listing 5-8 shows you how to handle multiple file selections. It is very similar to single file
selections except for the fact that selections are returned in a singly linked list.

Listing 5-8. Using a GtkFileChooserDialog to Select Multiple Files (multiplefiles.c)

static void
button_clicked (GtkButton *button,
 GtkWindow *window)
{
 GtkWidget *dialog;
 GSList *filenames;

 dialog = gtk_file_chooser_dialog_new ("Open File(s) ...", window,
 GTK_FILE_CHOOSER_ACTION_OPEN,
 GTK_STOCK_CANCEL, GTK_RESPONSE_CANCEL,
 GTK_STOCK_OPEN, GTK_RESPONSE_ACCEPT,
 NULL);

 /* Allow the user to choose more than one file at a time. */
 gtk_file_chooser_set_select_multiple (GTK_FILE_CHOOSER (dialog), TRUE);

 gint result = gtk_dialog_run (GTK_DIALOG (dialog));

 if (result == GTK_RESPONSE_ACCEPT)
 {
 filenames = gtk_file_chooser_get_filenames (GTK_FILE_CHOOSER (dialog));

 while (filenames != NULL)
 {
 gchar *file = (gchar*) filenames->data;
 g_print ("%s was selected.\n", file);
 filenames = filenames->next;
 }
 }

 gtk_widget_destroy (dialog);
}

The gtk_file_chooser_get_filenames() function returns a new GLib data type called
GSList, a singly linked list. These are linked lists that can only iterate in one direction. Each ele-
ment in the list contains a piece of data and a link to the next element.

gchar *file = (gchar*) filenames->data;

7931ch05.fm Page 138 Friday, February 9, 2007 12:36 AM

C H A P T E R 5 ■ D I A L O G S 139

Linked lists in GLib store data as gpointers, so that all types of data can be stored. Because
of this, data returned from g_slist_nth_data() has to be cast as its original data type. The first
element in the list is indexed as zero.

The GSList structure also provides functions for retrieving the length, appending,
prepending, inserting, and removing elements. More information on singly and doubly linked
lists can be found in the next chapter.

Color Selection Dialogs
In the previous chapter, you learned about the GtkColorButton widget, which allowed the user
to select a color. After clicking that button, the user was presented with a dialog. Although not
specified at the time, that dialog was a GtkColorSelectionDialog widget.

Similar to GtkFileChooserDialog, the color selection dialog is actually a GtkDialog con-
tainer with a GtkColorSelection widget packed as its child widget. GtkColorSelection can
easily be used on its own. However, since a dialog is a natural way of presenting the widget,
GTK+ provides GtkColorSelectionDialog. A color selection dialog is shown in Figure 5-8.

Figure 5-8. A color selection dialog

Listing 5-9 contains a top-level window that has two buttons. When the first button is
clicked, a modal GtkColorSelectionDialog is created. The other button will create a nonmodal
GtkColorSelectionDialog. Each is used to choose global color and opacity values.

This example also loops through program arguments, setting the initial color value if pro-
vided. This allows you to pass an initial color when launching the application.

7931ch05.fm Page 139 Friday, February 9, 2007 12:36 AM

140 C H A P T E R 5 ■ D I A L O G S

Listing 5-9. Using a GtkColorSelectionDialog (colorselection.c)

#include <gtk/gtk.h>

static void run_color_selection_dialog (GtkButton*, GtkWindow*, gboolean);
static void modal_clicked (GtkButton*, GtkWindow*);
static void nonmodal_clicked (GtkButton*, GtkWindow*);
static void dialog_response (GtkDialog*, gint, gpointer);

static GdkColor global_color;
static guint global_alpha = 65535;

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *hbox, *modal, *nonmodal;
 gint i;

 gtk_init (&argc, &argv);

 /* Loop through the parameters. The first color name that is specified and
 * successfully parsed, it will be used as the initial color of the selection. */
 for (i=1; i < argc; i++)
 if (gdk_color_parse (argv[i], &global_color))
 break;

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Color Selection Dialogs");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);
 gtk_widget_set_size_request (window, 200, 75);

 modal = gtk_button_new_with_label ("Modal");
 nonmodal = gtk_button_new_with_label ("Non-Modal");

 g_signal_connect (G_OBJECT (modal), "clicked",
 G_CALLBACK (modal_clicked),
 (gpointer) window);
 g_signal_connect (G_OBJECT (nonmodal), "clicked",
 G_CALLBACK (nonmodal_clicked),
 (gpointer) window);

 hbox = gtk_hbox_new (TRUE, 10);
 gtk_box_pack_start_defaults (GTK_BOX (hbox), modal);
 gtk_box_pack_start_defaults (GTK_BOX (hbox), nonmodal);

7931ch05.fm Page 140 Friday, February 9, 2007 12:36 AM

C H A P T E R 5 ■ D I A L O G S 141

 gtk_container_add (GvtTK_CONTAINER (window), hbox);
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

/* Create a new color selection dialog that is modal. */
static void
modal_clicked (GtkButton *button,
 GtkWindow *window)
{
 run_color_selection_dialog (button, window, TRUE);
}

/* Create a new color selection dialog that is nonmodal. */
static void
nonmodal_clicked (GtkButton *button,
 GtkWindow *window)
{
 run_color_selection_dialog (button, window, FALSE);
}

/* Create a new color selection dialog and allow the user to choose a color
 * and an opacity value. */
static void
run_color_selection_dialog (GtkButton *button,
 GtkWindow *window,
 gboolean domodal)
{
 GtkWidget *dialog, *colorsel;
 gchar *title;

 if (domodal)
 title = "Choose Color -- Modal";
 else
 title = "Choose Color -- Non-Modal";

 dialog = gtk_color_selection_dialog_new (title);
 gtk_window_set_modal (GTK_WINDOW (dialog), domodal);

 colorsel = GTK_COLOR_SELECTION_DIALOG (dialog)->colorsel;
 gtk_color_selection_set_has_opacity_control (GTK_COLOR_SELECTION (colorsel),
 TRUE);

7931ch05.fm Page 141 Friday, February 9, 2007 12:36 AM

142 C H A P T E R 5 ■ D I A L O G S

 gtk_color_selection_set_current_color (GTK_COLOR_SELECTION (colorsel),
 &global_color);
 gtk_color_selection_set_current_alpha (GTK_COLOR_SELECTION (colorsel),
 global_alpha);

 g_signal_connect (G_OBJECT (dialog), "response",
 G_CALLBACK (dialog_response), NULL);
 gtk_widget_show_all (dialog);
}

/* Handle the response identifier from the assistant. Either tell the user to
 * read the manual, retrieve the new color value or destroy the dialog. */
static void
dialog_response (GtkDialog *dialog,
 gint result,
 gpointer data)
{
 GtkWidget *colorsel;
 GdkColor color = { 0, };
 guint16 alpha = 0;

 switch (result)
 {
 case GTK_RESPONSE_HELP:
 g_print("Read the GTK+ API documentation.\n");
 break;

 case GTK_RESPONSE_OK:
 colorsel = GTK_COLOR_SELECTION_DIALOG (dialog)->colorsel;
 alpha = gtk_color_selection_get_current_alpha (GTK_COLOR_SELECTION (colorsel));
 gtk_color_selection_get_current_color (GTK_COLOR_SELECTION (colorsel), &color);

 g_print ("#%04X%04X%04X%04X\n", color.red, color.green, color.blue, alpha);

 global_color = color;
 global_alpha = alpha;

 default:
 gtk_widget_destroy (GTK_WIDGET(dialog));
 }
}

7931ch05.fm Page 142 Friday, February 9, 2007 12:36 AM

C H A P T E R 5 ■ D I A L O G S 143

The only function provided by the GtkColorSelectionDialog class is gtk_color_
selection_dialog_new(), which will return a new color selection dialog with the specified title.

struct GtkColorSelectionDialog
{
 GtkWidget *colorsel;
 GtkWidget *ok_button;
 GtkWidget *cancel_button;
 GtkWidget *help_button;
};

GtkColorSelectionDialog provides direct access to its four available child widgets. The
first, colorsel is the GtkColorSelection widget that facilitates color selection. The other three
are GTK_STOCK_OK, GTK_STOCK_CANCEL, and GTK_STOCK_HELP buttons. By default, the Help button
is hidden. You can use gtk_widget_show() to set it as visible.

As with Listing 5-2, this example connects to the response signal, which is used to receive
all of the response identifiers regardless of whether the dialog is modal or nonmodal. The dia-
log is set as modal or nonmodal with gtk_window_set_modal().

Listing 5-9 shows a fourth color property apart from its RGB values, its opacity (alpha value).
Ranging between 0 and 65,535, this value regulates how transparent the color will be drawn, where
0 is fully transparent and 65,535 is opaque. By default, the opacity control is turned off within color
selection widgets. You can call the function gtk_color_selection_set_has_opacity_control() to
enable the feature.

void gtk_color_selection_set_has_opacity_control (GtkColorSelection *colorsel,
 gboolean has_opacity);

When opacity is turned on, the hexadecimal color value is sixteen digits long, four digits
for each of the values: red, green, blue, and alpha. The opacity is not stored in the GdkColor
structure, so you must use gtk_color_selection_get_current_alpha() to retrieve its value
from the color selection widget.

g_print ("#%04X%04X%04X%04X\n", color.red, color.green, color.blue, alpha);

Font Selection Dialogs
The font selection dialog is a dialog that allows the user to select a font and is the dialog shown
when a GtkFontButton button is clicked. As with GtkColorSelectionDialog, direct access to the
action area buttons is provided through the GtkFontSelectionDialog structure. An example
font selection dialog can be viewed in Figure 5-9, which should look similar to the one you saw
in the last chapter.

7931ch05.fm Page 143 Friday, February 9, 2007 12:36 AM

144 C H A P T E R 5 ■ D I A L O G S

Figure 5-9. A font selection dialog

Listing 5-10 uses GtkFontSelectionDialog as the top-level widget. You should note that
this dialog is used as a top-level window in this example, which is possible for any dialog. How-
ever, you should not get in the habit of doing this, because while it is possible, it is poor
programming practice.

Listing 5-10. Using GtkFontSelectionDialog (fontselection.c)

#include <gtk/gtk.h>

static void ok_clicked (GtkButton*, GtkWidget*);
static void font_dialog_response (GtkFontSelectionDialog*, gint, gpointer);

int main (int argc,
 char *argv[])
{
 GtkWidget *dialog;

 gtk_init (&argc, &argv);

 /* Use the font selection dialog as the top-level widget. */
 dialog = gtk_font_selection_dialog_new ("Choose a Font");
 gtk_font_selection_dialog_set_font_name (GTK_FONT_SELECTION_DIALOG (dialog),
 "Sans Bold Italic 12");

7931ch05.fm Page 144 Friday, February 9, 2007 12:36 AM

C H A P T E R 5 ■ D I A L O G S 145

 gtk_font_selection_dialog_set_preview_text (GTK_FONT_SELECTION_DIALOG (dialog),
 "Foundations of GTK+ Development");

 g_signal_connect (G_OBJECT (dialog), "response",
 G_CALLBACK (font_dialog_response), NULL);

 gtk_widget_show_all (dialog);

 gtk_main ();
 return 0;
}

/* If the user clicks "Apply", display the font, but do not destroy the dialog. If
 * "OK" is pressed, display the font and destroy the dialog. Otherwise, just destroy
 * the dialog. */
static void
font_dialog_response (GtkFontSelectionDialog *dialog,
 gint response,
 gpointer data)
{
 gchar *font;
 GtkWidget *message;

 switch (response)
 {
 case (GTK_RESPONSE_APPLY):
 case (GTK_RESPONSE_OK):
 font = gtk_font_selection_dialog_get_font_name (dialog);
 message = gtk_message_dialog_new (NULL, GTK_DIALOG_MODAL,
 GTK_MESSAGE_INFO, GTK_BUTTONS_OK, font);
 gtk_window_set_title (GTK_WINDOW (message), "Selected Font");

 gtk_dialog_run (GTK_DIALOG (message));
 gtk_widget_destroy (message);
 g_free (font);
 break;
 default:
 gtk_widget_destroy (GTK_WIDGET (dialog));
 }

 if (response == GTK_RESPONSE_OK)
 gtk_widget_destroy (GTK_WIDGET (dialog));
}

7931ch05.fm Page 145 Friday, February 9, 2007 12:36 AM

146 C H A P T E R 5 ■ D I A L O G S

The font selection dialog initialization function, gtk_font_selection_dialog_new(),
returns a new GtkFontSelectionDialog widget with the specified title.

struct GtkFontSelectionDialog
{
 GtkWidget *ok_button;
 GtkWidget *apply_button;
 GtkWidget *cancel_button;
};

The dialog itself contains three buttons: GTK_STOCK_OK, GTK_STOCK_APPLY, and
GTK_STOCK_CANCEL.

There is no need to create a modal dialog, because the font selection dialog is already the
top-level widget. Therefore, the dialog is connected to the response signal.

If the user clicks the OK button, the user is presented with the selected font, and the dialog
is destroyed. By clicking Apply, the selected font will be presented to the user, but the dialog is
not destroyed. This will allow you to apply the new font so the user can view the changes with-
out closing the dialog.

The font selection widget contains a GtkEntry widget that allows the user to preview the
font. By default, the preview text is set to “abcdefghijk ABCDEFGHIJK”. This is somewhat bor-
ing, so I decided to reset it to “Foundations of GTK+ Development,” the title of this book.

The last functions provided by GtkFontSelectionDialog allow you to set and retrieve the
current font string. The font string used by gtk_font_selection_dialog_set_font_name() and
gtk_font_selection_dialog_get_font_name() is in the same format that we parsed with
PangoFontDescription in the previous chapter.

Dialogs with Multiple Pages
With the release of GTK+ 2.10, a widget called GtkAssistant was introduced, which makes it
easier to create dialogs with multiple stages, because you do not have to programmatically cre-
ate the whole dialog. This allows you to split otherwise complex dialogs, into steps that guide
the user. This functionality is implemented in what are often referred to as wizards throughout
various applications.

Figure 5-10. The first page of a GtkAssistant widget

7931ch05.fm Page 146 Friday, February 9, 2007 12:36 AM

C H A P T E R 5 ■ D I A L O G S 147

Figure 5-10 shows the first page of a simple GtkAssistant widget, which was created
using the code in Listing 5-11. This example begins by giving the user general information.
The next page will not allow the user to proceed until text is entered in a GtkEntry widget. The
third page will not allow the user to proceed until a GtkCheckButton button is activated. The
fourth page will not let you do anything until the progress bar is filled, and the last page gives
a summary of what has happened. This is the general flow that every GtkAssistant widget
should follow.

Listing 5-11. The GtkAssistant Widget (assistant.c)

#include <gtk/gtk.h>
#include <string.h>

static void entry_changed (GtkEditable*, GtkAssistant*);
static void button_toggled (GtkCheckButton*, GtkAssistant*);
static void button_clicked (GtkButton*, GtkAssistant*);
static void assistant_cancel (GtkAssistant*, gpointer);
static void assistant_close (GtkAssistant*, gpointer);

typedef struct {
 GtkWidget *widget;
 gint index;
 const gchar *title;
 GtkAssistantPageType type;
 gboolean complete;
} PageInfo;

int main (int argc,
 char *argv[])
{
 GtkWidget *assistant, *entry, *label, *button, *progress, *hbox;
 guint i;
 PageInfo page[5] = {
 { NULL, -1, "Introduction", GTK_ASSISTANT_PAGE_INTRO, TRUE},
 { NULL, -1, NULL, GTK_ASSISTANT_PAGE_CONTENT, FALSE},
 { NULL, -1, "Click the Check Button", GTK_ASSISTANT_PAGE_CONTENT, FALSE},
 { NULL, -1, "Click the Button", GTK_ASSISTANT_PAGE_PROGRESS, FALSE},
 { NULL, -1, "Confirmation", GTK_ASSISTANT_PAGE_CONFIRM, TRUE},
 };

 gtk_init (&argc, &argv);

7931ch05.fm Page 147 Friday, February 9, 2007 12:36 AM

148 C H A P T E R 5 ■ D I A L O G S

 /* Create a new assistant widget with no pages. */
 assistant = gtk_assistant_new ();
 gtk_widget_set_size_request (assistant, 450, 300);
 gtk_window_set_title (GTK_WINDOW (assistant), "GtkAssistant Example");

 g_signal_connect (G_OBJECT (assistant), "destroy",
 G_CALLBACK (gtk_main_quit), NULL);

 page[0].widget = gtk_label_new ("This is an example of a GtkAssistant. By\n"\
 "clicking the forward button, you can continue\n"\
 "to the next section!");
 page[1].widget = gtk_hbox_new (FALSE, 5);
 page[2].widget = gtk_check_button_new_with_label ("Click Me To Continue!");
 page[3].widget = gtk_alignment_new (0.5, 0.5, 0.0, 0.0);
 page[4].widget = gtk_label_new ("Text has been entered in the label and the\n"\
 "combo box is clicked. If you are done, then\n"\
 "it is time to leave!");

 /* Create the necessary widgets for the second page. */
 label = gtk_label_new ("Your Name: ");
 entry = gtk_entry_new ();
 gtk_box_pack_start (GTK_BOX (page[1].widget), label, FALSE, FALSE, 5);
 gtk_box_pack_start (GTK_BOX (page[1].widget), entry, FALSE, FALSE, 5);

 /* Create the necessary widgets for the fourth page. The, Attach the progress bar
 * to the GtkAlignment widget for later access.*/
 button = gtk_button_new_with_label ("Click me!");
 progress = gtk_progress_bar_new ();
 hbox = gtk_hbox_new (FALSE, 5);
 gtk_box_pack_start (GTK_BOX (hbox), progress, TRUE, FALSE, 5);
 gtk_box_pack_start (GTK_BOX (hbox), button, FALSE, FALSE, 5);
 gtk_container_add (GTK_CONTAINER (page[3].widget), hbox);
 g_object_set_data (G_OBJECT (page[3].widget), "pbar", (gpointer) progress);

 /* Add five pages to the GtkAssistant dialog. */
 for (i = 0; i < 5; i++)
 {
 page[i].index = gtk_assistant_append_page (GTK_ASSISTANT (assistant),
 page[i].widget);
 gtk_assistant_set_page_title (GTK_ASSISTANT (assistant),
 page[i].widget, page[i].title);
 gtk_assistant_set_page_type (GTK_ASSISTANT (assistant),
 page[i].widget, page[i].type);

7931ch05.fm Page 148 Friday, February 9, 2007 12:36 AM

C H A P T E R 5 ■ D I A L O G S 149

 /* Set the introduction and conclusion pages as complete so they can be
 * incremented or closed. */
 gtk_assistant_set_page_complete (GTK_ASSISTANT (assistant),
 page[i].widget, page[i].complete);
 }

 /* Update whether pages 2 through 4 are complete based upon whether there is
 * text in the GtkEntry, the check button is active, or the progress bar
 * is completely filled. */
 g_signal_connect (G_OBJECT (entry), "changed",
 G_CALLBACK (entry_changed), (gpointer) assistant);
 g_signal_connect (G_OBJECT (page[2].widget), "toggled",
 G_CALLBACK (button_toggled), (gpointer) assistant);
 g_signal_connect (G_OBJECT (button), "clicked",
 G_CALLBACK (button_clicked), (gpointer) assistant);

 g_signal_connect (G_OBJECT (assistant), "cancel",
 G_CALLBACK (assistant_cancel), NULL);
 g_signal_connect (G_OBJECT (assistant), "close",
 G_CALLBACK (assistant_close), NULL);

 gtk_widget_show_all (assistant);

 gtk_main ();
 return 0;
}

/* If there is text in the GtkEntry, set the page as complete. Otherwise,
 * stop the user from progressing the next page. */
static void
entry_changed (GtkEditable *entry,
 GtkAssistant *assistant)
{
 const gchar *text = gtk_entry_get_text (GTK_ENTRY (entry));
 gint num = gtk_assistant_get_current_page (assistant);
 GtkWidget *page = gtk_assistant_get_nth_page (assistant, num);

 gtk_assistant_set_page_complete (assistant, page, (strlen (text) > 0));
}

/* If the check button is toggled, set the page as complete. Otherwise,
 * stop the user from progressing the next page. */
static void
button_toggled (GtkCheckButton *toggle,
 GtkAssistant *assistant)

7931ch05.fm Page 149 Friday, February 9, 2007 12:36 AM

150 C H A P T E R 5 ■ D I A L O G S

{
 gboolean active = gtk_toggle_button_get_active (GTK_TOGGLE_BUTTON (toggle));
 gtk_assistant_set_page_complete (assistant, GTK_WIDGET (toggle), active);
}

/* Fill up the progress bar, 10% every second when the button is clicked. Then,
 * set the page as complete when the progress bar is filled. */
static void
button_clicked (GtkButton *button,
 GtkAssistant *assistant)
{
 GtkProgressBar *progress;
 GtkWidget *page;
 gdouble percent = 0.0;

 gtk_widget_set_sensitive (GTK_WIDGET (button), FALSE);
 page = gtk_assistant_get_nth_page (assistant, 3);
 progress = GTK_PROGRESS_BAR (g_object_get_data (G_OBJECT (page), "pbar"));

 while (percent <= 100.0)
 {
 gchar *message = g_strdup_printf ("%.0f%% Complete", percent);
 gtk_progress_bar_set_fraction (progress, percent / 100.0);
 gtk_progress_bar_set_text (progress, message);

 while (gtk_events_pending ())
 gtk_main_iteration ();

 g_usleep (500000);
 percent += 5.0;
 }

 gtk_assistant_set_page_complete (assistant, page, TRUE);
}

/* If the dialog is cancelled, delete it from memory and then clean up after
 * the Assistant structure. */
static void
assistant_cancel (GtkAssistant *assistant,
 gpointer data)

7931ch05.fm Page 150 Friday, February 9, 2007 12:36 AM

C H A P T E R 5 ■ D I A L O G S 151

{
 gtk_widget_destroy (GTK_WIDGET (assistant));
}

/* This function is where you would apply the changes and destroy the assistant. */
static void
assistant_close (GtkAssistant *assistant,
 gpointer data)
{
 g_print ("You would apply your changes now!\n");
 gtk_widget_destroy (GTK_WIDGET (assistant));
}

Creating GtkAssistant Pages
A GtkAssistant widget is a dialog with multiple pages, although it is actually not derived from
GtkDialog. By calling gtk_assistant_new(), you create a new GtkAssistant widget with no ini-
tial pages.

index = gtk_assistant_append_page (GTK_ASSISTANT (assistant), widget);

There is no actual page widget for assistants, because each page is actually a child
widget that is added with gtk_assistant_prepend_page(), gtk_assistant_append_page(), or
gtk_assistant_insert_page(). Each of these functions accepts the child widget that is added
as the content of the page and returns the new page’s index. Each page has a number of prop-
erties that can be set, each of which is optional. A list of these options follows:

• Page title: Every page should have a title, so the user knows what it is for. Your first page
should be an introductory page that tells the user information about the assistant. The
last page must be a summary or confirmation page that makes sure the user is ready to
apply the previous changes.

• Header image: In the top panel, you can display an optional image to the left of the title.
This is often the application’s logo or an image that complements the assistant’s
purpose.

• Side image: This optional image is placed along the left side of the assistant beside the
main page content. It is meant to be used for aesthetic appeal.

• Page type: The page type must always be set, or it will default to GTK_ASSISTANT_
PAGE_CONTENT. The last page must always be a confirmation or summary page. You
should also make the first page an introductory page that gives the user information
about what task the assistant performs.

7931ch05.fm Page 151 Friday, February 9, 2007 12:36 AM

152 C H A P T E R 5 ■ D I A L O G S

After you have set the page’s properties, you must choose what type of page it is. There are
five types of pages. The first page should always be GTK_ASSISTANT_PAGE_INTRO. The last page
should always be GTK_ASSISTANT_PAGE_CONFIRM or GTK_ASSISTANT_PAGE_SUMMARY—if your assis-
tant does not end with one of those two types of pages, it will not work correctly. All of the
available page types can be viewed in the following list:

• GTK_ASSISTANT_PAGE_CONTENT: This type of page has general content, which means it will
be used for almost every page in the assistant. It should never be used for the last page in
an assistant.

• GTK_ASSISTANT_PAGE_INTRO: This type of page has introductory information for the user.
This should only be set for the first page in the assistant. While not required, introduc-
tory pages give the user direction and should be used in most assistants.

• GTK_ASSISTANT_PAGE_CONFIRM: The page allows the user to confirm or deny a set of
changes. This is usually used for changes that cannot be undone or may cause some-
thing to break if not set correctly. This should only be set for the last page of the assistant.

• GTK_ASSISTANT_PAGE_SUMMARY: The page gives a summary of the changes that have
occurred. This should only be set for the last page of the assistant.

• GTK_ASSISTANT_PAGE_PROGRESS: When a task takes a long time to complete, this will block
the assistant until the page is marked as complete. The difference between this page and
a normal content page is that all of the buttons are disabled and the user is prevented
from closing the assistant.

■Caution If you do not set the last page type as GTK_ASSISTANT_PAGE_CONFIRM or GTK_ASSISTANT_
PAGE_SUMMARY, your application will abort with a GTK+ error when computing the last button state.

Since GtkAssistant is not derived from GtkDialog, you cannot use gtk_dialog_run() (or
any other GtkDialog function) on this widget. Instead, the following four signals are provided
for you to handle button clicked signals:

• apply: This signal is emitted when the Apply button or Forward button is clicked on any
assistant page.

• cancel: This signal is emitted when the Cancel button is clicked on any assistant page.

• close: This signal is emitted when the Close button or Apply button on the last page in
the assistant is clicked.

• prepare: Before making a new page visible, this signal is emitted so that you can do any
preparation work before it is visible to the user.

You can connect to all GtkAssistant signals with g_signal_connect() or any other signal
connection function provided by GLib. Excluding prepare, the callback functions for
GtkAssistant signals receive the assistant and the user data parameter. The callback function
for the prepare signal also accepts the child widget of the current page.

7931ch05.fm Page 152 Friday, February 9, 2007 12:36 AM

C H A P T E R 5 ■ D I A L O G S 153

By default, every page is set as incomplete. You have to manually set each page as com-
plete when the time is right with gtk_assistant_set_page_complete() or the GtkAssistant will
not be able to progress to the next page.

void gtk_assistant_set_page_complete (GtkAssistant *assistant,
 GtkWidget *page,
 gboolean complete);

On every page, a Cancel button is displayed in addition to a few others. On pages other
than the first one, a Back button is displayed that is always sensitive. This allows you to visit the
previously displayed page and make changes.

■Note The page that is visited when the user clicks the Back button is not always the previous page
according to the page index. It is the previously displayed page, which may be different based on how you
defined the page flow of your assistant.

On every page except the last page, a Forward button is placed, which allows the user to
move to the next page. On the last page an Apply button is displayed that allows the user to
apply the changes. However, until the page is set as complete, the assistant will set the Forward
or Apply button as insensitive. This allows you to prevent the user from proceeding until some
action is taken.

In Listing 5-11, the first and last pages of the assistant were set as complete, because they
were merely informative pages. This is the case in most assistants since they should begin with
an introduction page and end with a confirmation or summary page.

The other two pages are where it becomes interesting. On the second page, we want to
make sure that the user cannot proceed until text is entered in the GtkEntry widget. It would
seem that that we should just check when text has been inserted and be done with it.

However, what happens if the user deletes all of the text? In this case, the forward button
should be disabled yet again. To handle both of these actions, you can use GtkEditable’s
changed signal. This will allow you to check the current state of the text in the entry upon every
change, as in Listing 5-11.

On the third page, we want to enable the forward button only when the check button is
active. To do this, we used the toggled signal of GtkToggleButton to check the current state of
the check button. Based on this state, the forward button’s sensitivity was set.

The fourth page has a type of GTK_ASSISTANT_PAGE_PROGRESS, which disables all actions
until the page is set as complete. The user is instructed to click a button, which begins the pro-
cess of filling a GtkProgressBar widget 10 percent every second. When the progress bar is filled,
the page is set as complete.

GtkProgressBar
The GtkAssistant example introduced another new widget called GtkProgressBar. Progress
bars are a simple way to show how much of a process has been completed and is useful for pro-
cesses that take a long time to handle. Progress bars give the user a visual cue that progress is
being made, so they do not think the program has frozen.

7931ch05.fm Page 153 Friday, February 9, 2007 12:36 AM

154 C H A P T E R 5 ■ D I A L O G S

New progress bars are created with gtk_progress_bar_new(). The implementation of
GtkProgressBar was made a lot simpler with the release of GTK+ 2.0, so be careful when using
the API documentation, because a number of the displayed functions and properties are
depreciated. The two examples following show you how to correctly use the GtkProgressBar
widget.

There are two ways to use the GtkProgressBar widget. If you are sure of how much progress
a process has made, you should use gtk_progress_bar_set_fraction() to set a discrete value.
This function accepts values between 0.0 and 1.0, where 1.0 sets the progress bar as 100 percent
complete.

while (percent <= 100.0)
{
 gchar *message = g_strdup_printf ("%.0f%% Complete", percent);
 gtk_progress_bar_set_fraction (progress, percent / 100.0);
 gtk_progress_bar_set_text (progress, message);

 while (gtk_events_pending ())
 gtk_main_iteration ();

 g_usleep (500000);
 percent += 5.0;
}

You may also want to display text that can be used to complement the progress bar. In the
preceding example, gtk_progress_bar_set_text() was used to display the percent complete
statistic, which is superimposed on the progress bar widget.

If you are not able to detect the progress of the process, you can use pulses. In the preceding
example, gtk_progress_bar_pulse() was used to move the progress bar one step for every pending
event that was processed. You can set the pulse step with gtk_progress_bar_set_pulse_step().

gtk_progress_bar_set_pulse_step (GTK_PROGRESS_BAR (bar), 0.1);
while (gtk_events_pending ())
{
 gtk_main_iteration ();
 gtk_progress_bar_pulse ();
}

By setting the pulse step to 0.1, the progress bar will fill itself up in the first ten steps and
clear itself out in the next ten. This process will continue for as long as you continue pulsing the
progress bar.

Page Forward Functions
There are times that you may want to skip to specific assistant pages if conditions are correct.
For example, let us assume your application is creating a new project. Depending on the cho-
sen language, you want to jump to either the third or fourth page. In this case, you will want to
define your own GtkAssistantPageFunc function for forward motion.

7931ch05.fm Page 154 Friday, February 9, 2007 12:36 AM

C H A P T E R 5 ■ D I A L O G S 155

You can use gtk_assistant_set_forward_page_func() to define a new page forward func-
tion for the assistant. By default, GTK+ will increment directly through the pages in order, one
page at a time. By defining a new forward function, you can define the flow.

void gtk_assistant_set_forward_page_func (GtkAssistant *assistant,
 GtkAssistantPageFunc page_func,
 gpointer data,
 GDestroyNotify destroy_func);

For example, assistant_forward() is a simple GtkAssistantPageFunc implementation
that moves from page two to either three or four depending on the condition returned by
decide_next_page().

static gint
assistant_forward (gint current_page,
 gpointer data)
{
 gint next_page = 0;

 switch (current_page)
 {
 case 0:
 next_page = 1;
 break;
 case 1:
 next_page = (decide_next_page() ? 2 : 3);
 break;
 case 2:
 case 3:
 next_page = 4;
 break;
 default:
 next_page = -1;
 }

 return next_page;
}

■Note By returning -1 from a page forward function, the user will be presented with a critical error and
the assistant will not move to another page. The critical error message will tell the user that the page flow
is broken.

In the assistant_forward() function, flow is changed based on the Boolean value returned
by the fictional function decide_next_page(). In either case, the last page will be page 4. If the
current page is not within bounds, -1 is returned, so an exception is thrown by GTK+.

7931ch05.fm Page 155 Friday, February 9, 2007 12:36 AM

156 C H A P T E R 5 ■ D I A L O G S

While this GtkAssistant example is very simple, implementations of this widget can
become very complex as they expand in number of pages. This widget could be re-created with
a dialog, a GtkNotebook with hidden tabs, and a few buttons (I have had to do that very thing
multiple times!), but it makes the process a lot easier.

Test Your Understanding
In the exercise for this chapter, you will be creating custom dialogs of your own. Each of the
dialogs will be implementations of different types of file chooser dialogs. However, you will be
embedding a GtkFileChooserWidget into a GtkDialog to recreate the functionality of the built-
in dialogs.

Exercise 5-1. Implementing File Chooser Dialogs

In this exercise, create a window with four buttons. Each button will open a different dialog when clicked that imple-
ments one of the four GtkFileChooser actions. You should use GtkFileChooserWidget added to a
GtkDialog instead of the prebuilt GtkFileChooserDialog.

1. Your dialog will implement a GTK_FILE_CHOOSER_ACTION_SAVE file chooser dialog. The chosen file
name should be printed to the screen.

2. Your dialog will implement a GTK_FILE_CHOOSER_ACTION_CREATE_FOLDER file chooser dialog. The
new folder name should be printed to the screen. You will have to manually create the new folder with
g_mkdir().

3. Your dialog will implement a GTK_FILE_CHOOSER_ACTION_OPEN file chooser dialog. The chosen file
names should be printed to the screen.

4. Your dialog will implement a GTK_FILE_CHOOSER_ACTION_SELECT_FOLDER file chooser dialog. The
chosen folder path should be printed to the screen.

For each of the dialogs, you need to make sure to set it to a decent size so that the whole content can be visible to
the user. If you get stuck on this exercise, you can find one possible solution in Appendix F.

Summary
In this chapter, you learned how to create your own custom dialogs. To do this, you need to
first initialize the dialog. Then, action area buttons need to be added as well as the main con-
tent to the dialog’s GtkVBox.

Dialogs can be created as modal or nonmodal. A modal dialog created with gtk_dialog_
run() blocks the user from interacting with the parent window until it is destroyed by creating
a main loop for the dialog. It also centers the dialog above its parent window. Nonmodal dia-
logs allow the user to interact with any other window in the application and will not force focus
on the dialog.

7931ch05.fm Page 156 Friday, February 9, 2007 12:36 AM

C H A P T E R 5 ■ D I A L O G S 157

After learning about the built-in dialogs, you learned about multiple types of built-in
dialogs provided by GTK+:

• Message dialog (GtkMessageDialog): Provide a general message, error message, warning,
or simple yes-no question to the user.

• About dialog (GtkAboutDialog): Show information about the application including ver-
sion, copyright, license, authors, and others.

• File chooser dialog (GtkFileChooserDialog): Allow the user to choose a file, choose mul-
tiple files, save a file, choose a directory, or create a directory.

• Color selection dialog (GtkColorSelectionDialog): Allow the user to choose a color along
with an optional opacity value.

• Font selection dialog (GtkFontSelectionDialog): Allow the user to choose a font and its
size and style properties.

The last section of this chapter showed you a widget called GtkAssistant, which was intro-
duced in GTK+ 2.10. It allows you to create dialogs with multiple stages. It is important to note
that assistants are not actually a type of GtkDialog widget but are directly derived from the
GtkWindow class. This means that you have to handle these by connecting signals in the main
loop instead of calling gtk_dialog_run().

You now have a firm understanding of many important aspects of GTK+. Before we con-
tinue on to more advanced widgets, the next chapter will give you a thorough understanding of
GLib. Chapter 6 will cover many GLib data types, idle functions, timeouts, process spawning,
threads, dynamic modules, file utilities, and timers, as well as other important topics.

7931ch05.fm Page 157 Friday, February 9, 2007 12:36 AM

7931ch05.fm Page 158 Friday, February 9, 2007 12:36 AM

159

■ ■ ■

C H A P T E R 6

Using GLib

Now that you have a reasonable grasp of GTK+ and a number of simple widgets, it is time to
move to another library. GTK+ depends on GLib, a general-purpose library that provides many
kinds of utility functions, data types, and wrapper functions. In fact, you have already used
some aspects of GLib in previous chapters.

GLib can be run independently of any other library, which means that some of the exam-
ples in this chapter do not require the GTK+, GDK, and Pango libraries. However, GTK+ does
depend on GLib.

Not all of the topics throughout this chapter will be used in later chapters, but all are useful
in many GTK+ applications in the real world. Many of the topics are used for very specific tasks.
For example, GModule can be used to create a plug-in system for your application or open a
binary’s symbol table.

The goal of Chapter 6 is not to be a comprehensive guide to everything in GLib. When
using a feature shown in this chapter, you should reference the GLib API documentation for
more information. However, this chapter will introduce you to a wide array of important fea-
tures so that you have a general understanding of what GLib provides.

In this chapter, you will learn the following:

• The basic data types, macros, and utility functions provided by GLib

• How to give textual feedback to the user about errors and warnings that occur within
your application

• Memory management schemes provided by GLib such as memory slices, g_malloc(),
and friends

• Various utility functions provided by GLib for timing, file manipulation, reading direc-
tory contents, and working with the file system

• How the main loop is implemented in GLib and how it implements timeout and idle
functions

• Data structures provided by GLib including strings, linked lists, binary trees, arrays, hash
tables, quarks, keyed data lists, and n-ary trees

• How to us GIOChannel to manipulate files and create pipes as well as how to spawn asyn-
chronous and synchronous processes

• How to dynamically load shared libraries with GModule

7931ch06.fm Page 159 Wednesday, March 7, 2007 8:52 PM

160 C H A P T E R 6 ■ U S I N G G L I B

GLib Basics
GLib is a general-purpose utility library that is used to implement many useful nongraphical
features. While it is required by GTK+, it can also be used independently. Because of this, some
applications use GLib without GTK+ and other supporting libraries for the many capabilities it
provides.

One of the main benefits of using GLib is that it provides a cross-platform interface that
allows your code to be run on any of its supported operating systems with little to no rewriting
of code. You will see this illustrated in the examples throughout the rest of this chapter.

Basic Data Types
You have been using many data types in previous chapters that originate in GLib. These data
types provide a set of common data types that are portable to not only other platforms, but also
other programming languages wrapping GTK+.

Table 6-1 is a list of the basic data types provided by GLib. You can find all of the type def-
initions in the gtypes.h header file. More advanced data structures will be covered later, in the
“Data Types” section.

Table 6-1. GLib Data Types

Type Description

gboolean Since C does not provide a Boolean data type, GLib provides gboolean, which
is set to either TRUE or FALSE.

gchar (guchar) Signed and unsigned data types corresponding to the standard C character type.

gconstpointer A pointer to constant data that is untyped. The data that this type points to
should not be changed. Therefore, it is typically used in function prototypes
to indicate that the function will not alter the data to which it points.

gdouble A data type corresponding to the standard C double type. Possible values are
within the range from -G_MAXDOUBLE to G_MAXDOUBLE. G_MINDOUBLE refers to the
minimum positive value that gdouble can hold.

gfloat A data type corresponding to the standard C float type. Possible values are
within the range from -G_MAXFLOAT to G_MAXFLOAT. G_MINFLOAT refers to the
minimum positive value that gfloat can hold.

gint (guint) Signed and unsigned data types corresponding to the standard C int
type. Signed gint values must be within the range from G_MININT to
G_MAXINT. The maximum guint value is given by G_MAXUINT.

gint8 (guint8) Signed and unsigned integers that are designed to be 8 bits on all
platforms. Signed values are within the range from -128 to 127 (G_MININT8
to G_MAXINT8) and unsigned values from 0 to 255 (G_MAXUINT8).

gint16 (guint16) Signed and unsigned integers that are designed to be 16 bits on all
platforms. Signed values are within the range from -32,768 to 32,767
(G_MININT16 to G_MAXINT16) and unsigned values from 0 to 65,535
(G_MAXUINT16).

7931ch06.fm Page 160 Wednesday, March 7, 2007 8:52 PM

C H A P T E R 6 ■ U S I N G G L I B 161

You used to be able to check whether gint64 and guint64 were supported on the platform by
using the G_HAVE_GINT64 macro. However, since the release of GLib 2.0, 64-bit integers have been
required, so this macro is always defined, as well as both data types. These two types have the fol-
lowing definitions:

G_GNUC_EXTENSION typedef signed long long gint64;
G_GNUC_EXTENSION typedef unsigned long long guint64;

■Note Some options such as -pedantic cause warnings for extensions in GNU C. Typing __extension__
before the expression can prevent this. G_GNUC_EXTENSION is equivalent to __extension__.

GLib also provides G_GINT64_CONSTANT() and G_GUINT64_CONSTANT(), which can be
used to insert 64-bit literals into the source code. For example, G_MAXINT64 is defined as
G_GINT64_CONSTANT(0x7fffffffffffffff).

Standard Macros
In addition to the basic data types, GLib provides a number of predefined values and standard
macros that you can use throughout your applications. While most applications will not make
wide use of every macro, they are here to make your life easier. For instance, there are macros
for checking the GLib version and various type conversions.

gint32 (guint32) Signed and unsigned integers that are designed to be 32 bits on all
platforms. Signed values are within the range from -2,147,483,648 to
2,147,483,647 (G_MININT32 to G_MAXINT32) and unsigned values from 0 to
4,294,967,295 (G_MAXUINT32).

gint64 (guint64) Signed and unsigned integers that are designed to be 64 bits on all
platforms. Signed values are within the range from -263 to 263-1
(G_MININT64 to G_MAXINT64) and unsigned values from 0 to 264-1
(G_MAXUINT64).

glong (gulong) Signed and unsigned data types corresponding to the standard C long
type. Signed glong values must be within the range from G_MINLONG to
G_MAXLONG. The maximum gulong value is given by G_MAXULONG.

gpointer A generic, untyped pointer that is defined as void*. It is simply meant to look
more appealing than the standard void* type.

gshort (gushort) Signed and unsigned data types corresponding to the standard C short
type. Signed gshort values must be within the range from G_MINSHORT to
G_MAXSHORT. The maximum gushort value is given by G_MAXUSHORT.

gsize (gssize) Unsigned and signed 32-bit integers that are used by many data structures
to represent sizes. The gsize data type is defined as unsigned int and gssize
as signed int.

Type Description

7931ch06.fm Page 161 Wednesday, March 7, 2007 8:52 PM

162 C H A P T E R 6 ■ U S I N G G L I B

At times, you may want to check the user’s version of GLib to decide whether or not to
compile a certain feature. GLib provides version information for use during compile time and
runtime, shown in Table 6-2.

Table 6-2. GLib Version Information

In addition to the version information presented in Table 6-2, you can also use
glib_check_version() to check the version of GLib currently in use at runtime. This function
returns NULL, if the library is compatible, or a string that gives more information about the
incompatibility. This function makes sure that the runtime version is the same or a more
recent release.

const gchar* glib_check_version (guint major,
 guint minor,
 guint micro);

GLib also provides a number of additional macros that do everything from numerical
operations, type conversions, and memory referencing to simply defining Boolean values for
TRUE and FALSE. A list of some of the most useful macros can be found in Table 6-3.

Table 6-3. Standard GLib Macros

Value Description

GLIB_MAJOR_VERSION The major version of the GLib headers that is included. To get the
major version of the library that you linked against, you can use
glib_major_version. In GLib 2.12.1, “2” indicates the major version.

GLIB_MINOR_VERSION The minor version of the GLib headers that is included. To get the
minor version of the library that you linked against, you can use
glib_minor_version. In GLib 2.12.1, “12” indicates the minor version.

GLIB_MICRO_VERSION The micro version of the GLib headers that is included. To get the
micro version of the library that you linked against, you can use
glib_micro_version. In GLib 2.12.1, “1” indicates the micro version.

GLIB_CHECK_VERSION
(major, minor, micro)

Returns TRUE if the version of the GLib header files that you are using
is the same or a newer version than specified. You can use this to
make sure that the user has a compatible version of GLib when
compiling a specific feature.

Macro Description

ABS (a) Return the absolute value of argument a. This function simply
returns any negative number without the negative sign and does
nothing to positive numbers.

CLAMP (a, low, high) Make sure that a is between low and high. If a is not between low
and high, the returned value will be the closest of the two.
Otherwise, the returned value will be left unchanged.

G_DIR_SEPARATOR
G_DIR_SEPARATOR_S

On UNIX machines, directories are separated by a slash (/), and
on Windows machines, they are separated by a backslash (\).
G_DIR_SEPARATOR will return the appropriate separator as a character,
and G_DIR_SEPARATOR_S will return the separator as a string.

7931ch06.fm Page 162 Wednesday, March 7, 2007 8:52 PM

C H A P T E R 6 ■ U S I N G G L I B 163

GLib also provides a number of macros for standard mathematical units, with precision
up to 50 decimal places in some cases. Those included in GLib 2.12 follow:

• G_E: The base of the natural logarithm with a precision of 49 decimal places

• G_LN2: The natural logarithm of 2 with a precision of 50 decimal places

• G_LN10: The natural logarithm of 10 with a precision of 49 decimal places

• G_PI: The value of pi with a precision of 49 decimal places

• G_PI_2: The value of pi divided by 2 with a precision of 49 decimal places

• G_PI_4: The value of pi divided by 4 with a precision of 50 decimal places

• G_SQRT2: The square root of 2 with a precision of 49 decimal places

• G_LOG_2_BASE_10: The logarithm of 2 with base 10 with a precision of 20 decimal places

GINT_TO_POINTER (i)
GPOINTER_TO_INT (p)

Convert an integer to a gpointer or a gpointer to an integer. Only
32 bits of the integer will be stored, so you should avoid using
integers that will take up more than that amount of space when
using these macros. Remember that you cannot store pointers in
integers. This only allows you to store an integer as a pointer.

GSIZE_TO_POINTER (s)
GPOINTER_TO_SIZE (p)

Convert a gsize value to a gpointer or a gpointer to gsize value.
The gsize data type must have been stored as a pointer with
GSIZE_TO_POINTER() to convert it back. See GINT_TO_POINTER() for
more information.

GUINT_TO_POINTER (u)
GPOINTER_TO_UINT (p)

Convert an unsigned integer to a gpointer or a gpointer to an
unsigned integer. The integer must have been stored as a pointer
with GUINT_TO_POINTER() to convert it back. See GINT_TO_POINTER()
for more information.

G_OS_WIN32
G_OS_BEOS
G_OS_UNIX

These three macros allow you to define code that will only be run
on a specific platform. Only the macro corresponding to the user’s
system will be defined, so you can bracket code specific to the
user’s operating system with #ifdef G_OS_*.

G_STRUCT_MEMBER
(type, struct_p, offset)

Returns the member of the structure located at the specified
offset. This offset must be within struct_p. type defines the data
type of the field you are retrieving.

G_STRUCT_MEMBER_P
(struct_p, offset)

Returns an untyped pointer to the member of the structure located
at the specified offset. The offset must be within struct_p.

G_STRUCT_OFFSET
(type, member)

Returns the byte offset of a member within a structure. The
structure type is defined by type.

MIN (a, b)
MAX (a, b)

Calculates the minimum or maximum value of the two arguments
a and b respectively.

TRUE and FALSE FALSE is defined as zero, and TRUE is set to the logical not of FALSE.
These values are used for the gboolean type.

Macro Description

7931ch06.fm Page 163 Wednesday, March 7, 2007 8:52 PM

164 C H A P T E R 6 ■ U S I N G G L I B

Message Logging
Throughout this chapter and later chapters, you will need a way to report textual errors, infor-
mation, and warnings to the user. It is possible to use g_print() for all of these messages, but
GLib provides a logging system with some useful features.

Any type of textual message can be conveyed using g_log(). The first parameter of this
function allows you to define a custom log domain. The log domain is a string that is passed to
GLogFunc that is used to help the user to differentiate messages that were output by your appli-
cation from those outputted by other libraries.

void g_log (const gchar *log_domain,
 GLogLevelFlags log_level,
 const gchar *message,
 ...);

Unless you are creating a library, you should use G_LOG_DOMAIN as the domain. Any text
specified to the log domain parameter will be prepended to the beginning of messages before
they are output. If you do not specify a log domain, G_LOG_DOMAIN will be used. For example, the
GTK+ library specifies "Gtk" as the domain so the user will know from where the messages have
been emitted.

The second parameter of g_log() allows you to specify what type of message is being
reported. For example, if you are reporting an error message that should cause the application
to be terminated, you should use G_LOG_LEVEL_ERROR. A list of GLogLevelFlags follows:

• G_LOG_FLAG_RECURSION: A flag used for recursive messages.

• G_LOG_FLAG_FATAL: Log levels that are set with this flag will cause the application to quit
and the core to be dumped when called.

• G_LOG_LEVEL_ERROR: A type of error that is always fatal.

• G_LOG_LEVEL_CRITICAL: A nonfatal error that is more important than a warning but does
not need the application to quit.

• G_LOG_LEVEL_WARNING: A warning of something that will not cause the application to be
unable to continue.

• G_LOG_LEVEL_MESSAGE: Used to log normal messages that are not critical.

• G_LOG_LEVEL_INFO: Any other type of message not covered by the other levels, such as
general information.

• G_LOG_LEVEL_DEBUG: A general message used for debugging purposes.

• G_LOG_LEVEL_MASK: Equal to (G_LOG_FLAG_RECURSION | G_LOG_FLAG_FATAL).

■Note As an example, g_malloc() terminates the application when memory allocation fails, because
G_LOG_LEVEL_ERROR is used. On the other hand, g_try_malloc() will not output any message when allo-
cation fails. Instead, it returns a NULL pointer.

7931ch06.fm Page 164 Wednesday, March 7, 2007 8:52 PM

C H A P T E R 6 ■ U S I N G G L I B 165

The actual error message reported to g_log() should be in the same format reported to
g_print().

For the sake of convenience, GLib also provides five functions that allow you to bypass the
domain and flag parameters of g_log(). The message reported by these functions should also
be formatted in the same manner as g_print().

These functions correspond directly to the specified log flags and will be emitted under the
G_LOG_DOMAIN domain. The functions, along with their associated log flags, follow:

void g_message (...); /* G_LOG_LEVEL_MESSAGE */
void g_warning (...); /* G_LOG_LEVEL_WARNING */
void g_critical (...); /* G_LOG_LEVEL_CRITICAL */
void g_error (...); /* G_LOG_LEVEL_ERROR */
void g_debug (...); /* G_LOG_LEVEL_DEBUG */

Lastly, depending on how your application handles messages, you may want to make
other types of messages fatal. By default, only the G_LOG_LEVEL_ERROR flag will cause the appli-
cation to be terminated. No matter what, this level is always fatal.

To make another type of message fatal, you can call g_log_set_always_fatal(). This will
associate the G_LOG_FLAG_FATAL flag with the specified level.

g_log_set_always_fatal (G_LOG_LEVEL_DEBUG | G_LOG_LEVEL_WARNING);

For example, the preceding example command will force the application to terminate
when you report debugging and warning messages to the user. This feature should be used
sparingly, because not all errors or warnings should cause the application to terminate!

Memory Management
Memory management is an extremely important aspect of any application and becomes
increasingly significant as your application grows in size and complexity. While there are a
large number of functions provided for memory management in GLib, this section will cover
only those that are used most often.

Memory Slices
Prior to GLib 2.10 memory allocators and memory chunks were used for the allocation of
pieces of memory. However, a much more efficient method has been introduced in the current
release in the form of memory slices. Therefore, memory slices are the only type of allocator
that will be covered in this section. If you are using an older version of GLib for any reason, you
should check out GMemChunk in the API documentation.

The advantage of using memory slices is that they avoid excessive memory waste and fix
scalability and performance problems that plagued memory chunks. This is achieved by using
slab allocation.

Memory slices very efficiently allocate memory as equally sized chunks. This means that
they can be used to allocate individual objects as small as two pointers or many objects of the
same size.

7931ch06.fm Page 165 Wednesday, March 7, 2007 8:52 PM

166 C H A P T E R 6 ■ U S I N G G L I B

When you need to allocate large blocks of memory, the system’s implementation of
malloc() will automatically be used. Although we will briefly discuss using g_malloc() and its
related functions in the next section, you should use memory slices for memory allocation in
new code as long as you do not plan on resizing objects after allocation. One constraint of
memory slices is that the size of the object must be the same size when it was allocated and
when it is freed.

There are two ways to use slice allocators: to allocate a single object of any size greater than
two pointers or to allocate multiple objects of the same size. The code in Listing 6-1 shows you
how to allocate multiple objects; it allocates an array of one hundred objects with the slice allo-
cator and then frees them.

Listing 6-1. Allocating Multiple Objects

#define SLICE_SIZE 10

gchar *strings[100];
gint i;

for (i = 0; i < 100; i++)
 strings[i] = g_slice_alloc (SLICE_SIZE);

/* ... Use the strings in some way ... */

/* Free all of the memory after you are done using it. */
for (i = 0; i < 100; i++)
 g_slice_free1 (SLICE_SIZE, strings[i]);

SLAB ALLOCATION OF MEMORY

The slab allocator was originally designed by Jeff Bonwick of Sun Microsystems. It is a memory management
scheme that helps reduce the problem of fragmentation of internal memory, which is caused by the system
allocating a larger block of memory than was originally requested.

To understand slab allocation, you need to know the meaning of slab and cache in context. A slab is one
contiguous chunk of memory that represents one memory allocation. A cache is a very efficient chunk of
memory that is used to hold only one type of data. Each cache is made out of one or more slabs.

Each object is initially marked as free, which means that the slab is empty. When a process requests a
new object from the kernel, the system will attempt to find a location on a partially filled slab, which will be
used to place the object. If a partial slab is not found that will fit the object, a new slab is allocated from con-
tiguous physical memory and that slab is added to the cache. When a slab becomes full, it is then marked
as used.

Slab allocation has many benefits, but one major benefit is that the requested memory allocation size is
the same as the actual allocation. This avoids fragmentation of memory and makes allocation very efficient.
For more information, you should read Jeff Bonwick’s paper on the slab allocator, which is available online.

7931ch06.fm Page 166 Wednesday, March 7, 2007 8:52 PM

C H A P T E R 6 ■ U S I N G G L I B 167

In Listing 6-1, g_slice_alloc() was used to allocate 100 strings of length SLICE_SIZE. Slice
allocation is very simple—all you need to do is supply the size of memory that the slice should
be. Similar to malloc(), this function returns a gpointer to the memory instead of an object that
is cast.

Internally, GLib decides whether to use slab allocation or delegate the memory allocation
to g_malloc(). Memory allocation is performed by g_malloc() when the desired memory slice
is very large. GLib also provides g_slice_alloc0(), which will initialize the returned memory
chunk to 0.

■Note Memory slices will choose the most efficient method of memory allocation for the current case dur-
ing runtime, whether that is slab allocation, g_malloc(), or some other method. However, you can force it to
always use g_malloc() by setting the G_SLICE environment variable to always-malloc.

When you are finished using the memory, you should free it with g_slice_free1() so that
it can be used by another part of your application. This function frees a memory block of size
SLICE_SIZE, located at strings[i].

g_slice_free1 (SLICE_SIZE, strings[i]);

Internally, memory will be freed using the same method as it was allocated. Therefore, to use
this function, you must have allocated the memory with g_slice_alloc() or g_slice_alloc0().

When you need to allocate only a single instance of an object, g_slice_new() is available.
An example of using this function to allocate one object is shown in Listing 6-2.

Listing 6-2. Allocating a Single Object

typedef struct
{
 GtkWidget *window;
 GtkWidget *label;
} Widgets;

Widgets *w = g_slice_new (Widgets);

/* Use the structure just as you would any other structure. */
w->window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
w->label = gtk_label_new ("I belong to widgets!");

/* Free the block of memory of size "Widgets" so it can be reused. */
g_slice_free (Widgets, w);

7931ch06.fm Page 167 Wednesday, March 7, 2007 8:52 PM

168 C H A P T E R 6 ■ U S I N G G L I B

If you need to allocate a single block of memory with a slice allocation, instead of using the
method presented in Listing 6-1, you can call g_slice_new(). This function is defined as fol-
lows; it casts the value returned by g_slice_alloc() as the desired type.

#define g_slice_new(type) ((type*) g_slice_alloc (sizeof (type))

In addition to g_slice_new(), GLib provides g_slice_new0(), which uses g_slice_alloc0()
to initialize the returned slice to 0.

After you are finished with the memory, you need to free it. Since we only allocated one
piece of memory in Listing 6-2, we can use g_slice_free(), which freed one piece of memory
of the size Widgets and at the location w.

Memory Allocation
GLib provides a number of functions that wrap functionality provided by the standard C
library. A description of a few of these functions is presented in this section.

■Note It is important to note that you do not need to verify that any of the following calls were successful.
If any call to allocate memory fails, the application will automatically be terminated by Glib, and a message
will be printed to standard error, displaying the error that has occurred.

To allocate one or more new structures, you should use g_new(). This function receives the
type of data and the number of structures to allocate. It then returns a pointer to the new
memory.

struct_type* g_new (struct_type, number_of_structs);

The returned data is already cast to the correct type, so there is no need to recast the
object. If you want all of the structures to be initialized to 0 by default, you should use g_new0()
instead.

A method most C programmers are familiar with is malloc(). GLib provides a portable
wrapped version of this function called g_malloc(). This function receives the number of bytes
to allocate and returns a pointer to the allocated memory.

gpointer g_malloc (gulong number_of_bytes);

The easiest way to calculate the number of bytes of memory to allocate is to use the
sizeof() function on the data type. The returned object is not automatically cast, so you will
want to immediately take care of casting in most cases. The g_malloc0() function is also pro-
vided if you want the newly allocated memory to be initialized with a value of 0.

7931ch06.fm Page 168 Wednesday, March 7, 2007 8:52 PM

C H A P T E R 6 ■ U S I N G G L I B 169

When memory allocation with g_malloc() fails, the application will abort. Alternatively,
you can use g_try_malloc(), which will return NULL instead of aborting when memory alloca-
tion fails. This should only be used when your application can recover from an unsuccessful
memory allocation. When using g_try_malloc(), it is important to handle the NULL case.

gpointer g_try_malloc (gulong number_of_bytes);

After you are finished with a piece of memory, you should always free it so it can be used
again. If not, it will cause a memory leak in your application, which is never a good thing. To
free a piece of memory, you can call g_free(). This is needed to free strings returned from
many functions available in the GTK+ API.

void g_free (gpointer memory);

This function should be used on objects that you explicitly allocated memory for or objects
that do not provide their own destroy or free function calls. For example, you should never use
g_free() on a chunk of memory that was allocated with memory slices. If the piece of data pro-
vides its own free function, you should always use that function. If NULL memory is sent to
g_free(), it will be ignored, and the function will return.

One more important memory function is g_memmove(), which is used to move pieces of
memory. For example, the following call to g_memmove() can be used to remove a section of a
string beginning at pos and continuing on len characters.

g_memmove (str + pos, str + pos + len, strlen(str) - (pos + len));
str[strlen(str) - len] = 0;

With the exception of g_memmove(), I would like to reiterate one last time that you should
always use memory slices when allocating one object or multiple objects of the same size
instead of g_malloc() and friends.

Memory Profiling
GLib provides a simple way to output a summary of memory usage within your application.
This can be done by calling g_mem_profile() at any point within your application.

Before using memory profiling, you must always set the GMemVTable. Listing 6-3 shows you
how to set up the default GMemVTable and output memory profiling information on application
termination.

7931ch06.fm Page 169 Wednesday, March 7, 2007 8:52 PM

170 C H A P T E R 6 ■ U S I N G G L I B

■Note By using the default GMemVTable, only calls to g_malloc(), g_free(), and friends will be
counted. Calls to malloc() and free() will not be counted. Also, to profile memory slices, you need to set
the G_SLICE environment variable to always-malloc to force it to always use g_malloc(). GLib’s memory
profiler will not count allocations with the slab allocator. To monitor all memory, you should use an external
tool such as Valgrind.

Listing 6-3. Memory Profiling (memprofile.c)

#include <glib.h>

int main (int argc,
 char *argv[])
{
 GSList *list = NULL;

 /* Set the GMemVTable to the default table. This needs to be called before
 * any other call to a GLib function. */
 g_mem_set_vtable (glib_mem_profiler_table);

 /* Call g_mem_profile() when the application exits. */
 g_atexit (g_mem_profile);

 list = (GSList*) g_malloc (sizeof (GSList));
 list->next = (GSList*) g_malloc (sizeof (GSList));

 /* Only free one of the GSList objects to see the memory profiler output. */
 g_free (list->next);

 return 0;
}

Before you can output a memory usage summary, you have to set the GMemVTable with
g_mem_set_vtable(). The GMemVTable defines new versions of memory allocation functions
with profiling enabled, so they can be tracked by GLib. These include malloc(), realloc(),
free(), calloc(), try_malloc(), and try_realloc().

Although it is possible to create your own GMemVTable, GLib provides a prebuilt version
named glib_mem_profiler_table. In almost every case, the default memory table should
be used.

After defining the GMemVTable, Listing 6-3 uses g_atexit() so g_mem_profile() will be
called when the application is exiting. Functions specified to g_atexit() must accept no
parameters and return no value.

7931ch06.fm Page 170 Wednesday, March 7, 2007 8:52 PM

C H A P T E R 6 ■ U S I N G G L I B 171

The output of the application in Listing 6-3 follows. This output will vary depending on
your GLib version, your system type, and various other factors.

GLib Memory statistics (successful operations):
 blocks of | allocated | freed | allocated | freed | n_bytes
 n_bytes | n_times by | n_times by | n_times by | n_times by | remaining
 | malloc() | free() | realloc() | realloc() |
===========|============|============|============|============|===========
 8 | 2 | 1 | 0 | 0 | +8
GLib Memory statistics (failing operations):
 --- none ---
Total bytes: allocated=16, zero-initialized=0 (0.00%), freed=8 (50.00%), remaining=8

The preceding table shows the size of memory that is allocated, followed by how many
times malloc() was called on it. It shows that two blocks of 8 bytes that represent the two
GSList objects were allocated. It then shows how many blocks of memory were freed with
free(), allocated with realloc(), and freed with realloc(). The last column shows the number
of bytes of memory that are not freed. Since only one GSList object was freed, it shows that 8
bytes were leaked.

The table illustrates only successful operations, because nothing failed within the applica-
tion. If some type of failure in memory allocation or deallocation had occurred, there would be
a second table to show those operations.

A summary is given at the end of the output that shows totals of all of the information
shown in the tables.

Utility Functions
As you may have already noticed, GLib provides you with a very wide array of functionality.
This section should further show you that it is an indispensable library when developing GTK+
applications.

In this section, you will learn about many types of functionality provided by GLib includ-
ing access to environment variables, timers, directory functions, and file manipulation.

Environment Variables
If you create an application that is going to be run on multiple platforms, it can be quite a chore
to deal with environment-dependent values such as the user’s home directory or the host
name. Table 6-4 offers a short list of functions that return important environment variables.

7931ch06.fm Page 171 Wednesday, March 7, 2007 8:52 PM

172 C H A P T E R 6 ■ U S I N G G L I B

Table 6-4. Environment Utility Functions

In addition to the functions in Table 6-4, it is possible to retrieve the value of any environ-
ment variable with g_getenv(). If the environment variable is not found, NULL is returned.
You should note that the returned string may be overwritten by calling g_getenv() again,
so you should store a new copy of the string if it needs to stay around.

gboolean g_setenv (const gchar *variable,
 const gchar *value,
 gboolean overwrite);

It is also possible to give a new value to an environment variable with g_setenv(). You
should provide TRUE to the function if you want the value to be overwritten if it already exists.
FALSE will be returned by g_setenv() if the environment variable could not be set. You can also
unset an environment variable with g_unsetenv(), which accepts the name of the variable.

Timers
In many applications, you will want to keep track of elapsed time. An example of this would be
applications that download files from the Internet or process a complex task. For this, GLib
provides the GTimer structure.

GTimer objects keep track of elapsed time in microseconds and fractions of seconds. To
retrieve the number of seconds, you can use the returned gdouble value. This value can then be
used to calculate the elapsed minutes. Higher precision is also available since time is counted
in microseconds.

Function Description

g_get_current_dir() Get the current working directory. The returned string should be freed
when it is no longer needed.

g_get_home_dir() Get the home directory of the current user. On Windows, the HOME or
USERPROFILE environment variable is used, or the root Windows
directory is used if neither is set. On UNIX-like systems, the user’s entry
in passwd will be used.

g_get_host_name() Get the host name of the system. If the name of the system cannot be
determined, localhost is returned. You should not rely on this variable
being consistent across systems, because administrators have the option
of setting this to whatever they want in some systems.

g_get_real_name() Get the real name of the user. On UNIX-like machines, this usually
comes from the user’s information in the passwd file. The string
"Unknown" is returned if the real name cannot be determined.

g_get_tmp_dir() Get the directory used to store temporary files. The environment
variables TMPDIR, TMP, and TEMP will be checked. If none of those are
defined, "/tmp" will be returned on UNIX and "c:\" on Windows.

g_get_user_name() Get the user name of the current user. On Windows, the returned string
will always be UTF-8. On UNIX-like systems, it depends on the preferred
encoding for file names and will differ depending on the system.

7931ch06.fm Page 172 Wednesday, March 7, 2007 8:52 PM

C H A P T E R 6 ■ U S I N G G L I B 173

Listing 6-4 offers a simple timer example that counts the elapsed time between two button
clicks. Since the timer is always counting, it works by storing the starting and ending times
when the button is clicked.

Listing 6-4. Elapsed Time Between Toggling (timers.c)

#include <gtk/gtk.h>

static void button_clicked (GtkButton*, GTimer*);

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *button;
 GTimer *timer;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Timers");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);
 gtk_widget_set_size_request (window, 150, 75);

 /* Initialize the timer. */
 timer = g_timer_new ();
 button = gtk_button_new_with_label ("Start Timer");

 g_signal_connect (G_OBJECT (button), "clicked",
 G_CALLBACK (button_clicked),
 (gpointer) timer);

 gtk_container_add (GTK_CONTAINER (window), button);
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

/* Count the amount of elapsed time between two button clicks. */
static void
button_clicked (GtkButton *button,
 GTimer *timer)
{
 static gdouble start_time = 0.0;
 static gdouble end_time = 0.0;
 static gboolean running = FALSE;

7931ch06.fm Page 173 Wednesday, March 7, 2007 8:52 PM

174 C H A P T E R 6 ■ U S I N G G L I B

 if (!running)
 {
 start_time = g_timer_elapsed (timer, NULL);
 gtk_button_set_label (button, "Stop Timer");
 }
 else
 {
 end_time = g_timer_elapsed (timer, NULL);
 gtk_button_set_label (button, "Start Timer");
 g_print ("Elapsed Time: %.2f\n", end_time - start_time);
 }

 running = !running;
}

Timers are a relatively easy topic to digest. They are handled differently on different
platforms, but GLib provides a portable interface for dealing with them. New timers are created
with g_timer_new(). When you create a new timer, it will automatically start by calling
g_timer_start() for you.

You can stop or continue a stopped timer with g_timer_stop() or g_timer_continue()
respectively. At any point in your application, you can use g_timer_elapsed() to retrieve the
elapsed time.

gdouble g_timer_elapsed (GTimer *timer,
 gulong *microseconds);

If the timer has been started but not stopped, then the time elapsed will be calculated
based on the start time. However, if g_timer_continue() was used to restart the timer, the two
times will be added together to calculate the total time elapsed.

The return value of g_timer_elapsed() is the number of seconds that have elapsed along
with any fractional time. There is also a microseconds parameter that returns the number of
elapsed microseconds, which is essentially useless since you can already retrieve the number
of seconds as a floating-point value.

You can use g_timer_reset() to set the timer back to 0 seconds. You can also reset the
timer with g_timer_start(), but the timer will continue to count automatically.

If you are finished using a timer object before you exit your application, you can call
g_timer_destroy()to destroy the timer and deallocate any associated resources.

File Manipulation
Reading and writing from files are very important aspects of almost every application. There
are two ways in GTK+ to work with files: with IO channels and with file utility functions.

Listing 6-5 illustrates how to use file utility functions to read and write data to a file. You
should note that the functions presented read the whole contents of a file and overwrite the
whole contents of a file. Therefore, this method is not the solution for all applications. This
example also introduces a way to perform file tests.

7931ch06.fm Page 174 Wednesday, March 7, 2007 8:52 PM

C H A P T E R 6 ■ U S I N G G L I B 175

Listing 6-5. Write and Read a File (files.c)

#include <glib.h>

static void handle_error (GError*);

int main (int argc,
 char *argv[])
{
 gchar *filename, *content;
 gsize bytes;
 GError *error = NULL;

 /* Build a filename in the user's home directory. */
 filename = g_build_filename (g_get_home_dir(), "temp", NULL);

 /* Set the contents of the given file and report any errors. */
 g_file_set_contents (filename, "Hello World!", -1, &error);
 handle_error (error);

 if (!g_file_test (filename, G_FILE_TEST_EXISTS))
 g_error ("Error: File does not exist!");

 /* Get the contents of the given file and report any errors. */
 g_file_get_contents (filename, &content, &bytes, &error);
 handle_error (error);
 g_print ("%s\n", content);

 g_free (content);
 g_free (filename);

 return 0;
}

static void
handle_error (GError *error)
{
 if (error != NULL)
 {
 g_printf (error->message);
 g_clear_error (&error);
 }
}

7931ch06.fm Page 175 Wednesday, March 7, 2007 8:52 PM

176 C H A P T E R 6 ■ U S I N G G L I B

Before using any of the file utility functions, g_build_filename() was used to build the
path to the desired file. This function uses a NULL-terminated list of strings to build a path to a
file name. No effort is made by the function to force the path to be absolute, so relative paths
can be built as well. It will also use the correct type of slashes for the user’s platform.

In Listing 6-5, g_file_set_contents() was called to write the string "Hello World!" to a
file. The whole contents of a file, if it already exists, will be overwritten. The function requires
you to specify the length of the text string unless it is NULL-terminated. In that case, you can use
-1 as the length of the string.

gboolean g_file_set_contents (const gchar *filename,
 const gchar *contents,
 gssize length,
 GError **error);

Two methods of error checking are provided by g_file_set_contents(). TRUE is returned if
the action was successful and FALSE if it failed. Also, errors under the G_FILE_ERROR domain will
be returned through the GError parameter. A full list of possible errors under this error domain
can be found in Appendix E.

Reading the contents of a file is performed, in a similar manner as writing, by calling the
g_file_get_contents() function. This function returns TRUE if the action was successful and
FALSE if it failed. The length of the text string read from the file is also set by the function. Errors
under the G_FILE_ERROR domain will be reported.

gboolean g_file_get_contents (const gchar *filename,
 gchar **contents,
 gsize *length,
 GError **error);

Before reading a file, it is a good idea to do some sort of testing to make sure that it already
exists. For this, GLib provides file testing with g_file_test(). This function receives a file or
directory name as well as the type of test to perform. It returns TRUE if the test was successful
and FALSE if it was not. Test parameters are provided by the following GFileTest enumeration:

• G_FILE_TEST_IS_REGULAR: The file is not a symbolic link or a directory, which means that
it is a regular file.

• G_FILE_TEST_IS_SYMLINK: The file you specified is actually a symbolic link.

• G_FILE_TEST_IS_DIR: The path points to the location of a directory.

• G_FILE_TEST_IS_EXECUTABLE: The specified file is executable.

• G_FILE_TEST_EXISTS: Some type of object exists at the specified location. However, this
test does not determine whether it is a symbolic link, a directory, or a regular file.

It is possible to perform multiple tests at the same time by using a bitwise operation. For
example, (G_FILE_TEST_IS_DIR | G_FILE_TEST_IS_REGULAR) will return TRUE if the path points
to a directory or a regular file.

7931ch06.fm Page 176 Wednesday, March 7, 2007 8:52 PM

C H A P T E R 6 ■ U S I N G G L I B 177

There are a few cases with symbolic links in which you need to take caution. First, all tests
will follow through symbolic links. So, G_FILE_TEST_IS_REGULAR will return TRUE if a symbolic
link points to a regular file.

You should be careful when using g_file_test() to test whether it is safe to perform some
type of action on a file or directory. The state of the file may change before you perform the
action, so you can never be sure whether the action was acceptable until after it has been per-
formed. This is why it is a good idea to check G_FILE_ERROR_EXIST in the returned GError.

Directories
In some applications, you may need to retrieve the contents of a directory. There are functions
provided by C that can do this, but a much easier method is to use GLib’s GDir structure.
Listing 6-6 shows you how to read the full contents of the user’s home directory and print them
to the screen.

Listing 6-6. Get the Contents of a Directory (directories.c)

#include <glib.h>

int main (int argc,
 char *argv[])
{
 /* Open the user's home directory for reading. */
 GDir *dir = g_dir_open (g_get_home_dir (), 0, NULL);
 const gchar *file;

 if (!g_file_test (g_get_home_dir (), G_FILE_TEST_IS_DIR))
 g_error ("Error: You do not have a home directory!");

 while ((file = g_dir_read_name (dir)))
 g_print ("%s\n", file);

 g_dir_close (dir);

 return 0;
}

Directories are opened with g_dir_open(). The first parameter of the function specifies the
directory to open. The second parameter of g_dir_open() is reserved for future use and should
be set to 0 at this time. The last parameter returns a GError, although you will know if the func-
tion fails, because NULL is returned if the directory was not successfully loaded.

while ((file = g_dir_read_name (dir)))
 g_print ("%s\n", file);

7931ch06.fm Page 177 Wednesday, March 7, 2007 8:52 PM

178 C H A P T E R 6 ■ U S I N G G L I B

A simple while loop can be used to retrieve all of the files and folders in the directory. This
list is returned one element at a time with g_dir_read_name() in the order the elements appear
on the disk. NULL is returned when no more entries exist. You must not free the returned string,
because it is owned by GLib.

■Note When using g_dir_read_name(), the "." and ".." file entries will not be returned, since they are
assumed to exist if the directory exists.

If you need to return to the first entry in the list in order to loop through the entries
again, g_dir_rewind() should be called on the GDir object. This will reset the structure so that
it again points to the first file or folder.

When you are finished with the GDir object, you should always call g_dir_close() to
deallocate the GDir and free all of its related resources.

File System
GLib provides a few other utility functions that wrap the functionality of UNIX operating sys-
tems. You need to include <glib/gstdio.h> for any of these functions to work. Many of the
most important functions are shown in this section. For a full list, you should reference the
“File Utilities” section of the GLib API documentation.

For all of the functions in this section, 0 is returned if the action was successful or -1 if it
was unsuccessful.

■Note All of the functions covered in this section were introduced in GLib 2.6, so if you are using an older
version of GLib, this section is irrelevant.

Use g_rename() to move a file or a folder to a new location. If the old and new filenames are
both the same string, 0 will be returned with no further action. If a file already exists in the loca-
tion of the new filename, the file will be replaced on UNIX machines. Filenames for directories
and files cannot be mixed.

int g_rename (const gchar *old_filename,
 const gchar *new_filename);

There are a few permissions issues surrounding g_rename() as well. The user owns the file
and the directory containing the file. The user must also be able to write to the file.

Removing a file or directory is as easy as calling g_remove() or g_rmdir(). It is actually possi-
ble to remove a directory with g_remove(), because it will make a call to the directory removal
function. However, for the sake or portability to other operating systems, you should always use
g_rmdir() to remove directories. Both of these functions will fail if the directory is not empty.

7931ch06.fm Page 178 Wednesday, March 7, 2007 8:52 PM

C H A P T E R 6 ■ U S I N G G L I B 179

int g_remove (const gchar *filename);
int g_rmdir (const gchar *filename);

You can use g_mkdir() to create a new directory. You should specify permissions in a four-
digit integer. For example, acceptable permissions would be 0755, 0700, and so on.

int g_mkdir (const gchar *filename,
 int permissions);

When using many of these file utility functions, you can use relative paths as well as abso-
lute paths. However, to use relative paths, you will need to ensure that you are in the correct
directory. You can use g_chdir() to move throughout the directory structure of your hard
drive. This function will accept relative and absolute paths as well.

int g_chdir (const gchar *path);

You may need to change the permissions of a file or a folder from within your application.
This can be done with g_chmod(). Permissions integers should be specified with four digits, as
they were to g_mkdir().

int g_chmod (const gchar *filename,
 int permissions);

The Main Loop
In past chapters, we have used GTK+’s main loop without any thought of the fact that GLib has
its own main loop. It could be ignored in all other examples, because gtk_init() will automat-
ically create a GLib main loop for you.

In fact, most of the main loop functionality is actually implemented in GLib; GTK+ simply
provides widget signals to the system. The GTK+ main loop also connects GDK’s X server
events to the GLib system.

The purpose of the main loop is to sleep until some event has occurred. At that point, a
callback function will be invoked, if available. GLib’s main loop is implemented in Linux using
the poll() system call. Events and signals are associated with file descriptors, which are
watched using poll().

The advantage of using poll() is that GLib does not need to continuously check for new
events. Rather, it can sleep until some signal or event is emitted. By doing this, your application
will take up almost no processor time until it is needed.

The GTK+ main loop is invoked with gtk_main(). This function can actually be called mul-
tiple times; the call on the top of the stack is removed when you call gtk_main_quit(). You can
retrieve the current main loop stack level with gtk_main_level().

Contexts and Sources
The GLib main loop is implemented as a number of structures, which allow multiple instances
to be run concurrently. GMainContext is used to represent a number of event sources. Each
thread has its own context, which can be retrieved with g_main_context_get(). You can also
retrieve the default context with g_main_context_get_default().

7931ch06.fm Page 179 Wednesday, March 7, 2007 8:52 PM

180 C H A P T E R 6 ■ U S I N G G L I B

Each event source in the context is given a priority, defaulting to G_PRIORITY_DEFAULT or
zero. Sources with a higher priority will be given precedence over those with a negative prior-
ity. Examples of event sources are timeouts and idle functions.

GLib also provides GMainLoop, which represents one instance of the main loop. A new main
loop can be created with g_main_loop_new(), where a NULL context will use the default. Setting
is_running to TRUE states that the main loop is running, although this will automatically be set
when you call g_main_loop_run().

GMainLoop* g_main_loop_new (GMainContext *context,
 gboolean is_running);

■Tip The gtk_dialog_run() function blocks the main loop from continuing by creating its own GLib main
loop with g_main_loop_new(). It will continue to run until g_main_loop_quit() is called on the loop.

The GTK+ main loop implements the GLib main loop by creating a GMainLoop with the
default context in gtk_main(). In short, the main loop functionality provided by functions in
GTK+ is implemented in GLib.

GLib supports the ability to create new event sources. Deriving from GSource creates
new sources. GLib provides the ability to create new timeout and idle function sources with
g_timeout_source_new() and g_idle_source_new(). These can be associated with your
contexts.

It is also possible to create a custom source with g_source_new(). This function accepts a
table of functions and the structure size of the new source. These functions are used to define
the behavior of the new source type.

GSource* g_source_new (GSourceFuncs *source_funcs,
 guint struct_size);

You should then associate the source with a GMainContext by calling g_source_attach().
This will return a unique integer identifier of the source within the context.

For the scope of this book, you have learned enough about the main loop to understand
the examples in the rest of this section. There is much more to the complexities of the main
loop that will not be covered in this book. Therefore, if you have a need to create your own
sources and contexts, you should reference the GLib API documentation.

Timeouts
Timeout functions are methods that are called at a certain interval of time until FALSE is
returned. They are added to the main loop with g_timeout_add_full() or g_timeout_add().

Listing 6-7 is a simple example that pulses a progress bar every tenth of a second. Since
the progress bar is set to have a pulse step of 0.1, it will take approximately one second for the
progress indicator to travel from one end of the progress bar to the other. The timeout is
removed after 25 calls.

7931ch06.fm Page 180 Wednesday, March 7, 2007 8:52 PM

C H A P T E R 6 ■ U S I N G G L I B 181

Listing 6-7. Adding a Timeout (timeouts.c)

#include <gtk/gtk.h>

static gboolean pulse_progress (GtkProgressBar*);

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *progress;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Timeouts");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);
 gtk_widget_set_size_request (window, 200, -1);

 progress = gtk_progress_bar_new ();
 gtk_progress_bar_set_pulse_step (GTK_PROGRESS_BAR (progress), 0.1);

 g_timeout_add (100, (GSourceFunc) pulse_progress, (gpointer) progress);

 gtk_container_add (GTK_CONTAINER (window), progress);
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

/* Pulse the progress bar and return TRUE so the timeout is called again. */
static gboolean
pulse_progress (GtkProgressBar *progress)
{
 static gint count = 0;

 gtk_progress_bar_pulse (progress);
 i++;

 return (i < 25);
}

Timeout functions are added with g_timeout_add() or g_timeout_add_full(). The only
difference between these two functions is that the latter allows you to specify a GDestroyNotify
function, which will be called when you return FALSE to remove the timeout function.

7931ch06.fm Page 181 Wednesday, March 7, 2007 8:52 PM

182 C H A P T E R 6 ■ U S I N G G L I B

guint g_timeout_add_full (gint priority,
 guint interval_in_milliseconds,
 GSourceFunc timeout_function,
 gpointer data,
 GDestroyNotify destroy_function);

The first parameter of g_timeout_add_full() allows you to define the priority of the time-
out. In most cases, you will want to use G_PRIORITY_DEFAULT as the timeout function’s priority.
A list of the available priorities follows:

• G_PRIORITY_HIGH: This priority is not used anywhere within GLib or GTK+, so this type of
function will take precedence over all others. Therefore, it should not be used in most
cases, because CPU-intensive computations could cause the user interface to be tempo-
rarily unresponsive.

• G_PRIORITY_DEFAULT: This priority is used for most timeouts and X events in GDK. It
should not be used with idle functions, because they could disrupt more important
function calls needed by the application.

• G_PRIORITY_HIGH_IDLE: High priority idle functions use this. Redrawing widgets has a
slightly higher priority, so this will not interfere with or slow most GTK+ actions.

• G_PRIORITY_DEFAULT_IDLE: You should use this priority for most idle functions.

• G_PRIORITY_LOW: This is not used anywhere within GLib or GTK+, so everything will take
precedence over these actions.

The second parameter of g_timeout_add_full() defines the interval of time in millisec-
onds between every call to the function. In Listing 6-7, the timeout was called every tenth of a
second, or 100 milliseconds.

There is no reason to worry about the overlapping of timeout function calls, because the
next interval is calculated based on when the previous call returns. Therefore, if the timeout
function takes 3 seconds to return, that time will be added to the interval.

■Caution Timeout functions can be delayed by function calls with a higher priority and how long it takes to
run the callback function. Therefore, it cannot be relied on as a source of precise timing. If a timeout gets behind
in time, the next call will recalculate the interval. The function will not try to make up lost time from delays.

The third parameter in g_timeout_add_full() is the actual timeout function. Timeout
functions receive a gpointer and return a gboolean value. By returning FALSE from the timeout
function, it will be removed. The gpointer parameter is defined by the fourth parameter of
g_timeout_add_full().

The last parameter defines a destroy function that should be called when the idle function
is removed, which occurs when FALSE is returned from the idle function. It is safe to set this
parameter as NULL.

7931ch06.fm Page 182 Wednesday, March 7, 2007 8:52 PM

C H A P T E R 6 ■ U S I N G G L I B 183

Destroy functions defined in g_timeout_add_full() should not return any value, but do
receive a gpointer as their parameter. This gpointer is the same value originally received by the
timeout function, which gives you an opportunity to free it from memory if necessary.

Idle Functions
As mentioned in Chapter 1, GLib provides a special type of function called an idle function that
will be called when there are no events pending with a higher priority. They run over and over
when there is nothing else to do in the main loop.

Idle functions are added with g_idle_add() or g_idle_add_full(). The only difference
between these two functions is that the latter allows you to specify a destroy function and a pri-
ority instead of using the default of G_PRIORITY_DEFAULT_IDLE.

The first parameter of this function is the priority of the idle function. The idle function is
only called when there are no events pending with a higher priority. Therefore, the higher the
priority, the more often the function will be called. In almost all cases, idle functions should
have a priority of G_PRIORITY_HIGH_IDLE or G_PRIORITY_DEFAULT_IDLE.

guint g_idle_add_full (gint priority,
 GSourceFunc idle_function,
 gpointer data,
 GDestroyNotify destroy_function);

The second parameter in g_idle_add_full() is the actual idle function. Similar to time-
outs, idle functions receive a gpointer and return a gboolean value. By returning FALSE from the
idle function, it will be removed. The gpointer parameter is defined by the third parameter of
g_idle_add_full().

The last parameter defines a destroy function that will be called when the idle function is
removed, which occurs when FALSE is returned from the idle function. It is safe to set this
parameter as NULL.

Destroy functions defined in g_idle_add_full() should not return any value, but do
receive a gpointer as their parameter. This gpointer is the same value originally received by the
idle function, which gives you an opportunity to free it from memory.

While you can remove an idle function be returning FALSE from the callback, you can also
remove it from any place in your application with g_idle_remove_data(). This function accepts
the data that was used for the idle function’s callback and will return TRUE if it was successfully
removed.

gboolean g_idle_remove_by_data (gpointer data);

■Caution You should never call g_idle_remove_by_data() on an idle function within its callback.
This can cause corruption in the idle function list. Instead, return FALSE to remove the idle function within
the callback.

7931ch06.fm Page 183 Wednesday, March 7, 2007 8:52 PM

184 C H A P T E R 6 ■ U S I N G G L I B

Data Types
One of the most useful features provided by GLib is the vast collection of data types. This chap-
ter will introduce you to the most important data types, many of which are used in concurrence
with GTK+ widgets. You should pay special attention to singly and doubly linked lists, since
these are widely used throughout GTK+.

You will notice as you go through the rest of this section that each of the data types pre-
sented is used in a similar way. This uniform API reduces the number of design patterns you
need to learn. In doing this, many of the types were endowed with similar functions. However,
each of these types has specific advantages and disadvantages that you should pay close atten-
tion to when deciding what type to use.

Strings
Strings are nothing new to most programmers, but the GString structure can be very useful to
the C programmer. It provides an easy way to create strings that automatically grow in size
when text is added. This helps you avoid problems such as buffer overflows and other runtime
errors that plague standard C strings.

GLib strings also provide some memory management, easy access to the current state of
the C string, and useful functions for manipulating the string. This makes dealing with C strings
a lot easier for the programmer than doing so without GString.

The GString structure consists of three members: the C string that holds the current state
of the string, the length of str excluding the terminating byte, and the amount of memory cur-
rently allocated for the string. If the string needs to grow beyond this allocated length, GString
will automatically allocate more memory.

typedef struct
{
 gchar *str;
 gsize len;
 gsize allocated_len;
} GString;

■Caution You should not make a permanent reference to the str member of a GString. It may be moved
to a different location as text is added or inserted or removed from the string because of a change in the allo-
cated length of the string!

7931ch06.fm Page 184 Wednesday, March 7, 2007 8:52 PM

C H A P T E R 6 ■ U S I N G G L I B 185

There are three ways to create a new GString object. Calling g_string_new(), you can cre-
ate a new GString out of an initial string. GString will copy the content of initial_str, so you
can free the string afterwards if it is no longer needed. If you specify NULL as the initial string,
g_string_new() will automatically create an empty GString.

GString* g_string_new (const gchar *initial_str);
GString* g_string_new_len (const gchar *initial_str,
 gssize length);
GString* g_string_sized_new (gsize default_size);

Another way to create a new GString is with g_string_new_len(), which will initialize the
GString with length characters of initial_str or the whole string if length is -1. Another
advantage of using GString is that it can handle embedded null bytes.

The last GString initialization function is g_string_sized_new(), which will create a new
string with a length of default_size. You can use this function to allocate a large string so that
it will not have to be reallocated very often.

One very useful function is g_string_printf(), which allows you to use a sprintf()-style
format to construct the content of a GString. The only difference is that the GString will auto-
matically expand if necessary. Any previous contents contained by the GString buffer are
destroyed.

void g_string_printf (GString *string,
 const gchar *format,
 ...);

You can also use g_string_append_printf(), which will append the formatted string to the
end of the GString, leaving its current contents unchanged. There are a large number of func-
tions for appending text to a GString, shown in the following example. These functions allow
you to append the whole content of val, the first len characters of val, a single character, or a
single UCS-4 character respectively.

GString* g_string_append (GString *string,
 const gchar *val);
GString* g_string_append_len (GString *string,
 const gchar *str,
 gssize len);
GString* g_string_append_c (GString *string,
 gchar c);
GString* g_string_append_unichar (GString *string,
 gunichar wc);

7931ch06.fm Page 185 Wednesday, March 7, 2007 8:52 PM

186 C H A P T E R 6 ■ U S I N G G L I B

In addition to these four functions, there are versions of these functions for prepending
and inserting into a GString. For example, g_string_prepend_c() will add a character to the
beginning of a GString, and g_string_insert() will insert a string into a specified position in
the GString. For more information on these functions, you should visit the “Strings” section
of the GLib API documentation.

It is useful to be able to insert text into a GString, but it is just as important to be able to
remove text. You can remove a number of characters from a GString, starting at a given posi-
tion by calling g_string_erase(). This function will shift the end of the string to fill the void,
place a terminating character at the new end position, and update the length of the string.

GString* g_string_erase (GString *string,
 gssize pos,
 gssize len);

When you are finished with the GString, you should free the memory with g_string_free().
If you set free_segment to TRUE, it will also free the C string and return NULL. Otherwise, it will
return the C string, which you must later free yourself.

gchar* g_string_free (GString *string,
 gboolean free_segment);

You should note that, while GString does provide a number of useful functions, you would
still have to use the standard string functions provided by GLib to search through a string.
GString implements functions that are not already available on your system to avoid reinvent-
ing the wheel. Therefore, you will still need to be comfortable with interacting with C strings
directly.

Linked Lists
You have already seen instances of GLib linked lists in examples from past chapters. There are
two types of linked lists provided by GLib: singly linked and doubly linked lists. GLib provides
functions for these two data types with the prefixes of g_slist_foo() and g_list_foo()
respectively.

Singly linked lists (GSList) are the simplest kind of linked list, where each node has a piece
of data and a pointer to the next node. A pointer to NULL designates the last node. The GSList
structure, which follows, represents one node within the list.

typedef struct
{
 gpointer data;
 GSList *next;
} GSList;

Doubly linked lists (GList) provide the same functionality as singly linked lists except a
pointer is provided that points to the previous element in the list. This allows them to be tra-
versed in either direction. A previous pointer to NULL designates the first element in the list.

7931ch06.fm Page 186 Wednesday, March 7, 2007 8:52 PM

C H A P T E R 6 ■ U S I N G G L I B 187

typedef struct
{
 gpointer data;
 GList *next;
 GList *prev;
} GList;

Except for the ability to traverse a doubly linked list in reverse, both types of lists provide the
same functionality. Therefore, while the rest of the information in this section will be given about
doubly linked lists, it applies to singly linked lists as long as you first change the function prefix.

In addition, most of the functions in this section return a new GList pointer. This value
should be stored, because the location of the beginning of the list may have changed because
of some action performed by the function.

To add a new element to the beginning of the list, you can use g_list_prepend(). It is also
possible to append an element with g_list_append(), but this function should not be used,
because it has to traverse the list to find where to insert the element. Instead, you should
prepend all of the elements and then call g_list_reverse() to reverse the order of the list.

GList* g_list_prepend (GList *list,
 gointer data);

In addition to appending and prepending new nodes, you can insert a node at an arbitrary
position of the list with g_list_insert(). If the position is negative or it is larger than the
number of nodes in the list, it will act as g_list_append(). You can also insert a new node
immediately before another with g_list_insert_before(). You can get the length of the list
with g_list_length(), which returns an unsigned integer.

GList* g_list_insert (GList *list,
 gpointer data,
 gint position);

It is possible to remove an element from the list with g_list_remove(). The first node
encountered that contains the same data will be removed, unless a matching node is not found.

GList* g_list_remove (GList *list,
 gconstgpointer data);

If you would like to remove a node without freeing its data, you should call
g_list_remove_link(), which accepts a pointer to the element you want to remove. The
previous and next pointers are set to NULL, so the node becomes a list of one element.

While g_list_remove() will only remove the first occurrence of a node with matching data,
g_list_remove_all() can be used to remove every node that has a matching data member. If
no matching node is found, nothing will be done to the list.

When you are finished with a linked lists, you should free it with g_list_free(). You
should note that only the linked list is freed. Therefore, you will need to make sure to free any
dynamically allocated data before you call this function, or it will cause a memory leak.

void g_list_free (GList *list);

7931ch06.fm Page 187 Wednesday, March 7, 2007 8:52 PM

188 C H A P T E R 6 ■ U S I N G G L I B

Sorting a linked list is very easy because of g_list_sort(). You need only to specify a
GCompareFunc. Comparison functions receive two constant pointers (gconstpointer), which
refer to the two nodes currently being compared. You need to compare the two, returning a
negative number if the first should be sorted before the second, a positive number to sort the
second before the first, and zero if they are equal.

GList* g_list_sort (GList *list,
 GCompareFunc compare_func);

There are two functions provided for searching through a linked list. The default function
is g_list_find(), which will find the first element in the list with the given data. If a matching
node was not found, then this function returns NULL.

GList* g_list_find (GList *list,
 gconstpointer data);

It is also possible to specify your own find function through g_list_find_custom() if each
item contains a complex data type. This method uses the same format of comparison function
as g_list_sort() and will return the corresponding GList node when you return 0 from the
GCompareFunc. This function will also return NULL if no match is found.

One big problem with linked lists has already been alluded to—many actions are very inef-
ficient when dealing with large lists, including sorting. The problem is that many functions
require a traversal of the linked list, which can take a long time when there are many nodes in
the list. Therefore, they should only be used when you know there will not be a lot of nodes nec-
essary, which is why they are used for radio groups.

However, it is possible to use linked lists efficiently if you know how to avoid traversing the
list as much as possible. One possible solution is to save your last list position, or those that are
going to be commonly used. This can reduce the amount of time it takes to find certain
elements.

It is impossible to completely avoid traversing a linked list. If you need to perform an oper-
ation on every element in the list, you should use g_list_foreach(), which will call your
instance of GFunc for every node in the list.

void g_list_foreach (GList *list,
 GFunc func,
 gpointer data);

The GFunc prototype accepts the data member of the node and the data parameter in
g_list_foreach(). By avoiding traversing linked lists many times, they can be effectively uti-
lized for many different applications.

Balanced Binary Trees
A balanced binary tree is a tree that tries to automatically keep its height as low as possible. By
doing this, the distance between any two elements is minimized. This keeps average times for
lookup, traversal, insertion, and removal at a minimum.

Unlike linked lists and strings, the GTree structure does not have any public members.
Instead, you should use the provided functions for performing operations on the tree. The
functions will automatically handle balancing the binary tree if you perform an operation that
alters the tree.

7931ch06.fm Page 188 Wednesday, March 7, 2007 8:52 PM

C H A P T E R 6 ■ U S I N G G L I B 189

Each node in a binary tree consists of a key and a value. The key is used to calculate the
position of the node within the tree and the value to hold the associated data. Each node can
also have a maximum of two children. If a node does not have any children, it is called a leaf.

There are three functions provided for creating a new GTree. The simplest function is
g_tree_new(), which will create a new empty tree with the specified comparison function. This
function will be used to compare keys when inserting an element into the tree or reordering
nodes. This function returns a negative integer if the first element is less than the second, a
positive integer if the second element is less than the first, and zero if they are the same.

GTree* g_tree_new (GCompareFunc key_compare_func);

If you need to send data to the comparison function, you can create the binary tree with
g_tree_new_with_data(). The key_compare_data pointer will be sent as a third parameter to the
comparison function, defined by GCompareDataFunc.

GTree* g_tree_new_with_data (GCompareDataFunc key_compare_func,
 gpointer key_compare_data);

Furthermore, you can create a new tree with g_tree_new_full(), which accepts two addi-
tional parameters. Each is a GDestroyNotify function that will be called to destroy a key or
value when necessary. You should specify these functions if you are using dynamically allo-
cated keys and/or values. Otherwise, the memory will be lost when the tree is destroyed.

GTree* g_tree_new_full (GCompareDataFunc key_compare_func,
 gpointer key_compare_data,
 GDestroyNotify key_destroy_func,
 GDestroyNotify value_destroy_func);

Since GTree automatically calculates the position of new key-value pairs, GLib only pro-
vides two functions for adding new nodes into a tree including g_tree_insert(). If they key
already exists within the tree, the old data will be freed with the destroy function if provided
and replaced with the new value. The tree is then automatically balanced after the new node is
inserted.

void g_tree_insert (GTree *tree,
 gpointer key,
 gpointer value);

You can also use g_tree_replace() to add a node to a binary tree. The only difference
between this function and g_tree_insert() is that if the key already exists within the tree, the
key itself will also be replaced. If the key does not already exist, it will be inserted into a new
position in the tree, and the tree will automatically be balanced.

At times, you may need to know basic information about the structure of the tree. For
example, you can get the number of nodes with g_tree_nnodes() and the current height of the
tree with g_tree_height(). With these two pieces of information, you should be able to figure
out the general structure of the tree.

To retrieve the value associated with a key in a binary tree, you need to call g_tree_lookup(). If
the key is found, the associated value will be returned. Otherwise, this function will return NULL.

gpointer g_tree_lookup (GTree *tree,
 gconstpointer key);

7931ch06.fm Page 189 Wednesday, March 7, 2007 8:52 PM

190 C H A P T E R 6 ■ U S I N G G L I B

Alternatively, you can use g_tree_lookup_extended(), which will also return pointers to
the original key and its associated value by reference. This function will return TRUE if the key
was found.

This brings us to one big advantage of binary trees. Since the tree is automatically balanced,
finding a key is very fast, even if there are a large number of elements in the list. In the worst case,
it will take the number of comparisons equal to the height of the tree to find the node.

If you need to perform some operation on every node in a binary tree, you need to specify a
traversal function to g_tree_foreach(). The GTraverseFunc prototype accepts three gpointer
parameters corresponding to a key, its associated value, and the user data from g_tree_foreach().
In order to stop the traversal, you should return TRUE from the function. The nodes of the tree are
traversed in sorted order.

void g_tree_foreach (GTree *tree,
 GTraverseFunc func,
 gpointer data);

As with linked lists, it is possible to search through a binary tree with g_tree_search().
However, there is a major advantage of using the binary tree over the linked list when you need
to search.

gpointer g_tree_search (GTree *tree,
 GCompareFunc search_func,
 gconstpointer value);

When you search for an element in a linked list, every element will be visited until the
match is found. If the match is the last node in the list, the value will be compared with every
element in the list.

Since balanced binary trees in GList are automatically sorted, the maximum number of
comparisons will be equal to the height of the tree if the match is a leaf that is as far from the
root node as possible. Even if your tree has over 32,000 nodes, there will only be a maximum of
16 comparisons! This is why balanced binary trees should be used if you need to be able to
quickly search through the data structure for a match.

The disadvantage of using binary trees is that you must know the key value of a node in
order to directly reference an element. If you need to get instant access to a specific node, you
should use a data structure that uses index referencing.

If you need to remove an item from the list, you should call g_tree_remove(). This function
will return TRUE if the key was found in the list. The tree will be rebalanced if a node was
removed.

gboolean g_tree_remove (GTree *tree,
 gconstpointer key);

After you are finished with the tree, you should call g_tree_destroy(). This function will
destroy the tree along with all of its elements. There is no need to free any of the keys or values
after this is called.

7931ch06.fm Page 190 Wednesday, March 7, 2007 8:52 PM

C H A P T E R 6 ■ U S I N G G L I B 191

N-ary Trees
The other type of tree data type provided by GLib is the n-ary tree, which allows a node to have
any number of children. This data type is not balanced automatically; you perform manage-
ment of its structure.

N-ary trees are actually a collection of GNode structures. Each structure contains five
objects. The first, data, is a pointer to the actual piece data stored by the node. As with most of
the data types provided by GLib, you can store any type of pointer data type.

typedef struct
{
 gpointer data;
 GNode *next;
 GNode *prev;
 GNode *parent;
 GNode *children;
} GNode;

The other members point to other nodes within the tree. These include the next node on
the same level, the previous node on the same level, the parent node, and the first child. To
help you understand this relationship, Figure 6-1 shows a simple association.

Figure 6-1. GNode relationships

There is one root element in the figure, which has three children. The first child also has
two children of its own. The root node points only to the first child. To access its other children,
each child points to the next and previous child. Each child will also point to its parent node.

You should notice that there is no pointer between the root child and its second and third
children, because the parent node only points to its first child. You will need to use the next and
prev pointer to access the rest of the children of a node.

7931ch06.fm Page 191 Wednesday, March 7, 2007 8:52 PM

192 C H A P T E R 6 ■ U S I N G G L I B

A new n-ary tree is created with g_node_new(), which creates a tree with a single root node.
Initially, all of the GNode pointers will be set to NULL for the new tree. You will need to use the
function to create every node for the tree.

GNode* g_node_new (gpointer data);

After you create the nodes, you can use the functions shown in Table 6-5 to construct the
tree with the desired structure.

Table 6-5. N-ary Tree Construction Functions

The structure of an n-ary tree can become quite complex. Therefore, GLib provides
g_node_traverse(), which allows you to visit the nodes of a tree and call a function for each node.

void g_node_traverse (GNode *root,
 GTraverseType order,
 GTraverseFlags flags,
 gint max_depth,
 GNodeTraverseFunc func,
 gpointer data);

Function Description

g_node_append() Insert a node as the last child of the parent node. This is the
same thing as calling g_node_insert_before() with a sibling
node of NULL.

g_node_append_data() This is the same thing as calling g_node_append(), except a new
node is created with the specified data.

g_node_insert() Insert a node as the child of the parent node at the specified
position. If the position is -1, the node will be appended as the
last child.

g_node_insert_after() Insert a node as the child of the parent node immediately after
a sibling. If the sibling is set to NULL, the node will be prepended
as the first child of the parent.

g_node_insert_before() Insert a node as the child of the parent node immediately
before a sibling. If the sibling is set to NULL, the node will be
appended as the last child of the parent.

g_node_insert_data() This is the same thing as calling g_node_insert(), except a new
node is created with the specified data.

g_node_insert_data_before() This is the same thing as calling g_node_insert_before(),
except a new node is created with the specified data.

g_node_prepend() Insert a node as the first child of the parent node.

g_node_prepend_data() This is the same thing as calling g_node_prepend(), except a new
node is created with the specified data.

7931ch06.fm Page 192 Wednesday, March 7, 2007 8:52 PM

C H A P T E R 6 ■ U S I N G G L I B 193

When you call g_node_traverse(), you first need to specify the root node to begin search-
ing from. This node does not necessarily have to be the root node of the tree. You next need to
specify what type of traversal will occur, defined by the GTraverseType enumeration shown in
the following list:

• G_IN_ORDER: Visit the leftmost child of the node first, moving from left to right. This is the
order that nodes should be visited if you want to traverse the tree in sorted order after
using a comparison function.

• G_PRE_ORDER: Visit the root node before visiting the left and right subtrees. The subtrees
are then visited from left to right in that order.

• G_POST_ORDER: Visit the children of a node followed by the root node itself. This will visit
all of the nodes, ending at the root node.

• G_LEVEL_ORDER: Visit a node and then all of its children, followed by its grandchildren,
and so on. This traversal type is much more inefficient than the others, since it will not
follow a natural recursive approach to traversal.

The next parameter in g_node_traverse() specifies what types of child nodes will be vis-
ited, as defined by the following GTraverseFlags enumeration:

• G_TRAVERSE_LEAVES: Visit all of the leaves, which are the nodes with no children. This is
identical to the G_TRAVERSE_LEAFS flag.

• G_TRAVERSE_NON_LEAVES: Visit all of the nodes that have children. This is identical to
the G_TRAVERSE_NON_LEAFS flag.

• G_TRAVERSE_ALL: Traverse all of the nodes. This is identical to the bitwise mask of
(G_TRAVERSE_LEAVES | G_TRAVERSE_NON_LEAVES).

• G_TRAVERSE_MASK: Include all of the traversal flags.

The fourth parameter of g_node_traverse() gives the maximum depth of children from
the root node that will be visited. For example, a depth of three would only visit the root node,
its children, and its grandchildren. You can set the maximum depth to -1 to visit all children.

You then need to specify a GNodeTraverseFunc callback that will be run for every traversed
node. This function accepts a GNode corresponding to the current node and the pointer data
parameter from g_node_traverse(). By returning TRUE from the traversal function, the traversal
will stop. If you return FALSE, the traversal will continue if a node has not yet been visited.

As with binary trees, after you are finished with the n-ary tree, you should call
g_node_destroy() on the root node. This will recursively destroy all of the elements in the tree,
including every child of a child and so on.

g_node_destroy (node_root);

GLib provides a number of other functions for interacting with trees of GNode objects. If you
have a need for this object, you should reference the API documentation on the GNode data type.

7931ch06.fm Page 193 Wednesday, March 7, 2007 8:52 PM

194 C H A P T E R 6 ■ U S I N G G L I B

Arrays
There are three types of array data types provided by GLib, which are used to store pointers,
bytes, or arbitrary types of data. There are multiple advantages of using arrays in GLib. First,
they provide very fast memory access, because direct indexing is supported. This is because of
the fact that the GArray structure holds data in an internal array.

Another advantage of GLib array types is that they will automatically expand in size if a
new element will not fit. However, you do need to keep in mind that every time you change the
number of elements in the array, it can call g_memmove() and memcpy(), which can be expensive
if you do this too often. Therefore, GLib arrays are not optimal for applications that will need to
constantly add and remove elements.

GArray

Each of the three types of arrays provided by GLib has similar APIs. Therefore, only GArray will
be covered in detail. For more information on GPtrArray and GByteArray, you should supple-
ment the instructions given in this section with the API documentation of each data type.

The GArray structure contains two public members: a pointer to the element data stored
by the array and the current length of the array in elements. You should note that, as you
change change the number of elements stored by the array, data might not stay in a constant
position. Therefore, you should not make a permanent reference to this pointer. Also, every
element in the array must always be the same length.

typedef struct
{
 gchar *data;
 guint len;
} GArray;

GLib provides two functions for creating a new GArray. g_array_sized_new() allows you to
create an array with an initial number of elements (reserved_size) already allocated. This
allows you to avoid reallocating the array too many times.

GArray* g_array_sized_new (gboolean zero_terminated,
 gboolean set_to_zero,
 guint element_size
 guint reserved_size);

If you set zero_terminated to TRUE, one extra element will be added to the array where
every bit is set to zero. Setting set_to_zero to TRUE will clear all bits in the array to zero when
allocated. You also need to specify the size that every element will be allocated. Every element
must always have a size that is less than or equal to element_size.

Alternatively, you can create a new GArray with g_array_new(), which simply calls
g_array_sized_new() with an initial allocated size of zero elements. You should only use this
initialization function if the array will not be adding too many elements to the array, because
adding a large number of elements will cause it to be reallocated many times.

GArray* g_array_new (gboolean zero_terminated,
 gboolean set_to_zero,
 guint element_size);

7931ch06.fm Page 194 Wednesday, March 7, 2007 8:52 PM

C H A P T E R 6 ■ U S I N G G L I B 195

In order to append multiple new elements to a GArray, you should call g_array_append_vals().
This function will add len number of elements out of data to the end of the array. If you need to
append one element to the array, you can use g_array_append_val(). It is defined by the following
macro, so there is no difference between calling this function and g_array_append_vals() with a
length of 1.

GArray* g_array_append_vals (GArray *array,
 gconstpointer data,
 guint len);

■Caution You cannot add literal values such as 13 to a GArray with g_array_append_val(), because
it references the value parameter. You must always use variables when adding elements to an array!

In addition to appending values, GLib provides function for prepending and inserting a
single value or multiple values in the same way as g_array_append_val() and
g_array_append_vals().

#define g_array_append_val(a,v) g_array_append_vals (a, &(v), 1)

You can remove an element with the given index with g_array_remove_index(). This
function will then shift all of the elements that are located after the removed element one place
forward. You should then store the new location of the GArray object.

GArray* g_array_remove_index (GArray *array,
 guint index);

You can also use g_array_remove_index_fast(), which will shift the last element into the
position of the removed element. This is considerably faster than g_array_remove_index(), but
it will not preserve the order of the array. Therefore, it may not always be the optimal solution.

If you need to remove a block of elements in one call, you should use g_array_remove_range().
This function will remove length elements beginning at index and shift the following elements into
the empty spaces. You should use this function when removing elements if possible, because it will
require far fewer memory shifts than g_array_remove_index().

GArray* g_array_remove_range (GArray *array,
 guint index);
 guint length);

When using GArray, you will most likely need to access elements by their index. One
advantage of this data structure is that indexing is performed very quickly, since elements are
evenly sized. You can index an element with g_array_index(), which accepts the GArray object,
the data type that will be used to cast the return value, and the element index. The returned
value will automatically be cast to the data type you provided to the second parameter.

As with other data types in GLib, you are able to sort a GArray with g_array_sort(). This
function accepts a standard GCompareFunc callback that is used to compare two elements. In
addition, you can use g_array_sort_data(), which allows you to send an additional pointer
data parameter to the comparison function.

7931ch06.fm Page 195 Wednesday, March 7, 2007 8:52 PM

196 C H A P T E R 6 ■ U S I N G G L I B

void g_array_sort (GArray *array,
 GCompareFunc compare_func);

When you are finished with the GArray object, you should free it with g_array_free(). As
with other data structures, if the array contains dynamically allocated memory, you should free
it before calling this function.

gchar* g_array_free (GArray *array,
 gboolean free_segment);

If you set free_segment to true, the element memory will also be freed and the function will
return NULL. Otherwise, the function will return the internal element array. This allows you to
continue to use the array elsewhere, even after the GArray object is freed.

Pointer Arrays

GPtrArray is very similar to GArray in the API except the structure stores an array of pointers.
This means that it does not matter what type of data is held by each element in the array; they
do not have to be evenly sized. The GPtrArray structure holds an internal array of pointers and
the current length of the array.

typedef struct
{
 gpointer *pdata;
 guint len;
} GPtrArray;

Only one function is provided for inserting an element into a GPtrArray, g_ptr_array_add().
This function appends the array element to the end of the list.

Removing elements is also very similar except two additional functions are provided:
g_ptr_array_remove() and g_ptr_array_remove_fast(). Instead of removing an element by
its index, each of these functions removes an element that matches the given data. TRUE is
returned if an element was successfully found and removed.

gboolean g_ptr_array_remove (GPtrArray *array,
 gpointer data);

GPtrArray provides an additional function, g_ptr_array_foreach(), which will call
foreach_func() for every element within the array. This function accepts the pointer
associated with the current element and the g_ptr_array_foreach() user data parameter.

void g_ptr_array_foreach (GPtrArray *array,
 GFunc foreach_func,
 gpointer data);

When you are finished with a pointer array, you should free it with g_ptr_array_free().
This function also gives you the option of whether to free the internal element array or to
return it.

7931ch06.fm Page 196 Wednesday, March 7, 2007 8:52 PM

C H A P T E R 6 ■ U S I N G G L I B 197

Byte Arrays

Byte arrays are simply a type of GArray that stores a guint8. Functions are provided for
appending and prepending a single element. While, unlike GArray, GByteArray does not
provide a function for inserting an element, it does allow you to append and prepend new
elements.

typedef struct
{
 guint8 *data;
 guint len;
} GByteArray;

With the exception of the absence of insert functions and those that allow you to prepend
or append multiple elements, GByteArray is exactly the same as GArray. In fact, GByteArray uses
the GArray functions internally for its implementation.

When you are finished using a byte array, you should free it with g_byte_array_free(). You
have the option of whether to free the internal byte array or for it to be returned by the
function. If you specify for it to be freed, g_byte_array_free() will return NULL.

Hash Tables
A hash table is a data type that is optimized so that its elements can be found very quickly. Data
is stored as a number of key-value pairs. Neither the key nor the value is actually stored by
GHashTable in GLib, so the pair must exist for the lifetime of the hash table itself.

That means you should not use temporary strings such as those returned from GTK+ wid-
gets. If you need to use a temporary string, you should call g_strdup() to make a permanent
copy of the string.

Hash tables are useful when you are storing a large number of elements, because they pro-
vide constant lookup time on average. This average is independent of the number of elements.
The lookup time can be longer in some cases, but that is rare.

New hash tables are created in GLib with g_hash_table_new(), which accepts two
functions. The hash function is used to create a new hash value out of a key, which can be NULL.
The second function is used to check whether two keys are equal to each other.

GHashTable* g_hash_table_new (GHashFunc hash_func,
 GEqualFunc key_equal_func);

Hash functions are defined by the function prototype for GHashFunc, shown previously.
It accepts the key value and returns the corresponding hash value. You are free to write your
own hash functions, but GLib already provides three for commonly used values. These are
g_direct_hash(), g_int_hash(), and g_str_hash(), which can be used when the key is a
gpointer, gint, and a string respectively.

guint (*GHashFunc) (gconstpointer key);

7931ch06.fm Page 197 Wednesday, March 7, 2007 8:52 PM

198 C H A P T E R 6 ■ U S I N G G L I B

The key comparison function is defined by the following GEqualFunc prototype. These
functions should return TRUE if a and b are equal and FALSE if they are not. GLib already
provides three functions: g_direct_equal(), g_int_equal(), and g_str_equal(), which act
as comparison functions for gpointer, gint, and string type keys.

gboolean (*GEqualFunc) (gconstpointer a,
 gconstpointer b);

In addition to g_hash_table_new(), GLib provides g_hash_table_new_full(), which allows
you to supply destroy callback functions for keys and values when they are removed from the
hash table.

There are two ways to insert a new key-value pair into a hash table. The first is by calling
g_hash_table_insert(). If the key already exists within the table, value will replace its current
value. You can also call g_hash_table_replace(), which provides the same functionality.
However, if the key already exists within the table, both the key and value objects will be
replaced.

void g_hash_table_insert (GHashTable *hash_table,
 gpointer key,
 gpointer value);

Removing a key-value pair from a hash table is done with g_hash_table_remove(). If you
supplied destroy functions for the key and value, they will be called at this time. Otherwise, you
will have to make sure to destroy any dynamically allocated data yourself. This function will
return TRUE if the key was successfully removed. You can also remove every key-value pair from
a hash table with g_hash_table_remove_all().

gboolean g_hash_table_remove (GHashTable *hash_table,
 gconstpointer key);

As previously stated, one advantage of hash tables is that looking up a value occurs in
constant time, regardless of the number of elements in the hash table. You can search for a
value corresponding to the key given to g_hash_table_lookup(). The associated value will be
returned, or NULL will be returned if the key could not be found.

gpointer g_hash_table_lookup (GHashTable *hash_table,
 gconstpointer key);

Additionally, you can call g_hash_table_lookup_extended(). This function returns TRUE if
the key was found within the GHashTable. It will then set the original key and the value, which
are two additional parameters sent to the function.

When you are finished with the hash table, it should be freed with g_hash_table_destroy().
If you supplied destroy functions for the keys and values, they will be called on every object at
this time.

void g_hash_table_destroy (GHashTable *hash_table);

7931ch06.fm Page 198 Wednesday, March 7, 2007 8:52 PM

C H A P T E R 6 ■ U S I N G G L I B 199

One thing that makes this function unique is that, in addition to destroying all keys
and values, it decrements its reference count by one. It is possible to increase and decrease
the reference count of a hash table with g_hash_table_ref() and g_hash_table_unref()
respectively. So, the hash table may still exist as an object if the reference count did not
reach zero.

Quarks
A quark is a two-way association between a 32-bit integer and a string. This means that you can
access the string by using the integer and vice versa. Quarks are calculated at runtime and are
available globally throughout the application. You can set a new quark at any point in your pro-
gram, and it will be available in any other aspect of the application.

Internally, quarks are implemented as a hash table and an array of strings. The quark itself
is a 32-bit integer that is used as the index of the array, which is used to look up the associated
string. The string is used to find the quark in the hash table. This means that all strings and inte-
gers must be unique.

typedef guint32 GQuark;

To get the GQuark of the given string, use g_quark_from_string(). If the string is not already
associated with a GQuark, using a copy of the string will create one. If you are sure that the string
will always exist, you can use g_quark_from_string_static(), which will use the string itself
instead of a copy.

GQuark g_quark_from_string (const gchar *string);

To test whether a string already has an associated quark, you can use g_quark_try_string().
This function accepts a string and returns the associated GQuark. If the string has not been added,
it will return 0.

If a string already exists within the global table, you can retrieve it from the quark with
g_quark_to_string(). If the quark does not already exist, then this function will return NULL.

const gchar* g_quark_to_string (GQuark quark);

Keyed Data Lists
A keyed data list is a special type of linked list that uses quarks for indexing. GData does not have
any public members. Its private members include a quark, a data pointer, an optional destroy
function to call when the node is removed, and a pointer to the next node.

Data lists use the quark relationship to store another arbitrary data type, which can be
retrieved by specifying either the string or the quark. Keyed data lists are initialized as an empty
list with g_datalist_init(). This function will fail if the GData object is not NULL.

void g_datalist_init (GData **datalist);

7931ch06.fm Page 199 Wednesday, March 7, 2007 8:52 PM

200 C H A P T E R 6 ■ U S I N G G L I B

GLib provides a large number of functions for adding and removing elements from a data
list, but most of them are simply defined as calls to g_datalist_id_set_data_full(). If the
key_id already exists within the data list, then the previous data will be removed and replaced
by the new pointer.

void g_datalist_id_set_data_full (GData **datalist,
 GQuark key_id,
 gpointer data,
 GDestroyNotify destroy_func);

This function also allows you to specify a GDestroyNotify callback function that will be
called when the node is removed. GDestroyNotify callback functions accept a pointer to the
data member of the node.

You can also use g_datalist_id_set_data_full() to remove an element from the data list
by specifying NULL to the data parameter. A number of other functions are provided that wrap
the functionality provided by g_datalist_id_set_data_full() with multiple different
prototypes.

When you remove an item with g_datalist_id_set_data_full(), the destroy-notify call-
back will be run if it was set. However, if you would like to prevent this, you can remove a node
with g_datalist_id_remove_no_notify(). This function will the node and return the data
stored that was specified at that location.

gpointer g_datalist_id_remove_no_notify (GData **datalist,
 GQuark key_id);

If you need to traverse through all of the nodes in a data list, you should use
g_datalist_foreach(). The GDataForeachFunc prototype accepts the quark and element
data of one node along with the data pointer specified in g_datalist_foreach().

void g_datalist_foreach (GData **datalist,
 GDataForeachFunc func,
 gpointer user_data);

After you are finished with the keyed data list, you need to clear all of its elements with
g_datalist_clear(). This will make the list ready for the next use. There is no need to call a
destroy function on the data list itself, since it will now take up no memory.

void g_datalist_clear (GData **datalist);

When the elements are being removed, a destroy function will be called on the data
parameter if it was specified.

7931ch06.fm Page 200 Wednesday, March 7, 2007 8:52 PM

C H A P T E R 6 ■ U S I N G G L I B 201

Input-Output Channels
The GIOChannel structure allows you to handle files, pipes, and sockets. The following sections
will cover how to use the structure with files and pipes. You should only use the method
covered in the pipes section when working on a UNIX-like operating system, because file
descriptor and socket domains overlap in Windows.

You will be given an alternative for spawning processes in the “Spawning Processes” part
of this section, which will cover both synchronous and asynchronous processes.

GIOChannels and Files
One way to create a new input-output (IO) channel is to use g_io_channel_new_file(). This
method removes the need for UNIX file descriptors, so it can be safely used on non-UNIX oper-
ating systems.

This function opens a new file or pipe as a GIOChannel. Listing 6-8 uses g_io_channel_
new_file() function twice. First, a file is created with some initial text. A second channel then
opens the file, reads its contents, and prints the text to standard output. Contrast this with
Listing 6-5, which implements the same functionality with file utility functions.

Listing 6-8. Using IO Channels for Files (files2.c)

#include <glib.h>

static void handle_error (GError*);

int main (int argc,
 char *argv[])
{
 gchar *filename, *content;
 GIOChannel *write, *read;
 GError *error = NULL;
 gsize bytes;

 /* Build a filename in the user's home directory. */
 filename = g_build_filename (g_get_home_dir(), "temp", NULL);

 /* Set the contents of the given file and report any errors. */
 write = g_io_channel_new_file (filename, "w", &error);
 handle_error (error);
 g_io_channel_write_chars (write, "Hello World!", -1, &bytes, NULL);
 g_io_channel_close (write);

7931ch06.fm Page 201 Wednesday, March 7, 2007 8:52 PM

202 C H A P T E R 6 ■ U S I N G G L I B

 if (!g_file_test (filename, G_FILE_TEST_EXISTS))
 g_error ("Error: File does not exist!\n");

 /* Get the contents of the given file and report any errors. */
 read = g_io_channel_new_file (filename, "r", &error);
 handle_error (error);
 g_io_channel_read_to_end (read, &content, &bytes, NULL);
 g_print ("%s\n", content);

 g_io_channel_close (read);
 g_free (content);
 g_free (filename);

 return 0;
}

static void
handle_error (GError *error)
{
 if (error != NULL)
 {
 g_print (error->message);
 g_clear_error (&error);
 }
}

The second parameter of g_io_channel_new_file() specifies the mode. This mode is a
string in the same format as specified to fopen(). Table 6-6 shows the possible modes that
g_io_channel_new_file() accepts. Files opened with g_io_channel_new_file() can have an
error under the domain G_FILE_ERROR.

Table 6-6. GIOChannel File Modes

Mode Description

r Open the file for reading only and place the pointer at the beginning of the file.

w Open the file for writing only and place the pointer at the beginning of the file. The file is
also erased, so its length is zero characters, or created if it does not exist.

a Open the file for writing only and place the pointer at the end of the file so that new text
is appended. If the file does not exist, attempt to create it.

r+ Open the file for reading and writing and place the pointer at the beginning of the file.

w+ Open the file for reading and writing and place the pointer at the beginning of the file.
The file is also erased, so its length is zero characters, or created if it does not exist.

a+ Open the file for reading and writing and place the pointer at the end of the file so that
new text is appended. If the file does not exist, attempt to create it.

7931ch06.fm Page 202 Wednesday, March 7, 2007 8:52 PM

C H A P T E R 6 ■ U S I N G G L I B 203

If you specified w, a, r+, w+, or a+ as the mode, you can use g_io_channel_write_chars() to
write text to the file.

GIOStatus g_io_channel_write_chars (GIOChannel *channel,
 const gchar *text,
 gssize size_of_buffer,
 gsize *bytes_written,
 GError **error);

This function takes five parameters: the opened IO channel, text to write or append to the
file, the size of the text, an integer to store the number of bytes written, and a GError structure.
The size of the buffer can be set to -1 if the text string is NULL-terminated. The number of bytes
written to the file is set by the function itself.

After you are finished with an IO channel, it needs to be closed with g_io_channel_shutdown().
By setting the second parameter to TRUE, any pending data will be flushed. Otherwise, GLib will
continue the current action and close when it is completed. The third parameter will catch any
errors of type GIOChannelError that occur.

GIOStatus g_io_channel_shutdown (GIOChannel *channel,
 gboolean flush,
 GError **error);

GIOChannel provides functions for reading a single character, a whole line, or a whole file.
When dealing with files, g_io_channel_read_to_end() can be used to read the entire contents
of the file. This function also sets the length of the text that is returned. Errors can be of type
GIOChannelError or GConvertError.

GIOStatus g_io_channel_read_to_end (GIOChannel *channel,
 gchar **text,
 gsize *length,
 GError **error);

GIOChannels and Pipes
Since most objects on UNIX systems are treated as files, it is possible to use the same method
covered in the previous section to open pipes. Pipes allow communication between applica-
tions. The only difference is that you would need to add watches so that you will know when
data is ready to be read from or written to the pipe.

■Note While this book does provide an introduction to UNIX pipes, this is by no means an in-depth tutorial.
After reading this section, you are encouraged to learn more about pipes from the C programming language
tutorial of your choice.

7931ch06.fm Page 203 Wednesday, March 7, 2007 8:52 PM

204 C H A P T E R 6 ■ U S I N G G L I B

Listing 6-9 uses UNIX’s method of pipe creation in conjunction with the functions pro-
vided by the GIOChannel structure. To do this, watches are created.

A watch is like a signal, because it waits for an event to occur by integrating itself into
GLib’s main loop. It then invokes a callback function. Types of watch events include when
the pipe has data that is ready to read and when it can accept data to be written.

Listing 6-9 creates a parent and child process, both with a GtkEntry widget. When you type
into either entry widget, the new content is written to the pipe. The other entry is then set to
have the same content as the first.

INTERPROCESS COMMUNICATION USING PIPES

A process in UNIX is, fundamentally, a single, running application that has its own stack, memory pages, and
file descriptors table. When the process is run, it is given a unique identifier called a process ID (pid). New pro-
cesses can be created with a wide array of functions, but they all make calls to the fork() command.

A process is not a program, because multiple processes can be run as an instance of the same applica-
tion at the same time. For example, you can open up multiple instances of your web browser at the same time.

Forking turns a single process into two identical processes: the parent and the child. Various UNIX com-
mands can then be used to run another application from the forked process, although in our example, we want
the same application to be created twice.

switch (fork())
{
 case -1:
 g_error ("Error: The fork() failed!");
 exit (1);
 case 0:
 g_message ("We are currently running the child process!");
 exit (0);
 default:
 gint status_of_child;
 wait (&status_of_child);
}

After a process has been forked, it returns a process identifier. If this identifier is -1, it means that the
function has failed. An identifier of 0 lets you know that you are currently in the child process. You can perform
the desired functionality for the child. The default case catches the main application, which waits for the child
to exit.

Usually when you fork your application, you want a way to communicate with the child process, which
is provided by pipes. Pipes are set up by calling the pipe() command. pipe() accepts an array of two integers
and returns 0 on success or –1 on failure. After it’s initialized, the first integer in the array refers to the read
pipe and the second to the write pipe.

If you need to communicate in both directions between the child and the parent, you will need to set up
two sets of pipes. You are able to write data to one pipe, which be read by the other instance of the application
and vice versa. Our example will use the UNIX method for forking processes and creating pipes, but will use
GLib’s functions for interacting with the pipes.

7931ch06.fm Page 204 Wednesday, March 7, 2007 8:52 PM

C H A P T E R 6 ■ U S I N G G L I B 205

■Note You will notice that the pipes were set up and the application forked in a UNIX-specific way. The
next section will show you a way to set up pipes and fork your application that is supported across platforms.

Listing 6-9. Using IO Channels for Pipes (iochannels.c)

#include <gtk/gtk.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <string.h>

static void entry_changed (GtkEditable*, GIOChannel*);
static void setup_app (gint input[], gint output[], gint pid);
static gboolean iochannel_read (GIOChannel*, GIOCondition, GtkEntry*);

gulong signal_id = 0;

int main (int argc,
 char* argv[])
{
 gint child_to_parent[2], parent_to_child[2], pid, ret_value;

 /* Set up read and write pipes for the child and parent processes. */
 ret_value = pipe (parent_to_child);
 if (ret_value == -1)
 {
 g_error ("Error: %s\n", g_strerror (errno));
 exit (1);
 }

 ret_value = pipe (child_to_parent);
 if (ret_value == -1)
 {
 g_error ("Error: %s\n", g_strerror (errno));
 exit (1);
 }

 /* Fork the application, setting up both instances accordingly. */
 pid = fork ();
 switch (pid)
 {
 case -1:
 g_error ("Error: %s\n", g_strerror (errno));
 exit (1);

7931ch06.fm Page 205 Wednesday, March 7, 2007 8:52 PM

206 C H A P T E R 6 ■ U S I N G G L I B

 case 0:
 gtk_init (&argc, &argv);
 setup_app (parent_to_child, child_to_parent, pid);
 break;
 default:
 gtk_init (&argc, &argv);
 setup_app (child_to_parent, parent_to_child, pid);
 }

 gtk_main ();
 return 0;
}

/* Set up the GUI aspects of each window and setup IO channel watches. */
static void
setup_app (gint input[],
 gint output[],
 gint pid)
{
 GtkWidget *window, *entry;
 GIOChannel *channel_read, *channel_write;

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 entry = gtk_entry_new ();

 gtk_container_add (GTK_CONTAINER (window), entry);
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);
 gtk_widget_set_size_request (window, 200, -1);
 gtk_widget_show_all (window);

 /* Close the unnecessary pipes for the given process. */
 close (input[1]);
 close (output[0]);

 /* Create read and write channels out of the remaining pipes. */
 channel_read = g_io_channel_unix_new (input[0]);
 channel_write = g_io_channel_unix_new (output[1]);

 if (channel_read == NULL || channel_write == NULL)
 g_error ("Error: The GIOChannels could not be created!\n");

 /* Watch the read channel for changes. This will send the appropriate data. */
 if (!g_io_add_watch (channel_read, G_IO_IN | G_IO_HUP,
 iochannel_read, (gpointer) entry))
 g_error ("Error: Read watch could not be added to the GIOChannel!\n");

7931ch06.fm Page 206 Wednesday, March 7, 2007 8:52 PM

C H A P T E R 6 ■ U S I N G G L I B 207

 signal_id = g_signal_connect (G_OBJECT (entry), "changed",
 G_CALLBACK (entry_changed),
 (gpointer) channel_write);

 /* Set the window title depending on the process identifier. */
 if (pid == 0)
 gtk_window_set_title (GTK_WINDOW (window), "Child Process");
 else
 gtk_window_set_title (GTK_WINDOW (window), "Parent Process");
}

/* Read the message from the pipe and set the text to the GtkEntry. */
static gboolean
iochannel_read (GIOChannel *channel,
 GIOCondition condition,
 GtkEntry *entry)
{
 GIOStatus ret_value;
 gchar *message;
 gsize length;

 /* The pipe has died unexpectedly, so exit the application. */
 if (condition & G_IO_HUP)
 g_error ("Error: The pipe has died!\n");

 /* Read the data that has been sent through the pipe. */
 ret_value = g_io_channel_read_line (channel, &message, &length, NULL, NULL);
 if (ret_value == G_IO_STATUS_ERROR)
 g_error ("Error: The line could not be read!\n");

 /* Synchronize the GtkEntry text, blocking the changed signal. Otherwise, an
 * infinite loop of communication would ensue. */
 g_signal_handler_block ((gpointer) entry, signal_id);
 message[length-1] = 0;
 gtk_entry_set_text (entry, message);
 g_signal_handler_unblock ((gpointer) entry, signal_id);

 return TRUE;
}

/* Write the new contents of the GtkEntry to the write IO channel. */
static void
entry_changed (GtkEditable *entry,
 GIOChannel *channel)

7931ch06.fm Page 207 Wednesday, March 7, 2007 8:52 PM

208 C H A P T E R 6 ■ U S I N G G L I B

{
 gchar *text;
 gsize length;
 GIOStatus ret_value;

 text = g_strconcat (gtk_entry_get_text (GTK_ENTRY (entry)), "\n", NULL);

 /* Write the text to the channel so that the other process will get it. */
 ret_value = g_io_channel_write_chars (channel, text, -1, &length, NULL);
 if (ret_value = G_IO_STATUS_ERROR)
 g_error ("Error: The changes could not be written to the pipe!\n");
 else
 g_io_channel_flush (channel, NULL);
}

Setting Up IO Channels

If you are working on a UNIX-like machine, you can use the pipe() function to create new file
descriptors. In Listing 6-9, two pairs of pipes are set up: one for sending messages from the par-
ent to the child and one for sending messages in the other direction. Two GIOChannels can then
be created from these file descriptors by calling the following function on each.

After the pipes are created, the application is forked with fork(). If the fork is successful,
the application is set up for both the child and the parent process.

Within setup_app(), we begin by closing the pipes that are not needed by the child or par-
ent applications with close(). Each process will only need one read and one write pipe in order
to send and receive messages.

Next, we use the two remaining pipes in each application and set up a GIOChannel for each.
We will use channel_read to receive data from the other process and channel_write to send the
new content of the GtkEntry.

channel_read = g_io_channel_unix_new (input[0]);
channel_write = g_io_channel_unix_new (output[1]);

After initializing your IO channels, you need to set up a watch on channel_read. The watch
will monitor the channel for the specified events, which is setup with g_io_add_watch().

guint g_io_add_watch (GIOChannel *channel,
 GIOCondition condition,
 GIOFunc func,
 gpointer data);

7931ch06.fm Page 208 Wednesday, March 7, 2007 8:52 PM

C H A P T E R 6 ■ U S I N G G L I B 209

The second parameter of g_io_add_watch() adds one or more events that should be
watched. You need to make sure to set up the correct conditions with each channel. You will
never get a G_IO_IN event from a channel used for writing data, so monitoring for that event is
useless. Possible values for the GIOCondition enumeration follow; these can be piped to the
condition parameter of g_io_add_watch():

• G_IO_IN: Read data is pending.

• G_IO_OUT: Data can be written without the worry of blocking.

• G_IO_PRI: Read data is pending and urgent.

• G_IO_ERR: An error has occurred.

• G_IO_HUP: The connection has been hung up or broken.

• G_IO_NVAL: An invalid request has occurred because the file descriptor is not open.

When one of the specified conditions occurs, the GIOFunc callback function is called. The
last parameter gives data that will be passed to the callback function. IO channel callback func-
tions receive three parameters: the GIOChannel, the condition that occurred, and the data
passed from g_io_add_watch(). TRUE should always be returned from the callback function
unless you want it to be removed. The function prototype follows:

gboolean (*GIOFunc) (GIOChannel *source, GIOCondition condition, gpointer data);

Reading from and writing to a GIOChannel is done in the same manner regardless of whether
it is a file or a pipe. Therefore, the g_io_channel_read_(*) and g_io_channel_write_*() func-
tions covered in the previous section can still be used.

Many of the GIOChannel functions provide two ways to check for errors. The first is the
GError structure that we have used in past chapters. Secondly, many functions return a
GIOStatus value, which will report one of the following four values:

• G_IO_STATUS_ERROR: Some type of error has occurred. You should still track errors even if
you are checking for this value.

• G_IO_STATUS_NORMAL: The action was successfully completed.

• G_IO_STATUS_EOF: The end of the file has been reached.

• G_IO_STATUS_AGAIN: Resources are temporarily unavailable. You should try again later.

7931ch06.fm Page 209 Wednesday, March 7, 2007 8:52 PM

210 C H A P T E R 6 ■ U S I N G G L I B

Depending on the GIOStatus value, you should either continue or give an error message.
The only exception is G_IO_STATUS_AGAIN, in which case you should return to poll() in the
main loop and wait for the file descriptor to become ready.

To send the data to the read buffer, you need to flush the write buffer of the GIOChannel
with g_io_channel_flush(). This function, along with all of the functions in this section, can
cause an error of the type GIOChannelError.

GIOStatus g_io_channel_flush (GIOChannel *channel,
 GError **error);

Spawning Processes
The GIOChannel example in the previous section used pipe() and fork() to set up the commu-
nication between the applications. However, this example is not cross-platform, because some
commands will not be supported on Microsoft Windows.

To spawn processes in a way supported by multiple platforms, GLib provides three func-
tions. Since all three work in a similar way, we will only talk about the following function,
g_spawn_async_with_pipes():

gboolean g_spawn_async_with_pipes (const gchar *working_directory,
 gchar **argv,
 gchar **envp,
 GSpawnFlags flags,
 GSpawnChildSetupFunc child_setup,
 gpointer data,
 GPid *child_pid,
 gint *standard_input,
 gint *standard_output,
 gint *standard_error,
 GError **error);

This function asynchronously runs a child program, which means that the program will
continue to run even if the child has not exited. The first parameter specifies the working direc-
tory for the child process or NULL to set it as the parent’s working directory.

The argv list is a NULL-terminated array of strings. The first string in this list is the name of the
application, followed by any additional parameters. This application must be a full path unless
you use the G_SPAWN_SEARCH_PATH flag, which will be shown later. Another NULL-terminated array
of strings is envp, each in the form KEY=VALUE. These will be set as the child’s environment
variables.

7931ch06.fm Page 210 Wednesday, March 7, 2007 8:52 PM

C H A P T E R 6 ■ U S I N G G L I B 211

You can then specify one or more of the following GSpawnFlags:

• G_SPAWN_LEAVE_DESCRIPTORS_OPEN: The child will inherit the open file descriptors of the
parent. If this flag is not set, all file descriptors except the standard input, output, and
error will be closed.

• G_SPAWN_DO_NOT_REAP_CHILD: Stop the child from automatically becoming reaped. If you
do not call waitpid() or handle SIGCHLD, it will become a zombie.

• G_SPAWN_SEARCH_PATH: If this flag is set, argv[0] will be searched for in the user’s path if it
is not an absolute location.

• G_SPAWN_STDOUT_TO_DEV_NULL: Discard the standard output from the child. If this flag is
not set, it will go to the same location as the parent’s standard output.

• G_SPAWN_STDERR_TO_DEV_NULL: Discard the standard error from the child.

• G_SPAWN_CHILD_INHERITS_STDIN: If this flag is not set, the standard input for the child is
attached to /dev/null. You can use this flag so the child will inherit the standard input of
the parent.

• G_SPAWN_FILE_AND_ARGV_ZERO: Use the first argument as the executable and only pass the
remaining strings as the actual arguments. If this flag is not set, argv[0] will also be
passed to the executable.

The next parameter of g_spawn_async_with_pipes() is the GSpawnChildSetupFunc callback
function that will be run after GLib sets up pipes but before calling exec(). This function
accepts the data parameter from g_spawn_async_with_pipes().

The next four parameters allow you to retrieve information about the new child process.
These are the child’s process identifier, standard input, standard output, and standard error.
Any of these four parameters can be set to NULL if you want to ignore it.

If the application was successfully launched, g_spawn_async_with_pipes() will return
TRUE. Otherwise, the error will be set under the GSpawnError domain, and it will return FALSE.

When you are finished with a GPid, you should use g_spawn_close_pid() to close it. This is
especially important when spawning processes on Microsoft Windows.

void g_spawn_close_pid (GPid pid);

7931ch06.fm Page 211 Wednesday, March 7, 2007 8:52 PM

212 C H A P T E R 6 ■ U S I N G G L I B

Dynamic Modules
One extremely useful feature provided by GLib is the ability to dynamically load libraries and
explicitly call functions from those libraries using the GModule structure. This functionality is
not performed in the same way across platforms, so a cross-platform solution for dynamic
libraries makes things much easier. This functionality facilitates, for one, the creation of a
plug-in system. In Listing 6-10, a simple theoretical plug-in system will be created.

The example is split into two separate files: one for the plug-in and one for the main appli-
cation. To run this application, you first need to compile and link modules-plugin.c as a library.
You can use the following two commands to create the library and install it into the standard
location.

gcc –shared modules-plugin.c –o plugin.so `pkg-config --libs glib-2.0` \
 `pkg-config --cflags glib-2.0`
sudo mv plugin.so /usr/lib

Library creation is generally performed by the GNU linker (ld), but by using the -shared
flag, GCC can create shared libraries. Also, on some systems it is necessary to run ldconfig after
you move the plug-in library so it will be registered. You will need to do this if you want to use
the library for purposes other than loading with GModule.

Listing 6-10. The Plug-in (modules-plugin.c)

#include <glib.h>
#include <gmodule.h>

G_MODULE_EXPORT gboolean
print_the_message (gpointer data)
{
 g_printf ("%s\n", (gchar*) data);
 return TRUE;
}

G_MODULE_EXPORT gboolean
print_another_one (gpointer data)
{
 g_printf ("%s\n", (gchar*) data);
 return TRUE;
}

The plug-in source only contains one or more functions that will be loaded by the main
application. Therefore, there is no need to include a main() function within the plug-in’s
source file.

The only important aspect of the plug-in file is that you should include G_MODULE_EXPORT
before any function you want to export. If you do not use this macro, GModule will be unable to
load the function from the library.

7931ch06.fm Page 212 Wednesday, March 7, 2007 8:52 PM

C H A P T E R 6 ■ U S I N G G L I B 213

Functions dynamically loaded from a library are called symbols. A symbol is merely a
pointer to a function in the library. You call symbol functions in the same way you would call
any other function. The only difference is that, when called, GLib searches out the actual func-
tion in the library and executes it from there.

The advantage of this method is that multiple applications can load a library at the same
time. A library that allows itself to be loaded by multiple applications is called a shared library.
Most libraries compiled on Linux are shared libraries.

When compiling the main file of Listing 6-11, you will need to use an altered compile line
as well, because you need to link against the GModule library.

gcc modules.c –o modules `pkg-config --cflags --libs glib-2.0` \
 `pkg-config --cflags --libs gmodule-2.0`

GModule can easily be included by adding `pkg-config --cflags --libs gmodule-2.0` to
the compile command. The following example illustrates how to load the library that we have
just created and installed. Listing 6-11 is an application that takes advantage of the dynamic
module from Listing 6-10.

Listing 6-11. Loading the Plug-in (modules.c)

#include <gmodule.h>
#include <glib.h>

typedef gboolean (* PrintMessageFunc) (gpointer data);
typedef gboolean (* PrintAnotherFunc) (gpointer data);

int main (int argc,
 char *argv[])
{
 GModule *module;
 PrintMessageFunc print_the_message;
 PrintAnotherFunc print_another_one;
 gchar *text = "This is some text";

 /* Make sure module loading is supported on the user's machine. */
 g_assert (g_module_supported ());

 /* Open the library and resolve symbols only when necessary. Libraries on
 * Windows will have a .dll appendix. */
 module = g_module_open ("/usr/lib/plugin.so", G_MODULE_BIND_LAZY);

 if (!module)
 {
 g_error ("Error: %s\n", (gchar*) g_module_error ());
 return -1;
 }

7931ch06.fm Page 213 Wednesday, March 7, 2007 8:52 PM

214 C H A P T E R 6 ■ U S I N G G L I B

 /* Load the print_the_message() function. */
 if (!g_module_symbol (module, "print_the_message",
 (gpointer*) &print_the_message))
 {
 g_error ("Error: %s\n", (gchar*) g_module_error ());
 return -1;
 }

 /* Load the destroy_the_evidence() function. */
 if (!g_module_symbol (module, "print_another_one",
 (gpointer*) &print_another_one))
 {
 g_error ("Error: %s\n", (gchar*) g_module_error ());
 return -1;
 }

 /* Run both loaded functions since there were no errors reported loading
 * neither the module nor the symbols. */
 print_the_message ((gpointer) text);
 print_another_one ("Another Message!");

 /* Close the module and free allocated resources. */
 if (!g_module_close (module))
 g_error ("Error: %s\n", (gchar*) g_module_error ());

 return 0;
}

Not all platforms support the GModule structure. Therefore, if you are creating an applica-
tion that will be compiled for multiple platforms, it is a good idea to make sure support is
available.

Support for GModule can be checked with g_module_supported(), which will return TRUE if
the feature is available. By using g_assert(), you can ensure that the application will terminate
if GModule is not supported.

Once you are sure GModule is supported on the user’s system, you can open a library with
g_module_open(). If opening a module fails, NULL is returned by the function. However, before
failing, the function will attempt multiple formats of the given library name to find a library
that will load. This includes appending G_MODULE_SUFFIX, the system’s default library suffix, to
the specified path.

GModule* g_module_open (const gchar *library,
 GModuleFlags flags);

7931ch06.fm Page 214 Wednesday, March 7, 2007 8:52 PM

C H A P T E R 6 ■ U S I N G G L I B 215

The second parameter in g_module_open() specified one or more module flags, which
instruct GModule how to deal with symbols. There are currently three available GModuleFlags
enumeration values:

• G_MODULE_BIND_LAZY: Symbols should all be bound when the module is loaded by
default. However, this tells GLib to only resolve symbols when needed.

• G_MODULE_BIND_LOCAL: Do not place symbols on the global namespace, which is the
default on most systems.

• G_MODULE_BIND_MASK: Mask for all GModule flags.

At any point within your application, you can call g_module_error(), which will return a
human-readable string describing the last error that has occurred. If any function returns an
unexpected value, it is a good idea to output this message to the screen.

If the module was successfully loaded, g_module_symbol() can then be used to load any
functions in the library that were made available with G_MODULE_EXPORT. If the symbol is suc-
cessfully loaded, the function will return TRUE.

gboolean g_module_symbol (GModule *module,
 const gchar *symbol_name,
 gpointer *symbol);

The second parameter of g_module_symbol() should be the full name of the function you
want to load from the library. The last parameter is a pointer that will store where to find the
function in memory. It is essential that you specify the same parameter and return values for
both the loaded function and the pointer, or problems will arise.

After you are finished with the GModule object, which is usually when the application is
closing or the plug-in is being unloaded, g_module_close() should be called. TRUE is returned
upon a successful destruction of the object.

If you are sure that the module should never be unloaded, you can ignore all calls to
g_module_close() by calling g_module_make_resident(). Be careful with this function, because
it will be impossible to unload the module after this is called!

Test Your Understanding
Since this chapter covers such a wide array of topics, it would be too time consuming to pro-
vide exercises for each thing you have learned. Therefore, in addition to doing the following
two exercises, you should create your own applications using various other topics you learned
in this chapter to practice.

Making your own examples, in addition to the following two exercises, should give you
enough experience to easily be able to use what you have learned in future chapters. The fol-
lowing two exercises will allow you to practice file management, error handling, message
reporting, and timeout functions.

7931ch06.fm Page 215 Wednesday, March 7, 2007 8:52 PM

216 C H A P T E R 6 ■ U S I N G G L I B

Exercise 6-1. Working With Files

For this exercise, create a window that contains a GtkEntry widget. The entry can contain any text that the user
wants. The window will also contain a GtkFileChooserButton that will allow the user to choose a folder.

A third widget, a button, should be placed within the window. Upon clicking that button, the text from the GtkEntry
should be written to an arbitrary file in the folder chosen by the GtkFileChooserButton. You should handle all
errors that can occur in this exercise.

Exercise 6-1 is straightforward. You need to create a normal GTK+ application as always. In
the main window, the entry, file chooser button, and Save button should be added and packed
by a GtkVBox. The exercise solution can be found in Appendix F.

When the button is pressed, you need to save the text in the entry to a file. That file should
be created in the specified location under whatever name you choose. Then, you need to use
the GError structure to make sure the file was successfully created.

Exercise 6-2. Timeout Functions

For this exercise, create a window that contains a GtkLabel and a button. The label should initially display the
number “0”. The timeout function should be called every second, incrementing the label up one digit. When the but-
ton is pressed, the counter should be reset and begin counting again.

As stated before, you should never use timeouts to count time if you need accuracy. Therefore, you should reimple-
ment this example using timers. Consider placing two labels in the window, one using a timeout function for
counting and one using a timer. What can you conclude from this example?

Exercise 6-2 is a little more difficult than the previous one, because you need to figure out
how to get both the GtkLabel and the current count to the timeout function. Of course, you
could use a global variable, but this is not the preferred method in most cases.

In the solution in Appendix F, both elements were stored in a structure that could easily be
passed to the timeout function. This is the method that you should use in most of your appli-
cations, because it will make them easier to manage when they grow in size.

The purpose of the application was to count the number of seconds that have gone by
using a timeout function. Whenever the Clear button is clicked, the count should be reset to 0
seconds for each button.

Both of these exercises are meant to stimulate your imagination. You have learned a great
deal in this chapter as well as previous chapters. You should experiment with integrating your
previous knowledge of GTK+ with the topics in this chapter.

7931ch06.fm Page 216 Wednesday, March 7, 2007 8:52 PM

C H A P T E R 6 ■ U S I N G G L I B 217

Summary
Congratulations! You have made it through the longest chapter in the book. This chapter has
given you a thorough understanding of many of the most important features provided by GLib.

Of course, there were topics that were not covered, and those that provide options not
shown in this chapter’s examples. Therefore, when you need one of these features in an appli-
cation, you should reference the API documentation for further information.

The beginning of this chapter gave a quick overview of GLib basics including data types,
macros, message logging, environment variables, timers, file manipulation, directory manage-
ment, and file system work. You then learned about memory management in GLib. In addition
to wrapping malloc() and friends, you can also use the slab allocator provided by GSlice. GLib
provides a method for profiling memory usage within an application as well.

Another important topic in this chapter was the main loop. You learned that the main loop
is actually implemented in GLib by GMainLoop, GMainContext, and GSource. Two types of sources
already built-in are timeouts and idle functions. Timeout functions are called at a predefined
interval of time and idle functions are called when there are no more actions with a higher pri-
ority to perform.

GLib provides a wide array of data types. You learned about ten different data types,
including the following:

• Strings provide character arrays that automatically grow as text is added. These are sim-
ilar to the string class provided by C++’s Standard Template Library.

• Linked lists allow you to traverse, search, and sort a large list of data of an arbitrary type.
Both doubly and singly linked variations are provided by GLib.

• Balanced binary trees are tree structures that are optimized for traversing and searching.
N-ary trees allow each node to have as many branches as you want. They can very
quickly become complex.

• Arrays, byte arrays, and pointer arrays provide lists of elements that automatically grow
when items are added.

• Quarks provide an integer pointer to an associated string. Keyed data lists use them as a
reference to stored data of an arbitrary type.

• Hash tables are similar to linked lists, except items are accessed through a pointer of an
arbitrary type. They are optimized so data can be found very quickly.

GLib provides many file and directory utility functions. These can read or write files, read
the contents of a directory, or wrap UNIX file system functionality. The GIOChannel structure is
used to deal with files or pipes, which provide interprocess communication.

An easy way to create a plug-in system is to use GLib’s GModule structure. This structure
allows you to dynamically load libraries and retrieve symbols from the files. This can also be
used to make an application more modular.

7931ch06.fm Page 217 Wednesday, March 7, 2007 8:52 PM

218 C H A P T E R 6 ■ U S I N G G L I B

At this point, you should have a decent grasp of many important GTK+ widgets and GLib
features. Many of these features are going to be used in the next few chapters, which will cover
more advanced widgets.

Chapter 7 will explain the multiline text entry widget called GtkTextView. Other topics
include the clipboard and the GtkSourceView library.

7931ch06.fm Page 218 Wednesday, March 7, 2007 8:52 PM

219

■ ■ ■

C H A P T E R 7

The Text View Widget

In Chapter 6, you learned about a large number of utilities, data structures, and other types of
functionality provided by GLib, so there are very few further things about GLib that you will
learn throughout the book. Instead, you will apply the knowledge that you have gained in
Chapter 6 to future examples and exercises.

Chapter 7 will teach you how to use the GtkTextView widget. The text view widget is similar
to a GtkEntry widget, except it is capable of holding text that spans multiple lines. Scrolled win-
dows will be used to allow the document to exist beyond the bounds of the screen.

Before you learn about GtkTextView, Chapter 7 begins by introducing a few new widgets.
The first two widgets are scrolled windows and viewports. Scrolled windows are composed
of two scrollbars that are used to scroll the child widget. A few widgets support scrolling
already, including GtkLayout, GtkTreeView, and GtkTextView. For all other widgets that you
want to scroll, you will need to add them first to a GtkViewport widget, which gives its child wid-
get scrolling abilities.

In this chapter, you will learn the following:

• How to use scrolled windows and viewports

• How to use the GtkTextView widget and apply text buffers

• What function text iterators and text marks perform when dealing with buffers

• Methods for applying styles to the whole or part of a document

• How to cut, copy, and paste to and from the clipboard

• How to insert images and child widgets into a text view

Scrolled Windows
Before you can learn about the GtkTextView widget, you need to learn about two container
widgets called GtkScrolledWindow and GtkViewport. Scrolled windows use two scrollbars to
allow a widget to take up more space than is visible on the screen. This widget will allow the
GtkTextView widget to contain documents that expand beyond the bounds of the window.

7931.book Page 219 Thursday, February 22, 2007 9:09 PM

220 C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T

Both scrollbars in the scrolled window have associated GtkAdjustment objects. These
adjustments are used to track the current position and range of a scrollbar. However, you will
not need to directly access the adjustments in most cases.

typedef struct
{
 gdouble value;
 gdouble upper;
 gdouble lower;
 gdouble step_increment;
 gdouble page_increment;
 gdouble page_size;
} GtkAdjustment;

A scrollbar’s GtkAdjustment holds information about scroll bounds, steps, and its current
position. The value variable is the current position of the scrollbar between the bounds. This
variable must always be between the lower and upper values, which are the bounds of the
adjustment. The page_size is the area that can be visible on the screen at one time, depending
on the size of the widget. The step_increment and page_increment variables are used for step-
ping when an arrow is pressed or when the Page Down key is pressed.

Figure 7-1 is a screenshot of the window created with the code in Listing 7-1. Both scroll-
bars are enabled, because the table containing the buttons is larger than the visible area.

Figure 7-1. A scrolled window and viewport that are synchronized

Listing 7-1 shows how to use scrolled windows and viewports. As a scrollbar is moved, the
viewport will scroll as well, because the adjustments are synchronized. Try to resize the win-
dow to see how the scrollbars react to becoming larger and smaller than the child widget.

7931.book Page 220 Thursday, February 22, 2007 9:09 PM

C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T 221

Listing 7-1. Using Scrolled Windows (scrolledwindows.c)

#include <gtk/gtk.h>

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *swin, *viewport, *table1, *table2, *vbox;
 GtkAdjustment *horizontal, *vertical;
 GtkWidget *buttons1[10][10], *buttons2[10][10];
 unsigned int i, j;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Scrolled Windows & Viewports");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);
 gtk_widget_set_size_request (window, 500, 400);

 g_signal_connect (G_OBJECT (window), "destroy",
 G_CALLBACK (gtk_main_quit), NULL);

 table1 = gtk_table_new (10, 10, TRUE);
 table2 = gtk_table_new (10, 10, TRUE);
 gtk_table_set_row_spacings (GTK_TABLE (table1), 5);
 gtk_table_set_row_spacings (GTK_TABLE (table2), 5);
 gtk_table_set_col_spacings (GTK_TABLE (table1), 5);
 gtk_table_set_col_spacings (GTK_TABLE (table2), 5);

 /* Pack each table with 100 buttons. */
 for (i = 0; i < 10; i++)
 {
 for (j = 0; j < 10; j++)
 {
 buttons1[i][j] = gtk_button_new_from_stock (GTK_STOCK_CLOSE);
 buttons2[i][j] = gtk_button_new_from_stock (GTK_STOCK_CLOSE);
 gtk_button_set_relief (GTK_BUTTON (buttons1[i][j]), GTK_RELIEF_NONE);
 gtk_button_set_relief (GTK_BUTTON (buttons2[i][j]), GTK_RELIEF_NONE);

 gtk_table_attach_defaults (GTK_TABLE (table1), buttons1[i][j],
 i, i + 1, j, j + 1);
 gtk_table_attach_defaults (GTK_TABLE (table2), buttons2[i][j],
 i, i + 1, j, j + 1);
 }
 }

7931.book Page 221 Thursday, February 22, 2007 9:09 PM

222 C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T

 /* Create a scrolled window and a viewport, each with one table. Use the
 * adjustments in the scrolled window to synchronize both containers. */
 swin = gtk_scrolled_window_new (NULL, NULL);
 horizontal = gtk_scrolled_window_get_hadjustment (GTK_SCROLLED_WINDOW (swin));
 vertical = gtk_scrolled_window_get_vadjustment (GTK_SCROLLED_WINDOW (swin));
 viewport = gtk_viewport_new (horizontal, vertical);

 gtk_container_set_border_width (GTK_CONTAINER (swin), 5);
 gtk_container_set_border_width (GTK_CONTAINER (viewport), 5);

 gtk_scrolled_window_set_policy (GTK_SCROLLED_WINDOW (swin),
 GTK_POLICY_AUTOMATIC, GTK_POLICY_AUTOMATIC);
 gtk_scrolled_window_add_with_viewport (GTK_SCROLLED_WINDOW (swin), table1);
 gtk_container_add (GTK_CONTAINER (viewport), table2);

 /* Pack the widgets into a GtkVBox and then into the window. */
 vbox = gtk_vbox_new (TRUE, 5);
 gtk_box_pack_start_defaults (GTK_BOX (vbox), viewport);
 gtk_box_pack_start_defaults (GTK_BOX (vbox), swin);

 gtk_container_add (GTK_CONTAINER (window), vbox);
 gtk_widget_show_all (window);

 gtk_main();
 return 0;
}

New scrolled windows are created with gtk_scrolled_window_new(). In Listing 7-1, each
parameter is set to NULL, which will cause the scrolled window to create two default adjust-
ments for you. In most cases, you will want to use the default adjustments, but it is also
possible to specify your own horizontal and vertical adjustments for the scroll bars.

The adjustments are used in this example when the new viewport is created with
gtk_viewport_new(). The viewport adjustments are initialized with those from the scrolled
window, which makes sure that both containers will be scrolled at the same time.

The first decision you need to make when setting up a scrolled window is when the scroll-
bars will be visible. In this example, GTK_POLICY_AUTOMATIC was used for both scrollbars so that
each will only be shown when needed. GTK_POLICY_ALWAYS is the default policy for both scroll-
bars. The three enumeration values provided by GtkPolicyType follow:

• GTK_POLICY_ALWAYS: The scrollbar will always be visible. It will be displayed as disabled or
grayed out if scrolling is not possible.

• GTK_POLICY_AUTOMATIC: The scrollbar will only be visible if scrolling is possible. If it is not
needed, the scrollbar will temporarily disappear.

• GTK_POLICY_NEVER: The scrollbar will never be shown.

7931.book Page 222 Thursday, February 22, 2007 9:09 PM

C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T 223

Another property, although not used by very many applications, is the placement of the
scrollbars. In most applications, you will want the scrollbars to appear along the bottom and
the right side of the widget, which is the default functionality.

However, if you want to change this, you can call gtk_scrolled_window_set_placement().
This function receives a GtkCornerType value, which defines where the content is placed with
respect to the scrollbars. For example, the default value is GTK_CORNER_TOP_LEFT, because the
content normally appears above and to the left of the scrollbars.

void gtk_scrolled_window_set_placement (GtkScrolledWindow *swin
 GtkCornerType window_placement);

Available GtkCornerType values include GTK_CORNER_TOP_LEFT, GTK_CORNER_BOTTOM_LEFT,
GTK_CORNER_TOP_RIGHT, and GTK_CORNER_BOTTOM_RIGHT, which define where the content is
placed with respect to the scrollbars.

■Caution It is a very rare occasion when gtk_scrolled_window_set_placement() should be used! In
almost every possible case, you should not use this function, because it can confuse the user. Unless you
have a good reason for changing the placement, use the default value.

It is possible to set the shadow type of the widget with respect to the child widget by calling
gtk_scrolled_window_set_shadow_type().

void gtk_scrolled_window_set_shadow_type (GtkScrolledWindow *swin,
 GtkShadowType type);

In Chapter 3, you learned how to use the GtkShadowType enumeration along with handle
boxes to set the type of border to place around the child widget. The same values as before are
used to set the shadow type of a scrolled window.

After you have set up a scrolled window, you should add a child widget for it to be of any
use. There are two possible ways to do this, and the method is chosen based on the type of
child widget. If you are using a GtkTextView, GtkTreeView, GtkIconView, GtkViewport, or
GtkLayout widget, you should use the default gtk_container_add() function, since all five of
these widgets include native scrolling support.

All other GTK+ widgets do not have native scrolling support. For those widgets,
gtk_scrolled_window_add_with_viewport() should be used. This function will give the child
scrolling support by first packing it into a container widget called a GtkViewport. This widget
implements scrolling ability for the child widget that lacks its own support. The viewport is
then automatically added to the scrolled window.

■Caution You should never pack GtkTextView, GtkTreeView, GtkIconView, GtkViewport, or
GtkLayout widgets into a scrolled window with gtk_scrolled_window_add_with_viewport(),
because scrolling may not be performed correctly on the widget!

7931.book Page 223 Thursday, February 22, 2007 9:09 PM

224 C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T

It is possible to manually add a widget to a new GtkViewport and then add that viewport to
a scrolled window with gtk_container_add(), but the convenience function allows you to
ignore the viewport completely.

The scrolled window is simply a container with scrollbars. Neither the container nor
the scrollbars perform any action by themselves. Scrolling is handled by the child widget,
which is why the child must already have native scrolling support to work correctly with the
GtkScrolledWindow widget.

When you add a child widget that has scrolling support, a function is called to add adjust-
ments for each axis. Nothing will be done unless the child widget has scrolling support, which
is why a viewport is required by most widgets. When the scrollbar is clicked and dragged by the
user, the value in the adjustment changes, which causes the value-changed signal to be emit-
ted. This action will also cause the child widget to render itself accordingly.

Because the GtkViewport widget did not have any scrollbars of its own, it relied completely
on the adjustments to define its current position on the screen. The scrollbars are used in the
GtkScrolledWindow widget as an easy mechanism for adjusting the current value of the
adjustment.

Text Views
The GtkTextView widget is used to display multiple lines of text of a document. It provides
many ways to customize the whole of a document or individual portions of it. It is even possi-
ble to insert GdkPixbuf objects and child widgets into a document. GtkTextView is the first
reasonably involved widget you have encountered up to this point, so the rest of this chapter is
dedicated to many aspects of the widget. It is a very versatile widget that you will need to use in
many GTK+ applications.

The first few examples of this chapter may lead you to believe that GtkTextView can only be
used to display simple documents, but that is not the case. It can also be used to display many
types of rich text, word-processing, and interactive documents that are used by a wide variety
of applications. You will learn how to do this in the sections that follow.

Figure 7-2 shows a simple GtkTextView widget contained by a GtkScrolledWindow widget.

Figure 7-2. A GtkTextView widget

Text views are used in every type of text and document editing application that uses GTK+.
If you have ever used AbiWord, Gedit, or most other text editors created for GNOME, you have
used the GtkTextView widget. It is also used in the Gaim application in instant message win-
dows. (In fact, all of the examples in this book were created in the OpenLDev application,
which uses GtkTextView for source code editing!)

7931.book Page 224 Thursday, February 22, 2007 9:09 PM

C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T 225

Text Buffers
Each text view is used to display the contents of a class called GtkTextBuffer. Text buffers are
used to store the current state of the content within a text view. They hold text, images, child
widgets, text tags, and all other information necessary for rendering the document.

A single text buffer is capable of being displayed by multiple text views, but each text view
has only one associated buffer. Most programmers do not take advantage of this feature, but it
will become important when you learn how to embed child widgets into a text buffer in a later
section.

As with all text widgets in GTK+, text is stored as UTF-8 strings. UTF-8 is a type of character
encoding that uses from 1 byte to 4 bytes for every character. In order to differentiate how
many bytes a character will take up, “0” always precedes a character that is 1 byte, “110” pre-
cedes 2-byte characters, “1110” comes before 3-byte sequences, and so on. UTF-8 characters
that span multiple bytes have “10” in the two most significant bits of the rest of the bytes.

By doing this, the basic 128 ASCII characters are still supported, because an additional
7 bits are available in a single-byte character after the initial “0”. UTF-8 also provides support
for characters in many other languages. This method also avoids small byte sequences occur-
ring within larger byte sequences.

When handling text buffers, you need to know two terms: offset and index. The word “off-
set” refers to one character. UTF-8 characters may span one or more bytes within the buffer, so
a character offset in a GtkTextBuffer may not be a single byte long.

■Caution The word “index” refers to an individual byte. You need to be careful when stepping through a
text buffer in later examples, because you cannot refer to an index that is between two character offsets.

Listing 7-2 illustrates one of the simplest text view examples you could create. A new
GtkTextView widget is created. Its buffer is retrieved, and text is inserted into the buffer. A
scrolled window is then used to contain the text view.

Listing 7-2. A Simple GtkTextView Example (textview.c)

#include <gtk/gtk.h>

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *scrolled_win, *textview;
 GtkTextBuffer *buffer;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Text Views");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);
 gtk_widget_set_size_request (window, 250, 150);

7931.book Page 225 Thursday, February 22, 2007 9:09 PM

226 C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T

 textview = gtk_text_view_new ();
 buffer = gtk_text_view_get_buffer (GTK_TEXT_VIEW (textview));
 gtk_text_buffer_set_text (buffer, "Your 1st GtkTextView widget!", -1);

 scrolled_win = gtk_scrolled_window_new (NULL, NULL);
 gtk_container_add (GTK_CONTAINER (scrolled_win), textview);
 gtk_container_add (GTK_CONTAINER (window), scrolled_win);
 gtk_widget_show_all (window);

 gtk_main();
 return 0;
}

Most new GtkTextView widgets are created with gtk_text_view_new(). By using this func-
tion, an empty buffer will be created for you. This default buffer can be replaced at a later time
with gtk_text_view_set_buffer() or retrieved with gtk_text_view_get_buffer().

If you want to set the initial buffer to one that you have already created, you can create the
text view with gtk_text_view_new_with_buffer(). In most cases, it will be easier to simply use
the default text buffer.

Once you have access to a GtkTextBuffer object, there are many ways to add content, but
the easiest method is to call gtk_text_buffer_set_text(). This function receives a text buffer,
a UTF-8 text string to set as the buffer’s new text, and the length of the text.

void gtk_text_buffer_set_text (GtkTextBuffer *buffer,
 const gchar *text,
 gint length);

If the text string is NULL-terminated, you can use -1 as the length of the string. This function
will silently fail if a null character is found before the specified length of text.

The current contents of the buffer will be completely replaced by the new text string. In the
“Text Iterators and Marks” section, you will be introduced to functions that allow you to insert
text into a buffer without overwriting the current content that are more suitable for inserting
large amounts of text.

Recall from the previous section that there are five widgets that have native scrolling
abilities, including the GtkTextView widget. Because text views already have the facilities to
manage adjustments, gtk_container_add() should always be used to add them to scrolled
windows.

Text View Properties
GtkTextView was created to be a very versatile widget. Because of this, many properties are pro-
vided for the widget. In this section, you will learn about a number of these widget properties.

One feature that makes the text view widget extremely useful is that you are able to apply
changes to the whole or only an individual part of the widget. Text tags are used to change the
properties of a segment of text. Customizing only a part of the document will be covered in a
later section of this chapter.

7931.book Page 226 Thursday, February 22, 2007 9:09 PM

C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T 227

Listing 7-3 shows many of the properties that can be used to customize the whole content
of a GtkTextBuffer. You should note that many of these properties could be overridden in indi-
vidual sections of a document with text tags.

Listing 7-3. Using GtkTextView Properties (textview2.c)

#include <gtk/gtk.h>

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *scrolled_win, *textview;
 GtkTextBuffer *buffer;
 PangoFontDescription *font;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Text Views Properties");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);
 gtk_widget_set_size_request (window, 250, 150);

 font = pango_font_description_from_string ("Monospace Bold 10");
 textview = gtk_text_view_new ();
 gtk_widget_modify_font (textview, font);

 gtk_text_view_set_wrap_mode (GTK_TEXT_VIEW (textview), GTK_WRAP_WORD);
 gtk_text_view_set_justification (GTK_TEXT_VIEW (textview), GTK_JUSTIFY_RIGHT);

 gtk_text_view_set_editable (GTK_TEXT_VIEW (textview), TRUE);
 gtk_text_view_set_cursor_visible (GTK_TEXT_VIEW (textview), TRUE);

 gtk_text_view_set_pixels_above_lines (GTK_TEXT_VIEW (textview), 5);
 gtk_text_view_set_pixels_below_lines (GTK_TEXT_VIEW (textview), 5);
 gtk_text_view_set_pixels_inside_wrap (GTK_TEXT_VIEW (textview), 5);

 gtk_text_view_set_left_margin (GTK_TEXT_VIEW (textview), 10);
 gtk_text_view_set_right_margin (GTK_TEXT_VIEW (textview), 10);

 buffer = gtk_text_view_get_buffer (GTK_TEXT_VIEW (textview));
 gtk_text_buffer_set_text (buffer, "This is some text!\nChange me!\nPlease!", -1);

 scrolled_win = gtk_scrolled_window_new (NULL, NULL);
 gtk_scrolled_window_set_policy (GTK_SCROLLED_WINDOW (scrolled_win),
 GTK_POLICY_AUTOMATIC, GTK_POLICY_ALWAYS);

7931.book Page 227 Thursday, February 22, 2007 9:09 PM

228 C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T

 gtk_container_add (GTK_CONTAINER (scrolled_win), textview);
 gtk_container_add (GTK_CONTAINER (window), scrolled_win);
 gtk_widget_show_all (window);

 gtk_main();
 return 0;
}

The best way to explain what each of GtkTextView’s properties does is to show you a
screenshot of the result, which can be viewed in Figure 7-3. You should compile the application
on your own machine and try changing the values used in Listing 7-3 to get a feel for what they
do as well.

Figure 7-3. GtkTextView with nondefault properties

It is possible to change the font and colors of individual parts of the text view content, but
as shown in Listing 7-3, it is still possible to use the functions from past chapters to change the
content of the whole widget. This is useful when editing documents that have a consistent
style, such as text files.

When dealing with a widget that displays text on multiple lines, you need to decide if
and how text will be wrapped. In Listing 7-3, the wrap mode was set to GTK_WRAP_WORD with
gtk_text_view_set_wrap_mode(). This setting wraps the text but does not split a word over two
lines. There are four types of wrap modes available in the GtkWrapMode enumeration:

• GTK_WRAP_NONE: No wrapping will occur. If a scrolled window contains the view, the
scrollbar will expand. Otherwise, the text view will expand on the screen. If a scrolled
window does not contain the GtkTextView widget, it will expand the widget horizontally.

• GTK_WRAP_CHAR: Wrap to the character, even if the wrap point occurs in the middle of a
word. This is usually not a good choice for a text editor, since it will split words over
two lines.

• GTK_WRAP_WORD: Fill up the line with the largest number of words possible but do not
break a word to wrap. Instead, bring the whole word onto the next line.

• GTK_WRAP_WORD_CHAR: Wrap in the same way as GTK_WRAP_WORD, but if a whole word takes
up more than one visible width of the text view, wrap it by the character.

7931.book Page 228 Thursday, February 22, 2007 9:09 PM

C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T 229

At times, you may want to prevent the user from editing the document. The editable
property can be changed for the whole text view with gtk_text_view_set_editable(). It is
worth noting that with text tags, you can override this for certain sections of the document, so
this is not always an end-all solution.

Contrast this with gtk_widget_set_sensitive(), which is used to prevent the user from
interacting with the widget at all. If a text view is set as not editable, the user will still be able to
perform operations on the text that do not require the text buffer to be edited, such as selecting
text. Setting a text view as insensitive will prevent the user from performing any of these
actions.

When you disable editing within a document, it is also useful to stop the cursor from being
visible with gtk_text_view_set_cursor_visible(). By default, both of these properties are set
to TRUE, so both will need to be changed to keep them in sync.

By default, there is no extra spacing placed between lines, but Listing 7-3 shows you how
to add spacing above a line, below a line, and between wrapped lines. These functions add
extra space between lines, so you can assume that there will already be enough spacing
between lines. In most cases, you should not use this feature, because spacing may not look
correct to the user.

Justification is another important property of text views, especially when dealing with rich text
documents. There are four default justification values: GTK_JUSTIFY_LEFT, GTK_JUSTIFY_RIGHT,
GTK_JUSTIFY_CENTER, and GTK_JUSTIFY_FILL.

Justification can be set for the whole text view with gtk_text_view_set_justification(),
but it can be overridden for specific sections of text with text tags. In most cases, you will want
to use the default GTK_JUSTIFY_LEFT justification unless the user wants it to be changed. Text is
aligned to the left of the view by default.

void gtk_text_view_set_justification (GtkTextView *textview,
 GtkJustification justification);

The last properties set by Listing 7-3 were the left and right margins. By default, there is no
extra margin space added to either the left or right side, but you can add a certain number of
pixels to the left with gtk_text_view_set_left_margin() or to the right with gtk_text_view_
set_right_margin().

Pango Tab Arrays
Tabs added to a text view are set to a default width, but there are times when you will want to
change that. For example, in a source code editor, one user may want to indent two spaces
while another may want to indent five spaces. GTK+ provides the PangoTabArray object, which
defines a new tab size.

When changing the default tab size, you first calculate the number of horizontal pixels the
tab will take up based on the current font. The following make_tab_array() function can be
used to calculate a new tab size. The function begins by creating a string out of the desired
number of spaces. That string is then translated into a PangoLayout object, which is used to
retrieve the pixel width of the displayed string. Lastly, the PangoLayout is translated into a
PangoTabArray, which can be applied to a text view.

7931.book Page 229 Thursday, February 22, 2007 9:09 PM

230 C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T

static void
make_tab_array (PangoFontDescription *fd,
 gsize tab_size,
 GtkWidget *textview)
{
 PangoTabArray *tab_array;
 PangoLayout *layout;
 gchar *tab_string;
 gint width, height;

 g_return_if_fail (tab_size < 100);

 tab_string = g_strnfill (tab_size, ' ');
 layout = gtk_widget_create_pango_layout (textview, tab_string);
 pango_layout_set_font_description (layout, fd);
 pango_layout_get_pixel_size (layout, &width, &height);

 tab_array = pango_tab_array_new (1, TRUE);
 pango_tab_array_set_tab (tab_array, 0, PANGO_TAB_LEFT, width);
 gtk_text_view_set_tabs (GTK_TEXT_VIEW (textview), tab_array);

 g_free (tab_string);
}

The PangoLayout object is used to represent a whole paragraph of text. Normally, Pango
uses it internally for laying out text within a widget. However, it can be employed by this exam-
ple to calculate the width of the tab string.

We begin by creating a new PangoLayout object from the GtkTextView and creating the tab
string with gtk_widget_create_pango_layout(). This uses the default font description of the
text view. This is fine if the whole document will have the same font applied to it. PangoLayout
is used to describe how to render a paragraph of text.

PangoLayout* gtk_widget_create_pango_layout (GtkWidget *textview,
 const gchar *text);

If the font varies within the document or is not already applied to the text view, you will
want to specify the font to use for the calculations. You can set the font of a Pango layout with
pango_layout_set_font_description(). This uses a PangoFontDescription object to describe
the layout’s font.

void pango_layout_set_font_description (PangoLayout *layout,
 const PangoFontDescription *fd);

Once you have correctly configured your PangoLayout, the width of the string can be
retrieved with pango_layout_get_pixel_size(). This is the calculated space that the string will
take up within the buffer, which should be added when the user presses the Tab key within
the widget.

7931.book Page 230 Thursday, February 22, 2007 9:09 PM

C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T 231

void pango_layout_get_pixel_size (PangoLayout *layout,
 int *width,
 int *height);

Now that you have retrieved the width of the tab, you need to create a new PangoTabArray
with pango_tab_array_new(). This function receives the number of elements that should be
added to the array and notification of whether the size of each element is going to be specified
in pixels.

void pango_tab_array_new (gint initial_size,
 gboolean positions_in_pixels);

You should always create the tab array with only one element, because there is only one
tab type supported at this time. If TRUE is not specified for the second parameter, tabs will be
stored as Pango units; 1 pixel is equal to 1,024 Pango units.

Before applying the tab array, you need to add the width. This is done with pango_tab_
array_set_tab(). The integer “0” refers to the first element in the PangoTabArray, the only one
that should ever exist. PANGO_TAB_LEFT must always be specified for the third parameter,
because it is currently the only supported value. The last parameter is the width of the tab
in pixels.

void pango_tab_array_set_tab (PangoTabArray *tabarray,
 gint tab_index,
 PangoTabAlign alignment,
 gint location);

When you receive the tab array back from the function, you need to apply it to the whole
of the text view with gtk_text_view_set_tabs(). This will make sure that all tabs within the text
view are set to the same width. However, as with all other text view properties, this value can be
overridden for individual paragraphs or sections of text.

void gtk_text_view_set_tabs (GtkTextView *textview,
 PangoTabArray *tabs);

When you are finished with the tab array, it can be freed with pango_tab_array_free() if it
is no longer needed.

Text Iterators and Marks
When manipulating text within a GtkTextBuffer, there are two objects that can be used to keep
track of a position within the buffer: GtkTextIter and GtkTextMark. Functions are provided by
GTK+ to translate between these two types of objects.

Text iterators are used to represent a position between two characters in a buffer. They are
utilized when manipulating text within a buffer. The problem presented by text iterators is that
they automatically become invalidated when a text buffer is edited. Even if the same text is
inserted and then removed from the buffer, the text iterator will still become invalidated,
because iterators are meant to be allocated on the stack and used immediately.

7931.book Page 231 Thursday, February 22, 2007 9:09 PM

232 C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T

For keeping track of a position throughout changes within a text buffer, the GtkTextMark
object is provided. Text marks remain intact while buffers are manipulated and will move posi-
tion based on how the buffer is manipulated. You can retrieve an iterator pointing to a text
mark with gtk_text_buffer_get_iter_at_mark(), which makes marks ideal for tracking a posi-
tion in the document.

void gtk_text_buffer_get_iter_at_mark (GtkTextBuffer *buffer,
 GtkTextIter *iter,
 GtkTextMark *mark);

Text marks act as though they are invisible cursors within the text, changing position
depending on how the text is edited. If text is added before the mark, it will move to the right so
that it will remain in the same textual position.

By default, text marks have a gravity set to the right. This means that it moves to the right
as text is added. Let us assume that the text surrounding a mark is deleted. The mark will move
to the position between the two pieces of text on either side of the deleted text. Then, if text is
inserted at the text mark, because of its right gravity setting, it will remain on the right side of
the inserted text. This is similar to the cursor, because as text is inserted, the cursor remains
to the right of the inserted text.

■Tip By default, text marks are invisible within the text. However, you can set a text mark as visible by
calling gtk_text_mark_set_visible(), which will place a vertical bar to indicate where it is located.

Text marks can be accessed in two ways. You can retrieve a text mark at a specific
GtkTextIter location. It is also possible to set up a text mark with a string as its name, which
makes marks easy to keep track of.

Two default text marks are always provided by GTK+ for every GtkTextBuffer: insert and
selection_bound. The insert text mark refers to the current cursor position within the buffer.
The selection_bound text mark refers to the boundary of selected text if there is any selected
text. If no text is selected, these two marks will point to the same position.

The insert and selection_bound text marks are extremely useful when manipulating buff-
ers. They can be manipulated to automatically select or deselect text within a buffer and help
you figure out where text should logically be inserted within a buffer.

Editing the Text Buffer
GTK+ provides a wide array of functions for retrieving text iterators as well as manipulating text
buffers. In this section, you will see a few of the most important of these methods in use in
Listing 7-4 and then be introduced to many more. Figure 7-4 displays an application that will
insert and retrieve the text with a GtkTextBuffer.

7931.book Page 232 Thursday, February 22, 2007 9:09 PM

C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T 233

Figure 7-4. Screenshot of an application using a GtkTextView widget

Listing 7-4 is a simple example that performs two functions. When the Insert Text button
shown in Figure 7-4 is clicked, the string shown in the GtkEntry widget is inserted at the current
cursor position. When the Get Text button is clicked, any selected text is output with g_print().

Listing 7-4. Using Text Iterators (iterators.c)

#include <gtk/gtk.h>

typedef struct
{
 GtkWidget *entry, *textview;
} Widgets;

static void insert_text (GtkButton*, Widgets*);
static void retrieve_text (GtkButton*, Widgets*);

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *scrolled_win, *hbox, *vbox, *insert, *retrieve;
 Widgets *w = g_slice_new (Widgets);

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Text Iterators");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);
 gtk_widget_set_size_request (window, -1, 200);

 w->textview = gtk_text_view_new ();
 w->entry = gtk_entry_new ();
 insert = gtk_button_new_with_label ("Insert Text");
 retrieve = gtk_button_new_with_label ("Get Text");

7931.book Page 233 Thursday, February 22, 2007 9:09 PM

234 C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T

 g_signal_connect (G_OBJECT (insert), "clicked",
 G_CALLBACK (insert_text),
 (gpointer) w);
 g_signal_connect (G_OBJECT (retrieve), "clicked",
 G_CALLBACK (retrieve_text),
 (gpointer) w);

 scrolled_win = gtk_scrolled_window_new (NULL, NULL);
 gtk_container_add (GTK_CONTAINER (scrolled_win), w->textview);

 hbox = gtk_hbox_new (FALSE, 5);
 gtk_box_pack_start_defaults (GTK_BOX (hbox), w->entry);
 gtk_box_pack_start_defaults (GTK_BOX (hbox), insert);
 gtk_box_pack_start_defaults (GTK_BOX (hbox), retrieve);

 vbox = gtk_vbox_new (FALSE, 5);
 gtk_box_pack_start (GTK_BOX (vbox), scrolled_win, TRUE, TRUE, 0);
 gtk_box_pack_start (GTK_BOX (vbox), hbox, FALSE, TRUE, 0);

 gtk_container_add (GTK_CONTAINER (window), vbox);
 gtk_widget_show_all (window);

 gtk_main();
 return 0;
}

/* Insert the text from the GtkEntry into the GtkTextView. */
static void
insert_text (GtkButton *button,
 Widgets *w)
{
 GtkTextBuffer *buffer;
 GtkTextMark *mark;
 GtkTextIter iter;
 const gchar *text;

 buffer = gtk_text_view_get_buffer (GTK_TEXT_VIEW (w->textview));
 text = gtk_entry_get_text (GTK_ENTRY (w->entry));

 mark = gtk_text_buffer_get_insert (buffer);
 gtk_text_buffer_get_iter_at_mark (buffer, &iter, mark);
 gtk_text_buffer_insert (buffer, &iter, text, -1);
}

7931.book Page 234 Thursday, February 22, 2007 9:09 PM

C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T 235

/* Retrieve the selected text from the GtkTextView and display it
 * to the user. */
static void
retrieve_text (GtkButton *button,
 Widgets *w)
{
 GtkTextBuffer *buffer;
 GtkTextIter start, end;
 gchar *text;

 buffer = gtk_text_view_get_buffer (GTK_TEXT_VIEW (w->textview));
 gtk_text_buffer_get_selection_bounds (buffer, &start, &end);
 text = gtk_text_buffer_get_text (buffer, &start, &end, FALSE);

 g_print ("%s\n", text);
}

You should notice from Listing 7-4 that, unlike most objects in GTK+, text iterators are
stored as nonpointer objects. This means that they are allocated directly on the stack. Pointers
to the iterators are then passed to functions using the address operator.

Another important property of iterators is that the same iterator can be used over and
over, because iterators become invalidated every time you edit a text buffer. In this way, you
can continue to reuse the same GtkTextIter object instead of creating a huge number of
variables.

Retrieving Text Iterators and Marks

As stated before, there are quite a number of functions available for retrieving text iterators and
text marks, many of which will be used throughout this chapter.

Listing 7-4 begins by retrieving the insert mark with gtk_text_buffer_get_insert(). It is
also possible to use gtk_text_buffer_get_selection_bound() to retrieve the selection_bound
text mark.

mark = gtk_text_buffer_get_insert (buffer);
gtk_text_buffer_get_iter_at_mark (buffer, &iter, mark);

Once you have retrieved a mark, you can translate it into a text iterator with
gtk_text_buffer_get_iter_at_mark(), so that it can be used to manipulate the buffer.

The other function presented by Listing 7-4 for retrieving text iterators is
gtk_text_buffer_get_selection_bounds(), which returns the iterators located at the insert
and selection_bound marks. You can set one or both of the text iterator parameters to NULL,
which will prevent the value from returning, although it would make more sense to use the
functions for the specific mark if you only need one or the other.

7931.book Page 235 Thursday, February 22, 2007 9:09 PM

236 C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T

When retrieving the contents of a buffer, you will need to specify a start and end iterator
for the slice of text. If you want to get the whole contents of the document, you will need
iterators pointing to the beginning and end of the document, which can be retrieved with
gtk_text_buffer_get_bounds().

void gtk_text_buffer_get_bounds (GtkTextBuffer *buffer,
 GtkTextIter *start,
 GtkTextIter *end);

It is also possible to retrieve only the beginning or end iterator for the text buffer
independently of the other with gtk_text_buffer_get_start_iter() or gtk_text_buffer_
get_end_iter().

Text within a buffer can be retrieved with gtk_text_buffer_get_text(). It returns all of the
text between the start and end iterators. If the last parameter is set to TRUE, then invisible text
will also be returned.

gchar* gtk_text_buffer_get_text (GtkTextBuffer *buffer,
 const GtkTextIter *start,
 const GtkTextIter *end,
 gboolean include_hidden_chars);

■Caution You should only use gtk_text_buffer_get_text() for retrieving the whole contents of a
buffer. It ignores any image or widget objects embedded in the text buffer, so character indexes may not
correspond to the correct location. For retrieving individual parts of a text buffer, use gtk_text_buffer_
get_slice() instead.

Recall that the offset refers to the number of individual characters within the buffer. These
characters can be one or more bytes long. The gtk_text_buffer_get_iter_at_offset() func-
tion allows you to retrieve the iterator at the location of a specific offset from the beginning of
the buffer.

void gtk_text_buffer_get_iter_at_offset (GtkTextBuffer *buffer,
 GtkTextIter *iter,
 gint character_offset);

GTK+ also provides gtk_text_buffer_get_iter_at_line_index(), which will choose a
position of an individual byte on the specified line. You should be extremely careful when
using this function, because the index must always point to the beginning of a UTF-8 charac-
ter. Remember that characters in UTF-8 may not be only a single byte!

7931.book Page 236 Thursday, February 22, 2007 9:09 PM

C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T 237

Rather than choosing a character offset, you can retrieve the first iterator on a specified
line with gtk_text_buffer_get_iter_at_line().

void gtk_text_buffer_get_iter_at_line (GtkTextBuffer *buffer,
 GtkTextIter *iter,
 gint character_offset);

If you want to retrieve the iterator at an offset from the first character of a specific line,
gtk_text_buffer_get_iter_at_line_offset() will do the trick.

Changing Text Buffer Contents

You have already learned how to reset the contents of a whole text buffer, but it is also useful to
edit only a portion of a document. There are a number of functions provided for this purpose.
Listing 7-4 shows you how to insert text into a buffer.

If you need to insert text in an arbitrary position of the buffer, you should use gtk_text_
buffer_insert(). To do this, you will need a GtkTextIter pointing to the insertion point, the
text string to insert into the buffer that must be UTF-8, and the length of the text. If the text
string is NULL-terminated, you can specify -1 as its length.

GtkTextMark* gtk_text_buffer_get_insert (GtkTextBuffer *buffer);

When this function is called, the text buffer will emit the insert-text signal, and the text
iterator will be invalidated. However, the text iterator will then be reinitialized to the end of the
inserted text.

A convenience function named gtk_text_buffer_insert_at_cursor() can be used to call
gtk_text_buffer_insert() at the cursor’s current position. This can easily be implemented by
using the insert text mark, but it helps you avoid repetitive calls.

void gtk_text_buffer_insert_at_cursor (GtkTextBuffer *buffer,
 const gchar *text,
 gint length);

You can delete the text between two text iterators with gtk_text_buffer_delete(). The
order in which you specify the iterators is irrelevant, because the function will automatically
place them in the correct order.

void gtk_text_buffer_delete (GtkTextBuffer *buffer,
 GtkTextIter *start,
 GtkTextIter *end);

This function will emit the delete-range signal, and both iterators will be invalidated. How-
ever, the start and end iterators will both be reinitialized to the start location of the deleted text.

7931.book Page 237 Thursday, February 22, 2007 9:09 PM

238 C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T

Cutting, Copying, and Pasting Text
When you right-click a GtkTextView widget, you are presented with a pop-up menu containing
multiple options. An example of this menu is shown in Figure 7-5, although the content may
vary depending on your system.

Figure 7-5. A GtkTextView menu displayed on a right-click

Three of these options are cut, copy, and paste, which are standard to almost all text edi-
tors. They are built into every GtkTextView widget. However, there are times that you will want
to implement your own versions of these functions to include in an application menu or
toolbar.

Listing 7-5 gives an example of each of these methods. When one of the three GtkButton
widgets is clicked, some action is initialized. Try using the buttons and the right-click menu to
show that both use the same GtkClipboard object. These functions can also be called by using
the built-in keyboard accelerators, which are Ctrl+C, Ctrl+X, and Ctrl+V.

Listing 7-5. Using the Cut, Copy, and Paste Operations (cutcopypaste.c)

#include <gtk/gtk.h>

static void cut_clicked (GtkButton*, GtkTextView*);
static void copy_clicked (GtkButton*, GtkTextView*);
static void paste_clicked (GtkButton*, GtkTextView*);

int main (int argc,
 char *argv[])

7931.book Page 238 Thursday, February 22, 2007 9:09 PM

C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T 239

{
 GtkWidget *window, *scrolled_win, *textview, *cut, *copy, *paste, *hbox, *vbox;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Cut, Copy & Paste");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);

 textview = gtk_text_view_new ();

 cut = gtk_button_new_from_stock (GTK_STOCK_CUT);
 copy = gtk_button_new_from_stock (GTK_STOCK_COPY);
 paste = gtk_button_new_from_stock (GTK_STOCK_PASTE);

 g_signal_connect (G_OBJECT (cut), "clicked",
 G_CALLBACK (cut_clicked),
 (gpointer) textview);
 g_signal_connect (G_OBJECT (copy), "clicked",
 G_CALLBACK (copy_clicked),
 (gpointer) textview);
 g_signal_connect (G_OBJECT (paste), "clicked",
 G_CALLBACK (paste_clicked),
 (gpointer) textview);

 scrolled_win = gtk_scrolled_window_new (NULL, NULL);
 gtk_widget_set_size_request (scrolled_win, 300, 200);
 gtk_container_add (GTK_CONTAINER (scrolled_win), textview);

 hbox = gtk_hbox_new (TRUE, 5);
 gtk_box_pack_start (GTK_BOX (hbox), cut, TRUE, TRUE, 0);
 gtk_box_pack_start (GTK_BOX (hbox), copy, TRUE, TRUE, 0);
 gtk_box_pack_start (GTK_BOX (hbox), paste, TRUE, TRUE, 0);

 vbox = gtk_vbox_new (FALSE, 5);
 gtk_box_pack_start (GTK_BOX (vbox), scrolled_win, TRUE, TRUE, 0);
 gtk_box_pack_start (GTK_BOX (vbox), hbox, FALSE, TRUE, 0);

 gtk_container_add (GTK_CONTAINER (window), vbox);
 gtk_widget_show_all (window);

 gtk_main();
 return 0;
}

7931.book Page 239 Thursday, February 22, 2007 9:09 PM

240 C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T

/* Copy the selected text to the clipboard and remove it from the buffer. */
static void
cut_clicked (GtkButton *cut,
 GtkTextView *textview)
{
 GtkClipboard *clipboard = gtk_clipboard_get (GDK_SELECTION_CLIPBOARD);
 GtkTextBuffer *buffer = gtk_text_view_get_buffer (textview);

 gtk_text_buffer_cut_clipboard (buffer, clipboard, TRUE);
}

/* Copy the selected text to the clipboard. */
static void
copy_clicked (GtkButton *copy,
 GtkTextView *textview)
{
 GtkClipboard *clipboard = gtk_clipboard_get (GDK_SELECTION_CLIPBOARD);
 GtkTextBuffer *buffer = gtk_text_view_get_buffer (textview);

 gtk_text_buffer_copy_clipboard (buffer, clipboard);
}

/* Insert the text from the clipboard into the text buffer. */
static void
paste_clicked (GtkButton *paste,
 GtkTextView *textview)
{
 GtkClipboard *clipboard = gtk_clipboard_get (GDK_SELECTION_CLIPBOARD);
 GtkTextBuffer *buffer = gtk_text_view_get_buffer (textview);

 gtk_text_buffer_paste_clipboard (buffer, clipboard, NULL, TRUE);
}

GtkClipboard is a central class where data can be transferred easily between applications.
To retrieve a clipboard that has already been created, you should use gtk_clipboard_get().
Since a default clipboard is provided, this book will not teach you how to create your own clip-
board object.

7931.book Page 240 Thursday, February 22, 2007 9:09 PM

C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T 241

■Note While it is possible to create your own GtkClipboard objects, when performing basic tasks,
you should use the default clipboard. You can retrieve it by passing GDK_SELECTION_CLIPBOARD to
gtk_clipboard_get().

It is feasible to directly interact with the GtkClipboard object that you have created, adding
and removing data from it. However, when performing simple tasks including copying and
retrieving text strings for a GtkTextView widget, it makes more sense to use GtkTextBuffer’s
built-in functions.

The simplest of GtkTextBuffer’s three clipboard actions is copying text, which can be done
with the following:

void gtk_text_buffer_copy_clipboard (GtkTextBuffer *buffer,
 GtkClipboard *clipboard);

The second clipboard function, gtk_text_buffer_cut_clipboard() copies the selection to
the clipboard as well as removing it from the buffer. If any of the selected text does not have the
editable flag set, it will be set to the third parameter of this function. This function will copy not
only text but also embedded objects such as images and text tags.

void gtk_text_buffer_cut_clipboard (GtkTextBuffer *buffer,
 GtkClipboard *clipboard,
 gboolean default_editable);

The last clipboard function, gtk_text_buffer_paste_clipboard() first retrieves the con-
tent of the clipboard. Next, the function will do one of two things. If the third parameter, which
accepts a GtkTextIter, has been specified, the content will be inserted at the point of that iter-
ator. If you specify NULL for the third parameter, the content will be inserted at the cursor.

void gtk_text_buffer_paste_clipboard (GtkTextBuffer *buffer,
 GtkClipboard *clipboard,
 GtkTextIter *override_location,
 gboolean default_editable);

If any of the content that is going to be pasted does not have the editable flag set, then it
will be set automatically to default_editable. In most cases, you will want to set this parameter
to TRUE, because it will allow the pasted content to be edited. You should also note that the
paste operation is asynchronous.

7931.book Page 241 Thursday, February 22, 2007 9:09 PM

242 C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T

Searching the Text Buffer
In most applications that use the GtkTextView widget, you will need to search through a text
buffer in one or more instances. GTK+ provides two functions for finding text in a buffer:
gtk_text_iter_forward_search() and gtk_text_iter_backward_search().

The following example shows you how to use the first of these functions to search for a text
string in a GtkTextBuffer; a screenshot of the example is shown in Figure 7-6. The example
begins when the user clicks the GTK_STOCK_FIND button.

Figure 7-6. Screenshot of an application that searches a text buffer

The application in Listing 7-6 searches for all instances of the specified string within the
text buffer. A dialog is presented to the user, displaying how many times the string was found
in the document.

Listing 7-6. Using the GtkTextIter Find Function (find.c)

#include <gtk/gtk.h>

typedef struct
{
 GtkWidget *entry, *textview;
} Widgets;

static void search (GtkButton*, Widgets*);

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *scrolled_win, *vbox, *hbox, *find;
 Widgets *w = g_slice_new (Widgets);

 gtk_init (&argc, &argv);

7931.book Page 242 Thursday, February 22, 2007 9:09 PM

C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T 243

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Searching Buffers");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);

 w->textview = gtk_text_view_new ();
 w->entry = gtk_entry_new ();
 gtk_entry_set_text (GTK_ENTRY (w->entry), "Search for ...");
 find = gtk_button_new_from_stock (GTK_STOCK_FIND);

 g_signal_connect (G_OBJECT (find), "clicked",
 G_CALLBACK (search),
 (gpointer) w);

 scrolled_win = gtk_scrolled_window_new (NULL, NULL);
 gtk_widget_set_size_request (scrolled_win, 250, 200);
 gtk_container_add (GTK_CONTAINER (scrolled_win), w->textview);

 hbox = gtk_hbox_new (FALSE, 5);
 gtk_box_pack_start (GTK_BOX (hbox), w->entry, TRUE, TRUE, 0);
 gtk_box_pack_start (GTK_BOX (hbox), find, FALSE, TRUE, 0);

 vbox = gtk_vbox_new (FALSE, 5);
 gtk_box_pack_start (GTK_BOX (vbox), scrolled_win, TRUE, TRUE, 0);
 gtk_box_pack_start (GTK_BOX (vbox), hbox, FALSE, TRUE, 0);

 gtk_container_add (GTK_CONTAINER (window), vbox);
 gtk_widget_show_all (window);

 gtk_main();
 return 0;
}

/* Search for the entered string within the GtkTextView. Then tell the user
 * how many times it was found. */
static void
search (GtkButton *button,
 Widgets *w)
{
 const gchar *find;
 gchar *output;
 GtkWidget *dialog;
 GtkTextBuffer *buffer;
 GtkTextIter start, begin, end;
 gboolean success;
 gint i = 0;

7931.book Page 243 Thursday, February 22, 2007 9:09 PM

244 C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T

 find = gtk_entry_get_text (GTK_ENTRY (w->entry));
 buffer = gtk_text_view_get_buffer (GTK_TEXT_VIEW (w->textview));

 gtk_text_buffer_get_start_iter (buffer, &start);
 success = gtk_text_iter_forward_search (&start, (gchar*) find, 0,
 &begin, &end, NULL);

 while (success)
 {
 gtk_text_iter_forward_char (&start);
 success = gtk_text_iter_forward_search (&start, (gchar*) find, 0,
 &begin, &end, NULL);
 start = begin;
 i++;
 }

 output = g_strdup_printf ("The string '%s' was found %i times!", find, i);
 dialog = gtk_message_dialog_new (NULL, GTK_DIALOG_MODAL, GTK_MESSAGE_INFO,
 GTK_BUTTONS_OK, output, NULL);

 gtk_dialog_run (GTK_DIALOG (dialog));
 gtk_widget_destroy (dialog);
 g_free (output);
}

The first thing the search function needs to do is retrieve the lower search bound of the
document with gtk_text_buffer_get_start_iter(). We do not need the bounding position of
the buffer, because by leaving the search unbounded, it will automatically set the end of the
document as the limit of the search.

Forward searching through a buffer is performed with gtk_text_iter_forward_search(),
where TRUE is returned if the text is found. Otherwise, FALSE is returned by the function.

success = gtk_text_iter_forward_search (&start, find, 0, &begin, &end, NULL);

You must begin by specifying the start position iterator. Only text after that position will be
searched. Next, you specify the text that is being searched for. The third parameter allows you
to specify a GtkTextSearchFlags enumeration value if you want; the enumeration value is com-
prised of the following:

• GTK_TEXT_SEARCH_VISIBLE_ONLY: Do not search hidden elements within the buffer.

• GTK_TEXT_SEARCH_TEXT_ONLY: Ignore images, child widgets, or any other type of nontex-
tual objects when searching.

If you do not specify the GTK_TEXT_SEARCH_TEXT_ONLY flag, you will need to use the special
0xFFFC character to represent child widgets and embedded pixbufs. Matches must be exact, so
ignoring nontextual elements with a flag is usually a good idea. By default, all searching is case
sensitive, although a flag may be introduced in the future that supports case-insensitive
searches.

7931.book Page 244 Thursday, February 22, 2007 9:09 PM

C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T 245

The next two iterators specify the start and end positions of the first match, if one is found.
If you do not want to track the position of the match, you have the option to specify NULL for
both iterators.

The last parameter allows you to specify a bounding iterator for the search. The function
will only search up to the limit for matches. If your program must deal with large buffers, lim-
iting searches is a good idea. Otherwise, you could risk locking up the screen until the search is
complete. If you want to search until the end of the buffer, use NULL for the bounding iterator.

Searching with gtk_text_iter_backward_search() will work in the same way as gtk_text_
iter_forward_search(), except limit must occur before start_pos. If you do not set a limiting
iterator, the function will assume it is the start of the buffer. You should be careful when doing
this, because searching the whole buffer repeatedly, or searching a large buffer, can take
some time.

gboolean gtk_text_iter_backward_search (const GtkTextIter *start_pos,
 const gchar *text_string,
 GtkTextSearchFlags flags,
 GtkTextIter *match_start,
 GtkTextIter *match_end,
 const GtkTextIter *limit);

When searching in most applications, you will want to mark a match by selecting it.
You can do this with gtk_text_buffer_select_range(). This function moves the insert and
selection_bound marks at the same time to the locations of the two iterators.

void gtk_text_buffer_select_range (GtkTextBuffer *buffer,
 const GtkTextIter *ins,
 const GtkTextIter *sel_bound);

If you manually move the marks in two steps, you will cause commotion on the screen as
the selected text is changed multiple times. This function avoids the confusion by forcing the
selection to be recalculated only once.

Scrolling Text Buffers
GTK+ will not automatically scroll to search matches that you select. To do this, you need to
first call gtk_text_buffer_create_mark() to create a temporary GtkTextMark at the location of
the found text.

GtkTextMark* gtk_text_buffer_create_mark (GtkTextBuffer *buffer,
 const gchar *name,
 const GtkTextIter *location,
 gboolean left_gravity);

The second parameter of gtk_text_buffer_create_mark() allows you to specify a text
string as a name for the mark. This name can be used to reference the mark at a later time with-
out the actual mark object. The mark is created at the location of the specified text iterator. The
last parameter will create a mark with left gravity if set to TRUE.

7931.book Page 245 Thursday, February 22, 2007 9:09 PM

246 C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T

Then, use gtk_text_view_scroll_mark_onscreen() to scroll the buffer, so the mark is
on the screen. After you are finished with the mark, you can remove it from the buffer with
gtk_text_buffer_delete_mark().

void gtk_text_view_scroll_mark_onscreen (GtkTextView *textview,
 GtkTextMark *mark);

The problem with gtk_text_view_scroll_mark_onscreen() is that it will only scroll the
minimum distance to show the mark on the screen. For example, you may want the mark to be
centered within the buffer. To specify alignment parameters for where the mark appears
within the visible buffer, call gtk_text_view_scroll_to_mark().

void gtk_text_view_scroll_to_mark (GtkTextView *textview,
 GtkTextMark *mark,
 gdouble margin,
 gboolean use_align,
 gdouble xalign,
 gdouble yalign);

You begin by placing a margin, which will reduce the scrollable area. The margin must be
specified as a floating-point number, which will reduce the area by that factor. In most cases,
you will want to use 0.0 as the margin so the area is not reduced at all.

If you specify FALSE for the use_align parameter, the function will scroll the minimal dis-
tance to get the mark onscreen. Otherwise, the function will use the two alignment parameters
as guides, which allows you to specify horizontal and vertical alignment of the mark within the
visible area.

An alignment of 0.0 refers to the left or top of the visible area, 1.0 refers to the right or bot-
tom and 0.5 refers to the center. The function will scroll as far as possible, but it may not be able
to scroll the mark to the specified position. For example, it is impossible to scroll the last line in
a buffer to the top if the buffer is larger than one character tall.

There is another function, gtk_text_view_scroll_to_iter(), which behaves in the
same manner as gtk_text_view_scroll_to_mark(). The only difference is that it receives a
GtkTextIter instead of a GtkTextMark for the location, although in most cases, you should use
text marks.

Text Tags
There are many functions provided for changing properties of all of the text within a GtkTextBuffer,
which have been covered in previous sections. But, as previously mentioned, it is also possible to
change the display properties of only an individual section of text with the GtkTextTag object.

Text tags allow you to create documents where the text style varies among different parts
of the text, which is commonly called rich text editing. A screenshot of a GtkTextView that uses
multiple text styles is shown in Figure 7-7.

7931.book Page 246 Thursday, February 22, 2007 9:09 PM

C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T 247

Figure 7-7. Formatted text within a text buffer

Text tags are actually a very simple concept to apply. In Listing 7-7, an application is cre-
ated that allows the user to apply multiple styles or remove all of the tags from the selection.
After reading the rest of this section, you might want to try out other text properties by altering
Listing 7-7 to include different style options.

Listing 7-7. Using Text Tags (texttags.c)

#include <gtk/gtk.h>

typedef struct
{
 gchar *str;
 double scale;
} text_to_double;

const text_to_double text_scales[] =
{
 { "Quarter Sized", (double) 0.25 },
 { "Double Extra Small", PANGO_SCALE_XX_SMALL},
 { "Extra Small", PANGO_SCALE_X_SMALL},
 { "Small", PANGO_SCALE_SMALL },
 { "Medium", PANGO_SCALE_MEDIUM },
 { "Large", PANGO_SCALE_LARGE},
 { "Extra Large", PANGO_SCALE_X_LARGE},
 { "Double Extra Large", PANGO_SCALE_XX_LARGE},
 { "Double Sized", (double) 2.0 },
 { NULL, 0 }
};

7931.book Page 247 Thursday, February 22, 2007 9:09 PM

248 C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T

static void format (GtkWidget*, GtkTextView*);
static void scale_changed (GtkComboBox*, GtkTextView*);
static void clear_clicked (GtkButton*, GtkTextView*);

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *scrolled_win, *textview, *hbox, *vbox;
 GtkWidget *bold, *italic, *underline, *strike, *scale, *clear;
 GtkTextBuffer *buffer;
 gint i = 0;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Text Tags");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);
 gtk_widget_set_size_request (window, 500, -1);

 textview = gtk_text_view_new ();
 buffer = gtk_text_view_get_buffer (GTK_TEXT_VIEW (textview));

 gtk_text_buffer_create_tag (buffer, "bold", "weight", PANGO_WEIGHT_BOLD, NULL);
 gtk_text_buffer_create_tag (buffer, "italic", "style", PANGO_STYLE_ITALIC, NULL);
 gtk_text_buffer_create_tag (buffer, "strike", "strikethrough", TRUE, NULL);
 gtk_text_buffer_create_tag (buffer, "underline", "underline",
 PANGO_UNDERLINE_SINGLE, NULL);

 bold = gtk_button_new_from_stock (GTK_STOCK_BOLD);
 italic = gtk_button_new_from_stock (GTK_STOCK_ITALIC);
 underline = gtk_button_new_from_stock (GTK_STOCK_UNDERLINE);
 strike = gtk_button_new_from_stock (GTK_STOCK_STRIKETHROUGH);
 clear = gtk_button_new_from_stock (GTK_STOCK_CLEAR);
 scale = gtk_combo_box_new_text();

 /* Add choices to the GtkComboBox widget. */
 for (i = 0; text_scales[i].str != NULL; i++)
 {
 gtk_combo_box_append_text (GTK_COMBO_BOX (scale), text_scales[i].str);
 gtk_text_buffer_create_tag (buffer, text_scales[i].str, "scale",
 text_scales[i].scale, NULL);
 }

7931.book Page 248 Thursday, February 22, 2007 9:09 PM

C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T 249

 /* Add the name of the text tag as a data parameter of the object. */
 g_object_set_data (G_OBJECT (bold), "tag", "bold");
 g_object_set_data (G_OBJECT (italic), "tag", "italic");
 g_object_set_data (G_OBJECT (underline), "tag", "underline");
 g_object_set_data (G_OBJECT (strike), "tag", "strike");

 /* Connect each of the buttons and the combo box to the necessary signals. */
 g_signal_connect (G_OBJECT (bold), "clicked",
 G_CALLBACK (format), (gpointer) textview);
 g_signal_connect (G_OBJECT (italic), "clicked",
 G_CALLBACK (format), (gpointer) textview);
 g_signal_connect (G_OBJECT (underline), "clicked",
 G_CALLBACK (format), (gpointer) textview);
 g_signal_connect (G_OBJECT (strike), "clicked",
 G_CALLBACK (format), (gpointer) textview);
 g_signal_connect (G_OBJECT (scale), "changed",
 G_CALLBACK (scale_changed),
 (gpointer) textview);
 g_signal_connect (G_OBJECT (clear), "clicked",
 G_CALLBACK (clear_clicked),
 (gpointer) textview);

 /* Pack the widgets into a GtkVBox, GtkHBox, and then into the window. */
 vbox = gtk_vbox_new (TRUE, 5);
 gtk_box_pack_start (GTK_BOX (vbox), bold, FALSE, FALSE, 0);
 gtk_box_pack_start (GTK_BOX (vbox), italic, FALSE, FALSE, 0);
 gtk_box_pack_start (GTK_BOX (vbox), underline, FALSE, FALSE, 0);
 gtk_box_pack_start (GTK_BOX (vbox), strike, FALSE, FALSE, 0);
 gtk_box_pack_start (GTK_BOX (vbox), scale, FALSE, FALSE, 0);
 gtk_box_pack_start (GTK_BOX (vbox), clear, FALSE, FALSE, 0);

 scrolled_win = gtk_scrolled_window_new (NULL, NULL);
 gtk_container_add (GTK_CONTAINER (scrolled_win), textview);
 gtk_scrolled_window_set_policy (GTK_SCROLLED_WINDOW (scrolled_win),
 GTK_POLICY_AUTOMATIC, GTK_POLICY_ALWAYS);

 hbox = gtk_hbox_new (FALSE, 5);
 gtk_box_pack_start (GTK_BOX (hbox), scrolled_win, TRUE, TRUE, 0);
 gtk_box_pack_start (GTK_BOX (hbox), vbox, FALSE, TRUE, 0);

 gtk_container_add (GTK_CONTAINER (window), hbox);
 gtk_widget_show_all (window);

7931.book Page 249 Thursday, February 22, 2007 9:09 PM

250 C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T

 gtk_main();
 return 0;
}

/* Retrieve the tag from the "tag" object data and apply it to the selection. */
static void
format (GtkWidget *widget,
 GtkTextView *textview)
{
 GtkTextIter start, end;
 GtkTextBuffer *buffer;
 gchar *tagname;

 tagname = (gchar*) g_object_get_data (G_OBJECT (widget), "tag");
 buffer = gtk_text_view_get_buffer (textview);
 gtk_text_buffer_get_selection_bounds (buffer, &start, &end);
 gtk_text_buffer_apply_tag_by_name (buffer, tagname, &start, &end);
}

/* Apply the selected text size property as the tag. */
static void
scale_changed (GtkComboBox *combo,
 GtkTextView *textview)
{
 const gchar *text;

 if (gtk_combo_box_get_active (combo) == -1)
 return;

 text = gtk_combo_box_get_active_text (combo);
 g_object_set_data (G_OBJECT (combo), "tag", (gpointer) text);
 format (GTK_WIDGET (combo), textview);
 gtk_combo_box_set_active (combo, -1);
}

/* Remove all of the tags from the selected text. */
static void
clear_clicked (GtkButton *button,
 GtkTextView *textview)
{
 GtkTextIter start, end;
 GtkTextBuffer *buffer;

7931.book Page 250 Thursday, February 22, 2007 9:09 PM

C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T 251

 buffer = gtk_text_view_get_buffer (textview);
 gtk_text_buffer_get_selection_bounds (buffer, &start, &end);
 gtk_text_buffer_remove_all_tags (buffer, &start, &end);
}

When you create a text tag, you normally have to add it to a GtkTextBuffer’s tag table, an
object that holds all of the tags available to a text buffer. You can create a new GtkTextTag object
with gtk_text_tag_new() and then add it to the tag table. However, you can do this all in one
step with gtk_text_buffer_create_tag().

GtkTextTag* gtk_text_buffer_create_tag (GtkTextBuffer *buffer,
 const gchar *tag_name,
 const gchar *first_property_name,
 ...);

The first two parameters of the function allow you to specify the text buffer to whose tag
table the GtkTextTag will be added and a name to give the text tag. This name can be used to
reference a tag for which you do not have the GtkTextTag object anymore. The next set of
parameters is a NULL-terminated list of GtkTextTag style properties and their values.

For example, if you wanted to create a text tag that sets the background and foreground
colors as black and white respectively, you could use the following function. This function
returns the text tag that was created, although it will have already been added to the text
buffer’s tag table.

tag = gtk_text_buffer_create_tag (buffer, "colors", "background", "#000000",
 "foreground", "#FFFFFF", NULL);

There are a large number of style properties available in GTK+. A full list of GtkTextTag
styles is shown in Appendix C. The table shows the name of each property, a short description
of its use, and what type of value it accepts.

Once you have created a text tag and added it to a GtkTextBuffer’s tag table, you can apply
it to ranges of text. In Listing 7-7, the tag is applied to selected text when a button is clicked. If
there is no selected text, the cursor position will be set to the style. All text typed at that position
would have the tag applied as well.

Tags are generally applied to text with gtk_text_buffer_apply_tag_by_name(). The tag is
applied to the text between the start and end iterators. If you still have access to the GtkTextTag
object, you can also apply a tag with gtk_text_buffer_apply_tag().

void gtk_text_buffer_apply_tag_by_name (GtkTextBuffer *buffer,
 const gchar *tag_name,
 const GtkTextIter *start,
 const GtkTextIter *end);

7931.book Page 251 Thursday, February 22, 2007 9:09 PM

252 C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T

Although not used in Listing 7-7, it is possible to remove a tag from an area of text with
gtk_text_buffer_remove_tag_by_name(). This function will remove all instances of the tag
between the two iterators if they exist.

void gtk_text_buffer_remove_tag_by_name (GtkTextBuffer *buffer,
 const gchar *name,
 const GtkTextIter *start,
 const GtkTextIter *end);

■Note These functions only remove tags from a certain range of text. If the tag was added to a larger range
of text than the range specified, the tag will be removed for the smaller range, and new bounds will be created
on either side of the selection. You can test this with the application in Listing 7-7.

If you have access to the GtkTextTag object, you can remove the tag with gtk_text_buffer_
remove_tag(). It is also possible to remove every tag within a range with gtk_text_buffer_remove_
all_tags().

Inserting Images
In some applications, you may want to insert images into a text buffer. This can easily be done
with GdkPixbuf objects. In Figure 7-8, two images were inserted into a text buffer as GdkPixbuf
objects.

Figure 7-8. GdkPixbuf objects in a text buffer

Adding a pixbuf to a GtkTextBuffer is performed in three steps. First, you must create
the pixbuf object and retrieve the GtkTextIter where it will be inserted. Then, you can use
gtk_text_buffer_insert_pixbuf() to add it to the buffer. Listing 7-8 shows the process of cre-
ating a GdkPixbuf object from a file and adding it to a text buffer.

7931.book Page 252 Thursday, February 22, 2007 9:09 PM

C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T 253

Listing 7-8. Inserting Images into Text Buffers (images.c)

#include <gtk/gtk.h>

#define IMAGE_UNDO "/path/to/undo.png"
#define IMAGE_REDO "/path/to/redo.png"

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *scrolled_win, *textview;
 GdkPixbuf *undo, *redo;
 GtkTextIter line;
 GtkTextBuffer *buffer;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Pixbufs");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);
 gtk_widget_set_size_request (window, 200, 150);

 textview = gtk_text_view_new ();
 buffer = gtk_text_view_get_buffer (GTK_TEXT_VIEW (textview));
 gtk_text_buffer_set_text (buffer, " Undo\n Redo", -1);

 /* Create two images and insert them into the text buffer. */
 undo = gdk_pixbuf_new_from_file (IMAGE_UNDO, NULL);
 gtk_text_buffer_get_iter_at_line (buffer, &line, 0);
 gtk_text_buffer_insert_pixbuf (buffer, &line, undo);

 redo = gdk_pixbuf_new_from_file (IMAGE_REDO, NULL);
 gtk_text_buffer_get_iter_at_line (buffer, &line, 1);
 gtk_text_buffer_insert_pixbuf (buffer, &line, redo);

 scrolled_win = gtk_scrolled_window_new (NULL, NULL);
 gtk_container_add (GTK_CONTAINER (scrolled_win), textview);
 gtk_container_add (GTK_CONTAINER (window), scrolled_win);
 gtk_widget_show_all (window);

 gtk_main();
 return 0;
}

7931.book Page 253 Thursday, February 22, 2007 9:09 PM

254 C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T

Inserting a GdkPixbuf object into a text buffer is done with gtk_text_buffer_insert_pixbuf().
The GdkPixbuf object is inserted at the specified location, which can be any valid text iterator in
the buffer.

void gtk_text_buffer_insert_pixbuf (GtkTextBuffer *buffer,
 GtkTextIter *iter,
 GdkPixbuf *pixbuf);

Pixbufs are handled differently by various functions. For example, gtk_text_buffer_
get_slice() will place the 0xFFFC character where a pixbuf is located. However, the 0xFFFC
character can occur as an actual character in the buffer, so that is not a reliable indicator of the
location of a pixbuf.

Another example is gtk_text_buffer_get_text(), which will completely ignore nontextual
elements, so there is no way to check for pixbufs within the text using this function.

Therefore, if you are using pixbufs in a GtkTextBuffer, it is best to retrieve text from the
buffer with gtk_text_buffer_get_slice(). You can then use gtk_text_iter_get_pixbuf() to
check whether the 0xFFFC character represents a GdkPixbuf object; it will return NULL if a pixbuf
is not found at that location.

GdkPixbuf* gtk_text_iter_get_pixbuf (const GtktTextIter *iter);

Inserting Child Widgets
Inserting widgets into a text buffer is a little more complicated than pixbufs, because you must
notify both the text buffer and the text view to embed the widget. You begin by creating a
GtkTextChildAnchor object, which will be used to mark the placement of the widget within the
GtkTextBuffer. Then, you add the widget to the GtkTextView widget.

Figure 7-9. A child widget inserted into a text buffer

Figure 7-9 shows a GtkTextView widget that contains a child GtkButton widget. Listing 7-9
can be used to create this window. When the button is pressed, gtk_main_quit() is called,
which terminates the application.

7931.book Page 254 Thursday, February 22, 2007 9:09 PM

C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T 255

Listing 7-9. Inserting Child Widgets into a Text Buffer (childwidgets.c)

#include <gtk/gtk.h>

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *scrolled_win, *textview, *button;
 GtkTextChildAnchor *anchor;
 GtkTextIter iter;
 GtkTextBuffer *buffer;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Child Widgets");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);
 gtk_widget_set_size_request (window, 250, 100);

 textview = gtk_text_view_new ();
 buffer = gtk_text_view_get_buffer (GTK_TEXT_VIEW (textview));
 gtk_text_buffer_set_text (buffer, "\n Click to exit!", -1);

 /* Create a new child widget anchor at the specified iterator. */
 gtk_text_buffer_get_iter_at_offset (buffer, &iter, 8);
 anchor = gtk_text_buffer_create_child_anchor (buffer, &iter);

 /* Insert a GtkButton widget at the child anchor. */
 button = gtk_button_new_with_label ("the button");
 gtk_text_view_add_child_at_anchor (GTK_TEXT_VIEW (textview), button, anchor);

 g_signal_connect_swapped (G_OBJECT (button), "clicked",
 G_CALLBACK (gtk_widget_destroy),
 (gpointer) window);

 scrolled_win = gtk_scrolled_window_new (NULL, NULL);
 gtk_container_add (GTK_CONTAINER (scrolled_win), textview);
 gtk_scrolled_window_set_policy (GTK_SCROLLED_WINDOW (scrolled_win),
 GTK_POLICY_AUTOMATIC, GTK_POLICY_ALWAYS);

 gtk_container_add (GTK_CONTAINER (window), scrolled_win);
 gtk_widget_show_all (window);

 gtk_main();
 return 0;
}

7931.book Page 255 Thursday, February 22, 2007 9:09 PM

256 C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T

When creating a GtkTextChildAnchor, you need to initialize it and insert it into a
GtkTextBuffer. You can do this by calling gtk_text_buffer_create_child_anchor().

GtkTextChildAnchor* gtk_text_buffer_create_child_anchor (GtkTextBuffer *buffer,
 GtkTextIter *iter);

A child anchor is created at the location of the specified text iterator. This child anchor is
simply a mark that tells GTK+ that a child widget can be added to that point within the text
buffer.

Next, you need to use gtk_text_view_add_child_at_anchor() to add a child widget to the
anchor point. As with GdkPixbuf objects, child widgets appear as the 0xFFFC character. This
means that, if you see that character, you need to check whether it is a child widget or a pixbuf,
because they will be indistinguishable otherwise.

void gtk_text_view_add_child_at_anchor (GtkTextView *textview,
 GtkWidget *child,
 GtkTextChildAnchor *anchor);

To check whether a child widget is at the location of an 0xFFFC character, you should call
gtk_text_iter_get_child_anchor(), which will return NULL if a child anchor is not located at
that position.

GtkTextChildAnchor* gtk_text_iter_get_child_anchor (const GtkTextIter *iter);

You can then retrieve a list of the widgets added at the anchor point with gtk_text_
child_anchor_get_widgets(). You need to note that only one child widget can be added at a
single anchor, so the returned list will usually contain only one element.

GList* gtk_text_child_anchor_get_widgets (GtkTextChildAnchor *anchor);

The exception is when you are using the same buffer for multiple text views. In this case,
multiple widgets can be added to the same anchor in the text views, as long as no text view con-
tains more than one widget. This is because of the fact that the child widget is attached to an
anchor handled by the text view instead of the text buffer. When you are finished with the list
of widgets, you need to free it with g_list_free().

GtkSourceView
GtkSourceView is a widget that is not actually a part of the GTK+ libraries. It is an external library
used to extend the GtkTextView widget. If you have ever used GEdit, you will have experienced
the GtkSourceView widget.

7931.book Page 256 Thursday, February 22, 2007 9:09 PM

C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T 257

There is a large list of features that the GtkSourceView widget adds to text views. A few of the
most notable ones follow:

• Line numbering

• Syntax highlighting for many programming and scripting languages

• Printing support for documents containing syntax highlighting

• Automatic indentation

• Bracket matching

• Undo/Redo support

• Source markers for denoting locations in source code

• Highlighting the current line

Figure 7-10 shows a screenshot of GEdit using the GtkSourceView widget. It has line num-
bering, syntax highlighting, bracket matching, and line highlighting turned on.

Figure 7-10. Screenshot of a GtkSourceView widget

7931.book Page 257 Thursday, February 22, 2007 9:09 PM

258 C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T

The GtkSourceView library has a whole separate API documentation, which can be viewed
at http://gtksourceview.sourceforge.net. If you need to compile an application that uses this
library, you need to add `pkg-config --cflags --libs gtksourceview-1.0` to the compile
command.

If you need syntax highlighting in a GTK+ application, the GtkSourceView library is one
viable option, rather than creating your own widget from scratch.

Test Your Understanding
The following exercise instructs you to create a text editing application with basic functional-
ity. It will give you practice on interacting with a GtkTextView widget.

Exercise 7-1. Text Editor

Use the GtkTextView widget to create a simple text editor. You should provide the ability to perform multiple text
editing functions, including creating a new document, opening a file, saving a file, searching the document, cutting
text, copying text, and pasting text.

When creating a new document, you should make sure the user actually wants to continue, because all changes will
be lost. When the Save button is pressed, it should always ask where to save the file. Once you have finished this
exercise, one possible solution is shown in Appendix F.

Hint: This is a much larger GTK+ application than any that has previously been created in this book, so you may want
to take a few minutes to plan out your solution on paper before diving right into the code. Then, implement one func-
tion at a time, making sure it works before continuing on to the next feature. We will expand on this exercise in later
chapters as well, so keep your solution handy!

This is the first instance of the Text Editor application that you will be creating throughout
this book. In the last few chapters of this book, you will learn new elements that will help you
create a fully featured text editor.

The application will first be expanded in Chapter 9; you will add a menu and toolbar. In
Chapter 12, you will add printing support and the ability to remember past open files and
searches.

You can view one possible solution to Exercise 7-1 in Appendix F. Much of the functional-
ity of the text editor solution has been implemented by other examples in this chapter.
Therefore, most of the solution should look familiar to you. The solution is also a bare mini-
mum solution, and I encourage you to expand on the basic requirements of the exercise for
more practice.

7931.book Page 258 Thursday, February 22, 2007 9:09 PM

C H A P T E R 7 ■ T H E T E X T V I E W W I D G E T 259

Summary
In this chapter, you learned all about the GtkTextView widget, which allows you to display mul-
tiple lines of text. Text views are usually contained by a special type of GtkBin container called
GtkScrolledWindow that gives scrollbars to the child widget to implement scrolling abilities.

A GtkTextBuffer handles text within a view. Text buffers allow you to change many differ-
ent properties of the whole or portions of the text using text tags. They also provide cut, copy,
and paste functions.

You can move throughout a text buffer by using GtkTextIter objects, but text iterators
become invalid once the text buffer is changed. Text iterators can be used to search forward or
backward throughout a document. To keep a location over changes of a buffer, you need to use
text marks. Text views are capable of displaying not only text but also images and child widgets.
Child widgets are added at anchor points throughout a text buffer.

The last section of the chapter briefly introduced the GtkSourceView widget, which extends
the functionality of the GtkTextView widget. It can be used when you need features such as syn-
tax highlighting and line numbering.

In Chapter 8, you will be introduced to two new widgets: combo boxes and tree views.
Combo boxes allow you to select one option from a drop-down list. Tree views allow you to
select one or more options from a list usually contained by a scrolled window. GtkTreeView is
the most difficult widget that will be covered in this book, so take your time with the next
chapter.

7931.book Page 259 Thursday, February 22, 2007 9:09 PM

7931.book Page 260 Thursday, February 22, 2007 9:09 PM

261

■ ■ ■

C H A P T E R 8

The Tree View Widget

This chapter will show you how to use the GtkScrolledWindow widget in combination with
another powerful widget known as GtkTreeView. The tree view widget can be used to display
data in lists or trees that span one or many columns. For example, a GtkTreeView can be used
to implement a file browser or display the build the output of an integrated development
environment.

GtkTreeView is an involved widget, because it provides a wide variety of features, so be sure
to carefully read through each section of this chapter. However, once you learn this powerful
widget, you will be able to apply it in many applications.

This chapter will introduce you to a large number of features provided by GtkTreeView. The
information presented in this chapter will enable you to mold the tree view widget to meet your
needs. Specifically, in this chapter, you will learn the following:

• What objects are used to create a GtkTreeView and how its model-view-controller design
makes it unique

• How to create lists and tree structures with the GtkTreeView widget

• When to use GtkTreePath, GtkTreeIter, or GtkTreeRowReference to reference rows within
a GtkTreeView

• How to handle double-clicks, single row selections, and multiple row selections

• How to create editable tree view cells or customize individual cells with cell renderer
functions

• The widgets you can embed within a cell, including toggle buttons, pixbufs, spin but-
tons, combo boxes, progress bars, and keyboard accelerator strings

7931.book Page 261 Thursday, February 22, 2007 9:09 PM

262 C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T

Parts of a Tree View
The GtkTreeView widget is used to display data organized as a list or a tree. The data displayed
in the view is organized into columns and rows. The user is able to select one or multiple rows
within the tree view using the mouse or keyboard. A screenshot of the Nautilus application
using GtkTreeView can be viewed in Figure 8-1.

Figure 8-1. Nautilus using the GtkTreeView widget

GtkTreeView is a difficult widget to use and an even more difficult widget to understand,
so this whole chapter is dedicated to using it. However, once you understand how the widget
works, you will be able to apply it to a wide variety of applications, because it is possible to cus-
tomize almost every aspect of the way the widget is displayed to the user.

What makes GtkTreeView unique is that it follows a design concept that is commonly
referred to as model-view-controller (MVC) design. MVC is a design method where the infor-
mation and the way it is rendered are completely independent of each other, similar to the
relationship between GtkTextView and GtkTextBuffer.

7931.book Page 262 Thursday, February 22, 2007 9:09 PM

C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T 263

GtkTreeModel
Data itself is stored within classes that implement the GtkTreeModel interface. GTK+ provides
four types of built-in tree model classes, but only GtkListStore and GtkTreeStore will be cov-
ered in this chapter.

The GtkTreeModel interface provides a standard set of methods for retrieving general infor-
mation about the data that is stored. For example, it allows you to get the number of rows in the
tree and the number of children of a certain row. GtkTreeModel also gives you a way to retrieve
the data that is stored in a specific row of the store.

■Note Models, renderers, and columns are referred to as objects instead of widgets, even though they are
a part of the GTK+ library. This is an important distinction—since they are not derived from GtkWidget, they
do not have the same set of functions, properties, and signals that are available to GTK+ widgets.

GtkListStore allows you to create a list of elements with multiple columns. Each row is a
child of the root node, so only one level of rows is displayed. Basically, GtkListStore is a tree
structure that has no hierarchy. It is only provided because faster algorithms exist for interact-
ing with models that do not have any child items.

GtkTreeStore provides the same functionality as GtkListStore, except the data can be
organized into a multilayered tree. GTK+ provides a method for creating your own custom
model types as well, but the two available types should be suitable in most cases.

While GtkListStore and GtkTreeStore should fit most applications, a time may come
when you need to implement your own store object. For example, if it needs to hold a huge
number of rows, you should create a new model that will be more efficient. In Chapter 11, you
will learn how to create new classes derived from GObject, which can be used as a guide to get
you started deriving a new class that implements the GtkTreeModel interface.

After you have created the tree model, the view is used to display the data. By separating
the tree view and its model, you are able to display the same set of data in multiple views. These
views can be exact copies of each other, or the data can be displayed in varying ways. All of
the views will be updated simultaneously as you make alterations to a model.

■Tip While it may not immediately seem beneficial to display the same set of data in multiple tree views,
consider the case of a file browser. If you need to display the same set of files in multiple file browsers, using
the same model for each view would save memory as well as make your program run considerably faster.
This is also useful when you want to provide multiple display options for the file browser. When switching
between display modes, you will not need to alter the data itself.

7931.book Page 263 Thursday, February 22, 2007 9:09 PM

264 C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T

Models are composed of columns that contain the same data type and rows that hold each
set of data. Each model column can hold a single type of data. A tree model column should not
be confused with a tree view column, which is composed of a single header but may be ren-
dered with data from multiple model columns. For example, a tree column may display a text
string that has a foreground color defined by a model column that is not visible to the user.
Figure 8-2 illustrates the difference between model columns and tree columns.

Figure 8-2. The relationship between model and tree columns

Each row within a model contains one piece of data corresponding to each model column.
In Figure 8-2, each row contains a text string and a GdkColor value. These two values are used
to display the text with the corresponding color in the tree column. You will learn how to
implement this in code later in this chapter. For now, you should simply understand the differ-
ences between the two types of columns and how they relate.

New list and tree stores are created with a number of columns, each defined by an existing
GType. Usually, you will need to use only those already implemented in GLib. For example, if
you want to display text you can use G_TYPE_STRING, G_TYPE_BOOLEAN, and a few of the number
types like G_TYPE_INT.

■Tip Since it is possible to store an arbitrary data type with G_TYPE_POINTER, one or more tree model col-
umns can be used to simply store information about every row. You just need to be careful when there are a
large number of rows, because memory usage will quickly escalate. You will also have to take care of freeing
the pointers yourself.

7931.book Page 264 Thursday, February 22, 2007 9:09 PM

C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T 265

GtkTreeViewColumn and GtkCellRenderer
As previously mentioned, a tree view displays one or more GtkTreeViewColumn objects. Tree
columns are composed of a header and cells of data that are organized into one column. Each
tree view column also contains one or more visible columns of data. For example, in a file
browser, a tree view column may contain one column of images and one column of file names.

The header of the GtkTreeViewColumn widget contains a title that describes what data is
held in the cells below. If you make the column sortable, the rows will be sorted when one of
the column headers is clicked.

Tree view columns do not actually render anything to the screen. This is done with an object
derived from GtkCellRenderer. Cell renderers are packed into tree view columns similar to how
you add widgets into a horizontal box. Each tree view column can contain one or more cell ren-
derers, which are used to render the data. For example, in a file browser, the image column would
be rendered with GtkCellRendererPixbuf and the file name with GtkCellRendererText. An exam-
ple of this was shown in Figure 8-1.

Each cell renderer is responsible for rendering a column of cells, one for every row in the
tree view. It begins with the first row, rendering its cell and then proceeding to the next row
down until the whole column, or part of the column, is rendered.

Cell renderers are composed of properties that define how each cell of data is rendered to
the screen. There are a number of ways to set cell renderer properties. The easiest is to use
g_object_set(), which will apply the setting to every cell in the column that the cell renderer is
acting on. This is very fast, but often you will need to set attributes for specific cells.

Another way is to add attributes to the renderer. Column attributes correspond to tree
model columns and are associated with cell renderer properties, as shown in Figure 8-3. These
properties are applied to each cell as it is rendered.

Figure 8-3. Applying Cell Renderer Properties

7931.book Page 265 Thursday, February 22, 2007 9:09 PM

266 C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T

In Figure 8-3, there are two tree model columns with the types G_TYPE_STRING and
GDK_TYPE_COLOR. These are applied to GtkCellRendererText’s text and foreground properties
and used to render the tree view column accordingly.

An additional way to change cell renderer properties is by defining a cell data function.
This function will be called for every row in the tree view before it is rendered. This allows you
to customize how every cell is rendered without the need for the data to be stored in a tree
model. For example, a cell data function can be used to define how many decimal places of a
floating point number to display. Cell data functions will be covered in detail in the “Cell Data
Functions” section of this chapter.

Later on, this chapter also covers cell renderers that are used to display text (strings, num-
bers, and Boolean values), toggle buttons, spin buttons, progress bars, pixbufs, combo boxes,
and keyboard accelerators. In addition, you can create custom cell renderer types, but this is
usually not needed, since GTK+ now provides such a wide variety of types.

This section has taught you what objects are needed to use the GtkTreeView widget, what
they do, and how they interrelate. Now that you have a basic understanding of the GtkTreeView
widget, the next section will give a simple example using the GtkListStore tree model.

Using GtkListStore
Recall from the previous section that GtkTreeModel is simply an interface implemented by data
stores such as GtkListStore. GtkListStore is used to create lists of data that have no hierarchi-
cal relationship among rows.

In this section, a simple Grocery List application will be implemented that contains three
columns, all of which use GtkCellRendererText. A screenshot of this application can be viewed
in Figure 8-4. The first column is a gboolean value displaying TRUE or FALSE that defines whether
or not the product should be purchased.

■Tip You usually do not want to display Boolean values as text, because if you have many Boolean col-
umns, it will become unmanageable for the user. Instead, you will want to use toggle buttons. You will learn
how to do this with GtkCellRendererToggle in a later section. Boolean values are often also used as
column attributes in order to define cell renderer properties.

The second column displays the quantity of the product to buy as an integer and the third
a text string describing the product. All of the columns use GtkCellRendererText for rendering;
GtkCellRendererText is a cell renderer capable of displaying Boolean values and various num-
ber formats (int, double, and float) as text strings.

7931.book Page 266 Thursday, February 22, 2007 9:09 PM

C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T 267

Figure 8-4. A tree view widget using a GtkListStore tree model

Listing 8-1 creates a GtkListStore object, which displays a list of groceries. In addition to
displaying the products, the list store also displays whether to buy the product and how many
of them to buy.

This Grocery List application will be used for many examples throughout the rest of the
chapter. Therefore, the content of some functions may be excluded later on if it is presented in
previous examples. Also, to keep things organized, in every example setup_tree_view() will be
used to set up columns and renderers. Full code listings for every example can be downloaded
at www.gtkbook.com.

Listing 8-1. Creating a GtkTreeView (liststore.c)

#include <gtk/gtk.h>

enum
{
 BUY_IT = 0,
 QUANTITY,
 PRODUCT,
 COLUMNS
};

typedef struct
{
 gboolean buy;
 gint quantity;
 gchar *product;
} GroceryItem;

7931.book Page 267 Thursday, February 22, 2007 9:09 PM

268 C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T

const GroceryItem list[] =
{
 { TRUE, 1, "Paper Towels" },
 { TRUE, 2, "Bread" },
 { FALSE, 1, "Butter" },
 { TRUE, 1, "Milk" },
 { FALSE, 3, "Chips" },
 { TRUE, 4, "Soda" },
 { FALSE, 0, NULL }
};

static void setup_tree_view (GtkWidget*);

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *treeview, *scrolled_win;
 GtkListStore *store;
 GtkTreeIter iter;
 guint i = 0;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Grocery List");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);
 gtk_widget_set_size_request (window, 250, 175);

 treeview = gtk_tree_view_new ();
 setup_tree_view (treeview);

 /* Create a new tree model with three columns, as string, gint and guint. */
 store = gtk_list_store_new (COLUMNS, G_TYPE_BOOLEAN, G_TYPE_INT, G_TYPE_STRING);

 /* Add all of the products to the GtkListStore. */
 while (list[i].product != NULL)
 {
 gtk_list_store_append (store, &iter);
 gtk_list_store_set (store, &iter, BUY_IT, list[i].buy,
 QUANTITY, list[i].quantity, PRODUCT, list[i].product, -1);
 i++;
 }

7931.book Page 268 Thursday, February 22, 2007 9:09 PM

C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T 269

 /* Add the tree model to the tree view and unreference it so that the model will
 * be destroyed along with the tree view. */
 gtk_tree_view_set_model (GTK_TREE_VIEW (treeview), GTK_TREE_MODEL (store));
 g_object_unref (store);

 scrolled_win = gtk_scrolled_window_new (NULL, NULL);
 gtk_scrolled_window_set_policy (GTK_SCROLLED_WINDOW (scrolled_win),
 GTK_POLICY_AUTOMATIC, GTK_POLICY_AUTOMATIC);

 gtk_container_add (GTK_CONTAINER (scrolled_win), treeview);
 gtk_container_add (GTK_CONTAINER (window), scrolled_win);
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

/* Add three columns to the GtkTreeView. All three of the columns will be
 * displayed as text, although one is a gboolean value and another is
 * an integer. */
static void
setup_tree_view (GtkWidget *treeview)
{
 GtkCellRenderer *renderer;
 GtkTreeViewColumn *column;

 /* Create a new GtkCellRendererText, add it to the tree view column and
 * append the column to the tree view. */
 renderer = gtk_cell_renderer_text_new ();
 column = gtk_tree_view_column_new_with_attributes
 ("Buy", renderer, "text", BUY_IT, NULL);
 gtk_tree_view_append_column (GTK_TREE_VIEW (treeview), column);

 renderer = gtk_cell_renderer_text_new ();
 column = gtk_tree_view_column_new_with_attributes
 ("Count", renderer, "text", QUANTITY, NULL);
 gtk_tree_view_append_column (GTK_TREE_VIEW (treeview), column);

 renderer = gtk_cell_renderer_text_new ();
 column = gtk_tree_view_column_new_with_attributes
 ("Product", renderer, "text", PRODUCT, NULL);
 gtk_tree_view_append_column (GTK_TREE_VIEW (treeview), column);
}

7931.book Page 269 Thursday, February 22, 2007 9:09 PM

270 C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T

Creating the Tree View
Creating the GtkTreeView widget is the easiest part of the process. You need only to call
gtk_tree_view_new(). If you want to add the default tree model on initialization, you can
use gtk_tree_view_new_with_model(), but a tree model can easily be applied to a GtkTreeView
after initialization with gtk_tree_view_set_model(). The gtk_tree_view_new_with_model()
function is simply a convenience function.

There are many functions that allow you to customize a GtkTreeView to fit your needs. For
example, above each GtkTreeViewColumn, a header label is rendered that tells the user more
about the column contents. You can set gtk_tree_view_set_headers_visible() to FALSE in
order to hide them.

void gtk_tree_view_set_headers_visible (GtkTreeView *treeview,
 gboolean visible);

■Note You should be careful when hiding tree view headers, because they help the user know the contents
of each column. They should only be hidden if there is no more than one column or the contents of each col-
umn are clearly explained in some other manner.

GtkTreeViewColumn headers provide more functionality beyond column titles for some tree
views. In sortable tree models, clicking the column header can initiate sorting of all of the rows
according to the data held in the corresponding column. It also gives a visual indication of the
sort order of the column if applicable. You should not hide the headers if the user will need
them to sort the tree view rows.

Another GtkTreeView function, gtk_tree_view_set_rules_hint() requests a GTK+ theme
to differentiate between alternating rows. This is often done by changing the background color
of adjacent rows. However, as the function name suggests, this property is only a hint for the
theme engine and may not be honored. Also, some theme engines alternate background colors
automatically regardless of this setting.

void gtk_tree_view_set_rules_hint (GtkTreeView *treeview,
 gboolean alternate_colors);

This property should only be used if it is a necessity. For example, if your tree view con-
tains many rows, it could help the user navigate throughout its contents. In contrast, it should
not be used for aesthetic purposes, because those settings should always be dictated by the
user’s theme.

As a GTK+ developer, you should be very careful about changing visual properties. Users
have the ability to choose themes that fit their needs, and you can make your application unus-
able by changing how widgets are displayed.

7931.book Page 270 Thursday, February 22, 2007 9:09 PM

C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T 271

Renderers and Columns
After creating the GtkTreeView, you need to add one or more columns to the view for it to be of
any use. Each GtkTreeViewColumn is composed of a header, which displays a short description
of its content, and at least one cell renderer. Tree view columns do not actually render any
content. Tree view columns hold one or more cell renderers that are used to draw the data on
the screen.

All cell renderers are derived from the GtkCellRenderer class and are referred to as
objects in this chapter, because GtkCellRenderer is derived directly from GtkObject, not from
GtkWidget. Each cell renderer contains a number of properties that determine how the data
will be drawn within a cell.

The GtkCellRenderer class provides common properties to all derivative renderers
including background color, size parameters, alignments, visibility, sensitivity, and padding.
A full list of GtkCellRenderer properties can be found in Appendix A. It also provides the
editing-canceled and editing-started signals, which allow you to implement editing in
custom cell renderers.

In Listing 8-1, you were introduced to GtkCellRendererText, which is capable of rendering
strings, numbers, and gboolean values as text. Textual cell renderers are initialized with
gtk_cell_renderer_text_new().

GtkCellRendererText provides a number of additional properties that dictate how each
cell will be rendered. You should always set the text property, which is the string that will be
displayed in the cell. The rest of the properties are similar to those used with text tags.

GtkCellRendererText contains a large number of properties that dictate how every row will
be rendered. g_object_set() was used in the following example to set the foreground color of
every piece of text in the renderer to orange. Some properties have a corresponding set prop-
erty as well, which must be set to TRUE if you want the value to be used. For example, you should
set foreground-set to TRUE for the changes will take effect.

g_object_set (G_OBJECT (renderer), "foreground", "Orange",
 "foreground-set", TRUE, NULL);

After you create a cell renderer, it needs to be added to a GtkTreeViewColumn. Tree view col-
umns can be created with gtk_tree_view_column_new_with_attributes() if you only want the
column to display one cell renderer. In the following code, a tree view column is created with
the title “Buy” and a renderer with one attribute. This attribute will be referred to as BUY_IT
when the GtkListStore is populated.

column = gtk_tree_view_column_new_with_attributes ("Buy", renderer,
 "text", BUY_IT, NULL);

The preceding function accepts a string to display in the column header, a cell renderer,
and a NULL-terminated list of attributes. Each attribute contains a string that refers to the ren-
derer property and the tree view column number. The important thing to realize is that the
column number provided to gtk_tree_view_column_new_with_attributes() refers to the tree
model column, which may not be the same as the number of tree model columns or cell
renderers used by the tree view.

7931.book Page 271 Thursday, February 22, 2007 9:09 PM

272 C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T

The following four lines of code implement the same functionality that is provided
by gtk_tree_view_column_new_with_attributes(). An empty column is created with
gtk_tree_view_column_new(), and the column title is set to “Buy”.

column = gtk_tree_view_column_new ();
gtk_tree_view_column_set_title (column, "Buy");
gtk_tree_view_column_pack_start (column, renderer, FALSE);
gtk_tree_view_column_set_attributes (column, renderer, "text", BUY_IT, NULL);

Next, a cell renderer is added to the column. gtk_tree_view_column_pack_start() accepts
a third Boolean parameter, which instructs the column to expand horizontally to fill extra
space if set to TRUE. The last function, gtk_tree_view_column_set_attributes() adds the
NULL-terminated list of attributes that will be customized for every row you add to the tree view.
These attributes are applied to the specified renderer.

Calling gtk_tree_view_column_pack_start() will remove all attributes previously associ-
ated with the specified cell renderer. To circumvent this, you can use gtk_tree_view_column_
add_attribute() to add attributes to a column for a specific cell renderer one at a time. Both
of these functions are useful when a GtkTreeViewColumn will contain more than one cell
renderer.

void gtk_tree_view_column_add_attribute (GtkTreeViewColumn *column,
 GtkCellRenderer *renderer,
 const gchar *attribute,
 gint column);

If you want to add multiple renderers to the tree view column, you will need to pack each
renderer and set its attributes separately. For example, in a file manager, you might want to
include a text and an image renderer in the same column. However, if every column only needs
one cell renderer, it is easiest to use gtk_tree_view_column_new_with_attributes().

■Note If you want a property, such as the foreground color, set to the same value for every row in the
column, you should apply that property directly to the cell renderer with g_object_set(). However, if the
property will vary depending on the row, you should add it as an attribute of the column for the given renderer.

After you have finished setting up a tree view column, it needs to be added to the tree
view with gtk_tree_view_append_column(). Columns may also be added into an arbitrary
position of the tree view with gtk_tree_view_insert_column() or removed from the view with
gtk_tree_view_remove_column().

Creating the GtkListStore
The tree view columns are now set up with the desired cell renderers, so it is time to create the
tree model that will interface between the renderers and the tree view. For the example found
in Listing 8-1, we used GtkListStore so that the items would be shown as a list of elements.

7931.book Page 272 Thursday, February 22, 2007 9:09 PM

C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T 273

New list stores are created with gtk_list_store_new(). This function accepts the number
of columns and the type of the data each column will hold. In Listing 8-1, the list store has three
columns that store gboolean, integer, and string data types.

GtkListStore* gtk_list_store_new (gint n_columns,
 /* List of column types */);

After creating the list store, you need to add rows with gtk_list_store_append() for it to be
of any use. This function will append a new row to the list store, and the iterator will be set to
point to the new row. You will learn more about tree iterators in a later section of this chapter.
For now, it is adequate for you to know that it points to the new tree view row.

void gtk_list_store_append (GtkListStore *store,
 GtkTreeIter *iter);

There are multiple other functions for adding rows to a list store including gtk_list_
store_prepend() and gtk_list_store_insert(). A full list of available functions can be found
in the GtkListStore API documentation.

In addition to adding rows, you can also remove them with gtk_list_store_remove(). This
function will remove the row that GtkTreeIter refers to. After the row is removed, the iterator
will point to the next row in the list store, and the function will return TRUE. If the last row was
just removed, the iterator will become invalid, and the function will return FALSE.

gboolean gtk_list_store_remove (GtkListStore *store,
 GtkTreeIter *iter);

In addition, gtk_list_store_clear() is provided, which can be used to remove all rows
from a list store. You will be left with a GtkListStore that contains no data. If the object will not
be used beyond this point, it should then be unreferenced.

Now that you have a row, you need to add data to it with gtk_list_store_set(). The
gtk_list_store_set() function receives a list of pairs of column numbers and value parame-
ters. For example, the first column in the following function call, referenced with BUY_IT,
accepts a Boolean value that defines whether the product should be purchased. These values
correspond to those set by gtk_list_store_new().

gtk_list_store_set (store, &iter, BUY_IT, list[i].buy,
 QUANTITY, list[i].quantity, PRODUCT, list[i].product, -1);

The last element of gtk_list_store_set() must be set to -1 so that GTK+ knows that there
are no more parameters. Otherwise, your users will be presented with an endless list of warn-
ings and errors in the terminal output.

■Note GtkCellRendererText automatically converts Boolean values and numbers into text strings that
can be rendered on the screen. Therefore, the type of data applied to a text attribute column does not have
to be text itself, but just has to be consistent with the list store column type that was defined during initializa-
tion of the GtkListStore.

7931.book Page 273 Thursday, February 22, 2007 9:09 PM

274 C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T

After the list store is created, you need to call gtk_tree_view_set_model() to add it to the
tree view. By calling this function, the reference count of the tree model will be incremented by
one. Therefore, if you want the tree model to be destroyed when the tree view is destroyed, you
will need to call g_object_unref() on the list store.

Using GtkTreeStore
There is one other type of built-in tree model called GtkTreeStore, which organizes rows into a
multilevel tree structure. It is possible to implement a list with a GtkTreeStore tree model as
well, but this is not recommended because some overhead is added when the object assumes
that the row may have one or more children.

Figure 8-5 shows an example tree store, which contains two root elements, each with chil-
dren of its own. By clicking the expander to the left of a row with children, you can show or hide
its children. This is similar to the functionality provided by the GtkExpander widget.

Figure 8-5. A tree view widget using a GtkTreeStore tree model

The only difference between a GtkTreeView implemented with a GtkTreeStore instead of a
GtkListStore is in the creation of the store. Adding columns and renderers is performed in the
same manner with both models, because columns are a part of the view not the model, so
Listing 8-2 excludes the implementation of setup_tree_view().

Listing 8-2 revises the original Grocery List application, splitting the products into catego-
ries. This list includes two categories: Cleaning Supplies and Food, which both have children of
their own. The quantity of each category is set initially to zero, because this is calculated during
runtime.

7931.book Page 274 Thursday, February 22, 2007 9:09 PM

C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T 275

Listing 8-2. Creating a GtkTreeStore (treestore.c)

#include <gtk/gtk.h>

enum
{
 BUY_IT = 0,
 QUANTITY,
 PRODUCT,
 COLUMNS
};

enum
{
 PRODUCT_CATEGORY,
 PRODUCT_CHILD
};

typedef struct
{
 gint product_type;
 gboolean buy;
 gint quantity;
 gchar *product;
} GroceryItem;

GroceryItem list[] =
{
 { PRODUCT_CATEGORY, TRUE, 0, "Cleaning Supplies" },
 { PRODUCT_CHILD, TRUE, 1, "Paper Towels" },
 { PRODUCT_CHILD, TRUE, 3, "Toilet Paper" },
 { PRODUCT_CATEGORY, TRUE, 0, "Food" },
 { PRODUCT_CHILD, TRUE, 2, "Bread" },
 { PRODUCT_CHILD, FALSE, 1, "Butter" },
 { PRODUCT_CHILD, TRUE, 1, "Milk" },
 { PRODUCT_CHILD, FALSE, 3, "Chips" },
 { PRODUCT_CHILD, TRUE, 4, "Soda" },
 { PRODUCT_CATEGORY, FALSE, 0, NULL }
};

/* The implementation of this function is the same as in Listing 8-1. */
static void setup_tree_view (GtkWidget*);

7931.book Page 275 Thursday, February 22, 2007 9:09 PM

276 C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *treeview, *scrolled_win;
 GtkTreeStore *store;
 GtkTreeIter iter, child;
 guint i = 0, j;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Grocery List");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);
 gtk_widget_set_size_request (window, 275, 300);

 treeview = gtk_tree_view_new ();
 setup_tree_view (treeview);

 store = gtk_tree_store_new (COLUMNS, G_TYPE_BOOLEAN, G_TYPE_INT, G_TYPE_STRING);

 while (list[i].product != NULL)
 {
 /* If the product type is a category, count the quantity of all of the products
 * in the category that are going to be bought. */
 if (list[i].product_type == PRODUCT_CATEGORY)
 {
 j = i + 1;

 /* Calculate how many products will be bought in the category. */
 while (list[j].product != NULL && list[j].product_type != PRODUCT_CATEGORY)
 {
 if (list[j].buy)
 list[i].quantity += list[j].quantity;
 j++;
 }

 /* Add the category as a new root element. */
 gtk_tree_store_append (store, &iter, NULL);
 gtk_tree_store_set (store, &iter, BUY_IT, list[i].buy,
 QUANTITY, list[i].quantity, PRODUCT, list[i].product, -1);
 }

7931.book Page 276 Thursday, February 22, 2007 9:09 PM

C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T 277

 /* Otherwise, add the product as a child of the category. */
 else
 {
 gtk_tree_store_append (store, &child, &iter);
 gtk_tree_store_set (store, &child, BUY_IT, list[i].buy,
 QUANTITY, list[i].quantity, PRODUCT, list[i].product, -1);
 }

 i++;
 }

 gtk_tree_view_set_model (GTK_TREE_VIEW (treeview), GTK_TREE_MODEL (store));
 gtk_tree_view_expand_all (GTK_TREE_VIEW (treeview));
 g_object_unref (store);

 scrolled_win = gtk_scrolled_window_new (NULL, NULL);
 gtk_scrolled_window_set_policy (GTK_SCROLLED_WINDOW (scrolled_win),
 GTK_POLICY_AUTOMATIC, GTK_POLICY_AUTOMATIC);

 gtk_container_add (GTK_CONTAINER (scrolled_win), treeview);
 gtk_container_add (GTK_CONTAINER (window), scrolled_win);
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

Tree stores are initialized with gtk_tree_store_new(), which accepts the same parameters
as gtk_list_store_new(). These include the number of columns of data followed by a list of the
data types corresponding to each tree model column.

Adding rows to a tree store is a little different than adding rows to a list store. You add rows
to a tree store with gtk_tree_store_append(), which accepts two iterators instead of one. The
first iterator will point to the inserted row when the function returns, and the second iterator
should point to the parent row of the new row.

gtk_tree_store_append (store, &iter, NULL);

In the preceding call to gtk_tree_store_append(), a root element was appended to the list
by passing NULL as the parent iterator. The iter tree iterator was set to the location of the new
row. The first iterator does not need to already be initialized, because its current contents will
be overwritten when the function returns.

7931.book Page 277 Thursday, February 22, 2007 9:09 PM

278 C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T

In the second call to gtk_tree_store_append(), which follows, the row will be added as
a child of iter. Next, the child tree iterator will be set to the current location of the new row
within the tree store when the function returns.

gtk_tree_store_append (store, &child, &iter);

As with list stores, there are many functions available for adding rows to a tree store. These
include gtk_tree_store_insert(), gtk_tree_store_prepend(), and gtk_tree_store_insert_
before() to name a few. For a full list of functions, you should reference the GtkTreeStore API
documentation.

After you add a row to the tree store, it is simply an empty row with no data. To add data to the
row, call gtk_tree_store_set(). This function works in the same way as gtk_list_store_set(). It
accepts the tree store, a tree iterator pointing to the location of the row, and a list of column-data
pairs terminated by -1. These column numbers correspond to those you used when setting up the
cell renderer attributes.

gtk_tree_store_set (store, &child, BUY_IT, list[i].buy, QUANTITY, list[i].quantity,
 PRODUCT, list[i].product, -1);

In addition to adding rows to a tree store, you can also remove them with gtk_tree_
store_remove(). This function will remove the row that is referred to by GtkTreeIter. After
the row is removed, iter will point to the next row in the tree store, and the function will return
TRUE. If the row that you removed was the last in the tree store, the iterator will become invalid,
and the function will return FALSE.

gboolean gtk_tree_store_remove (GtkTreeStore *store,
 GtkTreeIter *iter);

In addition, gtk_tree_store_clear() is provided, which can be used to remove all rows
from a tree store. You will be left with a GtkTreeStore that contains no data. If the object will not
be used beyond this point, it should then be unreferenced.

Before gtk_main() is called in Listing 8-2, gtk_tree_view_expand_all() is called to expand
all of the rows. This is a recursive function that will expand every possible row, although it will
only affect tree models that have child-parent row relationships. In addition, you can collapse
all of the rows with gtk_tree_view_collapse_all(). By default, all rows will be collapsed.

Referencing Rows
Three objects are available for referring to a specific row within a tree model; each has its own
unique advantages. They are GtkTreePath, GtkTreeIter, and GtkTreeRowReference. In the fol-
lowing sections, you will learn how each object works and how to use them within your own
programs.

Tree Paths
GtkTreePath is a very convenient object for referring to rows within a tree model, because it can
be easily represented as a human-readable string. It can also be represented as an array of
unsigned integers.

7931.book Page 278 Thursday, February 22, 2007 9:09 PM

C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T 279

For example, if you are presented with the string 3:7:5, you would start at the fourth root
element (recall that indexing begins at zero, so element three is actually the fourth element in
the level). You would next proceed to the eighth child of that root element. The row in question
is that child’s sixth child.

To illustrate this graphically, Figure 8-6 shows the tree view created in Listing 8-2 with the
tree paths labeled. Each root element is referred to as only one element, 0 and 1. The first root
element has two children, referred to as 0:0 and 0:1.

Figure 8-6. Tree paths for a tree view using GtkTreeStore

Two functions are provided that allow you to convert back and forth between a path and
its equivalent string: gtk_tree_path_to_string() and gtk_tree_path_new_from_string(). You
usually will not have to deal with the string path directly unless you are trying to save the state
of a tree view, but using it helps in understanding the way tree paths work.

Listing 8-3 gives a short example of using tree paths. It begins by creating a new path that
points to the Bread product row. Next, gtk_tree_path_up() moves up one level in the path.
When you convert the path back into a string, you will see that the resulting output is 1, point-
ing to the Food row.

Listing 8-3. Converting Between Paths and Strings

GtkTreePath *path;
gchar *str;

path = gtk_tree_path_new_from_string ("1:0"); /* Point to bread */
gtk_tree_path_up (path);
str = gtk_tree_path_to_string (path);
g_print (str);
g_free (str);

7931.book Page 279 Thursday, February 22, 2007 9:09 PM

280 C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T

■Tip If you need to get a tree iterator and only have the path string available, you can convert the string into
a GtkTreePath and then to a GtkTreeIter. However, a better solution would be to skip the intermediate
step with gtk_tree_model_get_iter_from_string(), which converts a tree path string directly into a
tree iterator.

In addition to gtk_tree_path_up(), there are other functions that allow you to navigate
throughout a tree model. You can use gtk_tree_path_down() to move to the child row and
gtk_tree_path_next() or gtk_tree_path_prev() to move to the next or previous row in the
same level. When you move to the previous row or parent row, FALSE will be returned if it was
not successful.

At times, you may need to have a tree path as a list of integers instead of a string. The
gtk_tree_path_get_indices() function will return the integers that compose the path string.

gint* gtk_tree_path_get_indices (GtkTreePath *path);

Problems can arise with tree paths when a row is added or removed from the tree model.
The path could end up pointing to a different row within the tree or, worse, a row that does not
exist anymore! For example, if a tree path points to the last element of a tree and you remove
that row, it will now point beyond the limits of the tree. To get around this problem, you can
convert the tree path into a tree row reference.

Tree Row References
GtkTreeRowReference objects are used to watch a tree model for changes. Internally, they con-
nect to the row-inserted, row-deleted, and rows-reordered signals, updating the stored path
based on the changes.

New tree row references are created with gtk_tree_row_reference_new() from an existing
GtkTreeModel and GtkTreePath. The tree path copied into the row reference will be updated as
changes occur within the model.

GtkTreeRowReference* gtk_tree_row_reference_new (GtkTreeModel *model,
 GtkTreePath *path);

When you need to retrieve the path, you can use gtk_tree_row_reference_get_path(),
which will return NULL if the row no longer exists within the model. Tree row references are able
to update the tree path based on changes within the tree model, but if you remove all elements
from the same level as the tree path’s row, it will no longer have a row to point to.

The returned tree path should be freed with gtk_tree_path_free() when you are finished
with it. The tree row reference can be freed with gtk_tree_row_reference_free().

You should be aware that tree row references do add a small bit of overhead processing
when adding, removing, or sorting rows within a tree model, since the references will have
to handle all of the signals emitted by these actions. This overhead does not matter for most
applications, because there will not be enough rows for the user to notice. However, if your
application contains a large number of rows, you should use tree row references wisely.

7931.book Page 280 Thursday, February 22, 2007 9:09 PM

C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T 281

Tree Iterators
GTK+ provides the GtkTreeIter object, which can be used to reference a specific row within a
GtkTreeModel. These iterators are used internally by models, which means that you should
never directly alter the content of a tree iterator.

You have already seen multiple instances of GtkTreeIter, from which you can discern that
tree iterators are used in a similar way to GtkTextIter. Tree iterators are used for manipulation
of tree models. Tree paths, however, are used to point to rows within a tree model in a way that
provides a human-readable interface. Tree row references can be used to make sure that tree
paths adjust where they point throughout changes of a tree model.

GTK+ provides a number of built-in functions to perform operations on the tree iterators.
Typically, iterators are used to add rows to a model, set the content of a row, and retrieve the
content of a model. In Listings 8-1 and 8-2, tree iterators were used to add rows to GtkListStore
and GtkTreeStore models and then set the initial content of each row.

GtkTreeModel provides a number of gtk_tree_model_iter_*() functions, which can be
used to move iterators and retrieve information about them. For example, to move to the
next iterator position, you could use gtk_tree_model_iter_next(), which returns TRUE if the
action was successful. A full list of available functions can be found in the GtkTreeModel API
documentation.

It is easy to convert between tree iterators and tree paths with the use of gtk_tree_model_
get_path() and gtk_tree_model_get_iter(). The tree path or iterator must be valid for either of
these functions to work correctly. Listing 8-4 gives a short example of how to convert between
GtkTreeIter and GtkTreePath.

Listing 8-4. Converting Between Paths and Iterators

path = gtk_tree_model_get_path (model, &iter);
gtk_tree_model_get_iter (model, &iter, path);
gtk_tree_path_free (path);

The first function in Listing 8-4, gtk_tree_model_get_path() converts a valid tree iterator
into a tree path. That path is then sent to gtk_tree_model_get_iter(), which converts it back into
an iterator. Notice that the second function accepts three parameters, because the tree iterator
must be treated as a pointer.

One problem presented by GtkTreeIter is that the iterator is not guaranteed to exist after
a model is edited. This is not true in all cases, and you can use gtk_tree_model_get_flags() to
check the GTK_TREE_MODEL_ITERS_PERSIST flag, which is turned on by default for GtkListStore
and GtkTreeStore. If this flag is set, the tree iterator will always be valid as long as the row exists.

GtkTreeModelFlags gtk_tree_model_get_flags (GtkTreeModel *model);

Even if the iterator is set to persist, it is not a good idea to store tree iterator objects, since
they are used internally by tree models. Instead, you should use tree row references to keep
track of rows over time, since references will not become invalidated when the tree model
changes.

7931.book Page 281 Thursday, February 22, 2007 9:09 PM

282 C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T

Adding Rows and Handling Selections
Both of the examples that you have been given up to this point define the tree model during
startup. The content does not change after it is initially set. In this section, the Grocery List
application will be expanded to allow the user to add and remove products. Before the example
is introduced, you will learn how to handle single and multiple selections.

Single Selections
Selection information is held for each tree view by a GtkTreeSelection object. You can retrieve
this object with gtk_tree_view_get_selection(). A GtkTreeSelection object will automatically
be created for you for every GtkTreeView, so there is never a need to create your own tree
selection.

■Caution GtkTreeSelection provides one signal, changed, which is emitted when the selection has
changed. You should be careful when using this signal, because it is not always reliable. It can be emitted
when no changes occur by the user selecting a row that is already selected. Therefore, it is best to use the
signals provided by GtkTreeView for selection handling, which can be found in Appendix B.

Tree views support multiple types of selections. You can change the selection type with
gtk_tree_selection_set_mode(). Selection types are defined by the GtkSelectionMode enumer-
ation, which includes the following values:

• GTK_SELECTION_NONE: The user will be prohibited from selecting any rows.

• GTK_SELECTION_SINGLE: The user may select up to one row, though it is possible that no row
will be selected. By default, tree selections are initialized with GTK_SELECTION_SINGLE.

• GTK_SELECTION_BROWSE: The user will be able to select exactly one row. In some rare
cases, there may not be a selected row. This option actually prohibits the user from
deselecting a row except when the selection is moved to another row.

• GTK_SELECTION_MULTIPLE: The user may select any number of rows. The user will be able
to use the Ctrl and Shift keys to select additional elements or ranges of elements.

If you have defined the selection type as GTK_SELECTION_SINGLE or GTK_SELECTION_BROWSE,
you can be sure that only one row will be selected. For tree views with one selection, you can
use gtk_tree_selection_get_selected() to retrieve the selected row.

gboolean gtk_tree_selection_get_selected (GtkTreeSelection *selection,
 GtkTreeModel **model,
 GtkTreeIter *iter);

7931.book Page 282 Thursday, February 22, 2007 9:09 PM

C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T 283

The gtk_tree_selection_get_selected() function can be used to retrieve the tree model
associated with the GtkTreeSelection object and a tree iterator pointing to the selected row.
TRUE is returned if the model and iterator were successfully set. This function will not work with
a selection mode of GTK_SELECTION_MULTIPLE!

If no row has been selected, the tree iterator will be set to NULL, and FALSE will be returned
from the function. Therefore, gtk_tree_selection_get_selected() can also be used as a test to
check whether or not there is a selected row.

Multiple Selections
If your tree selection allows multiple rows to be selected (GTK_SELECTION_MULTIPLE), you have
two options for handling selections, calling a function for every row or retrieving all of the
selected rows as a GList. Your first option is to call a function for every selected row with
gtk_tree_selection_selected_foreach().

gtk_tree_selection_selected_foreach (selection, foreach_func, NULL);

This function allows you to call foreach_func() for every selected row, passing an optional
gpointer data parameter. In the preceding example, NULL was passed to the function. The func-
tion must be of the type GtkTreeSelectionForeachFunc, an example of which can be viewed in
Listing 8-5. The following GtkTreeSelectionForeachFunc retrieves the product string and prints
it to the screen.

Listing 8-5. Selected For-Each Function

static gboolean
foreach_func (GtkTreeModel *model,
 GtkTreePath *path,
 GtkTreeIter *iter,
 gpointer data)
{
 gchar *text;

 gtk_tree_model_get (model, iter, PRODUCT, &text, -1);
 g_print ("Selected Product: %s\n", text);
 g_free (text);
}

■Note You should not modify the tree model or selection from within a GtkTreeSelectionForeachFunc
implementation! GTK+ will give critical errors to the user if you do so, because invalid tree paths and iterators
may result.

7931.book Page 283 Thursday, February 22, 2007 9:09 PM

284 C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T

One problem with using tree selection foreach functions is that you are not able to manip-
ulate the selection from within the function. To remedy this problem, a better solu-
tion would be to use gtk_tree_selection_get_selected_rows(), which returns a GList of
GtkTreePath objects, each pointing to a selected row.

GList* gtk_tree_selection_get_selected_rows (GtkTreeSelection *selection,
 GtkTreeModel **model);

You can then perform some operation on each row within the list. However, you need to
be careful. If you need to edit the tree model within the GList foreach function, you will want
to first convert all of the tree paths to tree row references, so they will continue to be valid
throughout the duration of your actions.

If you want to loop through all of the rows manually, you are also able to use
gtk_tree_selection_count_selected_rows(), which will return the number of rows that
are currently selected. After you are finished with the list, you need to make sure to iterate
through it and free all of the tree paths before freeing the list itself.

Adding New Rows
Now that you have been introduced to selections, it is time to add the ability to add new prod-
ucts to the list. Much of the application has been excluded from the following three listings,
because it is the same as Listing 8-2.

The only difference in the main() function in this example in comparison to the pre-
vious Grocery List application is visible in Figure 8-7, which shows that GTK_STOCK_ADD and
GTK_STOCK_REMOVE buttons were added along the bottom of the tree view. Also, the selection
mode was changed to allow the user to select multiple rows at a time.

Figure 8-7. Editing an item in the grocery list

7931.book Page 284 Thursday, February 22, 2007 9:09 PM

C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T 285

Listing 8-6 is the implementation of the callback function that will be run when the user
clicks on the Add button. It presents the user with a GtkDialog that asks the user to choose a
category, enter a product name and quantity of products to buy, and select whether or not to
purchase the product.

If all of the fields are valid, the row is added under the chosen category. Also, if the user
specified that the product should be purchased, the quantity is added to the total quantity of
the category.

Listing 8-6. Adding a New Product (selections.c)

static void
add_product (GtkButton *add,
 GtkTreeView *treeview)
{
 GtkWidget *dialog, *table, *combobox, *entry, *spin, *check;
 GtkTreeIter iter, child;
 GtkTreePath *path;
 GtkTreeModel *model;
 const gchar *product;
 gchar *category, *name;
 gint quantity, i = 0;
 gboolean buy;

 /* Create a dialog that will be used to create a new product. */
 dialog = gtk_dialog_new_with_buttons ("Add a Product", NULL,
 GTK_DIALOG_MODAL,
 GTK_STOCK_ADD, GTK_RESPONSE_OK,
 GTK_STOCK_CANCEL, GTK_RESPONSE_CANCEL,
 NULL);

 /* Create widgets that will be packed into the dialog. */
 combobox = gtk_combo_box_new_text ();
 entry = gtk_entry_new ();
 spin = gtk_spin_button_new_with_range (0, 100, 1);
 check = gtk_check_button_new_with_mnemonic ("_Buy the Product");
 gtk_spin_button_set_digits (GTK_SPIN_BUTTON (spin), 0);

 /* Add all of the categories to the combo box. */
 while (list[i].product != NULL)
 {
 if (list[i].product_type == PRODUCT_CATEGORY)
 gtk_combo_box_append_text (GTK_COMBO_BOX (combobox), list[i].product);
 i++;
 }

7931.book Page 285 Thursday, February 22, 2007 9:09 PM

286 C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T

 table = gtk_table_new (4, 2, FALSE);
 gtk_table_set_row_spacings (GTK_TABLE (table), 5);
 gtk_table_set_col_spacings (GTK_TABLE (table), 5);
 gtk_container_set_border_width (GTK_CONTAINER (table), 5);

 /* Pack the table that will hold the dialog widgets. */
 gtk_table_attach (GTK_TABLE (table), gtk_label_new ("Category:"), 0, 1, 0, 1,
 GTK_SHRINK | GTK_FILL, GTK_SHRINK | GTK_FILL, 0, 0);
 gtk_table_attach (GTK_TABLE (table), combobox, 1, 2, 0, 1, GTK_EXPAND | GTK_FILL,
 GTK_SHRINK | GTK_FILL, 0, 0);
 gtk_table_attach (GTK_TABLE (table), gtk_label_new ("Product:"), 0, 1, 1, 2,
 GTK_SHRINK | GTK_FILL, GTK_SHRINK | GTK_FILL, 0, 0);
 gtk_table_attach (GTK_TABLE (table), entry, 1, 2, 1, 2, GTK_EXPAND | GTK_FILL,
 GTK_SHRINK | GTK_FILL, 0, 0);
 gtk_table_attach (GTK_TABLE (table), gtk_label_new ("Quantity:"), 0, 1, 2, 3,
 GTK_SHRINK | GTK_FILL, GTK_SHRINK | GTK_FILL, 0, 0);
 gtk_table_attach (GTK_TABLE (table), spin, 1, 2, 2, 3, GTK_EXPAND | GTK_FILL,
 GTK_SHRINK | GTK_FILL, 0, 0);
 gtk_table_attach (GTK_TABLE (table), check, 1, 2, 3, 4, GTK_EXPAND | GTK_FILL,
 GTK_SHRINK | GTK_FILL, 0, 0);

 gtk_box_pack_start_defaults (GTK_BOX (GTK_DIALOG (dialog)->vbox), table);
 gtk_widget_show_all (dialog);

 /* If the user presses OK, verify the entries and add the product. */
 if (gtk_dialog_run (GTK_DIALOG (dialog)) == GTK_RESPONSE_OK)
 {
 quantity = (gint) gtk_spin_button_get_value (GTK_SPIN_BUTTON (spin));
 product = gtk_entry_get_text (GTK_ENTRY (entry));
 category = gtk_combo_box_get_active_text (GTK_COMBO_BOX (combobox));
 buy = gtk_toggle_button_get_active (GTK_TOGGLE_BUTTON (check));

 if (g_ascii_strcasecmp (product, "") || category == NULL)
 {
 g_warning ("All of the fields were not correctly filled out!");
 gtk_widget_destroy (dialog);

 if (category != NULL)
 g_free (category)
 return;
 }

7931.book Page 286 Thursday, February 22, 2007 9:09 PM

C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T 287

 model = gtk_tree_view_get_model (treeview);
 gtk_tree_model_get_iter_from_string (model, &iter, "0");

 /* Retrieve an iterator pointing to the selected category. */
 do
 {
 gtk_tree_model_get (model, &iter, PRODUCT, &name, -1);

 if (g_ascii_strcasecmp (name, category) == 0)
 {
 g_free (name);
 break;
 }

 g_free (name);
 } while (gtk_tree_model_iter_next (model, &iter));

 /* Convert the category iterator to a path so that it will not become invalid
 * and add the new product as a child of the category. */
 path = gtk_tree_model_get_path (model, &iter);
 gtk_tree_store_append (GTK_TREE_STORE (model), &child, &iter);
 gtk_tree_store_set (GTK_TREE_STORE (model), &child, BUY_IT, buy,
 QUANTITY, quantity, PRODUCT, product, -1);

 /* Add the quantity to the running total if it is to be purchased. */
 if (buy)
 {
 gtk_tree_model_get_iter (model, &iter, path);
 gtk_tree_model_get (model, &iter, QUANTITY, &i, -1);
 i += quantity;
 gtk_tree_store_set (GTK_TREE_STORE (model), &iter, QUANTITY, i, -1);
 }

 gtk_tree_path_free (path);
 g_free (category);
 }

 gtk_widget_destroy (dialog);
}

7931.book Page 287 Thursday, February 22, 2007 9:09 PM

288 C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T

Retrieving Row Data

Retrieving the values stored in a tree model row is very similar to adding a row. In Listing 8-6,
gtk_tree_model_get_iter_from_string() is first used to retrieve a tree iterator that points to
the first row in the tree view. This corresponds to the first category.

Next, gtk_tree_model_iter_next() is used to loop through all of the root-level rows.
For each root-level row, the following code is run. First, the product name is retrieved with
gtk_tree_model_get(). This function works like gtk_tree_store_set(), which accepts a
GtkTreeModel, an iterator pointing to a row, and a list of pairs of column numbers and variables
to store the data. This list should be terminated with -1 and the returned value freed by the
programmer.

gtk_tree_model_get (model, &iter, PRODUCT, &name, -1);
if (g_ascii_strcasecmp (name, category) == 0)
 break;

Then g_ascii_strcasecmp() is used to compare the current product to the chosen cate-
gory name. If the two strings match, the loop is exited, because the correct category was found.
The iter variable now points to the selected category.

Adding a New Row

Adding new rows to the tree model is done in the same way as they were originally added dur-
ing startup. In the following code, the GtkTreeIter that points to the chosen category is first
converted into a tree path, since it will become invalidated when the tree store is changed.
Note that it does not have to be converted to a tree row reference, because its location will not
possibly change.

path = gtk_tree_model_get_path (model, &iter);
gtk_tree_store_append (GTK_TREE_STORE (model), &child, &iter);
gtk_tree_store_set (GTK_TREE_STORE (model), &child, BUY_IT, buy,
 QUANTITY, quantity, PRODUCT, product, -1);

Next, a new row is appended with gtk_tree_store_append(), where iter is the parent
row. That row is populated with gtk_tree_store_set(), using the data entered by the user in
the dialog.

Combo Boxes

Listing 8-6 introduces a new widget called GtkComboBox. GtkComboBox is a widget that allows the
user to choose from a number of options in a drop-down list. The combo box displays the
selected choice in its normal state.

Combo boxes can be used in two different ways, depending on what function you use to
instantiate the widget, either with a custom GtkTreeModel or with a default model with only a
single column of strings.

7931.book Page 288 Thursday, February 22, 2007 9:09 PM

C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T 289

In Listing 8-6, a new GtkComboBox was created with gtk_combo_box_new_text(), which
creates a specialized combo box that contains only one column of strings. This is simply a con-
venience function, because the drop-down list of a combo box is internally handled with a
GtkTreeModel. Combo boxes created with gtk_combo_box_new_text() have a GtkTreeModel
automatically created that can accepts only strings. This allows you to easily append and
prepend options and insert new options with the following functions:

void gtk_combo_box_append_text (GtkComboBox *combobox,
 const gchar *text);
void gtk_combo_box_prepend_text (GtkComboBox *combobox,
 const gchar *text);
void gtk_combo_box_insert_text (GtkComboBox *combobox,
 gint position,
 const gchar *text);

In addition, you can remove choices with gtk_combo_box_remove_text() and retrieve a
copy of the currently selected string with gtk_combo_box_get_active_text(). However, these
functions can only be used when you initialize the GtkComboBox with
gtk_combo_box_new_text().

Most combo boxes are created with gtk_combo_box_new(), which requires you to create a
tree model to hold the selections and add it with gtk_combo_box_set_model(). This does not
assume anything about the content of the tree model or the types of each column. Also, tree
models with multiple columns are supported.

With combo boxes created with gtk_combo_box_new(), there is no need to provide func-
tions for adding or removing choices because that is handled completely by the tree model.
However, there are two functions for retrieving the current selection.

gint gtk_combo_box_get_active (GtkComboBox *combobox);
gooblean gtk_combo_box_get_active_iter (GtkComboBox *combobox,
 GtkTreeIter *iter);

The first function gtk_combo_box_get_active() returns an integer that refers to the index
of the current row or -1 if there is no selection. This can be converted into a string and then into
a GtkTreePath. Also, gtk_combo_box_get_active_iter() will retrieve an iterator pointing to the
selected row, returning TRUE if the iterator was set.

Removing Multiple Rows
The next step is to add the ability to remove products from the list. Since we have added
the ability for multiple rows to be selected, the code must also be able to remove more than
one row.

Listing 8-7 implements two functions. The first function, remove_row(), is called for every
selected row, removing the row if it is not a category. If the removed row was to be purchased, its
quantity is removed from the category’s running total. The second function, remove_products(),
is the callback function that is run when the GTK_STOCK_REMOVE button is clicked.

7931.book Page 289 Thursday, February 22, 2007 9:09 PM

290 C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T

Listing 8-7. Removing One or More Products (selections.c)

static void
remove_row (GtkTreeRowReference *ref,
 GtkTreeModel *model)
{
 GtkTreeIter parent, iter;
 GtkTreePath *path;
 gboolean buy;
 gint quantity, pnum;

 /* Convert the tree row reference to a path and retrieve the iterator. */
 path = gtk_tree_row_reference_get_path (ref);
 gtk_tree_model_get_iter (model, &iter, path);

 /* Only remove the row if it is not a root row. */
 if (gtk_tree_model_iter_parent (model, &parent, &iter))
 {
 gtk_tree_model_get (model, &iter, BUY_IT, &buy, QUANTITY, &quantity, -1);
 gtk_tree_model_get (model, &parent, QUANTITY, &pnum, -1);

 if (buy)
 {
 pnum -= quantity;
 gtk_tree_store_set (GTK_TREE_STORE (model), &parent, QUANTITY, pnum, -1);
 }

 gtk_tree_model_get_iter (model, &iter, path);
 gtk_tree_store_remove (GTK_TREE_STORE (model), &iter);
 }
}

static void
remove_products (GtkButton *remove,
 GtkTreeView *treeview)
{
 GtkTreeSelection *selection;
 GtkTreeRowReference *ref;
 GtkTreeModel *model;
 GList *rows, *ptr, *references = NULL;

 selection = gtk_tree_view_get_selection (treeview);
 model = gtk_tree_view_get_model (treeview);
 rows = gtk_tree_selection_get_selected_rows (selection, &model);

7931.book Page 290 Thursday, February 22, 2007 9:09 PM

C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T 291

 /* Create tree row references to all of the selected rows. */
 ptr = rows;
 while (ptr != NULL)
 {
 ref = gtk_tree_row_reference_new (model, (GtkTreePath*) ptr->data);
 references = g_list_prepend (references, gtk_tree_row_reference_copy (ref));
 gtk_tree_row_reference_free (ref);
 ptr = ptr->next;
 }

 /* Remove each of the selected rows pointed to by the row reference. */
 g_list_foreach (references, (GFunc) remove_row, model);

 /* Free the tree paths, tree row references and lists. */
 g_list_foreach (references, (GFunc) gtk_tree_row_reference_free, NULL);
 g_list_foreach (rows, (GFunc) gtk_tree_path_free, NULL);
 g_list_free (references);
 g_list_free (rows);
}

When the GTK_STOCK_REMOVE button is pressed, remove_products() will be called. This
function begins by calling gtk_tree_selection_get_selected_rows() in order to retrieve a
doubly linked list of tree paths that point to the selected rows. Since the application will be
altering the rows, the list of paths is converted into a list of row references. This will make sure
that all of the tree paths will remain valid.

■Note Remember that gtk_tree_selection_selected_foreach() cannot be used for this application,
because it should not be used when rows will be altered! This is very important to remember, because it can
cause many headaches if iterators are unexpectedly invalid because a tree model was changed.

After the paths are converted to tree row references, g_list_foreach() is used to call
remove_row() for every item. Within remove_row(), a new function is used to check whether the
row is a category.

If the selected row is a category, we know that it will be a root element and will have no par-
ents. Therefore, the following gtk_tree_model_iter_parent() call performs two tasks. First, if
the parent iterator is not set, this function will return FALSE, and the category row will not be
removed. If the row has a parent, which means that it is a product, the parent iterator will be set
and used later in the function.

if (gtk_tree_model_iter_parent (model, &parent, &iter))

7931.book Page 291 Thursday, February 22, 2007 9:09 PM

292 C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T

Second, the function retrieves information about the selected product and its parent cat-
egory. If the product was set to be purchased, its quantity is subtracted from the total product
count displayed by the category. Since changing this data will invalidate the iterator, the path
is converted into an iterator, and the row is removed from the tree model.

Handling Double-clicks
Double-clicks are handled with the row-activated signal of the GtkTreeView. The signal is emit-
ted when the user double-clicks a row, when the user presses the spacebar, Shift+spacebar,
Return, or Enter on a noneditable row, or when you call gtk_tree_view_row_activated().

Listing 8-8. Editing a Clicked Row

static void
row_activated (GtkTreeView *treeview,
 GtkTreePath *path,
 GtkTreeViewColumn *column,
 gpointer data)
{
 GtkTreeModel *model;
 GtkTreeIter iter;

 model = gtk_tree_view_get_model (treeview);
 if (gtk_tree_model_get_iter (model, &iter, path))
 {
 /* Handle the selection ... */
 }
}

In Listing 8-8, the callback function row_activated() is called when the user activates
a row within the tree view. The activated row is retrieved from the tree path object with
gtk_tree_model_get_iter(). From there, you are free to use whatever functions you have
learned thus far to retrieve or alter the content of the row.

Editable Text Renderers
It would be very useful to allow the user to edit the contents of a tree view. This could be accom-
plished by presenting a dialog that contains a GtkEntry in which the user would be able to edit the
content of a cell. However, GTK+ provides a much simpler way to edit textual components that is
integrated into the tree cell by using GtkCellRendererText’s edited signal.

When a user clicks on a cell in the selected row that is marked as editable, a GtkEntry will
be placed in the cell that contains the current contents of the cell. An example of a cell being
edited can be viewed in Figure 8-8.

7931.book Page 292 Thursday, February 22, 2007 9:09 PM

C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T 293

Figure 8-8. An editable cell

After the user presses the Enter key or removes focus from the text entry, the edited widget
will be emitted. You need to connect to this signal and apply the changes once it is emitted.
Listing 8-9 shows you how to create the GtkListStore Grocery List application where the prod-
uct column is editable.

Listing 8-9. Editing a Cell’s Text (editable.c)

static void
setup_tree_view (GtkWidget *treeview)
{
 GtkCellRenderer *renderer;
 GtkTreeViewColumn *column;

 renderer = gtk_cell_renderer_text_new ();
 column = gtk_tree_view_column_new_with_attributes
 ("Buy", renderer, "text", BUY_IT, NULL);
 gtk_tree_view_append_column (GTK_TREE_VIEW (treeview), column);

 renderer = gtk_cell_renderer_text_new ();
 column = gtk_tree_view_column_new_with_attributes
 ("Count", renderer, "text", QUANTITY, NULL);
 gtk_tree_view_append_column (GTK_TREE_VIEW (treeview), column);

7931.book Page 293 Thursday, February 22, 2007 9:09 PM

294 C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T

 /* Set up the third column in the tree view to be editable. */
 renderer = gtk_cell_renderer_text_new ();
 g_object_set (renderer, "editable", TRUE, "editable-set", TRUE, NULL);

 g_signal_connect (G_OBJECT (renderer), "edited",
 G_CALLBACK (cell_edited),
 (gpointer) treeview);

 column = gtk_tree_view_column_new_with_attributes
 ("Product", renderer, "text", PRODUCT, NULL);
 gtk_tree_view_append_column (GTK_TREE_VIEW (treeview), column);
}

/* Apply the changed text to the cell if it is not an empty string. */
static void
cell_edited (GtkCellRendererText *renderer,
 gchar *path,
 gchar *new_text,
 GtkTreeView *treeview)
{
 GtkTreeIter iter;
 GtkTreeModel *model;

 if (g_ascii_strcasecmp (new_text, "") != 0)
 {
 model = gtk_tree_view_get_model (treeview);
 if (gtk_tree_model_get_iter_from_string (model, &iter, path))
 gtk_list_store_set (GTK_LIST_STORE (model), &iter, PRODUCT, new_text, -1);
 }
}

Creating editable GtkCellRendererText cells is a very simple process. The first thing you
need to do is set the editable and editable-set properties of the text renderer to TRUE.

g_object_set (renderer, "editable", TRUE, "editable-set", TRUE, NULL);

Remember that setting the editable property with g_object_set() will apply it to the
whole column of data that is drawn by the renderer. If you want to specify row by row whether
the cell should be editable, you should add it as an attribute of the column.

The next thing you need to do is connect the cell renderer to the edited signal provided
by GtkCellRendererText. The callback function for this signal receives the cell renderer, a
GtkTreePath string pointing to the edited row, and the new text that was entered by the user.
This signal is emitted when the user presses the Enter key or moves focus from the cell’s
GtkEntry while the cell is being edited.

The edited signal is necessary, because changes are not automatically applied to the cell.
This allows you to filter out invalid entries. For example, in Listing 8-9, the new text is not
applied when the new string is empty.

7931.book Page 294 Thursday, February 22, 2007 9:09 PM

C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T 295

if (gtk_tree_model_get_iter_from_string (model, &iter, path))
 gtk_list_store_set (GTK_LIST_STORE (model), &iter, PRODUCT, new_text, -1);

Once you are ready to apply the text, you can convert the GtkTreePath string directly into a
GtkTreeIter with gtk_tree_model_get_iter_from_string(). This function returns TRUE if the
iterator was successfully set, which means that the path string points to a valid row.

■Caution You will always want to check that the path is valid, even though it is supplied by GTK+,
because there is a chance that the row has been removed or moved since the callback function was
initialized.

After you retrieve the GtkTreeIter, you can use gtk_list_store_set() to apply the new
text string to the column. In Listing 8-9, new_text was applied to the PRODUCT column of the
GtkListStore.

Cell Data Functions
If you need to further customize every cell before it is rendered to the screen, you can use cell
data functions. They allow you to tinker with every property of each individual cell. For exam-
ple, you can set the foreground color based on the content of the cell or restrict the number of
decimal places a floating point number that are shown. It can also be used to set properties that
are calculated during runtime.

Figure 8-9 shows an application that uses cell data functions to set the background color
of each cell based on the text property of the GtkCellRendererText.

Figure 8-9. Screenshot of Listing 8-10, which creates a color list

7931.book Page 295 Thursday, February 22, 2007 9:09 PM

296 C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T

■Caution Make sure not to use cell data functions if you have a large number of rows in your tree model.
Cell data functions process every cell in the column before it is rendered, so they can significantly slow down
tree models with many rows.

In Listing 8-10, a cell data function is used to set the background color to the value of the
color string stored by the cell. The foreground color is also set to white for every cell, although
this could also be applied to the whole renderer with g_object_set(). This application shows a
list of the 256 web-safe colors.

Listing 8-10. Using Cell Data Functions (celldatafunctions.c)

#include <gtk/gtk.h>

enum
{
 COLOR = 0,
 COLUMNS
};

const gchar *clr[6] = { "00", "33", "66", "99", "CC", "FF" };

static void setup_tree_view (GtkWidget*);
static void cell_data_func (GtkTreeViewColumn*, GtkCellRenderer*,
 GtkTreeModel*, GtkTreeIter*, gpointer);

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *treeview, *scrolled_win;
 GtkListStore *store;
 GtkTreeIter iter;
 guint i, j, k;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Color List");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);
 gtk_widget_set_size_request (window, 250, 175);

 treeview = gtk_tree_view_new ();
 setup_tree_view (treeview);
 store = gtk_list_store_new (COLUMNS, G_TYPE_STRING);

7931.book Page 296 Thursday, February 22, 2007 9:09 PM

C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T 297

 /* Add all of the products to the GtkListStore. */
 for (i = 0; i < 6; i++)
 for (j = 0; j < 6; j++)
 for (k = 0; k < 6; k++)
 {
 gchar *color = g_strconcat ("#", clr[i], clr[j], clr[k], NULL);
 gtk_list_store_append (store, &iter);
 gtk_list_store_set (store, &iter, COLOR, color, -1);
 g_free (color);
 }

 gtk_tree_view_set_model (GTK_TREE_VIEW (treeview), GTK_TREE_MODEL (store));
 g_object_unref (store);

 scrolled_win = gtk_scrolled_window_new (NULL, NULL);
 gtk_scrolled_window_set_policy (GTK_SCROLLED_WINDOW (scrolled_win),
 GTK_POLICY_AUTOMATIC, GTK_POLICY_AUTOMATIC);

 gtk_container_add (GTK_CONTAINER (scrolled_win), treeview);
 gtk_container_add (GTK_CONTAINER (window), scrolled_win);
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

/* Add three columns to the GtkTreeView. All three of the columns will be
 * displayed as text, although one is a gboolean value and another is
 * an integer. */
static void
setup_tree_view (GtkWidget *treeview)
{
 GtkCellRenderer *renderer;
 GtkTreeViewColumn *column;

 renderer = gtk_cell_renderer_text_new ();
 column = gtk_tree_view_column_new_with_attributes
 ("Standard Colors", renderer, "text", COLOR, NULL);
 gtk_tree_view_append_column (GTK_TREE_VIEW (treeview), column);

 gtk_tree_view_column_set_cell_data_func (column, renderer,
 cell_data_func, NULL, NULL);

}

7931.book Page 297 Thursday, February 22, 2007 9:09 PM

298 C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T

static void
cell_data_func (GtkTreeViewColumn *column,
 GtkCellRenderer *renderer,
 GtkTreeModel *model,
 GtkTreeIter *iter,
 gpointer data)
{
 gchar *text;

 /* Get the color string stored by the column and make it the foreground color. */
 gtk_tree_model_get (model, iter, COLOR, &text, -1);
 g_object_set (renderer, "foreground", "#FFFFFF", "foreground-set", TRUE,
 "background", text, "background-set", TRUE, "text", text, NULL);
 g_free (text);
}

Another example of a useful cell data function is when you are using floating point num-
bers, and you need to control the number of decimal places that are displayed. In fact, that
example will be used when you learn about spin button cell renderers in the “Spin Button Cell
Renderer” section of this chapter.

Once you have set up your cell data function, you need to connect it to a specific column
by calling gtk_tree_view_column_set_cell_data_func(). The last two parameters of this func-
tion allow you to supply data that will be passed to the cell data function and an additional
function that will be called to destroy the data. You can set both of these parameters to NULL if
they are not necessary.

void gtk_tree_view_column_set_cell_data_func (GtkTreeViewColumn *column,
 GtkCellRenderer *renderer,
 GtkTreeCellDataFunc cell_data_func,
 gpointer data,
 GtkDestroyNotify destroy_data);

If you have added a cell data function to a column that you now want to remove, you
should call gtk_tree_view_column_set_cell_data_func() with the cell_data_func parameter
set to NULL.

As previously stated, cell data functions should only be used when you have a definite
need for fine-tuning the rendering of the data. In most cases, you will want to use additional
column attributes or g_object_set() to change properties, depending on the scope of the set-
tings. As a rule of thumb, cell data functions should only be used to apply settings that cannot
be handled with column attributes or may not be set for every cell.

7931.book Page 298 Thursday, February 22, 2007 9:09 PM

C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T 299

Cell Renderers
Up to this point, you have only learned about one type of cell renderer, GtkCellRendererText.
This renderer allows you to display strings, numbers, and Boolean values as text. You are able
to customize how the text is displayed with cell renderer attributes and cell data functions and
allow it to be edited by the user.

GTK+ provides a large number of cell renderers that can display other types of widgets
besides text. These are toggle buttons, images, spin buttons, combo boxes, progress bars, and
accelerators, which will all be covered in this section.

Toggle Button Renderers
Displaying Boolean values as “TRUE” or “FALSE” with GtkCellRendererText is a bit tacky, and
it takes up a large amount of valuable space in each row, especially when there are a lot of vis-
ible Boolean columns. You might be thinking that it would be nice if you could display a check
button for Boolean values instead of text strings. It turns out that you can—with the help of a
type of cell renderer named GtkCellRendererToggle.

By default, toggle button cell renderers are drawn as a check button, as shown in Figure 8-10.
You can also set up toggle button renderers to be drawn as radio buttons, but you will need to
manage the radio button functionality yourself.

Figure 8-10. Toggle button renderers

As with editable text renderers, you have to manually apply the changes performed
by the user. Otherwise, the button will not toggle visually on the screen. Because of this,
GtkCellRendererToggle provides the toggled signal, which is emitted when the user presses
the check button. Listing 8-11 presents a toggled callback function for the Grocery List
application. In this version of the application, the BUY_IT column is rendered with
GtkCellRendererToggle.

7931.book Page 299 Thursday, February 22, 2007 9:09 PM

300 C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T

Listing 8-11. GtkCellRendererToggle Toggled Callback Function

static void
buy_it_toggled (GtkCellRendererToggle *renderer,
 gchar *path,
 GtkTreeView *treeview)
{
 GtkTreeModel *model;
 GtkTreeIter iter;
 gboolean value;

 /* Toggle the cell renderer's current state to the logical not. */
 model = gtk_tree_view_get_model (treeview);
 if (gtk_tree_model_get_iter_from_string (model, &iter, path))
 {
 gtk_tree_model_get (model, &iter, BUY_IT, &value, -1);
 gtk_list_store_set (GTK_LIST_STORE (model), &iter, BUY_IT, !value, -1);
 }
}

Toggle cell renderers are created with gtk_cell_renderer_toggle_new(). After creating a
toggle cell renderer, you will want to set its activatable property to TRUE so that it is able to be
toggled. Otherwise, the user will not be able to toggle the button (which can be useful if you
only want to display a setting but not allow it to be edited). g_object_set() can be used to
apply this setting to every cell.

Next, the active property should be added as a column attribute instead of text, which
was used by GtkCellRendererText. This property is set to TRUE or FALSE, depending on the
desired state of the toggle button.

Then, you should connect the GtkCellRendererToggle cell renderer to a callback function
for the toggled signal. Listing 8-11 gives an example callback function for the toggled signal.
This callback function receives the cell renderer and a GtkTreePath string pointing to the row
that contains the toggle button.

Within the callback function, you will need to manually toggle the current value displayed by
the toggle button as shown in the following two lines of code. The emission of a toggled signal
only tells you that the user wants the button to be toggled; it does not perform the action for you.

gtk_tree_model_get (model, &iter, BUY_IT, &value, -1);
gtk_list_store_set (GTK_LIST_STORE (model), &iter, BUY_IT, !value, -1);

To toggle the value, you can use gtk_tree_model_get() to retrieve the current value stored
by the cell. Since the cell will be storing a Boolean value, you can set the new value to the oppo-
site of the current in gtk_list_store_set().

7931.book Page 300 Thursday, February 22, 2007 9:09 PM

C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T 301

As previously mentioned, GtkCellRendererToggle also allows you to render the toggle as
a radio button. This can be initially set to the renderer by changing the radio property with
gtk_cell_renderer_toggle_set_radio().

void gtk_cell_renderer_toggle_set_radio (GtkCellRendererToggle *toggle,
 gboolean radio);

You need to realize that the only thing that is changed by setting radio to TRUE is the ren-
dering of the toggle button! You will have to manually implement the functionality of a radio
button through your toggled callback function. This includes activating the new toggle button
and deactivating the previously selected toggle button.

Pixbuf Renderers
Adding images in the form of GdkPixbuf objects as a column in a GtkTreeView is a very useful
feature provided by GtkCellRendererPixbuf. An example of a pixbuf renderer can be viewed in
Figure 8-11, which shows a small icon to the left of each item.

Figure 8-11. Pixbuf renderers

You have already learned almost everything necessary to add GdkPixbuf images to a tree
view in previous sections, but Listing 8-12 presents a simple example to guide you. There is no
need to create a separate column header for pixbufs in most cases, so Listing 8-12 shows you
how to include multiple renderers in one column. Pixbuf cell renderers are extremely useful in
types of tree view implementations such as file system browsers.

7931.book Page 301 Thursday, February 22, 2007 9:09 PM

302 C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T

Listing 8-12. GdkPixbuf Cell Renderers

static void
setup_tree_view (GtkWidget *treeview)
{
 GtkCellRenderer *renderer;
 GtkTreeViewColumn *column;

 /* Create a tree view column with two renderers, one a pixbuf and one text. */
 column = gtk_tree_view_column_new ();
 gtk_tree_view_column_set_title (column, "Products");

 renderer = gtk_cell_renderer_pixbuf_new ();
 gtk_tree_view_column_pack_start (column, renderer, FALSE);
 gtk_tree_view_column_set_attributes (column, renderer, "pixbuf", ICON, NULL);

 renderer = gtk_cell_renderer_text_new ();
 gtk_tree_view_column_pack_start (column, renderer, TRUE);
 gtk_tree_view_column_set_attributes (column, renderer, "text", PRODUCT, NULL);

 gtk_tree_view_append_column (GTK_TREE_VIEW (treeview), column);
}

New GtkCellRendererPixbuf objects are created with gtk_cell_renderer_pixbuf_new().
You will then want to add the renderer to the column. Since there will be multiple renderers
in our column, you can use gtk_tree_view_column_pack_start() to add the renderer to the
column.

Next, you need to add attributes to the column for the GtkCellRendererPixbuf object. In
Listing 8-12, the pixbuf property was used so that we could load a custom icon from a file.
However, pixbufs are not the only type of image supported by GtkCellRendererPixbuf. You can
also use the stock-id property, which will allow you to provide a stock icon identifier. This will
display the stock icon instead of a custom GdkPixbuf image. A full list of stock icons available as
of GTK+ 2.10 is shown in Appendix D.

If you are using a GtkTreeStore, it is useful to display a different pixbuf when the row is
expanded and when it is retracted. To do this, you can specify two GdkPixbuf objects to pixbuf-
expander-open and pixbuf-expander-closed. For example, you may want to do this to display
an open folder when the row is expanded and a closed folder when the row is retracted.

When you create the tree model, you will need to use a new type called GDK_TYPE_PIXBUF,
which will store GdkPixbuf objects in each model column. Every time you add a GdkPixbuf to a
tree model column, its reference count is incremented by one. You should call g_object_unref()
on the GdkPixbuf object after you are finished with it, so it will be destroyed at the same time as
the tree view.

Spin Button Renderers
In Chapter 4, you learned how to use the GtkSpinButton widget. While GtkCellRendererText
can display numbers, a better option is to use GtkCellRendererSpin. Instead of displaying a

7931.book Page 302 Thursday, February 22, 2007 9:09 PM

C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T 303

GtkEntry when the content is to be edited, a GtkSpinButton is used. An example of a cell ren-
dered with GtkCellRendererSpin that is being edited is shown in Figure 8-12.

Figure 8-12. Spin Button renderers

You will notice that the floating point numbers in the first column in Figure 8-12 show
multiple decimal places. You can set the number of decimal places shown in the spin button
but not the displayed text. To decrease or eliminate the number of decimal places, you should
use a cell data function. An example of a cell data function that hides decimal places is shown
in Listing 8-13.

Listing 8-13. Cell Data Function for Floating Point Numbers

static void
cell_data_func (GtkTreeViewColumn *column,
 GtkCellRenderer *renderer,
 GtkTreeModel *model,
 GtkTreeIter *iter,
 gpointer data)
{
 gfloat value;
 gchar *text;

 /* Retrieve the current value and render it with no decimal places. */
 gtk_tree_model_get (model, iter, QUANTITY, &value, -1);
 text = g_strdup_printf ("%.0f", value);
 g_object_set (renderer, "text", text, NULL);
 g_free (text);
}

Recall that if you want to dictate the number of decimal places shown by a floating point
number in a column using GtkCellRendererText or another derived renderer, you need to use
a cell data function. In Listing 8-13, a sample cell data function was shown that reads in the
current floating point number and forces the renderer to display no decimal places. This is
necessary because GtkCellRendererSpin stores numbers as floating point numbers.

7931.book Page 303 Thursday, February 22, 2007 9:09 PM

304 C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T

GtkCellRendererSpin is compatible with both integers and floating point numbers,
because its parameters are stored in a GtkAdjustment. Listing 8-14 is an implementation of the
Grocery List application in which the Quantity column is rendered with GtkCellRendererSpin.

Listing 8-14. Spin Button Cell Renderers

static void
setup_tree_view (GtkWidget *treeview)
{
 GtkCellRenderer *renderer;
 GtkTreeViewColumn *column;
 GtkAdjustment *adj;

 adj = GTK_ADJUSTMENT (gtk_adjustment_new (0.0, 0.0, 100.0, 1.0, 2.0, 2.0));

 renderer = gtk_cell_renderer_spin_new ();
 g_object_set (renderer, "editable", TRUE, "adjustment", adj, "digits", 0, NULL);

 g_signal_connect (G_OBJECT (renderer), "edited",
 G_CALLBACK (cell_edited),
 (gpointer) treeview);

 column = gtk_tree_view_column_new_with_attributes
 ("Count", renderer, "text", QUANTITY, NULL);
 gtk_tree_view_append_column (GTK_TREE_VIEW (treeview), column);

 /* ... Add a cell renderer for the PRODUCT column ... */
}

/* Apply the changed text to the cell. */
static void
cell_edited (GtkCellRendererText *renderer,
 gchar *path,
 gchar *new_text,
 GtkTreeView *treeview)
{
 GtkTreeIter iter;
 GtkTreeModel *model;
 GtkAdjustment *adjustment;
 gdouble value;

 /* Retrieve the current value stored by the spin button renderer's adjustment. */
 g_object_get (renderer, "adjustment", &adjustment, NULL);
 value = gtk_adjustmnet_get_value (adjustment);

7931.book Page 304 Thursday, February 22, 2007 9:09 PM

C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T 305

 model = gtk_tree_view_get_model (treeview);
 if (gtk_tree_model_get_iter_from_string (model, &iter, path))
 gtk_list_store_set (GTK_LIST_STORE (model), &iter, QUANTITY, value, -1);
}

New GtkCellRendererSpin objects are created with gtk_cell_renderer_spin(). After you
create the renderer, you should set the editable, adjustment, and digits properties of the
object with g_object_set().

g_object_set (renderer, "editable", TRUE, "adjustment", adj, "digits", 0, NULL);

GtkCellRendererSpin provides three properties: adjustment, climb-rate, and digits.
These are stored in a GtkAdjustment defining the spin button’s properties, the acceleration rate
when an arrow button is held down, and the number of decimal places to display in the spin
button respectively. The climb rate and number of decimals to display are both set to zero
by default.

GtkCellRendererSpin is derived from GtkCellRendererText, so you also have all of
GtkCellRendererText’s properties available, including editable, which must be set to TRUE
to allow the content of the cell to be edited.

After setting up the cell renderer, you should then connect to the edited signal to the cell
renderer, which will be used to apply the new value chosen by the user to the cell. There is usu-
ally no need to filter this value, because the adjustment will already limit the values allowed by
the cell. The callback function will be run after the user presses the Enter key or moves focus
from the spin button of a cell that is being edited.

Within the cell_edited() callback function in Listing 8-14, you need to first retrieve the
adjustment of the spin button renderer, because it will store the new value that is to be dis-
played. This new value can then be applied to the given cell.

■Note Although the edited signal of a GtkCellRendererText still receives the new_text parameter,
this should not be used. The parameter will not store a textual version of the spin button’s value. Furthermore,
the value used in gtk_list_store_set() that will replace the current value must be supplied as a floating
point number, so a string will not be acceptable regardless of its contents.

You can retrieve the adjustment’s value with gtk_adjustment_get_value(), applying it to
the appropriate column. Since the QUANTITY column is used to display a floating point number
(G_TYPE_FLOAT), you can use the returned type in its current state.

When creating the tree model, the column must be of the type G_TYPE_FLOAT, even if you
want to store an integer. You should use cell data functions to limit the number of decimal
places displayed by each cell.

Combo Box Renderers
GtkCellRendererCombo provides a cell renderer for a widget that you have just learned about,
GtkComboBox. Combo box cell renderers are useful, because they allow you to present multi-
ple predefined options to the user. GtkCellRendererCombo renders text in a similar way to

7931.book Page 305 Thursday, February 22, 2007 9:09 PM

306 C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T

GtkCellRendererText, but instead of showing a GtkEntry widget when editing, a GtkComboBox
widget is presented to the user. An example of a GtkCellRendererCombo cell being edited can
be viewed in Figure 8-13.

Figure 8-13. A combo box cell renderer

To use GtkCellRendererCombo, you need to create a GtkTreeModel for every cell in the col-
umn. In Listing 8-15, the QUANTITY column of the Grocery List application from Listing 8-1 is
rendered with GtkCellRendererCombo.

Listing 8-15. Combo Box Cell Renderers

static void
setup_tree_view (GtkWidget *treeview)
{
 GtkCellRenderer *renderer;
 GtkTreeViewColumn *column;
 GtkListStore *model;
 GtkTreeIter iter;

 /* Create a GtkListStore that will be used for the combo box renderer. */
 model = gtk_list_store_new (1, G_TYPE_STRING);

 gtk_list_store_append (model, &iter);
 gtk_list_store_set (model, &iter, 0, "None", -1);
 gtk_list_store_append (model, &iter);
 gtk_list_store_set (model, &iter, 0, "One", -1);
 gtk_list_store_append (model, &iter);
 gtk_list_store_set (model, &iter, 0, "Half a Dozen", -1);
 gtk_list_store_append (model, &iter);
 gtk_list_store_set (model, &iter, 0, "Dozen", -1);
 gtk_list_store_append (model, &iter);
 gtk_list_store_set (model, &iter, 0, "Two Dozen", -1);

7931.book Page 306 Thursday, February 22, 2007 9:09 PM

C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T 307

 /* Create the GtkCellRendererCombo and add the tree model. Then, add the
 * renderer to a new column and add the column to the GtkTreeView. */
 renderer = gtk_cell_renderer_combo_new ();
 g_object_set (renderer, "text-column", 0, "editable", TRUE,
 "has-entry", TRUE, "model", model, NULL);
 column = gtk_tree_view_column_new_with_attributes
 ("Count", renderer, "text", QUANTITY, NULL);
 gtk_tree_view_append_column (GTK_TREE_VIEW (treeview), column);

 g_signal_connect (G_OBJECT (renderer), "edited",
 G_CALLBACK (cell_edited),
 (gpointer) treeview);

 renderer = gtk_cell_renderer_text_new ();
 column = gtk_tree_view_column_new_with_attributes
 ("Product", renderer, "text", PRODUCT, NULL);
 gtk_tree_view_append_column (GTK_TREE_VIEW (treeview), column);
}

/* Apply the changed text to the cell. */
static void
cell_edited (GtkCellRendererText *renderer,
 gchar *path,
 gchar *new_text,
 GtkTreeView *treeview)
{
 GtkTreeIter iter;
 GtkTreeModel *model;

 /* Make sure the text is not empty. If not, apply it to the tree view cell. */
 if (g_ascii_strcasecmp (new_text, "") != 0)
 {
 model = gtk_tree_view_get_model (treeview);
 if (gtk_tree_model_get_iter_from_string (model, &iter, path))
 gtk_list_store_set (GTK_LIST_STORE (model), &iter, QUANTITY, new_text, -1);
 }
}

New combo box cell renderers are created with gtk_cell_renderer_combo_new().
GtkCellRendererCombo has three properties in addition to those inherited from
GtkCellRendererText: has-entry, model, and text-column.

g_object_set (renderer, "text-column", 0, "editable", TRUE,
 "has-entry", TRUE, "model", model, NULL);

The first property you need to set is text-column, which refers to the column in the combo
box’s tree model that will be displayed in the cell renderer. This must be a type supported
by GtkCellRendererText, such as G_TYPE_STRING, G_TYPE_INT, or G_TYPE_BOOLEAN. The model

7931.book Page 307 Thursday, February 22, 2007 9:09 PM

308 C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T

property is a GtkTreeModel that will be used as the content of the combo box. You must also set
the editable property to TRUE, so the cell content may be edited.

Lastly, there is a widget called GtkComboBoxEntry that gives the user choices like a normal
combo box, but it also uses a GtkEntry widget to allow the user to enter a custom string instead of
choosing an existing option. To allow this functionality with a combo box cell renderer, you must
set the has-entry property to TRUE. This is turned on by default, which means that you must turn
it off to restrict the choices to those that appear in GtkCellRendererCombo’s tree model.

As with other cell renderers derived from GtkCellRendererText, you will want to use the
text field as the column attribute and set its initial text when creating the tree view’s model.
You can then use the edited signal to apply the text to the tree model. In Listing 8-15, the
changes are only applied when the new_text string is not empty, since the user is free to enter
free-form text as well.

Progress Bar Renderers
Another type of cell renderer is GtkCellRendererProgress, which implements the GtkProgressBar
widget. While progress bars support pulsing, GtkCellRendererProgress only allows you to set the
current value of the progress bar. Figure 8-14 shows a GtkTreeView widget that has a progress bar
cell renderer in the second column, which displays textual feedback.

Figure 8-14. Progress bar cell renderers

Progress bar cell renderers are another easy feature to implement in a program. You
can use gtk_cell_renderer_progress_new() to create new GtkCellRendererProgress objects.
GtkCellRendererProgress provides two properties: text and value.

The progress bar state is defined by the value property, which is an integer with a value
between 0 and 100. A value of 0 refers to an empty progress bar, and 100 refers to a full progress
bar. Since it is stored as an integer, the tree model column corresponding to the value of the
progress bar should have the type G_TYPE_INT.

7931.book Page 308 Thursday, February 22, 2007 9:09 PM

C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T 309

The second property provided by GtkCellRendererProgress is text. This property is a
string that will be drawn over the top of the progress bar. This property can be ignored in some
cases, but it is usually a good idea to give the user more information about the progress of a
process. Examples of possible progress bar strings are “67% Complete”, “3 of 80 Files Pro-
cessed”, “Installing foo . . .”, and so on.

GtkCellRendererProgress is a useful cell renderer in some cases, but you should be careful
when you deploy it. You should avoid using multiple progress bars in one row, because doing
so could confuse the user and will take up a lot of horizontal space. Also, tree views with many
rows will appear messy. In many cases, it would be better for the user to use a textual cell ren-
derer instead of a progress bar cell renderer.

However, there are some cases where GtkCellRendererProgress is a good choice. For
example, if your application has to manage multiple downloads at the same time, progress bar
cell renderers are an easy way to give coherent feedback about progress for each download.

Keyboard Accelerator Renderers
GTK+ 2.10 introduced a new type of cell renderer called GtkCellRendererAccel, which displays
a textual representation of a keyboard accelerator. An example of an accelerator cell renderer
can be viewed in Figure 8-15.

Figure 8-15. Accelerator cell renderers

Listing 8-16 creates a list of actions along with their keyboard accelerators. This type of tree
view could be used to allow the user to edit the accelerators for an application. The accelerator
is displayed as text, since the renderer is derived from GtkCellRendererText.

To edit the accelerator, the user needs to click the cell once. The cell will then show a string
asking for a key. The new key code will be added, along with any mask keys such as Ctrl and
Shift into the cell. Basically, the first keyboard shortcut pressed will be displayed by the cell.

7931.book Page 309 Thursday, February 22, 2007 9:09 PM

310 C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T

Listing 8-16. Keyboard Accelerator Cell Renderers (accelerators.c)

#include <gtk/gtk.h>
#include <gdk/gdkkeysyms.h>

enum
{
 ACTION = 0,
 MASK,
 VALUE,
 COLUMNS
};

typedef struct
{
 gchar *action;
 GdkModifierType mask;
 guint value;
} Accelerator;

const Accelerator list[] =
{
 { "Cut", GDK_CONTROL_MASK, GDK_X },
 { "Copy", GDK_CONTROL_MASK, GDK_C },
 { "Paste", GDK_CONTROL_MASK, GDK_V },
 { "New", GDK_CONTROL_MASK, GDK_N },
 { "Open", GDK_CONTROL_MASK, GDK_O },
 { "Print", GDK_CONTROL_MASK, GDK_P },
 { NULL, NULL, NULL }
};

static void setup_tree_view (GtkWidget*);
static void accel_edited (GtkCellRendererAccel*, gchar*, guint,
 GdkModifierType, guint, GtkTreeView*);

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *treeview, *scrolled_win;
 GtkListStore *store;
 GtkTreeIter iter;
 guint i = 0;

 gtk_init (&argc, &argv);

7931.book Page 310 Thursday, February 22, 2007 9:09 PM

C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T 311

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Accelerator Keys");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);
 gtk_widget_set_size_request (window, 250, 250);

 treeview = gtk_tree_view_new ();
 setup_tree_view (treeview);

 store = gtk_list_store_new (COLUMNS, G_TYPE_STRING, G_TYPE_INT, G_TYPE_UINT);

 /* Add all of the keyboard accelerators to the GtkListStore. */
 while (list[i].action != NULL)
 {
 gtk_list_store_append (store, &iter);
 gtk_list_store_set (store, &iter, ACTION, list[i].action,
 MASK, (gint) list[i].mask, VALUE, list[i].value, -1);
 i++;
 }

 gtk_tree_view_set_model (GTK_TREE_VIEW (treeview), GTK_TREE_MODEL (store));
 g_object_unref (store);

 scrolled_win = gtk_scrolled_window_new (NULL, NULL);
 gtk_scrolled_window_set_policy (GTK_SCROLLED_WINDOW (scrolled_win),
 GTK_POLICY_AUTOMATIC, GTK_POLICY_AUTOMATIC);

 gtk_container_add (GTK_CONTAINER (scrolled_win), treeview);
 gtk_container_add (GTK_CONTAINER (window), scrolled_win);
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

/* Create a tree view with two columns. The first is an action and the
 * second is a keyboard accelerator. */
static void
setup_tree_view (GtkWidget *treeview)
{
 GtkCellRenderer *renderer;
 GtkTreeViewColumn *column;

 renderer = gtk_cell_renderer_text_new ();
 column = gtk_tree_view_column_new_with_attributes
 ("Buy", renderer, "text", ACTION, NULL);
 gtk_tree_view_append_column (GTK_TREE_VIEW (treeview), column);

7931.book Page 311 Thursday, February 22, 2007 9:09 PM

312 C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T

 renderer = gtk_cell_renderer_accel_new ();
 g_object_set (renderer, "accel-mode", GTK_CELL_RENDERER_ACCEL_MODE_GTK,
 "editable", TRUE, NULL);

 column = gtk_tree_view_column_new_with_attributes ("Buy", renderer,
 "accel-mods", MASK, "accel-key", VALUE, NULL);
 gtk_tree_view_append_column (GTK_TREE_VIEW (treeview), column);

 g_signal_connect (G_OBJECT (renderer), "accel_edited",
 G_CALLBACK (accel_edited),
 (gpointer) treeview);
}

/* Apply the new keyboard accelerator key and mask to the cell. */
static void
accel_edited (GtkCellRendererAccel *renderer,
 gchar *path,
 guint accel_key,
 GdkModifierType mask,
 guint hardware_keycode,
 GtkTreeView *treeview)
{
 GtkTreeModel *model;
 GtkTreeIter iter;

 model = gtk_tree_view_get_model (treeview);
 if (gtk_tree_model_get_iter_from_string (model, &iter, path))
 gtk_list_store_set (GTK_LIST_STORE (model), &iter,
 MASK, (gint) mask, VALUE, accel_key, -1);
}

You can use gtk_cell_renderer_accel_new() to create new GtkCellRendererAccel objects.
GtkCellRendererAccel provides the following four properties that can be accessed with
g_object_get():

• accel-key: The key value that corresponds to the accelerator. A full list of key values can
be found in <gdk/gdkkeysyms.h>.

• accel-mode: A GtkCellRendererAccelMode value—GTK_CELL_RENDERER_ACCEL_MODE_GTK or
GTK_CELL_RENDERER_ACCEL_MODE_OTHER. This defines how the accelerators are rendered
within the cell. You should usually use GTK+’s version of rendering.

• accel-mods: An accelerator modifier of the type GdkModifierType. This allows you to
detect Shift, Ctrl, Alt, and other masking keys.

• keycode: The hardware keycode of the accelerator, which is not usually used. This is only
necessary if you do not define a key value.

7931.book Page 312 Thursday, February 22, 2007 9:09 PM

C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T 313

The accel-mods value allows you to detect keys that usually do not cause any immediate
action from an application by themselves. These values are defined by the GdkModifierType
enumeration, although not all values can occur when dealing with keyboard accelerators. A list
of important values follows:

• GDK_SHIFT_MASK: The Shift key.

• GDK_CONTROL_MASK: The Ctrl key.

• GDK_MOD_MASK, GDK_MOD2_MASK, GDK_MOD3_MASK, GDK_MOD4_MASK, GDK_MOD5_MASK: The first
modifier usually represents the Alt key, but these are interpreted based on your X server
mapping of the keys. They can also correspond to the Meta, Super, or Hyper key.

• GDK_SUPER_MASK: Introduced in 2.10, this allows you to explicitly state the Super modifier.
This modifier may not be available on all systems!

• GDK_HYPER_MASK: Introduced in 2.10, this allows you to explicitly state the Hyper modi-
fier. This modifier may not be available on all systems!

• GDK_META_MODIFIER: Introduced in 2.10, this allows you to explicitly state the Meta mod-
ifier. This modifier may not be available on all systems!

In most cases, you will want to set the modifier mask (acel-mods) and the accelerator key
value (accel-key) as two attributes of the tree view column using GtkCellRendererAccel. In
this case, the modifier mask will be of they type G_TYPE_INT, and the accelerator key value
G_TYPE_UINT. Because of this, you will want to make sure to case the GdkModifierType value to
a gint when setting the content of the modifier mask column.

store = gtk_list_store_new (COLUMNS, G_TYPE_STRING, G_TYPE_INT, G_TYPE_UINT);

GtkCellRendererAccel provides two signals. The first, accel-cleared, allows you to reset
the accelerator when the user removes the current value. In most cases, you will not need to do
this unless you have a default value that you want the accelerator to revert to.

Of greater importance, accel-edited allows you to apply changes that the user makes to the
keyboard accelerator, as long as you set the editable property to TRUE. The callback function
receives a path string to the row in question along with the accelerator key code, mask and hard-
ware key code. In the callback function, you can apply the changes with gtk_list_store_set(),
as you would with any other editable type of cell.

Test Your Understanding
In Exercise 8-1, you will have the opportunity to practice using the GtkTreeView widget, along
with multiple types of cell renderers. This is an extremely important exercise for you to try,
because you will need to use the GtkTreeView widget in many applications. As always, when
you are finished, you can find one possible solution in Appendix F.

7931.book Page 313 Thursday, February 22, 2007 9:09 PM

314 C H A P T E R 8 ■ T H E T R E E V I E W W I D G E T

Exercise 8-1. File Browser

By now, you have probably had enough of Grocery List applications, so let us try something different. In this exer-
cise, create a file browser using the GtkTreeView widget. You should use GtkListStore for the file browser and
allow the user to browse throughout the file system.

The file browser should show images to differentiate among directories and files. Images can be found in the down-
loadable source code at www.gtkbook.com. You can also use the GLib directory utility functions to retrieve
directory content. Double-clicking a directory should move to that location.

Summary
In this chapter, you learned how to use the GtkTreeView widget. This widget allows you to dis-
play lists and tree structures of data with GtkListStore and GtkTreeStore respectively. You also
learned the relationship among the tree view, tree model, columns, and cell renderers and how
to use each of the objects.

Next, you learned about the types of objects that can be used to refer to a row within the
tree view. These include tree iterators, paths, and row references. Each of these objects has its
own advantages and disadvantages. Tree iterators can be used directly with models, but they
become invalid when the tree model changes. Tree paths are easily understandable, because
they have associated human-readable strings, but may not point to the same row if the tree
model is changed. Lastly, tree row references are useful, because they remain valid for as long
as the row exists, even when the model is changed.

You next learned how to handle selections of one row or multiple rows. With multiple row
selections, you can use a for-each function, or you can get a GList list of the selected rows. A
useful signal when dealing with selections is GtkTreeView’s row-activated signal, which allows
you to handle double-clicks.

After that, you learned how to create editable cells with GtkCellRendererText’s edited
signal, which displays a GtkEntry to allow the user to edit the content in the cell. Cell data func-
tions can also be connected to columns. These cell data functions allow you to customize each
cell before it is rendered to the screen.

Lastly, you learned about a number of cell renderers that allow you to display toggle but-
tons, pixbufs, spin buttons, combo boxes, progress bars, and keyboard accelerator strings. You
were also introduced to the GtkComboBox widget.

Congratulations! You are now familiar with one of the hardest and most versatile widgets
provided by GTK+. In the next chapter, you will learn how to create menus, toolbars, and pop-up
menus. You will also learn how to automate menu creation with user interface (UI) files.

7931.book Page 314 Thursday, February 22, 2007 9:09 PM

315

■ ■ ■

C H A P T E R 9

Menus and Toolbars

This chapter will teach you how to create pop-up menus, menu bars, and toolbars. You will
begin by creating each manually, so you learn how the widgets are constructed. This will give
you a firm understanding of all of the concepts on which menus and toolbars rely.

After you understand each widget, you will be introduced to GtkUIManager, which allows
you to dynamically create menus and toolbars through custom XML files. Each user interface
file is loaded, and each element applied to a corresponding action object, which tells the item
how it will be displayed and how it will act.

In this chapter, you will learn the following:

• How to create pop-up menus, menu bars, and toolbars

• How to apply keyboard accelerators to menu items

• What the GtkStatusBar widget is and how you can use it to provide more information to
the user about a menu item

• What types of menu and toolbar items are provided by GTK+

• How to dynamically create menus and toolbars with UI files

• How to create custom stock items with GtkIconFactory

Pop-up Menus
You will begin this chapter by learning how to create a pop-up menu. A pop-up menu is a
GtkMenu widget that is displayed to the user when the right mouse button is clicked while hov-
ering above certain widgets. Some widgets, such as GtkEntry and GtkTextView, already have
pop-up menus built into the widget by default.

If you want to change the pop-up menu of a widget that offers one by default, you should
edit the supplied GtkMenu widget in the pop-up callback function. For example, both GtkEntry
and GtkTextView have a populate-popup signal, which receives the GtkMenu that is going to be
displayed. You can edit this menu in any way you see fit before displaying it to the user.

7931.book Page 315 Thursday, February 22, 2007 9:09 PM

316 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

Creating a Pop-up Menu
For most widgets, you will need to create your own pop-up menu. In this section, you are going
to learn how to supply a pop-up menu to a GtkProgressBar widget. The pop-up menu we are
going to implement is presented in Figure 9-1.

Figure 9-1. A simple pop-up menu with three menu items

The three pop-up menu items are used to pulse the progress bar, set it as 100 percent com-
plete, and clear it. You will notice that, in Listing 9-1, an event box contains the progress bar.
Because GtkProgressBar, like GtkLabel, is not able to detect GDK events by itself, we need to
catch button-press-event signals using an event box.

Listing 9-1. Simple Pop-up Menu (popupmenus.c)

#include <gtk/gtk.h>

static void create_popup_menu (GtkWidget*, GtkWidget*);
static void pulse_activated (GtkMenuItem*, GtkProgressBar*);
static void clear_activated (GtkMenuItem*, GtkProgressBar*);
static void fill_activated (GtkMenuItem*, GtkProgressBar*);
static gboolean button_press_event (GtkWidget*, GdkEventButton*, GtkWidget*);

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *progress, *eventbox, *menu;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Pop-up Menus");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);
 gtk_widget_set_size_request (window, 250, -1);

7931.book Page 316 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 317

 /* Create all of the necessary widgets and initialize the pop-up menu. */
 menu = gtk_menu_new ();
 eventbox = gtk_event_box_new ();
 progress = gtk_progress_bar_new ();
 gtk_progress_bar_set_text (GTK_PROGRESS_BAR (progress), "Nothing Yet Happened");
 create_popup_menu (menu, progress);

 gtk_progress_bar_set_pulse_step (GTK_PROGRESS_BAR (progress), 0.05);
 gtk_event_box_set_above_child (GTK_EVENT_BOX (eventbox), FALSE);

 g_signal_connect (G_OBJECT (eventbox), "button_press_event",
 G_CALLBACK (button_press_event), menu);

 gtk_container_add (GTK_CONTAINER (eventbox), progress);
 gtk_container_add (GTK_CONTAINER (window), eventbox);

 gtk_widget_set_events (eventbox, GDK_BUTTON_PRESS_MASK);
 gtk_widget_realize (eventbox);

 gtk_widget_show_all (window);
 gtk_main ();
 return 0;
}

/* Create the pop-up menu and attach it to the progress bar. This will make sure
 * that the accelerators will work from application load. */
static void
create_popup_menu (GtkWidget *menu,
 GtkWidget *progress)
{
 GtkWidget *pulse, *fill, *clear, *separator;

 pulse = gtk_menu_item_new_with_label ("Pulse Progress");
 fill = gtk_menu_item_new_with_label ("Set as Complete");
 clear = gtk_menu_item_new_with_label ("Clear Progress");
 separator = gtk_separator_menu_item_new ();

 g_signal_connect (G_OBJECT (pulse), "activate",
 G_CALLBACK (pulse_activated), progress);
 g_signal_connect (G_OBJECT (fill), "activate",
 G_CALLBACK (fill_activated), progress);
 g_signal_connect (G_OBJECT (clear), "activate",
 G_CALLBACK (clear_activated), progress);

7931.book Page 317 Thursday, February 22, 2007 9:09 PM

318 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

 gtk_menu_shell_append (GTK_MENU_SHELL (menu), pulse);
 gtk_menu_shell_append (GTK_MENU_SHELL (menu), separator);
 gtk_menu_shell_append (GTK_MENU_SHELL (menu), fill);
 gtk_menu_shell_append (GTK_MENU_SHELL (menu), clear);

 gtk_menu_attach_to_widget (GTK_MENU (menu), progress, NULL);
 gtk_widget_show_all (menu);
}

In most cases, you will want to use button-press-event to detect when the user wants the
pop-up menu to be shown. This allows you to check whether the right mouse button was clicked.
If the right mouse button was clicked, GdkEventButton’s button member will be equal to 3.

However, GtkWidget also provides the popup-menu signal, which is activated when the user
presses built-in key accelerators to activate the pop-up menu. Most users will use the mouse to
activate pop-up menus, so this is not usually a factor in GTK+ applications. Nevertheless, if you
would like to handle this signal as well, you should create a third function that displays the
pop-up menu that is called by both callback functions.

New menus are created with gtk_menu_new(). The menu is initialized with no initial con-
tent, so the next step is to create menu items.

In this section, we will cover two types of menu items. The first is the base class for all
other types of menu items, GtkMenuItem. There are three initialization functions provided
for GtkMenuItem: gtk_menu_item_new(), gtk_menu_item_new_with_label(), and gtk_menu_
item_new_with_mnemonic().

GtkWidget* gtk_menu_item_new_with_label (const gchar *label);

In most cases, you will not need to use the gtk_menu_item_new(), because a menu item
with no content is not of much use. If you use that function to initialize the menu item, you will
have to construct each aspect of the menu in code instead of allowing GTK+ to handle the
specifics.

■Note Menu item mnemonics are not the same thing as keyboard accelerators. A mnemonic will activate
the menu item when the user presses Alt and the appropriate alphanumeric key while the menu has focus. A
keyboard accelerator is a custom key combination that will cause a callback function to be run when the com-
bination is pressed. You will learn about keyboard accelerators for menus in the next section.

The other type of basic menu item is GtkSeparatorMenuItem, which places a generic sepa-
rator at its location. You can use gtk_separator_menu_item_new() to create a new separator
menu item.

7931.book Page 318 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 319

Separators are extremely important when designing a menu structure, because they orga-
nize menu items into groups so that the user can easily find the appropriate item. For example,
in the File menu, menu items are often organized into groups that open files, save files, print
files, and close the application. Rarely should you have many menu items listed without a
separator in between them (e.g., a list of recent files might appear without a separator). In
most cases, you should group similar menu items together and place a separator between
adjacent groups.

After the menu items are created, you need to connect each menu item to the activate sig-
nal, which is emitted when the user selects the item. Alternatively, you can use the activate-item
signal, which will additionally be emitted when a submenu of the given menu item is displayed.
There will be no discernable difference between the two unless the menu item expands into a
submenu.

Each activate and activate-item callback function receives the GtkMenuItem widget that
initiated the action and any data you need to pass to the function. In Listing 9-2, three menu
item callback functions are provided. They are used to pulse the progress bar, fill it to 100 per-
cent complete, and clear all progress.

Now that you have created all of the menu items, you need to add them to the menu.
GtkMenu is derived from GtkMenuShell, which is an abstract base class that contains and
displays submenus and menu items. Menu items can be added to a menu shell with
gtk_menu_shell_append(). This function appends each item to the end of the menu shell.

void gtk_menu_shell_append (GtkMenuShell *menu_shell,
 GtkWidget *child);

Additionally, you can use gtk_menu_shell_prepend() or gtk_menu_shell_insert() to add
a menu item to the beginning of the menu or insert it into an arbitrary position respectively.
Positions accepted by gtk_menu_shell_insert() begin with an index of zero.

After setting all of the GtkMenu’s children as visible, you should call gtk_menu_attach_
to_widget() so that the pop-up menu is associated to a specific widget. This function accepts
the pop-up menu and the widget it will be attached to.

void gtk_menu_attach_to_widget (GtkMenu *menu,
 GtkWidget *attach_widget,
 GtkMenuDetachFunc detacher);

The last parameter of gtk_menu_attach_widget() accepts a GtkMenuDetachFunc, which can
be used to call a specific function when the menu is detached from the widget.

Pop-up Menu Callback Functions
After creating the necessary widgets, you need to handle the button-press-event signal, which
is shown in Listing 9-2. In this example, the pop-up menu is displayed every time the right
mouse button is clicked on the progress bar.

7931.book Page 319 Thursday, February 22, 2007 9:09 PM

320 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

Listing 9-2. Callback Functions for the Simple Pop-up Menu (popupmenus.c)

static gboolean
button_press_event (GtkWidget *eventbox,
 GdkEventButton *event,
 GtkWidget *menu)
{
 if ((event->button == 3) && (event->type == GDK_BUTTON_PRESS))
 {
 gtk_menu_popup (GTK_MENU (menu), NULL, NULL, NULL, NULL,
 event->button, event->time);
 return TRUE;
 }

 return FALSE;
}

static void
pulse_activated (GtkMenuItem *item,
 GtkProgressBar *progress)
{
 gtk_progress_bar_pulse (progress);
 gtk_progress_bar_set_text (progress, "Pulse!");
}

static void
fill_activated (GtkMenuItem *item,
 GtkProgressBar *progress)
{
 gtk_progress_bar_set_fraction (progress, 1.0);
 gtk_progress_bar_set_text (progress, "One Hundred Percent");
}

static void
clear_activated (GtkMenuItem *item,
 GtkProgressBar *progress)
{
 gtk_progress_bar_set_fraction (progress, 0.0);
 gtk_progress_bar_set_text (progress, "Reset to Zero");
}

7931.book Page 320 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 321

In the button-press-event callback function in Listing 9-2, you can use gtk_menu_popup()
to display the menu on the screen.

void gtk_menu_popup (GtkMenu *menu,
 GtkWidget *parent_menu_shell,
 GtkWidget *parent_menu_item,
 GtkMenuPositionFunc func,
 gpointer func_data,
 guint button,
 guint32 event_time);

In Listing 9-2, all parameters were set to NULL except for the mouse button that was clicked
to cause the event (event->button) and the time when the event occurred (event->time). If the
pop-up menu was activated by something other than a button, you should supply 0 to the but-
ton parameter.

■Note If the action was invoked by a popup-menu signal, the event time will not be available. In that case,
you can use gtk_get_current_event_time(). This function returns the timestamp of the current event or
GDK_CURRENT_TIME if there are no recent events.

Usually, parent_menu_shell, parent_menu_item, func, and func_data are set to NULL,
because they are used when the menu is a part of a menu bar structure. The parent_menu_shell
widget is the menu shell that contains the item that caused the pop-up initialization. Alterna-
tively, you can supply parent_menu_item, which is the menu item that caused the pop-up
initialization.

GtkMenuPositionFunc is a function that decides at what position on the screen the menu
should be drawn. It accepts func_data as an optional last parameter. As previously stated, these
parameters are not frequently used in applications, so they can safely be set to NULL. In our
example, the pop-up menu was already associated with the progress bar, so it will be drawn in
the correct location.

Keyboard Accelerators
When creating a menu, one of the most important things to do is to set up keyboard accelera-
tors. A keyboard accelerator is a key combination created from one accelerator key and one or
more modifiers such as Ctrl or Shift. When the user presses the key combination, the appropri-
ate signal is emitted.

7931.book Page 321 Thursday, February 22, 2007 9:09 PM

322 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

Listing 9-3 is an extension of the progress bar pop-up menu application that adds key-
board accelerators to the menu items. The progress bar is pulsed when the user presses Ctrl+P,
filled with Ctrl+F, and cleared with Ctrl+C.

Listing 9-3. Adding Accelerators to Menu Items (accelerators.c)

static void
create_popup_menu (GtkWidget *menu,
 GtkWidget *window,
 GtkWidget *progress)
{
 GtkWidget *pulse, *fill, *clear, *separator;
 GtkAccelGroup *group;

 /* Create a keyboard accelerator group for the application. */
 group = gtk_accel_group_new ();
 gtk_window_add_accel_group (GTK_WINDOW (window), group);
 gtk_menu_set_accel_group (GTK_MENU (menu), group);

 pulse = gtk_menu_item_new_with_label ("Pulse Progress");
 fill = gtk_menu_item_new_with_label ("Set as Complete");
 clear = gtk_menu_item_new_with_label ("Clear Progress");
 separator = gtk_separator_menu_item_new ();

 /* Add the necessary keyboard accelerators. */
 gtk_widget_add_accelerator (pulse, "activate", group, GDK_P,
 GDK_CONTROL_MASK, GTK_ACCEL_VISIBLE);
 gtk_widget_add_accelerator (fill, "activate", group, GDK_F,
 GDK_CONTROL_MASK, GTK_ACCEL_VISIBLE);
 gtk_widget_add_accelerator (clear, "activate", group, GDK_C,
 GDK_CONTROL_MASK, GTK_ACCEL_VISIBLE);

 g_signal_connect (G_OBJECT (pulse), "activate",
 G_CALLBACK (pulse_activated), progress);
 g_signal_connect (G_OBJECT (fill), "activate",
 G_CALLBACK (fill_activated), progress);
 g_signal_connect (G_OBJECT (clear), "activate",
 G_CALLBACK (clear_activated), progress);

 gtk_menu_shell_append (GTK_MENU_SHELL (menu), pulse);
 gtk_menu_shell_append (GTK_MENU_SHELL (menu), separator);
 gtk_menu_shell_append (GTK_MENU_SHELL (menu), fill);
 gtk_menu_shell_append (GTK_MENU_SHELL (menu), clear);

 gtk_menu_attach_to_widget (GTK_MENU (menu), progress, NULL);
 gtk_widget_show_all (menu);
}

7931.book Page 322 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 323

Keyboard accelerators are stored as an instance of GtkAccelGroup. In order to implement
accelerators in your application, you need to create a new accelerator group with gtk_accel_
group_new(). This accelerator group must be added to the GtkWindow where the menu will
appear for it to take effect. It must also be associated with any menus that take advantage of its
accelerators. In Listing 9-3, this is performed immediately after creating the GtkAccelGroup
with gtk_window_add_accel_group() and gtk_menu_set_accel_group().

It is possible to manually create keyboard accelerators with GtkAccelMap, but in most
cases, gtk_widget_add_accelerator() will provide all of the necessary functionality. The only
problem that this method presents is that the user cannot change keyboard accelerators cre-
ated with this function during runtime.

void gtk_widget_add_accelerator (GtkWidget *widget,
 const gchar *signal_name,
 GtkAccelGroup *group,
 guint accel_key,
 GdkModifierType mods,
 GtkAccelFlags flags);

To add an accelerator to a widget, you can use gtk_widget_add_accelerator(), which will
emit the signal specified by signal_name on the widget when the user presses the key combina-
tion. You need to specify your accelerator group to the function, which must be associated with
the window and the menu as previously stated.

An accelerator key and one or more modifier keys form the complete key combination.
A list of available accelerator keys is available in <gdk/gdkkeysyms.h>. This header file is not
included in <gtk/gtk.h>, so it must explicitly be included. Modifiers are specified by the
GdkModifierType enumeration. The most often used modifiers are GDK_SHIFT_LOCK, GDK_
CONTROL_MASK, and GDK_MOD1_MASK, which correspond to the Shift, Ctrl, and Alt keys respectively.

■Tip When dealing with key codes, you need to be careful because you many need to supply multiple
keys for the same action in some cases. For example, if you want to catch the number 1 key, you will need to
watch for GDK_1 and GDK_KP_1—they correspond to the 1 key at the top of the keyboard and the 1 key on
the numeric keypad.

The last parameter of gtk_widget_add_accelerator() is an accelerator flag. There are three
flags defined by the GtkAccelFlags enumeration. The accelerator will be visible in a label if
GTK_ACCEL_VISIBLE is set. GTK_ACCEL_LOCKED will prevent the user from modifying the accelera-
tor. GTK_ACCEL_MASK will set both flags for the widget accelerator.

Status Bar Hints
Usually placed along the bottom of the main window, the GtkStatusbar widget can be used to
give the user further information about what is going on in the application. A status bar can
also be very useful with menus, because you can provide more information to the user about

7931.book Page 323 Thursday, February 22, 2007 9:09 PM

324 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

the functionality of the menu item that the mouse cursor is hovering over. A screenshot of a
status bar can be viewed in Figure 9-2.

Figure 9-2. A pop-up menu with status bar hints

The Status Bar Widget
While the status bar can only display one message at a time, the widget actually stores a stack
of messages. The currently displayed message is on the top of the stack. When you pop a mes-
sage from the stack, the previous message is displayed. If there are no more strings left on the
stack after you pop a message from the top, no message is displayed on the status bar.

New status bar widgets are created with gtk_statusbar_new(). This will create a new
GtkStatusbar widget with an empty message stack. Before you are able to add or remove
a message from the new status bar’s stack, you must retrieve a context identifier with
gtk_status_bar_get_context_id():

guint gtk_statusbar_get_context_id (GtkStatusBar *statusbar,
 const gchar *description);

The context identifier is a unique unsigned integer that is associated with a context
description string. This identifier will be used for all messages of a specific type, which allows
you to categorize messages on the stack.

For example, if your status bar will hold hyperlinks and IP addresses, you could create two
context identifiers from the strings “URL” and “IP”. When you push or pop messages to and
from the stack, you have to specify a context identifier. This allows separate parts of your appli-
cation to push and pop messages to and from the status bar message stack without affecting
each other.

■Tip It is important to use different context identifiers for different categories of messages. If one part of
your application is trying to give a message to the user while the other is trying to remove its own message,
you do not want the wrong message to be popped from the stack!

7931.book Page 324 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 325

After you generate a context identifier, you can add a message to the top of the status bar’s
stack with gtk_statusbar_push(). This function returns a unique message identifier for the
string that was just added. This identifier can be used later to remove the message from the
stack, regardless of its location.

guint gtk_statusbar_push (GtkStatusBar *statusbar,
 guint context_id,
 const gchar *message);

There are two ways to remove a message from the stack. If you want to remove a message
from the top of the stack for a specific context ID, you can use gtk_statusbar_pop(). This func-
tion will remove the message that is highest on the status bar’s stack with a context identifier of
context_id.

void gtk_statusbar_pop (GtkStatusBar *statusbar,
 guint context_id);

It is also possible to remove a specific message from the status bar’s message stack with
gtk_statusbar_remove(). To do this, you must provide the context identifier of the message
and the message identifier of the message you want to remove, which was returned by
gtk_statusbar_push() when it was added.

void gtk_statusbar_remove (GtkStatusBar *statusbar,
 guint context_id,
 guint message_id);

GtkStatusbar has one property, has-resize-grip, which will place a graphic in the corner
of the status bar for resizing the window. The user will be able to grab the resize grip and drag
it to resize its parent window. You can also use the built-in function gtk_statusbar_set_has_
resize_grip() to set this property.

Menu Item Information
One useful role of the status bar is to give the user more information about the menu item the
mouse cursor is currently hovering over. An example of this was shown in the previous section
in Figure 9-2, which is a screenshot of the progress bar pop-up menu application in Listing 9-4.

To implement status bar hints, you should connect each of your menu items to GtkWidget’s
enter-notify-event and leave-notify-event signals. Listing 9-4 shows the progress bar pop-up
menu application you have already learned about, except status bar hints are provided when the
mouse cursor moves over a menu item.

7931.book Page 325 Thursday, February 22, 2007 9:09 PM

326 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

Listing 9-4. Displaying More Information About a Menu Item (statusbarhints.c)

static void
create_popup_menu (GtkWidget *menu,
 GtkWidget *progress,
 GtkWidget *statusbar)
{
 GtkWidget *pulse, *fill, *clear, *separator;

 pulse = gtk_menu_item_new_with_label ("Pulse Progress");
 fill = gtk_menu_item_new_with_label ("Set as Complete");
 clear = gtk_menu_item_new_with_label ("Clear Progress");
 separator = gtk_separator_menu_item_new ();

 g_signal_connect (G_OBJECT (pulse), "activate",
 G_CALLBACK (pulse_activated), progress);
 g_signal_connect (G_OBJECT (fill), "activate",
 G_CALLBACK (fill_activated), progress);
 g_signal_connect (G_OBJECT (clear), "activate",
 G_CALLBACK (clear_activated), progress);

 /* Connect signals to each menu item for status bar messages. */
 g_signal_connect (G_OBJECT (pulse), "enter-notify-event",
 G_CALLBACK (statusbar_hint), statusbar);
 g_signal_connect (G_OBJECT (pulse), "leave-notify-event",
 G_CALLBACK (statusbar_hint), statusbar);
 g_signal_connect (G_OBJECT (fill), "enter-notify-event",
 G_CALLBACK (statusbar_hint), statusbar);
 g_signal_connect (G_OBJECT (fill), "leave-notify-event",
 G_CALLBACK (statusbar_hint), statusbar);
 g_signal_connect (G_OBJECT (clear), "enter-notify-event",
 G_CALLBACK (statusbar_hint), statusbar);
 g_signal_connect (G_OBJECT (clear), "leave-notify-event",
 G_CALLBACK (statusbar_hint), statusbar);

 g_object_set_data (G_OBJECT (pulse), "menuhint",
 (gpointer) "Pulse the progress bar one step.");
 g_object_set_data (G_OBJECT (fill), "menuhint",
 (gpointer) "Set the progress bar to 100%.");
 g_object_set_data (G_OBJECT (clear), "menuhint",
 (gpointer) "Clear the progress bar to 0%.");

 gtk_menu_shell_append (GTK_MENU_SHELL (menu), pulse);
 gtk_menu_shell_append (GTK_MENU_SHELL (menu), separator);
 gtk_menu_shell_append (GTK_MENU_SHELL (menu), fill);
 gtk_menu_shell_append (GTK_MENU_SHELL (menu), clear);

7931.book Page 326 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 327

 gtk_menu_attach_to_widget (GTK_MENU (menu), progress, NULL);
 gtk_widget_show_all (menu);
}

/* Add or remove a status bar menu hint, depending on whether this function
 * is initialized by a proximity-in-event or proximity-out-event. */
static gboolean
statusbar_hint (GtkMenuItem *menuitem,
 GdkEventProximity *event,
 GtkStatusbar *statusbar)
{
 gchar *hint;
 guint id = gtk_statusbar_get_context_id (statusbar, "MenuItemHints");

 if (event->type == GDK_ENTER_NOTIFY)
 {
 hint = (gchar*) g_object_get_data (G_OBJECT (menuitem), "menuhint");
 gtk_statusbar_push (statusbar, id, hint);
 }
 else if (event->type == GDK_LEAVE_NOTIFY)
 gtk_statusbar_pop (statusbar, id);

 return FALSE;
}

When implementing status bar hints, you first need to figure out what signals are neces-
sary. We want to be able to add a message to the status bar when the mouse cursor moves over
the menu item and remove it when the mouse cursor leaves. From this description, using
enter-notify-event and leave-notify-event is a good solution.

One advantage of using these two signals is that we only need one callback function,
because the prototype for each receives a GdkEventProximity object. From this object, we can
discern between GDK_ENTER_NOTIFY and GDK_LEAVE_NOTIFY events. You will want to return FALSE
from the callback function, because you do not want to prevent GTK+ from handling the event;
you only want to enhance what is performed when it is emitted.

Within the statusbar_hint() callback function, you should first retrieve a context identi-
fier for the menu item messages. You can use whatever string you want, as long as your
application remembers what was used. In Listing 9-4, "MenuItemHints" was used to describe all
of the menu item messages added to the status bar. If other parts of the application used the
status bar, using a different context identifier would leave the menu item hints untouched.

guint id = gtk_statusbar_get_context_id (statusbar, "MenuItemHints");

If the event type is GDK_ENTER_NOTIFY, you need to show the message to the user. In the
create_popup_menu() function, a data parameter was added to each menu item called
"menuhint". This is a more in-depth description of what the menu item does, which will be
displayed to the user.

hint = (gchar*) g_object_get_data (G_OBJECT (menuitem), "menuhint");
gtk_statusbar_push (statusbar, id, hint);

7931.book Page 327 Thursday, February 22, 2007 9:09 PM

328 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

Then, with gtk_statusbar_push(), the message can be added to the status bar under the
"MenuItemHints" context identifier. This message will be placed on the top of the stack and
displayed to the user. You may want to consider processing all GTK+ events after calling this
function, since the user interface should reflect the changes immediately.

However, if the event type is GDK_LEAVE_NOTIFY, you need to remove the last menu item
message that was added with the same context identifier. The most recent message can be
removed from the stack with gtk_statusbar_pop().

Menu Items
Thus far, you have learned about flat menus that display label and separator menu items. It is
also possible to add a submenu to an existing menu item. GTK+ also provides a number of
other GtkMenuItem objects. Figure 9-3 shows a pop-up menu that contains a submenu along
with image, check, and radio menu items.

Figure 9-3. Image, check, and radio menu items

Submenus
Submenus in GTK+ are not created by a separate type of menu item widget but by calling
gtk_menu_item_set_submenu(). This function calls gtk_menu_attach_to_widget() to attach the
submenu to the menu item and places an arrow beside the menu item to show that it now has
a submenu. If the menu item already has a submenu, it will be replaced with the given GtkMenu
widget.

void gtk_menu_item_set_submenu (GtkMenuItem *menuitem,
 GtkWidget *submenu);

Submenus are very useful if you have a list of very specific options that would clutter an
otherwise organized menu structure. When using a submenu, you can use the activate-item
signal provided by the GtkMenuItem widget, which will be emitted when the menu item displays
its submenu.

In addition to GtkMenuItem and menu item separators, there are three other types of menu
item objects: image, check, and radio menu items; these are covered in the remainder of this
section.

7931.book Page 328 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 329

Image Menu Items
GtkImageMenuItem is very similar to its parent class GtkMenuItem except it shows a small image to the
left of the menu item label. There are four functions provided for creating a new image menu item.

The first function, gtk_image_menu_item_new() creates a new GtkImageMenuItem object with
an empty label and no associated image. You can use image menu item’s image property to set
the image displayed by the menu item.

GtkWidget* gtk_image_menu_item_new ();

Additionally, you can create a new image menu item from a stock identifier with
gtk_image_menu_item_new_from_stock(). This function creates the GtkImageMenuItem with
the label and image associated with stock_id. This function accepts stock identifier strings
that are listed in Appendix D.

GtkWidget* gtk_image_menu_item_new_from_stock (const gchar *stock_id,
 GtkAccelGroup *accel_group);

The second parameter of this function accepts an accelerator group, which will be set to
the default accelerator of the stock item. If you want to manually set the keyboard accelerator
for the menu item as we did in Listing 9-3, you can specify NULL for this parameter.

Also, you can use gtk_image_menu_item_new_with_label() to create a new GtkImageMenuItem
initially with only a label. Later, you can use the image property to add an image widget. GTK+
also provided the function gtk_image_menu_item_set_image(), which allows you to edit the image
property of the widget.

GtkWidget* gtk_image_menu_item_new_with_label (const gchar *label);

Also, GTK+ provides gtk_image_menu_item_new_with_mnemonic(), which will create an
image menu item with a mnemonic label. As with the previous function, you will have to set the
image property after the menu item is created.

Check Menu Items
GtkCheckMenuItem allows you to create a menu item that will display a check symbol beside the
label, depending on whether its Boolean active property is TRUE or FALSE. This would allow
the user to view whether an option is activated or deactivated.

As with GtkMenuItem, three initialization functions are provided: gtk_check_menu_item_new(),
gtk_check_item_new_with_label(), and gtk_check_menu_item_new_with_mnemonic(). These func-
tions create a GtkCheckMenuItem with no label, with an initial label, or with a mnemonic label,
respectively.

GtkWidget* gtk_check_menu_item_new ();
GtkWidget* gtk_check_menu_item_new_with_label (const gchar *label);
GtkWidget* gtk_check_menu_item_new_with_mnemonic (const gchar *label);

As previously stated, the current state of the check menu item is held by the active prop-
erty of the widget. GTK+ provides two functions, gtk_check_menu_item_set_active() and
gtk_check_menu_item_get_active() to set and retrieve the active value.

7931.book Page 329 Thursday, February 22, 2007 9:09 PM

330 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

As with all check button widgets, you are able to use the toggled signal, which is emitted
when the user toggles the state of the menu item. GTK+ takes care of updating the state of the
check button, so this signal is simply to allow you to update your application to reflect the
changed value.

GtkCheckMenuItem also provides gtk_check_menu_item_set_inconsistent(), which is used
to alter the inconsistent property of the menu item. When set to TRUE, the check menu item
will display a third, “in between” state that is neither active nor inactive. This can be used to
show the user that a choice must be made that has yet to be set or that the property is both set
and unset for different parts of a selection.

Radio Menu Items
GtkRadioMenuItem is a widget derived from GtkCheckMenuItem. It is rendered as a radio button
instead of a check button by setting check menu item’s draw-as-radio property to TRUE. Radio
menu items work the same way as normal radio buttons.

The first radio button should be created with one of the following functions. You can set
the radio button group to NULL, because it is not necessary since requisite elements will be
added to the group by referencing the first element. These functions create an empty menu
item, a menu item with a label, and a menu item with a mnemonic, respectively.

GtkWidget* gtk_radio_menu_item_new (GSList *group);
GtkWidget* gtk_radio_menu_item_new_with_label (GSList *group,
 const gchar *text);
GtkWidget* gtk_radio_menu_item_new_with_mnemonic (GSList *group,
 const gchar *text);

All other radio menu items should be created with one of the following three functions,
which will add it to the radio button group associated with group. These functions create an
empty menu item, a menu item with a label, and a menu item with a mnemonic, respectively.

GtkWidget* gtk_radio_menu_item_new_from_widget (GtkRadioMenuItem *group);
GtkWidget* gtk_radio_menu_item_new_from_widget_with_label (GtkRadioMenuItem *group,
 const gchar *text);
GtkWidget* gtk_radio_menu_item_new_from_widget_with_mnemonic
 (GtkRadioMenuItem *group,
 const gchar *text);

Menu Bars
GtkMenuBar is a widget that organizes multiple pop-up menus into a horizontal or vertical row.
Each root element is a GtkMenuItem that pops down into a submenu. An instance of GtkMenuBar
is usually displayed along the top of the main application window to provide access to func-
tionality provided by the application. An example menu bar is shown in Figure 9-4.

7931.book Page 330 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 331

Figure 9-4. A menu bar with three menus

In Listing 9-5, a GtkMenuBar widget is created with three menus: File, Edit, and Help. Each
of the menus is actually a GtkMenuItem with a submenu. A number of menu items are then
added to each submenu.

Listing 9-5. Creating Groups of Menus (menubars.c)

#include <gtk/gtk.h>

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *menubar, *file, *edit, *help, *filemenu, *editmenu, *helpmenu;
 GtkWidget *new, *open, *cut, *copy, *paste, *contents, *about;
 GtkAccelGroup *group;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Menu Bars");
 gtk_widget_set_size_request (window, 250, -1);

 group = gtk_accel_group_new ();
 menubar = gtk_menu_bar_new ();
 file = gtk_menu_item_new_with_label ("File");
 edit = gtk_menu_item_new_with_label ("Edit");
 help = gtk_menu_item_new_with_label ("Help");
 filemenu = gtk_menu_new ();
 editmenu = gtk_menu_new ();
 helpmenu = gtk_menu_new ();

 gtk_menu_item_set_submenu (GTK_MENU_ITEM (file), filemenu);
 gtk_menu_item_set_submenu (GTK_MENU_ITEM (edit), editmenu);
 gtk_menu_item_set_submenu (GTK_MENU_ITEM (help), helpmenu);

7931.book Page 331 Thursday, February 22, 2007 9:09 PM

332 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

 gtk_menu_shell_append (GTK_MENU_SHELL (menubar), file);
 gtk_menu_shell_append (GTK_MENU_SHELL (menubar), edit);
 gtk_menu_shell_append (GTK_MENU_SHELL (menubar), help);

 /* Create the File menu content. */
 new = gtk_image_menu_item_new_from_stock (GTK_STOCK_NEW, group);
 open = gtk_image_menu_item_new_from_stock (GTK_STOCK_OPEN, group);
 gtk_menu_shell_append (GTK_MENU_SHELL (filemenu), new);
 gtk_menu_shell_append (GTK_MENU_SHELL (filemenu), open);

 /* Create the Edit menu content. */
 cut = gtk_image_menu_item_new_from_stock (GTK_STOCK_CUT, group);
 copy = gtk_image_menu_item_new_from_stock (GTK_STOCK_COPY, group);
 paste = gtk_image_menu_item_new_from_stock (GTK_STOCK_PASTE, group);
 gtk_menu_shell_append (GTK_MENU_SHELL (editmenu), cut);
 gtk_menu_shell_append (GTK_MENU_SHELL (editmenu), copy);
 gtk_menu_shell_append (GTK_MENU_SHELL (editmenu), paste);

 /* Create the Help menu content. */
 contents = gtk_image_menu_item_new_from_stock (GTK_STOCK_HELP, group);
 about = gtk_image_menu_item_new_from_stock (GTK_STOCK_ABOUT, group);
 gtk_menu_shell_append (GTK_MENU_SHELL (helpmenu), contents);
 gtk_menu_shell_append (GTK_MENU_SHELL (helpmenu), about);

 gtk_container_add (GTK_CONTAINER (window), menubar);
 gtk_window_add_accel_group (GTK_WINDOW (window), group);

 gtk_widget_show_all (window);
 gtk_main ();
 return 0;
}

New GtkMenuBar widgets are created with gtk_menu_bar_new(). This will create an empty
menu shell into which you can add content.

After you create the menu bar, you can define the pack direction of the menu bar items with
gtk_menu_bar_set_pack_direction(). Values for the pack-direction property are defined by the
GtkPackDirection enumeration and include GTK_PACK_DIRECTION_LTR, GTK_PACK_DIRECTION_RTL,
GTK_PACK_DIRECTION_TTB, or GTK_PACK_DIRECTION_BTT. These will pack the menu items from left to
right, right to left, top to bottom, or bottom to top, respectively. By default, child widgets are
packed from left to right.

7931.book Page 332 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 333

GtkMenuBar also provides another property called child-pack-direction, which sets what
direction the menu items of the menu bar’s children are packed. In other words, it controls how
submenu items are packed. Values for this property are also defined by the GtkPackDirection
enumeration.

Each child item in the menu bar is actually a GtkMenuItem widget. Since GtkMenuBar is
derived from GtkMenuShell, you can use gtk_menu_shell_append() to add an item to the bar as
shown in the following line.

gtk_menu_shell_append (GTK_MENU_SHELL (menubar), file);

You can also use gtk_menu_shell_prepend() or gtk_menu_shell_insert() to add an item to
the beginning or in an arbitrary position of the menu bar.

You next need to call gtk_menu_item_set_submenu() to add a submenu to each of the root
menu items. Each of the submenus is a GtkMenu widget created in the same way as pop-up
menus. GTK+ will then take care of showing submenus to the user when necessary.

gtk_menu_item_set_submenu (GTK_MENU_ITEM (file), filemenu);

Toolbars
A GtkToolbar is a type of container that holds a number of widgets in a horizontal or vertical
row. It is meant to allow easy customization of a large number of widgets with very little trou-
ble. Typically, toolbars hold tool buttons that can display an image along with a text string.
However, toolbars are actually able to hold any type of widget. A toolbar holding four tool but-
tons and a separator is shown in Figure 9-5.

Figure 9-5. A toolbar showing both images and text

In Listing 9-6, a simple toolbar is created that shows five tool items in a horizontal row.
Each toolbar item displays an icon and a label that describes the purpose of the item. The tool-
bar is also set to display an arrow that will provide access to toolbar items that do not fit in
the menu.

7931.book Page 333 Thursday, February 22, 2007 9:09 PM

334 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

In this example, a toolbar is used to provide cut, copy, paste, and select-all functionality to
a GtkEntry widget. The main() function creates the toolbar, packing it above the GtkEntry. It
then calls create_toolbar(), which populates the toolbar with tool items and connects the
necessary signals.

Listing 9-6. Creating a GtkToolbar Widget (toolbars.c)

static void select_all (GtkEditable*);

/* Create a toolbar with Cut, Copy, Paste and Select All toolbar items. */
static void
create_toolbar (GtkWidget *toolbar,
 GtkWidget *entry)
{
 GtkToolItem *cut, *copy, *paste, *selectall, *separator;

 cut = gtk_tool_button_new_from_stock (GTK_STOCK_CUT);
 copy = gtk_tool_button_new_from_stock (GTK_STOCK_COPY);
 paste = gtk_tool_button_new_from_stock (GTK_STOCK_PASTE);
 selectall = gtk_tool_button_new_from_stock (GTK_STOCK_SELECT_ALL);
 separator = gtk_separator_tool_item_new ();

 gtk_toolbar_set_show_arrow (GTK_TOOLBAR (toolbar), TRUE);
 gtk_toolbar_set_style (GTK_TOOLBAR (toolbar), GTK_TOOLBAR_BOTH);

 gtk_toolbar_insert (GTK_TOOLBAR (toolbar), cut, 0);
 gtk_toolbar_insert (GTK_TOOLBAR (toolbar), copy, 1);
 gtk_toolbar_insert (GTK_TOOLBAR (toolbar), paste, 2);
 gtk_toolbar_insert (GTK_TOOLBAR (toolbar), separator, 3);
 gtk_toolbar_insert (GTK_TOOLBAR (toolbar), selectall, 4);

 g_signal_connect_swapped (G_OBJECT (cut), "clicked",
 G_CALLBACK (gtk_editable_cut_clipboard), entry);
 g_signal_connect_swapped (G_OBJECT (copy), "clicked",
 G_CALLBACK (gtk_editable_copy_clipboard), entry);
 g_signal_connect_swapped (G_OBJECT (paste), "clicked",
 G_CALLBACK (gtk_editable_paste_clipboard), entry);
 g_signal_connect_swapped (G_OBJECT (selectall), "clicked",
 G_CALLBACK (select_all), entry);
}

/* Select all of the text in the GtkEditable. */
static void
select_all (GtkEditable *entry)
{
 gtk_editable_select_region (entry, 0, -1);
}

7931.book Page 334 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 335

New toolbars are created with gtk_toolbar_new(), which was called before the
create_toolbar() function shown in Listing 9-6. This creates an empty GtkToolbar widget
in which you can add tool buttons.

GtkToolbar provides a number of properties for customizing how it appears and interacts
with the user including the orientation, button style, and the ability to give access to items that
do not fit in the toolbar.

If all of the toolbar items cannot be displayed on the toolbar because there is not enough
room, then an overflow menu will appear if you set gtk_toolbar_set_show_arrow() to TRUE. If
all of the items can be displayed on the toolbar, the arrow will be hidden from view.

void gtk_toolbar_set_show_arrow (GtkToolbar *toolbar,
 gboolean show_arrow);

Another GtkToolbar property is the style by which all of the menu items will be dis-
played, which is set with gtk_toolbar_set_style(). You should note that this property can be
overridden by the theme, so you should provide the option of using the default style by call-
ing gtk_toolbar_unset_style(). There are four toolbar styles, which are defined by the
GtkToolbarStyle enumeration:

• GTK_TOOLBAR_ICONS: Show only icons for each tool button in the toolbar.

• GTK_TOOLBAR_TEXT: Show only labels for each tool button in the toolbar.

• GTK_TOOLBAR_BOTH: Show both icons and labels for each tool button, where the icon is
located above its label.

• GTK_TOOLBAR_BOTH_HORIZ: Show both icons and labels for each tool button, where the
icon is to the left of the label. The label text of a tool item will only be shown if the is-
important property for the item is set to TRUE.

Another important property of the toolbar is the orientation that can be set with
gtk_toolbar_set_orientation(). There are two possible values defined by the GtkOrientation
enumeration, GTK_ORIENTATION_HORIZONTAL and GTK_ORIENTATION_VERTICAL, which can be used
to make the toolbar horizontal (default) or vertical.

Toolbar Items
Listing 9-6 introduces three important tool item types: GtkToolItem, GtkToolButton, and
GtkSeparatorToolItem. All tool buttons are derived from the GtkToolItem class, which holds
basic properties that are used by all tool items.

If you are using the GTK_TOOLBAR_BOTH_HORIZ style, then an essential property installed in
GtkToolItem is the is-important setting. The label text of the toolbar item will only be shown for
this style if this property is set to TRUE.

As with menus, separator tool items are provided by GtkSeparatorToolItem and are cre-
ated with gtk_separator_tool_item_new(). Separator tool items have a draw property, which
will draw a separator when set to TRUE. If you set draw to FALSE, it will place padding at its loca-
tion without any visual separator.

7931.book Page 335 Thursday, February 22, 2007 9:09 PM

336 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

■Tip If you set the expand property of a GtkSeparatorToolItem to TRUE and its draw property to FALSE,
you will force all tool items after the separator to the end of the toolbar.

Most toolbar items are of the type GtkToolButton. GtkToolButton provides a number of ini-
tialization functions including gtk_tool_button_new_from_stock(). This function accepts a
stock identifier; a list of stock items available in GTK+ 2.10 can be found in Appendix D. Unlike
most initialization functions, this method returns a GtkToolItem object instead of a GtkWidget.

Alternatively, you can use gtk_tool_button_new() to create a GtkToolButton with a custom
icon and label. Each of these properties can be set to NULL.

GtkToolItem* gtk_tool_button_new (GtkWidget *icon,
 const gchar* label);

It is possible to manually set the label, stock identifier, and icon after initialization with
gtk_tool_button_set_label(), gtk_tool_button_set_stock_id(), and gtk_tool_button_
set_icon_widget(). These functions provide access to tool button’s label, stock-id, and
icon-widget properties.

Additionally, you can define your own widget to use instead of the default GtkLabel widget
of the tool button with gtk_tool_button_set_label_widget(). This will allow you to embed an
arbitrary widget, such as an entry or combo box, into the tool button. If this property is set to
NULL, the default label will be used.

void gtk_tool_button_set_label_widget (GtkToolButton *button,
 GtkWidget *label_widget);

After you create the toolbar items, you can insert each GtkToolItem into the toolbar with
gtk_toolbar_insert(). You do not have to cast the GtkToolItem, since the initialization func-
tions do not return a GtkWidget.

void gtk_toolbar_insert (GtkToolbar *toolbar,
 GtkToolItem *item,
 gint pos);

The third parameter of gtk_toolbar_insert() accepts the position to insert the item into
the toolbar. Tool button positions are indexed from zero. A negative position will append the
item to the end of the toolbar.

Toggle Tool Buttons
GtkToggleToolButton is derived from GtkToolButton and, therefore, only implements initializa-
tion and toggle abilities itself. Toggle tool buttons provide the functionality of a GtkToggleButton
widget in the form of a toolbar item. It allows the user to view whether the option is set or unset.

Toggle tool buttons are tool buttons that remain depressed when the active property is set
to TRUE. You can use the toggled signal to receive notification when the state of the toggle but-
ton has been changed.

7931.book Page 336 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 337

There are two ways to create a new GtkToggleToolButton. The first is with gtk_toggle_
tool_button_new(), which will create an empty tool button. You can then use the functions
provided by GtkToolButton to add a label and image.

GtkToolItem* gtk_toggle_tool_button_new ();
GtkToolItem* gtk_toggle_tool_button_new_from_stock (const gchar *stock_id);

Alternatively, you can use gtk_toggle_tool_button_new_from_stock(), which will create a
tool button with the label and image associated with the stock identifier. If the stock identifier
is not found, the image and label will be set to the error stock item.

Radio Tool Buttons
GtkRadioToolButton is derived from GtkToggleToolButton, so it inherits the active property
and toggled signal. Therefore, the widget only needs to give a way for you to create new radio
tool buttons and add them to a radio group.

The first radio tool button should be created with gtk_radio_tool_button_new() or
gtk_radio_tool_button_new_from_stock(), where the radio group is set to NULL. This will create
a default initial radio group for the radio tool button.

GtkToolItem* gtk_radio_tool_button_new (GSList *group);
GtkToolItem* gtk_radio_tool_button_new_from_stock (GSList *group,
 const gchar *stock_id);

GtkRadioToolButton inherits functions from GtkToolButton, which provides functions and
properties that can then be used to set the label of the radio tool button if necessary.

All requisite elements should be created with gtk_radio_tool_button_from_widget() or
gtk_radio_tool_button_new_with_stock_from_widget(). Setting group as the first radio tool
button will add all requisite items added to the same group.

GtkToolItem* gtk_radio_tool_button_new_from_widget (GtkRadioToolButton *group);
GtkToolItem* gtk_radio_tool_button_new_with_stock_from_widget
 (GtkRadioToolButton *group,
 const gchar *stock_id);

GtkRadioToolButton provides one property, group, which is another radio tool button that
belongs to the radio group. This allows you to link all of the radio buttons together so that only
one will be selected at a time.

Menu Tool Buttons
GtkMenuToolButton, derived from GtkToolButton, allows you to attach a menu to a tool button.
The widget places an arrow beside the image and label that provides access to the associated
menu. For example, you could use GtkMenuToolButton to add a list of recently opened files to a
GTK_STOCK_OPEN toolbar button. Figure 9-6 is a screenshot of a menu tool button that is used for
this purpose.

7931.book Page 337 Thursday, February 22, 2007 9:09 PM

338 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

Figure 9-6. A menu tool button showing recently opened files

Listing 9-7 shows you how to implement a menu tool button. The actual tool button is cre-
ated in a similar way as any other GtkToolButton except there is an extra step of attaching a
menu to the GtkMenuToolButton widget.

Listing 9-7. Using GtkMenuToolButton

GtkToolItem *open;
GtkWidget *recent;

recent = gtk_menu_new ();
/* Add a number of menu items where each corresponds to one recent file. */

open = gtk_menu_tool_button_new_from_stock (GTK_STOCK_OPEN);
gtk_menu_tool_button_set_menu (GTK_MENU_TOOL_BUTTON (open), GTK_MENU (recent));

In Listing 9-7, the menu tool button was created with a default stock icon and label with
gtk_menu_tool_button_new_from_stock(). This function accepts a stock identifier and will
apply the appropriate label and icon.

Alternatively, you can create a menu tool button with gtk_menu_tool_button_new(), which
accepts an icon widget and the label text. You can set either of these parameters to NULL if you
want to set them at a later time using GtkToolButton properties.

GtkToolItem* gtk_menu_tool_button_new (GtkWidget *icon,
 const gchar *label);

What makes GtkMenuToolButton unique is that an arrow to the right of the tool button
provides the user with access to a menu. The tool button’s menu is set with gtk_menu_tool_
button_set_menu() or by setting the menu property to a GtkMenu widget. This menu is dis-
played to the user when the arrow is clicked.

7931.book Page 338 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 339

Dynamic Menu Creation
While it is possible to manually create every menu and toolbar item, doing so can take up a
large amount of space and cause you to have to code monotonously for longer than necessary.
In order to automate menu and toolbar creation, GTK+ allows you to dynamically create
menus from XML files.

Creating UI Files
User interface files are constructed in XML format. All of the content has to be contained
between <ui> and </ui> tags. One type of dynamic UI that you can create is a GtkMenuBar with
the <menubar> tag shown in Listing 9-8.

Listing 9-8. Menu UI File (menu.ui)

<ui>
 <menubar name="MenuBar">
 <menu name="FileMenu" action="File">
 <menuitem name="FileOpen" action="Open"/>
 <menuitem name="FileSave" action="Save"/>
 <separator/>
 <menuitem name="FileQuit" action="Quit"/>
 </menu>
 <menu name="EditMenu" action="Edit">
 <menuitem name="EditCut" action="Cut"/>
 <menuitem name="EditCopy" action="Copy"/>
 <menuitem name="EditPaste" action="Paste"/>
 <separator/>
 <menuitem name="EditSelectAll" action="SelectAll"/>
 <menuitem name="EditDeselect" action="Deselect"/>
 </menu>
 <menu name="HelpMenu" action="Help">
 <menuitem name="HelpContents" action="Contents"/>
 <menuitem name="HelpAbout" action="About"/>
 </menu>
 </menubar>
</ui>

While not necessary, you should add the name attribute to every menubar, menu, and
menuitem. The name attribute can be used to access the actual widget. If name is not specified,
using the "action" field can access the widget.

7931.book Page 339 Thursday, February 22, 2007 9:09 PM

340 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

Each <menubar> can have any number of <menu> children. Both of these tags must be closed
according to normal XML rules. If a tag does not have a closing tag (e.g., <menuitem/>), you must
place a forward slash character (/) at the end of the tag so the parser knows the tag has ended.

The action attribute is applied to all elements except top-level widgets and separators.
When loading the UI file to associate a GtkAction object to each element, GtkUIManager uses the
action attributes. GtkAction holds information about how the item is drawn and what callback
function should be called, if any, when the item is activated.

Separators can be placed in a menu with the <separator/> tag. You do not need to pro-
vide name or action information for separators, because a generic GtkSeparatorMenuItem will
be added.

In addition to menu bars, you can create toolbars in a UI file with the <toolbar> tag, as
shown in Listing 9-9.

Listing 9-9. Toolbar UI File (toolbar.ui)

<ui>
 <toolbar name="Toolbar">
 <toolitem name="FileOpen" action="Open"/>
 <toolitem name="FileSave" action="Save"/>
 <separator/>
 <toolitem name="EditCut" action="Cut"/>
 <toolitem name="EditCopy" action="Copy"/>
 <toolitem name="EditPaste" action="Paste"/>
 <separator/>
 <toolitem name="EditSelectAll" action="SelectAll"/>
 <toolitem name="EditDeselect" action="Deselect"/>
 <separator/>
 <toolitem name="HelpContents" action="Contents"/>
 <toolitem name="HelpAbout" action="About"/>
 </toolbar>
</ui>

Each toolbar can contain any number of <toolitem> elements. Tool items are specified in
the same manner as menu items, with an "action" and an optional "name". You can use the
same "name for elements in separate UI files, but you should not use the same names if, for
example, the toolbar and menu bar are located in the same file.

However, you can and should use the same "action" for multiple elements. This will cause
each element to be drawn in the same way and to be connected to the same callback function.
The advantage of this is that you need to define only one GtkAction for each item type. For exam-
ple, the same "action" will be used for the Cut element in the UI files in Listings 9-8 through 9-10.

7931.book Page 340 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 341

■Tip While the toolbar, menu bar, and pop-up menu were split into separate UI files, you can include as
many of these widgets as you want in one file. The only requirement is that the whole file content is contained
between the <ui> and </ui> tags.

In addition to toolbars and menu bars, it is possible to define pop-up menus in a UI file, as
illustrated in Listing 9-10. Notice that there are repeated actions in Listings 9-8, 9-9, and 9-10.
Repeating actions allows you to define only a single GtkAction object instead of separate
objects for each instance of an "action".

Listing 9-10. Pop-up UI File (popup.ui)

<ui>
 <popup name="EntryPopup">
 <menuitem name="EditCut" action="Cut"/>
 <menuitem name="EditCopy" action="Copy"/>
 <menuitem name="EditPaste" action="Paste"/>
 <separator/>
 <menuitem name="EditSelectAll" action="SelectAll"/>
 <menuitem name="EditDeselect" action="Deselect"/>
 </popup>
</ui>

The last type of top-level widget supported by UI files is the pop-up menu, denoted by
the <popup> tag. Since a pop-up menu is the same thing as a normal menu, you can still use
<menuitem> elements as children.

Loading UI Files
After you create your UI files, you need to load them into your application and retrieve the nec-
essary widgets. To do this, you need to utilize the functionality provided by GtkActionGroup and
GtkUIManager.

GtkActionGroup is a set of items with name, stock identifier, label, keyboard accelerator,
tooltip, and callback functions. The name of the each action can be set to an action parameter
from a UI file to associate it with a UI element.

GtkUIManager is an object that allows you to dynamically load one or more user interface
definitions. It will automatically create an accelerator group based on associated action groups
and allow you to reference widgets based on the name parameter from the UI file.

In Listing 9-11 GtkUIManager is used to load the menu bar and toolbar from the UI files in
Listings 9-8 and 9-9. The resulting application is shown in Figure 9-7.

7931.book Page 341 Thursday, February 22, 2007 9:09 PM

342 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

Figure 9-7. A menu bar and a toolbar that are dynamically loaded

Each of the menu and tool items in the application are connected to empty callback func-
tions, because this example is only meant to show you how to dynamically load menus and
toolbars from UI definitions. You will implement callback functions with actual content in the
two exercises found at the end of this chapter.

Listing 9-11. Loading a Menu with GtkUIManager (uimanager.c)

#include <gtk/gtk.h>

/* All of the menu item callback functions have a GtkMenuItem parameter, and
 * receive the same gpointer value. There is only one callback function shown
 * since all of the rest will be formatted in the same manner. */
static void open (GtkMenuItem *menuitem, gpointer data);

#define NUM_ENTRIES 13
static GtkActionEntry entries[] =
{
 { "File", NULL, "_File", NULL, NULL, NULL },
 { "Open", GTK_STOCK_OPEN, NULL, NULL,
 "Open an existing file", G_CALLBACK (open) },
 { "Save", GTK_STOCK_SAVE, NULL, NULL,
 "Save the document to a file", G_CALLBACK (save) },
 { "Quit", GTK_STOCK_QUIT, NULL, NULL,
 "Quit the application", G_CALLBACK (quit) },
 { "Edit", NULL, "_Edit", NULL, NULL, NULL },
 { "Cut", GTK_STOCK_CUT, NULL, NULL,
 "Cut the selection to the clipboard", G_CALLBACK (cut) },
 { "Copy", GTK_STOCK_COPY, NULL, NULL,
 "Copy the selection to the clipboard", G_CALLBACK (copy) },
 { "Paste", GTK_STOCK_PASTE, NULL, NULL,
 "Paste text from the clipboard", G_CALLBACK (paste) },
 { "SelectAll", GTK_STOCK_SELECT_ALL, NULL, NULL,
 "Select all of the text", G_CALLBACK (selectall) },
 { "Deselect", NULL, "_Deselect", "<control>d",
 "Deselect all of the text", G_CALLBACK (deselect) },
 { "Help", NULL, "_Help", NULL, NULL, NULL },
 { "Contents", GTK_STOCK_HELP, NULL, NULL,
 "Get help on using the application", G_CALLBACK (help) },

7931.book Page 342 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 343

 { "About", GTK_STOCK_ABOUT, NULL, NULL,
 "More information about the application", G_CALLBACK (about) }
};

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *menubar, *toolbar, *vbox;
 GtkActionGroup *group;
 GtkUIManager *uimanager;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "UI Manager");
 gtk_widget_set_size_request (window, 250, -1);

 /* Create a new action group and add all of the actions to it. */
 group = gtk_action_group_new ("MainActionGroup");
 gtk_action_group_add_actions (group, entries, NUM_ENTRIES, NULL);

 /* Create a new UI manager and build the menu bar and toolbar. */
 uimanager = gtk_ui_manager_new ();
 gtk_ui_manager_insert_action_group (uimanager, group, 0);
 gtk_ui_manager_add_ui_from_file (uimanager, "menu.ui", NULL);
 gtk_ui_manager_add_ui_from_file (uimanager, "toolbar.ui", NULL);

 /* Retrieve the necessary widgets and associate accelerators. */
 menubar = gtk_ui_manager_get_widget (uimanager, "/MenuBar");
 toolbar = gtk_ui_manager_get_widget (uimanager, "/Toolbar");
 gtk_toolbar_set_style (GTK_TOOLBAR (toolbar), GTK_TOOLBAR_ICONS);
 gtk_window_add_accel_group (GTK_WINDOW (window),
 gtk_ui_manager_get_accel_group (uimanager));

 vbox = gtk_vbox_new (FALSE, 0);
 gtk_box_pack_start_defaults (GTK_BOX (vbox), menubar);
 gtk_box_pack_start_defaults (GTK_BOX (vbox), toolbar);

 gtk_container_add (GTK_CONTAINER (window), vbox);
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

The first thing you need to do when using GtkUIManager to dynamically load menus and
toolbars is to create an array of actions. It is possible to manually create every GtkAction,
GtkToggleAction, or GtkRadioAction object, but there is a much easier way.

7931.book Page 343 Thursday, February 22, 2007 9:09 PM

344 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

GtkActionEntry is a structure that holds an action name, stock identifier, label, accelera-
tor, tooltip, and callback function. The content of the GtkActionEntry structure can be viewed
in the following code snippet.

typedef struct
{
 const gchar *name;
 const gchar *stock_id;
 const gchar *label;
 const gchar *accelerator;
 const gchar *tooltip;
 GCallback callback;
} GtkActionEntry;

The action name string must be the same as the action attribute of a menu or tool item in
a UI definition for it to be used. Any of the attributes except for the action name can safely be
set to NULL if they are not needed. If you specify a stock identifier, you do not need to specify a
label or an accelerator unless you want to override their default values.

The keyboard accelerator is specified as a string that spells out its value. Acceptable key-
board accelerators include "<Control>a", "<Shift><Control>x", "F3", and so on. Some of the
modifiers can also be abbreviated. For example, the Control key can be referenced with
"<Ctrl>" or "<Ctl>". In short, the accelerator must be of the form that it can be parsed by
gtk_accelerator_parse().

After you create lists of actions, you need to create a new GtkActionGroup that will hold all
of the actions with gtk_action_group_new(). The name specified to this function will be used
when associating key bindings with the actions.

An array of GtkActionEntry objects can be added to a GtkActionGroup by calling
gtk_action_group_add_actions(). This function accepts the array of entries, the number
of entries, and an optional data parameter that will be passed to each callback function.

void gtk_action_group_add_actions (GtkActionGroup *group,
 const GtkActionEntry *entries,
 guint n_entries,
 gpointer data);

If you need to pass different data parameters to different callback functions, you will
have to manually create each GtkAction and add it to the group with gtk_action_group_
add_action() or gtk_action_group_add_action_with_accel().

The next step is to create the GtkUIManager with gtk_ui_manager_new(). This object will be
used to load the UI definitions and connect each item to its corresponding GtkAction. You then
need to use gtk_ui_manager_insert_action_group() to add all of your action groups to the
GtkUIManager. This function will add all of the actions from the group to the UI manager. Then,
it will be able to match actions to elements in UI definitions to create appropriate widgets.

void gtk_ui_manager_insert_action_group (GtkUIManager *uimanager,
 GtkActionGroup *group,
 gint pos);

7931.book Page 344 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 345

The third parameter of this function is an integer that states the position of the action
group within the UI manager. Actions with the same name in groups with a lower position will
take preference over those with higher positions.

Next, you will want to use gtk_ui_manager_add_ui_from_file() to load any number of UI
files. In Listing 9-11, the menu.ui and toolbar.ui files were loaded with respect to the execut-
able. The third parameter of this function is an optional GError object.

guint gtk_ui_manager_add_ui_from_file (GtkUIManager *uimanager,
 const gchar *filename,
 GError **error);

This function will load the content of each file. Each element is then matched up with
objects added from an action group. The UI manager will then create all of the appropriate
widgets according to the UI definition. An error will be output to the terminal if an action does
not exist.

After the UI manager creates the widgets, you can load them based on name paths or the
action if the name parameter does not exist, as shown in the following code. The two top-level
widgets were the menu bar and toolbar found at "/MenuBar" and "/Toolbar". They are loaded
with gtk_ui_manager_get_widget().

GtkWidget* gtk_ui_manager_get_widget (GtkUIManager *self,
 const gchar *path);

You have to give the absolute path to any widget when a path is required. In the absolute
path, the <ui> element is omitted. The path is then built with the name attribute of each item.
For example, if you wanted to access the GTK_STOCK_OPEN element in the menu bar, you call
gtk_ui_manager_get_widget(), which would return the "/MenuBar/FileMenu/FileOpen"
menu item.

Additional Action Types
Menu and toolbar items with stock images and keyboard accelerators are great, but what
about using toggle buttons and radio buttons with GtkUIManager? For this, GTK+ provides
GtkToggleActionEntry and GtkRadioActionEntry. The content of GtkToggleActionEntry
follows:

typedef struct
{
 const gchar *name;
 const gchar *stock_id;
 const gchar *label;
 const gchar *accelerator;
 const gchar *tooltip;
 GCallback callback;
 gboolean is_active;
} GtkToggleActionEntry;

7931.book Page 345 Thursday, February 22, 2007 9:09 PM

346 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

■Note One advantage of using UI definitions is that the actual definition does not know anything about how
the action is going to be implemented in your application. Because of this, the user can redesign a menu
structure without needing to know how each action will be implemented.

In addition to GtkActionEntry, GTK+ provides GtkToggleActionEntry, which will create a
toggle menu or tool item. This structure includes an additional member—is_active, which
defines whether the button is initially set as active.

Adding an array of GtkToggleActionEntry objects is similar to adding normal actions
except you have to use gtk_action_group_add_toggle_actions(). This function accepts an
array of GtkToggleActionEntry objects, the number of actions in the array, and a pointer that
will be passed to every callback function.

void gtk_action_group_add_toggle_actions (GtkActionGroup *group,
 const GtkToggleActionEntry *entries,
 guint num_entries,
 gpointer data);

Additionally, GtkRadioActionEntry allows you to create a group of radio actions. The value
member is a unique integer that can be used to activate a specific radio menu item or radio
tool button.

typedef struct
{
 const gchar *name;
 const gchar *stock_id;
 const gchar *label;
 const gchar *accelerator;
 const gchar *tooltip;
 gint value;
} GtkRadioActionEntry;

The radio actions are added to the action group with gtk_action_group_add_radio_actions(),
which will group all of the radio buttons together. This function works the same as gtk_action_
group_add_toggle_actions() except you need to specify two additional parameters.

void gtk_action_group_add_radio_actions (GtkActionGroup *group,
 const GtkRadioActionEntry *entries,
 guint num_entries,
 gint value,
 GCallback on_change,
 gpointer data);

The value parameter is the identifier assigned to the action that should be initially acti-
vated or set to -1 to deactivate all by default. The callback function on_change() is called when
the changed signal is emitted on a radio button.

7931.book Page 346 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 347

Placeholders
When creating UI files, you may want to mark a location in a menu where other menu items
can be added at a later time. For example, if you want to add a list of recent files to the File
menu, you may not know how many files will be available for the list.

For this situation, GTK+ provides the <placeholder> tag. In the following line of code, a
<placeholder> tag is defined that can be used to mark the location in the File menu that recent
file menu items can be added.

<placeholder name="FileRecentFiles"/>

Within your application, you can use gtk_ui_manager_add_ui() to add new user interface
information at the location of the placeholder. This function first accepts a unique unsigned
integer that was returned by a call to gtk_ui_manager_new_merge_id(). You have to retrieve a
new merge identifier every time you add a widget to the user interface.

void gtk_ui_manager_add_ui (GtkUIManager *uimanager,
 guint merge_id,
 const gchar *path,
 const gchar *name,
 const gchar *action,
 GtkUIManagerItemType type,
 gboolean top);

The next parameter of gtk_ui_manager_add_ui() is a path to the point where the new item
should be added; this would be "/MenuBar/File/FileRecentFiles", which is the path to the
placeholder. Then, you should specify a name and action for the new widget followed by the
type of UI item that is being added. UI item types are defined by the following
GtkUIManagerItemType enumeration options:

• GTK_UI_MANAGER_AUTO: GTK+ will determine what type of widget is to be added.

• GTK_UI_MANAGER_MENUBAR: Add a GtkMenuBar widget. The location of the placeholder
should be a direct child of a <ui> tag.

• GTK_UI_MANAGER_MENU: Add a GtkMenu as a child of a top-level widget.

• GTK_UI_MANAGER_TOOLBAR: Add a GtkMenuBar. The location of the placeholder should be a
direct child of a <ui> tag.

• GTK_UI_MANAGER_PLACEHOLDER: Add a new placeholder, which can be added at any loca-
tion in the user interface.

• GTK_UI_MANAGER_POPUP: Add a GtkMenuBar. This requires that the placeholder is located as
a direct child of a <ui> tag.

• GTK_UI_MANAGER_MENUITEM: Add a GtkMenuItem as a child of a top-level widget.

• GTK_UI_MANAGER_TOOLITEM: Add a GtkToolItem as a child of a top-level GtkToolbar widget.

• GTK_UI_MANAGER_SEPARATOR: Add a separator into any type of top-level widget.

• GTK_UI_MANAGER_ACCELERATOR: Add a keyboard accelerator to a menu or toolbar.

7931.book Page 347 Thursday, February 22, 2007 9:09 PM

348 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

The last parameter of gtk_ui_manager_add_ui() is a Boolean variable that positions the
new UI element with respect to the given path. If set to TRUE, the UI element is inserted before
the path. Otherwise, it is inserted after the path.

Custom Stock Items
From the last section, you will notice that GtkActionEntry accepts a stock identifier to add an
image to the item. Because of this, you will, at some point, need to create your own custom
stock icons that can be used for nonstandard menu and toolbar items. New stock items are cre-
ated with three objects: GtkIconSource, GtkIconSet, and GtkIconFactory. Let us work from the
bottom up.

GtkIconSource is an object that holds a GdkPixbuf or an image filename. It is meant to hold
one variant of an image. For example, if you have an image that will be displayed differently
when it is enabled or disabled, you would need to have multiple icon sources, one for each
state. You may need multiple icon sources for different icon sizes, different languages, or dif-
ferent icon states.

Multiple icon sources are organized with GtkIconSet, which holds all of the GtkIconSource
objects for one stock image. In some cases, your icon set may only have one image. While this
is usually not the case, you can use gtk_icon_set_new_from_pixbuf() to skip the step of creat-
ing an icon source.

GtkIconSet* gtk_icon_set_new_from_pixbuf (GdkPixbuf *pixbuf);

After you have created all of the necessary icon sets, they are added to a GtkIconFactory,
which is used to organize all of the stock items for a particular theme. Icon factories are added
to a global list that GTK+ searches through to find stock items.

In this section, a number of new stock items are going to be created. Figure 9-8 is a screen-
shot of the new stock items that are created in Listing 9-12.

Figure 9-8. Custom images added to the global icon factory

In Listing 9-12, five new stock items are created including "check-list", "calculator",
"screenshot", "cpu", and "desktop". A toolbar item is then created from each of the new stock
items and displayed on the screen.

7931.book Page 348 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 349

Listing 9-12. Using GtkIconFactory (iconfactory.c)

#include <gtk/gtk.h>

#define ICON_LOCATION "/path/to/icons/"

typedef struct
{
 gchar *location;
 gchar *stock_id;
 gchar *label;
} NewStockIcon;

const NewStockIcon list[] =
{
 { ICON_LOCATION"checklist.png", "check-list", "Check _List" },
 { ICON_LOCATION"calculator.png", "calculator", "_Calculator" },
 { ICON_LOCATION"camera.png", "screenshot", "_Screenshots" },
 { ICON_LOCATION"cpu.png", "cpu", "CPU _Info" },
 { ICON_LOCATION"desktop.png", "desktop", "View _Desktop" },
 { NULL, NULL, NULL }
};

static void add_stock_icon (GtkIconFactory*, gchar*, gchar*);

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *toolbar;
 GtkIconFactory *factory;
 gint i = 0;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Icon Factory");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);

 factory = gtk_icon_factory_new ();
 toolbar = gtk_toolbar_new ();

7931.book Page 349 Thursday, February 22, 2007 9:09 PM

350 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

 /* Loop through the list of items and add new stock items. */
 while (list[i].location != NULL)
 {
 GtkToolItem *item;

 add_stock_icon (factory, list[i].location, list[i].stock_id);
 item = gtk_tool_button_new_from_stock (list[i].stock_id);
 gtk_tool_button_set_label (GTK_TOOL_BUTTON (item), list[i].label);
 gtk_tool_button_set_use_underline (GTK_TOOL_BUTTON (item), TRUE);
 gtk_toolbar_insert (GTK_TOOLBAR (toolbar), item, i);
 i++;
 }

 gtk_icon_factory_add_default (factory);
 gtk_toolbar_set_style (GTK_TOOLBAR (toolbar), GTK_TOOLBAR_BOTH);
 gtk_toolbar_set_show_arrow (GTK_TOOLBAR (toolbar), FALSE);
 gtk_container_add (GTK_CONTAINER (window), toolbar);

 gtk_widget_show_all (window);
 gtk_main ();
 return 0;
}

/* Add a new stock icon from the given location and with the given stock id. */
static void
add_stock_icon (GtkIconFactory *factory,
 gchar *location,
 gchar *stock_id)
{
 GtkIconSource *source;
 GtkIconSet *set;

 source = gtk_icon_source_new ();
 set = gtk_icon_set_new ();

 gtk_icon_source_set_filename (source, location);
 gtk_icon_set_add_source (set, source);
 gtk_icon_factory_add (factory, stock_id, set);
}

Creating a new icon factory, source, or set is as simple as calling gtk_icon_factory_new(),
gtk_icon_source_new(), or gtk_icon_set_new(). Each of these functions creates an empty
object that is not of any use in its current state.

In Listing 9-12, the icon source is initialized to an image found at the specified filename
with gtk_icon_source_set_filename(). Alternatively, you can create the icon source out of a
GdkPixbuf object with gtk_icon_source_set_pixbuf().

7931.book Page 350 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 351

Since we only needed one icon source in Listing 9-12 for each stock item, there was no
need for further customization. However, it is possible to set the icon to be displayed for a spe-
cific size with gtk_icon_source_set_size(). This will tell GTK+ to only use this icon if the
application needs the specified size.

void gtk_icon_source_set_size (GtkIconSource *source,
 GtkIconSize size);

■Caution If you need to set the icon source size, it will have no effect unless you pass FALSE to
gtk_icon_source_set_size_wildcarded(). Otherwise, the icon source will be used for all sizes. This
also goes for icon states, which must be unset with gtk_icon_source_set_state_wildcarded().

Additionally, you can define the icon to be shown during a specific state defined by the
GtkIconState. If you use gtk_icon_source_set_state(), you will want to make sure to define
icons for all five states defined by the enumeration.

void gtk_icon_source_set_state (GtkIconSource *source,
 GtkIconState state);

After you create your icon sources, you will need to add them all to an icon set with
gtk_icon_set_add_source(). This function accepts the GtkIconSet and the icon source that
will be added.

Void gtk_icon_set_add_source (GtkIconSet *iconset,
 const GtkIconSource *source)

If you unset any wildcards in the icon sources, you will want to make sure to define stock
icons for every possible state or size. Adding a single icon source with both the state and the
size indicated as the wildcards usually does this. If there is a more specific icon, it will be used.
If the appropriate icon is not found, the wildcard icon will be used. This wildcard image may be
lightened or altered in some other way to fit the occasion.

Next, you need to add each GtkIconSet to the icon factory with gtk_icon_factory_add().
This function accepts the stock identifier that will be used to reference the icon. Normally,
you will want to name this "myapp-iconname", where "myapp" is replaced by the name of your
application.

void gtk_icon_factory_add (GtkIconFactory *factory,
 const gchar *stock_id,
 GtkIconSet *iconset);

If the stock identifier already exists, the new item will replace it, so by using your applica-
tion name in the stock identifier, you avoid overriding any default stock items.

Any stock items added to your icon factory are not available until you add it to the global
list of icon factories with gtk_icon_factory_add_default(). Normally, a separate icon factory
will exist for each graphical library that includes its default icons.

7931.book Page 351 Thursday, February 22, 2007 9:09 PM

352 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

Test Your Understanding
The following two exercises give an overview of what you have learned about menus and tool-
bars throughout the chapter.

In addition to completing them, you may want to create examples of pop-up menus with other
widgets that do not support them by default. Also, after finishing both of these exercises, you should
expand them by creating your own stock icons that are used in place of the default items.

Exercise 9-1. Toolbars

In Chapter 7, you created a simple text editor using the GtkTextView widget. In this exercise, expand on that appli-
cation and provide a toolbar for actions instead of a vertical box filled with GtkButton widgets.

While manual toolbar creation is possible, in most applications, you will want to utilize the GtkUIManager method
of toolbar creation. Therefore, use that method in this exercise. You should also make use of built-in stock items or
create your own with GtkIconFactory.

Oftentimes, it is advantageous for an application to provide the toolbar as a child of a handle box. Do this for your
text editor, placing the toolbar above the text view. Also, set up the toolbar so that the textual descriptor is shown
below every tool button.

This first exercise taught you how to build your own toolbars. It also showed you how to
use the GtkHandleBox container. In the next exercise, you will reimplement the Text Editor
application with a menu bar.

Exercise 9-2. Menu Bars

In this exercise, implement the same application as in Exercise 9-1, except use a menu bar this time. You should
continue to use GtkUIManager, but the menu does not need to be contained by a GtkHandleBox.

Since tooltips are not shown for menu items automatically, use a status bar to provide more information about
each item. The menu bar should contain two menus: File and Edit. You should also provide a Quit menu item in
the File menu.

Summary
In this chapter, you learned two methods for creating menus, toolbars, and menu bars. The
first method was the manual method, which was more difficult but introduced you to all of the
necessary widgets.

The first example showed you how to use basic menu items to implement a pop-up menu
for a progress bar. This example was expanded on in order to provide keyboard accelerators
and more information to the user with the GtkStatusbar widget. You also learned about sub-
menus as well as image, toggle, and radio menu items.

7931.book Page 352 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 353

The next section showed you how to use menu items with submenus to implement a
menu bar with a GtkMenuShell. This menu bar could be displayed horizontally or vertically and
forward or backward.

Toolbars are simply a horizontal or vertical list of buttons. Each button contains an icon
and label text. You learned about three additional types of toolbar buttons: toggles, radio but-
tons, and tool buttons with a supplemental menu.

Then, after much hard work, you were taught how to create dynamically loadable menus.
Each menu or toolbar is held in a UI definition file, which is loaded by the GtkUIManager class.
The UI manager associates each object with the appropriate action and creates the widgets
according to the UI definition.

Last, you learned how to create your own custom stock icons. It is necessary to create your
own icons, because arrays of actions require a stock identifier to add an icon to an action.

In the next chapter, we are going to take a short break from coding and cover the design of
graphical user interfaces with the Glade User Interface Builder. This application creates user
interface XML files, which can be dynamically loaded when your application starts. You will
then learn how to handle these files programmatically with Libglade.

7931.book Page 353 Thursday, February 22, 2007 9:09 PM

7931.book Page 354 Thursday, February 22, 2007 9:09 PM

355

■ ■ ■

C H A P T E R 1 0

Dynamic User Interfaces

By now, you have learned a great deal about GTK+ and its supporting libraries and are able to
create fairly complex applications. However, manually writing all of the code to create and
configure the widgets and behavior for these applications can quickly become tedious.

The Glade User Interface Builder removes the need for you to write all of that code by
allowing you to design your UI graphically. It supports the GTK+ library of widgets as well as
various widgets from the GNOME libraries. User interfaces are saved as XML files, which can
be used to dynamically build your application’s user interface.

The last part of this chapter covers Libglade, a library that can be used to dynamically load
the XML files. Libglade will create all of the necessary widgets and allow you to connect any sig-
nals defined in Glade.

■Note This chapter covers the user interface of Glade that is current at the time of this writing. It is possible
that this may change in the future, but any changes should be an easy transition from the instructions
provided in this chapter. Also, in a future version of GTK+, Libglade is going to be moved into GTK+ as the
GtkBuilder object. When this happens, a tutorial will be posted on this book’s web site with more informa-
tion on making the transition.

In this chapter, you will learn the following:

• Issues you should keep in mind when designing graphical user interfaces (GUIs)

• How to design custom graphical user interfaces with Glade

• How to dynamically load Glade user interfaces with Libglade

User Interface Design
In this chapter, you are going to learn how to use Glade 3 and Libglade to implement dynamic
user interfaces. However, it is prudent to first learn a few concepts that you should keep in
mind when designing graphical user interfaces. These concepts can help you to avoid confus-
ing and frustrating users in the future.

You also have to realize that, while you will know how to use your application because you
designed it, you need to do as much as possible to help the user make sense of it. Whether the

7931.book Page 355 Thursday, March 1, 2007 8:06 PM

356 C H A P T E R 1 0 ■ D Y N A M I C U S E R I N T E R F A C E S

user is an expert or a novice, each user should be able to use your application with the shortest
possible learning curve. That said, the following sections include many tips and design deci-
sions to help you achieve this level of intuitiveness. They will also improve the maintainability
of your application.

Know Your Users
When designing a user interface, the most important thing to consider is your audience. Are
they all experienced with the task at hand, or will some need more help than others? Can you
model your user interface after one that they are already familiar with, or is this something
completely new?

One of the biggest possible mistakes is to make rash generalizations about your users’ skill
level. You may think that the way you lay out your application makes sense, but that is because
you designed it. You should place yourself in the users’ position, understanding they will have
no prior knowledge about how to use your application.

To avoid confusion, take time to study similar applications, taking note of what design
decisions seem successful and which cause problems. For example, if you are creating an
application to be used in the GNOME desktop environment, you should check out the
GNOME Human Interface Guidelines, which will help you lay out a design that is used for
other compliant applications. A copy of the GNOME Human Interface Guidelines can be
found at http://developer.gnome.org/.

Another thing to consider when designing a user interface is accessibility. Users may have
vision problems that could inhibit them from using an application. The Accessibility Toolkit
provides many facilities for GTK+ applications to make them compatible with screen readers.
GTK+ also relies heavily on themes, which is why you should avoid setting the font, when pos-
sible, or provide the user with a way to change it.

Your language is another consideration when designing the user interface. First, you
should always use jargon that is familiar to the users. For example, you are free to use mathe-
matical terms in an engineering application, but you should not do so in a web browser.

Many applications are translated into other languages when they become popular, which
may cause problems if you use words or images that could be offensive in other cultures.

Keep the Design Simple
Once you know your audience, it becomes a lot simpler to design an effective user interface,
but you can still run into problems if the interface is too difficult or cluttered. Always try to
reduce the number of widgets on the screen to a reasonable number.

For example, if you need to provide many choices to the user where only one can be
selected, you might be tempted to use a lot of radio buttons. However, a better solution may be
to use a GtkComboBox, which will significantly decrease the number of required widgets.

The GtkNotebook container is extremely useful for grouping similar option groups that
would otherwise clutter a huge page. In many applications, this widget is used to group widgets
that relate or depend on each other into a preferences dialog.

Menu layout is also another problematic area, because it is not always done in a sensible
manner. When possible, you should use standard menus such as File, Edit, View, Help, Format,
and Window. These menus are familiar to users who are experienced with computing, and
users will expect them. Because of this, these menus should contain standard items as well. For

7931.book Page 356 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 0 ■ D Y N A M I C U S E R I N T E R F A C E S 357

example, the File menu should contain items for manipulating files, printing, and exiting the
application. You should investigate how other applications lay out their menu items if you are
not sure where to place a particular item.

Repetitive jobs, or those that the user will be performing often, should always be made
quick and easy. There are multiple ways to do this. The most important is to provide keyboard
accelerators for many actions—pressing Ctrl+O on the keyboard is a lot faster than clicking the
File menu and the Open menu item.

■Note Whenever possible, you should always use standard keyboard accelerators, such as Ctrl+X for cut-
ting and Ctrl+N for creating something new. This will significantly decrease the initial learning curve for users
of your application. In fact, some keyboard accelerators are already built into many widgets, such as Ctrl+X
for cutting the selection in text widgets.

It may take some time for your users to get accustomed to keyboard accelerators, which
is why toolbars are also extremely useful for repetitive options. You need to find a balance
between placing too few and too many items on a toolbar, though. A cluttered toolbar will
scare and confuse the user, but a toolbar with too few items will be useless. If you have a large
number of items that users might want on toolbars, it would make sense to allow the users to
customize the toolbars themselves.

Always Be Consistent
Consistency is key when designing a graphical user interface, and GTK+ makes this extremely
easy. First, GTK+ provides many stock items that should always be used in favor of homegrown
items where possible. The user will already be familiar with the icons for the stock items and
will know how to use them.

■Caution Stock items can be very dangerous if you do not use them correctly. You should never
use a stock item for an action for which it was not originally intended. For example, you should not use
GTK_STOCK_REMOVE for a subtraction operation just because it looks like a “minus sign.” The icons are
defined by the user’s theme and may not always look the way you assume.

Speaking of themes, you should fall back on the settings provided by a theme whenever pos-
sible. This will help you create a consistent look—not only throughout your application but
across the whole desktop environment. Since themes are applied to all applications throughout
a desktop, your application will be consistent with most other applications that the user runs.

In those few cases where you do need to deviate from the defaults provided by the user’s
theme, you should always give the user a way to change the settings or to just use the sys-
tem defaults. This is especially important when dealing with fonts and colors, because your
changes can render your application unusable with some themes.

7931.book Page 357 Thursday, March 1, 2007 8:06 PM

358 C H A P T E R 1 0 ■ D Y N A M I C U S E R I N T E R F A C E S

Another advantage of consistency is that the user will learn how to use your application
much faster. The user will need to learn only one design instead of many. If you do not use a
consistent layout for your application and supplemental dialogs, the user will be presented
with a brand new adventure with every new window.

Keep the User in the Loop
One thing that can turn a user off of your application very quickly is if it is not responsive for a
long period of time. Most computer users are accustomed to a bug or two, but if your application
is processing information and remains unresponsive for quite a while, the user may give up.

To avoid this, there are two possible solutions. The first is to make your application more
efficient. However, if your application is not to blame, or there is no way to make it more effi-
cient, you should use progress bars. A progress bar will tell the user that your application is still
working. Just make sure to update your progress bar! If you do not know how long the process
will take, another option would be to pulse the progress bar and provide messages that update
the user on the process’s progress.

Also, remember the following loop from Chapter 2:

while (gtk_events_pending ())
 gtk_main_iteration ();

This loop will make sure that the user interface is updated, even when the processor is
busy processing another task. If you do not update the user interface during a CPU-intensive
process, the application may be unresponsive to the user until it is finished!

You should also provide your users with feedback when actions are performed. If a docu-
ment is being saved, you should mark it as unmodified or display a message in the status bar.
If you do not provide feedback to the user when an action is performed, it may be assumed that
the action was not performed.

Message dialogs are a very useful way to provide feedback, but they should be used only
when necessary. The user will become frustrated if message dialogs appear too often, which is
why only critical errors and warnings should be reported this way.

We All Make Mistakes
Whether you are an expert or a novice, we all make mistakes. Because of this, you should
always forgive your users. After all, everyone has at one time or another pressed an incorrect
button that resulted in losing a large amount of work. In a properly designed application, this
should never occur.

For basic actions that cannot be easily undone by the user, you should provide the ability
to undo the action. For example, these basic actions could include deleting an item from our
Grocery List application or moving text within a text view.

For actions that cannot be undone, you should always provide a confirmation dialog. It
should explicitly state that this action cannot be undone and ask whether the user wants to
continue. For example, you should always ask the user whether the application should be
closed when there are documents with unsaved changes. People have been using software for
years and have come to expect a confirmation dialog box for actions that cannot be undone.

7931.book Page 358 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 0 ■ D Y N A M I C U S E R I N T E R F A C E S 359

The Glade User Interface Builder
One factor that can make or break a GUI toolkit is whether it can be used to rapidly deploy
applications. While the user interface is extremely important to the success of an application,
it should not be the most consuming aspect of the development process.

Glade is a tool that allows you to quickly and efficiently design graphical user interfaces so
that you can move onto other aspects of your code. User interfaces are saved as an XML file
that describes the widget structure, the properties of each widget, and any signal handlers you
associated with each. Libglade can then load the user interface file in order to dynamically
build it on application load. This allows you to alter the user interface aesthetically without the
need to recompile the application.

■Note Previous versions of Glade allowed you to generate source code instead of saving the user interface
in an XML file. This method is depreciated, because it is difficult to manage when you want to change your
user interface. Therefore, you should follow the method provided in this chapter.

You need to realize from the start what Glade is and what it is not. Glade is used to design
the user interface of an application, set up signals that will be associated with callback func-
tions implemented in your code, and take care of common widget properties. However, Glade
is not a code editor or an integrated development environment. The files it outputs must be
loaded by your application, and you must implement all of the callback functions in your code.
Glade is just meant to simplify the process of initializing your application’s graphical user
interface and connecting signals.

■Tip Glade 3, the version used in this book, now allows integrated development environments such as
Anjuta to embed it into their user interfaces. These IDEs provide a complete, start-to-finish solution for
deploying GTK+ applications.

Another advantage of Glade is that, since the user interfaces are stored as XML files, they
are independent of the language. Any language that has wrapped the functionality provided by
Libglade can load user interfaces. This means that the same graphical user interface designer
can be used regardless of the programming language you choose.

Before continuing with the rest of this chapter, you should install Glade, Libglade, and the
development package for Libglade from your operating system’s package manager. Alterna-
tively, you can download and compile the sources from http://glade.gnome.org/.

Also, you should make sure to follow along and create this application while reading the
rest of the chapter. This will give you a chance to learn your way around the Glade 3 applica-
tion, so you can get as much practice as possible while you have this book to guide you.

7931.book Page 359 Thursday, March 1, 2007 8:06 PM

360 C H A P T E R 1 0 ■ D Y N A M I C U S E R I N T E R F A C E S

The Glade Interface
When you launch Glade for the first time, you will see three windows: the main window, the
widget palette, and the widget property editor. Figure 10-1 is a screenshot of the main Glade
application window with a project opened from the file browser.glade.

Figure 10-1. The main Glade window

The main window facilitates Glade project management. The Projects menu shows a list
of the currently open projects, allowing you to switch among them. The main window also
includes the widget tree view, which shows the widget containment of the project with focus.

The widget tree view shows the parent-to-child container relationships within a project. It
is possible to have multiple top-level widgets. However, in Figure 10-1, window is the only top-
level widget of the browser.glade project.

This window is where you will specify project options, save the project, and load existing
projects. The menus in this window also provide many other options that can help you when
working with projects, such as undoing and redoing actions.

■Note If you decide to work with Glade 2 instead of Glade 3, make sure to save often. Undo and redo sup-
port was not implemented in the older versions of Glade, and it is very frustrating if you accidentally overwrite
an hour of work with one wrong mouse click!

7931.book Page 360 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 0 ■ D Y N A M I C U S E R I N T E R F A C E S 361

The second window shown when you launch Glade 3 is the widget palette, which lists all
of the widgets available to you for designing your applications. A screenshot of the widget pal-
ette can be viewed in Figure 10-2.

Figure 10-2. The Glade widget palette

By default, there are four categories of widgets displayed: top-level widgets, containers,
widgets used for control and display, and depreciated widgets. You should not use any widgets
in the GTK+ Obsolete list in new applications, because they are depreciated and may be
removed in future releases.

In addition to the default categories of widgets, you may find other categories that include
additional widget libraries. These can be widgets added for the GNOME libraries or other cus-
tom widget libraries.

Through the View menu, you can change the layout of the widget palette. Figure 10-2
shows a widget palette that is set to show both icons and text. However, you can show only text
or only icons depending on what style you are most comfortable with.

To create a new top-level widget, all you need to do is click the icon of the desired widget in
the Toplevels section. A new top-level widget will then be displayed and added to the widget tree
in the main window. To add non-top-level widgets, you need to first click the icon of the desired
widget and then click your mouse where the widget should be placed. You must click an empty
cell in a container widget for the non-top-level widget to be inserted into the user interface.

7931.book Page 361 Thursday, March 1, 2007 8:06 PM

362 C H A P T E R 1 0 ■ D Y N A M I C U S E R I N T E R F A C E S

Creating the Window
In this chapter, you are going to be creating a simple file browser application with Glade and
Libglade. You begin by creating a new project with File ➤ New or by using the blank project
created for you when the application loads. You can open an existing project with File ➤ Open
if you return to this tutorial at a later time.

After you have a blank project, you can begin by creating a new top-level GtkWindow by
clicking the Window icon in the widget palette. In the new window, you will see a mesh pattern
in the interior of the widget, as displayed in Figure 10-3. This pattern designates a region where
a child widget can be added to a container. After selecting a non-top-level widget from the wid-
get palette, you must click this region to add the widget to the container. Follow this method for
adding all non-top-level widgets.

Figure 10-3. The default GtkWindow widget

After you create the top-level window, you will notice changes in the content of the widget
Properties window, shown in Figure 10-4. In this window, you can customize all of the proper-
ties of each widget that is supported in Glade.

■Note While Glade allows you to edit many widget properties, some actions simply have to be performed
in the code. Therefore, you should not view Glade as a replacement for everything that you have learned thus
far in the book. You will still be doing a lot of GTK+ development in most applications.

The widget Properties window displayed in Figure 10-4 has five tabs filled with various
options. The General tab provides basic options that are specific to the widget type that is cur-
rently selected. For example, the GtkWindow widget allows you to specify the window’s type,
title, ability to be resized, default size, and so on.

7931.book Page 362 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 0 ■ D Y N A M I C U S E R I N T E R F A C E S 363

Figure 10-4. A widget Properties dialog

The Name field, which is scrolled beyond the bounds of the scrolled window in Figure 10-4,
is used to give a unique name to the widget. Glade will automatically assign a name to each wid-
get that is unique for the current project, but these are generic names. If you plan on referencing
a widget from within your application, you should give it a name that means something. It can
easily become confusing when you have to load three GtkTreeView widgets named treeview1,
treeview2, and treeview3!

The Packing tab provides basic information about how the widget will react to changes in
the size of its parent widget, such as expanding and filling. Common properties are those pro-
vided by GtkWidget and are available to all widgets. For example, you can provide a size request
in this tab.

■Note Packing options are a bit unintuitive when first working with Glade, because properties are set by
the child instead of the parent container. For example, packing options for the children of a GtkVBox will be
provided in the Packing tab of the children themselves instead of the parent container.

The Signals tab allows you to define signals for each widget that will be connected by
Libglade. Lastly, the Accessibility tab, designated by the handicapped symbol, gives options
that are used for accessibility support.

7931.book Page 363 Thursday, March 1, 2007 8:06 PM

364 C H A P T E R 1 0 ■ D Y N A M I C U S E R I N T E R F A C E S

As you will recall from the first example in this book, an empty GtkWindow widget is not of
any use except for illustrating how to create one. Since the file browser will need multiple wid-
gets packed into the main window for this application, the next step is to add a vertical box
container. Select the Vertical Box widget from the palette and click inside the grid pattern of
window to insert a GtkVBox widget into the window. You will be presented with a dialog, like the
one shown in Figure 10-5, asking how many items your GtkVBox will hold.

Figure 10-5. Create a GtkVBox widget

By default, three cells are created to hold child widgets, but you can change this to any
number of items greater than zero. You can click the OK button, since the default is how many
child widgets we need.

■Note Do not worry if you are not sure how many widgets the container will hold. You can add or remove
cells in the General tab in the widget Properties window. You can then change the position of a widget within
the box under the Packing tab. You are also still able to edit the user interface with your code after it is built
by Libglade!

After adding the vertical box, you will see three separate, empty container meshes; notice
the changes in the Properties window and the widget tree view. To these meshes, we will be
adding a toolbar, an address bar, and a tree view.

Adding a Toolbar
It is usually a good idea when creating a toolbar to add it to a handle box so that the user can
remove the toolbar from the window if desired. To do this, you need to select the Handle Box
item from the widget palette, and click in the topmost GtkVBox cell. You can then add a toolbar
widget to the handle box in the same way.

■Note If you want to create a toolbar in the way that was covered in the previous chapter, you should
create the handle box but add no child widget to it. When you write the code for your application, you can
programmatically add the toolbar to the handle box.

7931.book Page 364 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 0 ■ D Y N A M I C U S E R I N T E R F A C E S 365

When the toolbar widget is selected, you will notice that an Edit button appears in the
lower-left corner of the widget’s Properties window. Clicking this button will open the toolbar
editor shown in Figure 10-6. This toolbar editor creates new tool items that compose the tool-
bar. You will have to implement all of your callback functions for the tool items in your code.

Figure 10-6. The toolbar editor

The toolbar editor allows you to add any supported type of item to a toolbar. To add a new
item, you need only to click the Add button. This will insert a generic tool button, although you
can change the type of item at a later time. On the right side, you will see many options that
correspond to your new tool item.

After you add a new tool button, the next step is to choose what type of widget it should be
by selecting an option from the Type combo box. The types of toolbar items included in the
combo box are a generic tool button containing an image and a label, toggles, radio buttons,
menu tool buttons, tool items, and separators. When you select a new type, the dialog will
immediately be changed to allow you to edit properties for the chosen type.

For example, in Figure 10-6, the selected tool button is of the type GtkMenuToolButton.
Every toolbar item gives you the option of whether it should be visible when the toolbar is hor-
izontal or vertical. This allows you to hide the toolbar item when the toolbar has a vertical
orientation but show it to the user when the toolbar is horizontal.

7931.book Page 365 Thursday, March 1, 2007 8:06 PM

366 C H A P T E R 1 0 ■ D Y N A M I C U S E R I N T E R F A C E S

Menu tool buttons also allow you to choose a label and image to display in the tool item.
An image can be a stock image, an existing image file, or an identifier of a custom icon theme
depending on what option you choose in the Image Type combo box.

Along the bottom of the toolbar editor, you will see a tree view that allows you to connect
signals to each tool button. Glade provides a number of named callback functions for you to
choose from that are based on the signal name and the name you gave the toolbar item. You
are also able to enter your own custom callback function name. It is possible to specify data
to pass to each callback function through Libglade, so you can usually leave the “User data”
parameter blank. In Figure 10-6, a callback function by the name on_back_clicked() was con-
nected to GtkToolButton’s clicked signal.

When you load the user interface with Libglade, you will have two choices for connecting
the callback functions defined in the Glade file with those in your code. If you want to manually
connect each and every callback function, you can name the signal handler whatever you
choose, as long as the name is unique. However, Libglade provides a function that will auto-
matically connect all of the signals by using GModule to find the appropriate symbols in your
executable. To use this feature, the callback function name you define in Glade must match the
name of the function in your code!

When you are finished editing the toolbar, you will notice that the handle box always takes
up exactly one third of the window vertically because, by default, widgets are set to expand and
fill. You will want to unset the expand property of the handle box, as shown in Figure 10-7.

Figure 10-7. Widget packing properties

■Tip You should remember from Chapter 3 that a table was provided that illustrates what the expand and
fill properties do to child widgets of a GtkBox widget. Glade is a perfect opportunity for you to experiment
with packing options to gain a better understanding of how they affect the widget. Therefore, take a moment
to experiment with the various packing options!

7931.book Page 366 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 0 ■ D Y N A M I C U S E R I N T E R F A C E S 367

The Packing tab also includes options to determine padding around the widget, whether the
packing is from the start or end of the box, and to determine the widget’s position within the
container. These properties are exactly equivalent to the settings you used when adding child
widgets to GtkBox with gtk_box_pack_start() and friends.

After completing the toolbar and fixing packing preferences, your application should look
like Figure 10-8. Notice that when you expand the size of the window vertically by dragging the
window edge, the handle box no long expands to fill extra space!

Figure 10-8. The toolbar in action

The toolbar shown in Figure 10-8 contains two menu tool buttons used for moving forward
and backward throughout the user’s browsing history. There are also tool buttons for moving to
the parent directory, refreshing the current view, removing a file, moving to the home directory,
and viewing file information. Each of these tool buttons is connected to a callback function that
you must implement in your code for the application.

Completing the File Browser
The next step in creating our file browser is to create the address bar that will show the users
the current location and allow them to enter a new location. This means that we need a hori-
zontal box with three widgets, as shown in Figure 10-9. The three widgets are a label describing
the content held in the GtkEntry widget, the GtkEntry widget that holds the current location,
and a button that will move to the location when pressed.

Figure 10-9. The file browser

7931.book Page 367 Thursday, March 1, 2007 8:06 PM

368 C H A P T E R 1 0 ■ D Y N A M I C U S E R I N T E R F A C E S

We could easily just use the GTK_STOCK_JUMP_TO stock item for the button, but instead, I will
show you how to use the button as a container. You first need to change the button type to a
container in the Properties dialog. This will display an empty container mesh as the content of
the button.

To create the button in Figure 10-9, a GtkHBox with two child widgets was added to the but-
ton: a GtkImage widget set to the GTK_STOCK_JUMP_TO stock image and a GtkLabel widget that
says “Go.”

Another important aspect of the address bar is the Current Location GtkLabel widget,
which is set to bold. In Chapter 2, you learned about the Pango Text Markup Language. By
selecting “Use markup” in a label’s preferences dialog, as shown in Figure 10-10, you will be
able to use Pango Text Markup Language tags in the label content. If you do not select this
option, the markup tags will be rendered as text in the label.

Figure 10-10. GtkLabel widget properties

Below the markup property, you can enable mnemonic labels by setting the “Use under-
line” property. In Figure 10-10, mnemonics are turned off, so underscore characters will be
shown as text.

The last step is to add a GtkScrolledWindow widget to the last cell in the vertical box and a
GtkTreeView widget to that container. The completed file browser user interface is shown in
Figure 10-11. However, we are not yet finished editing the application in Glade.

7931.book Page 368 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 0 ■ D Y N A M I C U S E R I N T E R F A C E S 369

Figure 10-11. The completed file browser

Making Changes
The file browser is completely designed, but now I have decided that it should include a
GtkStatusBar widget along the bottom of the window! Making changes to the user interface
can be tricky, so this section will walk you through a few challenging actions.

The first step in adding the status bar is to extend the number of child widgets contained
by the main GtkVBox widget. To do this, choose the vertical box from the widget tree view. In the
Properties window, you can increase the number of children with the “Number of items” prop-
erty in the General tab. This will add a new empty space at the end of the vertical box into which
you can add a status bar widget.

If you need to reorder the children of a vertical or horizontal box, you first need to select
the widget you want to move. Then, under the Packing tab in the Properties window, you can
choose a new position by changing the value of its spin button. You will be able to see the child
widget moving to its new position as you change spin button’s value. The position of surround-
ing child widgets will automatically be adjusted to reflect the changes.

Another problematic task can result if you decide that you need to stuff a container into a
location where another widget is already added. For example, let us assume that you have
decided to place a horizontal pane in place of the scrolled window in the file browser applica-
tion. You first need to select the widget from the widget tree view in the main window and
remove it by pressing Ctrl+X. After this, an empty box will be displayed, in which you can add
the horizontal pane. Next, select the pane where the scrolled window should be placed and
press Ctrl+V.

Making changes to a user interface used to be a touchy topic with Glade 2, because it did
not support undo and redo actions. It used to be very easy to make a mistake and lose hours of
work by accidentally deleting your top-level widget, since you could not undo any actions.
Now that Glade 3 includes undo and redo support, you do not have to worry as much.

7931.book Page 369 Thursday, March 1, 2007 8:06 PM

370 C H A P T E R 1 0 ■ D Y N A M I C U S E R I N T E R F A C E S

Widget Signals
The last step for this application is to set up signals for all of the widgets. Figure 10-12 shows
the Signals tab of the widget properties editor for the Go button. The GtkButton widget is con-
nected to the clicked signal, which will call on_button_clicked() when emitted.

Figure 10-12. A widget signal editor

In addition to the clicked signal, you need to connect to a few others. Each of the tool
items should be connected to GtkToolButton’s clicked signal with the exception of the separa-
tors. Also, you should connect the GtkEntry to activate, which will be emitted when the user
presses the Enter key when the entry has focus.

■Note This application is only a design for a simple file browser that is meant to show you how to design
applications with Glade 3. The code needed for the application to be more than just a design will be imple-
mented in Chapter 13.

As for the tree view, you should connect it to row-activated. When a row is activated, the
user will be shown more information about the file or will navigate to the chosen directory. A
list of the widgets along with their signals and callback functions is provided in Table 10-1 so
that you can easily follow along with this example.

7931.book Page 370 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 0 ■ D Y N A M I C U S E R I N T E R F A C E S 371

Table 10-1. Widget Signals

Creating a Menu
In addition to toolbars, it is possible to create menus in Glade 3. Figure 10-13 shows the Menu
Bar Editor, which is very similar to the toolbar editor. It supports normal menu items and those
rendered with images, check buttons, radio buttons, and separators.

Figure 10-13. The Menu Bar Editor

Widget Description Signal Callback Function

GtkButton Go button clicked on_go_clicked()

GtkEntry Location entry activate on_location_activate()

GtkMenuToolButton Back clicked on_back_clicked()

GtkMenuToolButton Forward clicked on_forward_clicked()

GtkToolButton Up clicked on_up_clicked()

GtkToolButton Refresh clicked on_refresh_clicked()

GtkToolButton Home clicked on_home_clicked()

GtkToolButton Delete clicked on_delete_clicked()

GtkToolButton Information clicked on_info_clicked()

GtkTreeView File browser row-activated on_row_activated()

GtkWindow Main window destroy gtk_main_quit()

7931.book Page 371 Thursday, March 1, 2007 8:06 PM

372 C H A P T E R 1 0 ■ D Y N A M I C U S E R I N T E R F A C E S

You now know of three ways to create menus, which raises the question of which one is
best. Every method has its advantages and disadvantages, so let us take a look at each method.

You first learned how to create menus manually, molding each object to your needs. This
method is good to use with smaller menus, because the code will not take up a lot of space and
the implementation is located entirely in one place. However, if your menu grows in size or
contains more than just basic items, the code can become tedious to maintain and take up a lot
of space.

Next, you learned how to use GtkUIManager with UI definitions to dynamically create
menus. This method simplified menu creation, because you could define a large number of
actions in a small amount of space. Also, since menus are constructed from UI definitions,
allowing the user to edit a menu is extremely simple. This is clearly the preferred method of
menu creation if you are not using Glade to design your application.

Glade also presents a very attractive method of menu creation, because after its initial
design, maintenance is simple. It also requires no code to create the menu, since Libglade con-
structs it for you. However, one problem with this method is that it is not as easy to allow the
user to alter the layout of menus and toolbars as with the UI file method.

One method that can easily be employed is to pack all of your widgets with respect to the
end of the vertical box or whatever container you use as the child of the main window. Then,
when your application loads, you can simply pack the menu created by GtkUIManager into the
window with gtk_box_pack_start(). Nevertheless, if you do not need to allow your users to
customize the menu, it makes sense to do all menu creation through Glade.

Now that you are finished creating the user interface, you can save it as a project.glade
file, where project can be replaced by a name of your choice. This file can be loaded with
respect to the location of the application or from an absolute path.

Using Libglade
After you design your application in Glade, the next step is to load the user interface with
Libglade. This library is used to parse the Glade user interface and create all of the necessary
widgets at runtime.

Libglade provides the GladeXML object that is used to create and hold the user interface
loaded from an XML file. It can also be used to connect signals added in the Glade file to call-
back functions within your application.

Another advantage of Libglade is that overhead is added only during initialization, and
this is negligible compared to an interface created directly from code. After initialization, there
is virtually no overhead added to the application. For example, GladeXML connects signal han-
dlers internally in the same way as your own code, so this will require no extra processing.

Since Libglade handles all of the widget initialization and the layout was already
designed in Glade 3, the length of your code base can be significantly reduced. Take, for
example, Listing 10-1, which would be significantly longer if you had to hand-code
everything.

7931.book Page 372 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 0 ■ D Y N A M I C U S E R I N T E R F A C E S 373

■Note The callback functions are not implemented in this example, because they are not relevant to the
exercise. However, this application will be revisited in more detail in Chapter 13, which will include full imple-
mentation of the callback functions.

Listing 10-1. Loading the User Interface (browser.c)

#include <gtk/gtk.h>
#include <glade/glade.h>

void on_back_clicked (GtkToolButton*);
void on_forward_clicked (GtkToolButton*);
void on_up_clicked (GtkToolButton*);
void on_refresh_clicked (GtkToolButton*);
void on_delete_clicked (GtkToolButton*);
void on_home_clicked (GtkToolButton*);
void on_info_clicked (GtkToolButton*);
void on_go_clicked (GtkButton*);
void on_location_activate (GtkEntry*);
void on_row_activated (GtkTreeView*, GtkTreePath*, GtkTreeViewColumn*);

int main (int argc,
 char *argv[])
{
 GtkWidget *window;
 GladeXML *xml;

 gtk_init (&argc, &argv);

 xml = glade_xml_new ("browser.glade", NULL, NULL);
 window = glade_xml_get_widget (xml, "window");

 glade_xml_signal_autoconnect (xml);

 gtk_widget_show_all (window);
 gtk_main ();

 return 0;
}

7931.book Page 373 Thursday, March 1, 2007 8:06 PM

374 C H A P T E R 1 0 ■ D Y N A M I C U S E R I N T E R F A C E S

The code shown in Listing 10-1 will not compile with only GTK+ and its supporting librar-
ies. You will need to include Libglade in the compile command, as follows:

gcc -export-dynamic browser.c -o browser `pkg-config --cflags --libs gtk+-2.0` \
 `pkg-config --cflags --libs libglade-2.0`

■Caution If you want to automatically connect signals in the main executable or any nonshared library,
you will have to pass -export-dynamic to the linker. Otherwise, none of the signals will be able to be con-
nected because GModule will not be able to open the application for introspection!

Loading a User Interface
Loading a Glade user interface is done with glade_xml_new(). This is the first GladeXML
function you should call, although it should be called after gtk_init(). It parses the user
interface provided by the XML file, creates all of the necessary widgets, and provides facilities
for translation.

GladeXML* glade_xml_new (const char *glade_file_name,
 const char *root_widget,
 const char *translation_domain);

This function accepts three strings. The first is the location of the Glade user interface file.
This path can be either relative or absolute, although you will usually want to use an absolute
path since the executable could be installed in an alternative location on the user’s system.
This absolute path is usually defined by applications such as GNU Autotools during compila-
tion. The relative path is with respect to the current working directory, which is initially set to
the location of the executable but can be changed with g_chdir().

The second parameter accepted by glade_xml_new() is the widget name of the root node.
You can specify a widget name so that only GladeXML loads a certain widget and its children.
Passing NULL to this parameter will cause GladeXML to load every widget in the file.

■Note Every call to glade_xml_new() will build a new version of the user interface. Because of this, it is
necessary to call this function only once for a single UI unless you destroy the widgets at some point in the
application.

Lastly, you can provide a translation domain for the widgets, which will handle any wid-
gets marked as translatable accordingly. If your application does not provide translations, it is
safe to provide NULL to this parameter.

7931.book Page 374 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 0 ■ D Y N A M I C U S E R I N T E R F A C E S 375

Once you have initialized the user interface by creating a new GladeXML object, you can
retrieve widgets with glade_xml_get_widget(). This function returns a widget that is already
instantiated, which is referred to by the name you gave it in Glade.

GtkWidget* glade_xml_get_widget (GladeXML *xml,
 const char *name);

The widget returned by glade_xml_get_widget() is already set up with all of the properties
that you set in Glade. You can use this widget like any other GtkWidget that was created in your
application using the functions provided in GTK+. This shows one of the main advantages of
Libglade—you do not have to provide all of the monotonous code for setting up the user inter-
face and can quickly get to developing more interesting aspects of the application.

Another useful function is glade_xml_get_widget_prefix(), which allows you to retrieve a
list of widgets that have the same prefix as the given string. If you name all of your widgets
according to their type or what window they belong to, this function can be very helpful.

GList* glade_xml_get_widget_prefix (GladeXML *xml,
 const char *name);

Connecting Signals
The next step in getting your application ready for use is to connect the signal handlers that you
created in Glade. In Listing 10-1, glade_xml_signal_autoconnect() was used to connect all of
the signals at once.

void glade_xml_signal_autoconnect (GladeXML *xml);

To autoconnect signals, Libglade opens a NULL version of GModule, which will provide
access to your application’s symbol table. The function then tries to find functions with the
same signal handler name, which means that the names in the Glade file must match those of
the callback functions in your application. This function will work only if GModule is supported
on the user’s system.

Another option for connecting signals is to use glade_xml_signal_autoconnect_full().
This function allows you to provide a callback function that will connect all of the signals for
you. This way you can provide any necessary customization.

void glade_xml_signal_connect_full (GladeXML *self,
 const gchar *handler_name,
 GladeXMLConnectFunc connect_func,
 gpointer data);

Listing 10-2 presents a simple GladeXMLConnectFunc implementation that uses GModule in
the same way as in glade_xml_signal_autoconnect(). This function is called for every signal
in the Glade user interface file.

7931.book Page 375 Thursday, March 1, 2007 8:06 PM

376 C H A P T E R 1 0 ■ D Y N A M I C U S E R I N T E R F A C E S

Listing 10-2. Autoconnecting Signals

static void
connect_func (const gchar *callback_name,
 GObject *object,
 const gchar *signal_name,
 const gchar *signal_data,
 GObject *connect_object,
 gboolean connect_after,
 gpointer data)
{
 static GModule *module_self = NULL;
 gpointer handler_func;

 module_self = g_module_open (NULL, 0);
 g_assert (module_self != NULL);

 if (g_module_symbol (module_self, callback_name, &handler_func))
 {
 if (connect_object && connect_after)
 g_signal_connect_object (object, signal_name, handler_func,
 connect_object, G_CONNECT_AFTER);
 else if (connect_object && !connect_after)
 g_signal_connect_object (object, signal_name, handler_func,
 connect_object, G_CONNECT_SWAPPED);
 else if (!connect_object && connect_after)
 g_signal_connect_after (object, signal_name, handler_func, data);
 else
 g_signal_connect (object, signal_name, handler_func, data);
 }
 else
 g_warning ("The callback function could not be found: %s", callback_name);
}

You already know how to use GModule, so the code in Listing 10-2 should be understand-
able to you. However, there are two new functions used for connecting signals that were
introduced in Listing 10-2, which I will explain now.

When you connect a signal with g_signal_connect(), your callback function will be run
before the standard callback function. This allows you to override the standard callback with
your own in some cases. Alternatively, if you want your callback function to run after the
default, you can connect the signal with g_signal_connect_after().

gulong g_signal_connect_after (gpointer object,
 const gchar *signal_name,
 GCallback handler,
 gpointer data);

Another useful signal connection function is g_signal_connect_object(), but it temporarily
increases the reference count to ensure that the GObject provided to the fourth parameter will

7931.book Page 376 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 0 ■ D Y N A M I C U S E R I N T E R F A C E S 377

remain for the duration of the callback function. Also, gobject is sent to the callback function
instead of the object.

gulong g_signal_connect_object (gpointer object,
 const gchar *signal_name,
 GCallback handler,
 gpointer gobject,
 GConnectFlags flags);

The g_signal_connect_object() function accepts flags from the following GConnectFlags
enumeration:

• G_CONNECT_AFTER: If this flag is set, the callback function will be called after the default
signal handler. This is similar to calling g_signal_connect_after().

• G_CONNECT_SWAPPED: If this flag is set, the signal data will be sent to the callback function
as the first parameter followed by the initiating GObject. This is similar to calling
g_signal_connect_swapped().

■Tip G_CONNECT_SWAPPED may not seem useful at first, but it can be used to call a function on only the
user data parameter. For example, if you use this flag when connecting a GTK_STOCK_QUIT menu item, you
can connect it to gtk_widget_destroy() and pass the main window as the user data. This will cause the
main window to be destroyed when the menu item is activated.

In addition to autoconnecting signals, you can connect a signal with glade_xml_signal_
connect(). You need to specify the signal handler that you provided to Glade. The nice thing
about this function is that the Glade signal handler and the actual function name do not need
to be the same. This function is only for convenience and is equivalent to retrieving the wid-
get and calling g_signal_connect() on it.

void glade_xml_signal_connect (GladeXML *xml,
 const char *signal_name,
 GCallback callback_func);

The problem with glade_xml_signal_connect() is that you cannot pass data to the call-
back function. To fix this, you can use glade_xml_signal_connect_data(), which allows you to
specify a data parameter to pass to the callback function.

void glade_xml_signal_connect_data (GladeXML *xml,
 const char *signal_name,
 GCallback callback_func,
 gpointer data);

Unless you need to pass different data parameters to each function, it is a lot more conve-
nient to simply allow Libglade to autoconnect all of the signals. Remember, though, that
autoconnect will only work on systems that support GModule, so you should still know how to
connect each signal one at a time!

7931.book Page 377 Thursday, March 1, 2007 8:06 PM

378 C H A P T E R 1 0 ■ D Y N A M I C U S E R I N T E R F A C E S

Test Your Understanding
These two exercises are especially important for you to become a proficient GTK+ developer. It
is not practical to programmatically design every aspect of large applications, because it takes
too long.

Instead, you should be using Glade to design the user interface and Libglade to load that
design and connect signals. By doing this, you will be able to quickly finish the graphical
aspects of your applications and get to the backend code that makes your applications work.

Exercise 10-1. Glade Text Editor

In this exercise, implement the text editor from Exercise 9-1 in Glade. The toolbar in the text editor should be imple-
mented completely in Glade.

This exercise should not require much extra coding if you still have the exercise solution from the previous chapter.
You can also find the solution to Exercise 9-1 on the book’s web site at www.gtkbook.com. This exercise will give
you a chance to learn your way around Glade 3 and test out many widget properties.

After you design an application with a toolbar, it is an easy transition to add a menu bar. In
larger applications, you should provide both of these options to the user. In the following exer-
cise, you will add a menu bar to the text editor application.

Exercise 10-2. Glade Text Editor with Menus

In Exercise 9-2, you implemented the text editor with a menu bar. In this exercise, redesign the application from that
exercise using Glade and Libglade. First, you should implement the menu with GtkUIManager, which will allow
you to use both together. Second, you should implement the menu again in Glade.

As with the previous exercise, the solution for Exercise 9-2 can be found at www.gtkbook.com. Using the down-
loadable solution will allow you skip over coding the callback functions, since you have already done that in the
previous chapter.

Summary
In this chapter, we took a short break from coding and looked into issues that you need to con-
sider when designing a graphical user interface. In short, you must always keep your users in
mind. You need to know what to expect of your users and cater to their needs in every aspect of
the application.

Next, you learned how to design graphical user interfaces using Glade 3. The ability to
quickly deploy the graphical aspects of an application is a must when considering a GUI tool-
kit, and GTK+ has Glade to fill this need.

7931.book Page 378 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 0 ■ D Y N A M I C U S E R I N T E R F A C E S 379

Glade allows you to design every aspect of your user interface including widget properties,
layout, and signal handlers. User interfaces are saved as readable XML files that are used to
describe the structure of your application.

After designing an application in Glade 3, you can dynamically load the user interface with
Libglade. This library is used to parse the Glade user interface and create all of the necessary
widgets at runtime. It also provides functions for connecting signal handlers declared in Glade
to callback functions within your application.

In the next chapter, we are going to get back to coding and delve into the complexities of
the GObject system. You will learn how to create your own GObject classes by deriving new wid-
gets and classes as well as how to create a widget from scratch.

7931.book Page 379 Thursday, March 1, 2007 8:06 PM

7931.book Page 380 Thursday, March 1, 2007 8:06 PM

381

■ ■ ■

C H A P T E R 1 1

Creating Custom Widgets

By now, you have learned a great deal about GTK+ and its supporting libraries. You have
enough knowledge to use the widgets provided by GTK+ to create complex applications of
your own.

However, one thing that you have not yet learned is how to create your own widgets.
Therefore, this chapter is dedicated to deriving new classes from GObject. You will be guided
through three examples.

The first example derives a new widget called MyIPAddress from the GtkEntry widget.
This widget allows the user to enter an IP address, controlling the placement of the cursor
accordingly. The second example creates a new custom GtkWidget class called MyMarquee that
scrolls a message at a specified speed. Lastly, you will learn how to implement and use custom
interfaces.

In this chapter, you will learn the following:

• How to derive new classes and widgets from those that already exist.

• How to create custom widgets derived from GtkWidget. This method will require you to
expose and draw the widget on the screen yourself.

• How to implement and use custom interfaces.

Deriving New Widgets
The purpose of this chapter is to teach you how to create new GObject types by deriving from
those that already exist. The best way to learn how to derive new objects is by example. In this
section, we will be creating a new widget called MyIPAddress, which will allow the user to enter
an IP address. This allows you to restrict the user from entering anything but a valid IP address.

■Note While we are deriving a new widget in this section, the method outlined here applies to all objects
derived from GObject. Therefore, you are not limited to deriving new widgets but can derive a new type from
any other type that is derived directly or indirectly from GObject.

7931.book Page 381 Thursday, March 1, 2007 8:06 PM

382 C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S

A screenshot of the GtkIPAddress widget created in this section is shown in Figure 11-1.
Notice that all of the one-digit and two-digit numbers are aligned to the right.

Figure 11-1. A MyIPAddress widget

Creating the MyIPAddress Header File
The first step in deriving any type of GObject is to create the header file. This file allows you to
set up the basic function calls required by each object. It is also a good place to plan out your
widget, since the header file will contain public functions that are available to any code using
your new object.

In order to accommodate C++ compilers, you should bracket the content of your header
file with G_BEGIN_DECLS and G_END_DECLS. These two macros add extern "C" around the con-
tent, which will force all functions to use their names for symbol names when compiled as in C.
An example of the shell of the header file is shown in Listing 11-1.

Listing 11-1. MyIPAddress Header File (myipaddress.h)

#ifndef __MY_IP_ADDRESS_H__
#define __MY_IP_ADDRESS_H__

#include <glib.h>
#include <glib-object.h>
#include <gtk/gtkentry.h>

G_BEGIN_DECLS
...
G_END_DECLS

#endif /* __MY_IP_ADDRESS_H__ */

■Note Unlike most examples in this book, this chapter’s examples have been split up into small parts
instead of displaying them as a whole, because they span so many lines. You can download the full files of
source code from the book’s web site at www.gtkbook.com.

7931.book Page 382 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S 383

Along with the necessary structures and functions, you need to define five macros for
every new widget, as shown in Listing 11-2. All of the function and structure declarations in the
rest of the header file should be placed between G_BEGIN_DECLS and G_END_DECLS. The macros
in Listing 11-2 follow a standard naming scheme that every GObject uses. Standard naming
makes object inheritance a lot simpler.

Listing 11-2. GObject Directives

#define MY_IP_ADDRESS_TYPE (my_ip_address_get_type ())
#define MY_IP_ADDRESS(obj) (G_TYPE_CHECK_INSTANCE_CAST ((obj), \
 MY_IP_ADDRESS_TYPE, MyIPAddress))
#define MY_IP_ADDRESS_CLASS(klass) (G_TYPE_CHECK_CLASS_CAST ((klass), \
 MY_IP_ADDRESS_TYPE, MyIPAddressClass))
#define IS_MY_IP_ADDRESS(obj) (G_TYPE_CHECK_INSTANCE_TYPE ((obj), \
 MY_IP_ADDRESS_TYPE))
#define IS_MY_IP_ADDRESS_CLASS(klass) (G_TYPE_CHECK_CLASS_TYPE ((klass), \
 MY_IP_ADDRESS_TYPE))

All of the functions used by your new object should be prefixed with the library name
such as GTK_ or GDK_, followed by the widget name. The first macro you need to define is
MY_IP_ADDRESS_TYPE. This macro returns the GType structure corresponding to your object.
We will define my_ip_address_get_type() later in the header file.

The next macro, MY_IP_ADDRESS(), is used to cast the object as MyIPAddress. This is simi-
lar to casting an object with functions such as GTK_WIDGET(), GTK_ENTRY(), or G_OBJECT().
G_TYPE_CHECK_INSTANCE_CAST() performs two tasks. It first checks whether the object is of
the correct type. If it is not, a warning will be emitted. Otherwise, the object will be cast as a
MyIPAddress widget and returned.

MY_IP_ADDRESS_CLASS() is used in the same way as MY_IP_ADDRESS(), except it is used to cast
an object as MyIPAddressClass. You will soon learn the difference between these two types.

■Note Since your code may be compiled with a C++ compiler as well, you should always use klass
instead of class to refer to the widget class type, since the latter is a C++ keyword.

The last two macros, IS_MY_IP_ADDRESS() and IS_MY_IP_ADDRESS_CLASS(), are used to
check whether the object is the correct type. Each function will return TRUE if the object is of the
specified type.

The next step is to define both the MyIPAddress and MyIPAddressClass structures, as in
Listing 11-3. The widget content is held by _MyIPAddress. The first member in the new widget’s
structure should always be an instance of the type that you are deriving from. As you can see in
the listing, the MyIPAddress widget is going to be derived from GtkEntry.

7931.book Page 383 Thursday, March 1, 2007 8:06 PM

384 C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S

Listing 11-3. The MyIPAddress Structure

typedef struct _MyIPAddress MyIPAddress;
typedef struct _MyIPAddressClass MyIPAddressClass;

struct _MyIPAddress
{
 GtkEntry entry;
};

struct _MyIPAddressClass
{
 GtkEntryClass parent_class;

 void (* ip_changed) (MyIPAddress *ipaddress);
};

■Caution You should not define the parent GtkEntry object in MyIPAddress as a pointer! If you do, you
will get an error stating that your new widget class is smaller than the parent and compilation will fail.

Notice that the GtkEntry child of MyIPAddress is not a pointer as with most widgets. This
affirms the fact that a derived object is its parent structure in every way. It inherits not only sig-
nals, properties, and styles but also the whole object itself. This relationship is reaffirmed by
the declaration of a nonpointer GtkEntryClass object in the MyIPAddressClass structure.

The MyIPAddress structure does not hold any other objects besides the GtkEntry object. The
widget structure GtkEntry was originally used to hold private objects that the programmer was
not supposed to access, but GObject provides a better way to implement private properties,
which will be covered in the source file. You are also free to place any variables within the widget
structure that you deem necessary, although you should consider whether the programmer
should have direct access to the objects before doing this. Basically, if the widget needs to react
to changes of a variable, it should be declared in the private class in the source file. Otherwise, it
can be placed within the public widget structure.

In addition to MyIPAddress, you also need to define MyIPAddressClass, which first contains an
instance of the parent class type, GtkEntryClass. Again, this should not be a pointer type, because it
will allow parent properties, signals, and functions to be inherited by your widget class.

Furthermore, you should define callback function prototypes for signals in the widget
class. In this example, the ip-changed signal will be added, which will be called when the IP
address is successfully changed. This signal is provided so the developer does not need to mon-
itor all four widget properties for changes, since each of the four numbers will be defined as its
own widget property.

7931.book Page 384 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S 385

The last step in creating the header file is to define function prototypes for those functions
that are available for the developer to call, as shown in Listing 11-4. We will also define private
functions that will only be accessible in the myipaddress.c file.

Listing 11-4. Header File Function Prototypes

GType my_ip_address_get_type (void) G_GNUC_CONST;
GtkWidget* my_ip_address_new (void);

gchar* my_ip_address_get_address (MyIPAddress *ipaddress);
void my_ip_address_set_address (MyIPAddress *ipaddress, gint address[4]);

The four functions in Listing 11-4 will return the GType associated with MyIPAddress, create
a new MyIPAddress widget, return the IP address as a string, and provide new IP address values
respectively. These will be discussed in more detail later in the chapter when their implemen-
tations are covered.

Creating the Source File
Now that the header file is completed, it is time to derive the new object and implement the
functionality of MyIPAddress. The widget is going to have a number of properties and signals,
which need to be tracked, which will be defined in the following listing.

Listing 11-5 defines a number of values and structures that will be needed throughout the
MyIPAddress source file. This includes the private class as well as signal and property identifiers.

Listing 11-5. Global Enumerations and Structures (myipaddress.c)

#include <gtk/gtk.h>
#include <gdk/gdkkeysyms.h>
#include <stdlib.h>
#include <math.h>
#include "myipaddress.h"

#define MY_IP_ADDRESS_GET_PRIVATE(obj) (G_TYPE_INSTANCE_GET_PRIVATE ((obj), \
 MY_IP_ADDRESS_TYPE, MyIPAddressPrivate))

typedef struct _MyIPAddressPrivate MyIPAddressPrivate;

struct _MyIPAddressPrivate
{
 guint address[4];
};

7931.book Page 385 Thursday, March 1, 2007 8:06 PM

386 C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S

enum
{
 CHANGED_SIGNAL,
 LAST_SIGNAL
};

enum
{
 PROP_0,
 PROP_IP1,
 PROP_IP2,
 PROP_IP3,
 PROP_IP4
};

static guint my_ip_address_signals[LAST_SIGNAL] = { 0 };

The macro defined in Listing 11-5, MY_IP_ADDRESS_GET_PRIVATE(), retrieves the
MyIPAddressPrivate structure associated with the current object instance. This structure
is used to hold private properties of the object, which are unique to each instance. In this
example, MyIPAddressPrivate holds each of the four IP address values. These values are kept
private so that only functions defined in this file may alter them, since the widget must be
updated when they change.

The next step is to define enumerations that will be used to refer to signals and properties
installed on the widget. CHANGED_SIGNAL refers to the ip-changed signal that will be emitted
when the user changes the content of the IP address or when it is programmatically changed.
LAST_SIGNAL is used to figure out how many signals are installed on the widget and stored in
my_ip_address_signals[]. By defining this as the last enumeration value, signals can easily be
added in the future without worrying about updating the signal count.

The other enumeration holds property identifiers. Since all of your property identifiers
must be greater than zero when declared, it is traditional to place an initial enumeration value
of PROP_0. The other enumeration values refer to the four integers that will compose the IP
address. These are only used when adding the signals to the widget class. Programmers using
the new widget can use the property names that you will later define.

7931.book Page 386 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S 387

Registering a New GType

In the header file, we defined a function prototype for the my_ip_address_get_type() function
that is implemented in Listing 11-6. This function returns a GType value, which is simply a
numerical value that is unique to the registered type. In this case, the registered type is the
MyIPAddress object.

Listing 11-6. Creating the New MyIPAddress Type

GType
my_ip_address_get_type (void)
{
 static GType entry_type = 0;

 if (!entry_type)
 {
 static const GTypeInfo entry_info =
 {
 sizeof (MyIPAddressClass),
 NULL,
 NULL,
 (GClassInitFunc) my_ip_address_class_init,
 NULL,
 NULL,
 sizeof (MyIPAddress),
 0,
 (GInstanceInitFunc) my_ip_address_init,
 };

 entry_type = g_type_register_static (GTK_TYPE_ENTRY, "MyIPAddress",
 &entry_info, 0);
 }

 return entry_type;
}

7931.book Page 387 Thursday, March 1, 2007 8:06 PM

388 C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S

If the type has not yet been created, which means that the static identifier has yet to be set
during the initialization of the object, we need to add it. When registering a new GType, we first
need to declare a GTypeInfo object for the type. There are ten members in the GTypeInfo struc-
ture, as defined in Table 11-1, although not all of the members are required.

Table 11-1. GTypeInfo Members

There are four steps to initializing a new class: copying over members from the parent class,
initializing remaining members to zero, calling the GBaseInitFunc initializer, and calling the
GClassInitFunc initializer. These steps are followed each time a new instance of the object are
instantiated. The GClassInitFunc function is required in GTypeInfo for the new GType to be valid.

Variable Description

guint16 class_size The size of the class structure, which is required
when creating widgets. This is simply the size of the
MyIPAddressClass structure.

GBaseInitFunc base_init Optional location of the base initialization function.
This callback function is used to reallocate all dynamic
class members copied from the parent class.

GBaseFinalizeFunc base_finalize Optional location of the base finalization function. This
callback function is used to finalize things done by the
GBaseInitFunc function.

GClassInitFunc class_init Optional implementation of the class initialization
function, which is used to fill in virtual functions for the
class and register signals and object properties.

GClassFinalizeFunc class_finalize Optional implementation of the class finalization
function. This function is rarely needed, because
dynamically allocated resources should be handled in
the GBaseInitFunc and GBaseFinalizeFunc functions.

gconstpointer class_data Pointer data that will be passed to the implementations
of GClassInitFunc and GClassFinalizeFunc.

guint16 instance_size Size of the widget or object that you are deriving. This is
simply the size of the MyIPAddress structure.

guint16 n_preallocs Since the release of GLib 2.10, this member is ignored,
since memory allocation of instances is handled with
the slice allocator.

GInstanceInitFunc instance_init Optional function used to set up the instance. In the
MyIPAddress example, this function connects the key-
press-event and changed signals to each GtkEntry and
packs the widget.

const GTypeValueTable *value_table A function table that handles generic GValue objects for
this type. This is usually only used when creating
fundamental types, so in most cases it does not have to
be defined.

7931.book Page 388 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S 389

After setting up a GTypeInfo object for your new type, the next step is to register the GType
with g_type_register_static(). The first parameter of this function is the GType value referring
to the parent type. For example, if you derive an object from MyIPAddress, this would be set to
GTK_TYPE_IP_ADDRESS. You can use the GTK_TYPE_ENTRY macro to derive the new object from the
GtkEntry widget.

GType g_type_register_static (GType parent_type,
 const gchar *type_name,
 const GTypeInfo *info,
 GTypeFlags flags);

Next, you should specify a string that will be used as the name of the new type and the cor-
responding GTypeInfo object. In our example, the name of the widget, MyIPAddress, was used.
This is generally a good idea, since it should be unique to your object. This name must be at
least three characters long and begin with an alphabetic character.

The last parameter is a bitwise combination of GTypeFlags. There are two values defined by
this enumeration. G_TYPE_FLAG_ABSTRACT indicates that the type is abstract. You will be prevented
from creating instances of abstract types. The other flag, G_TYPE_FLAG_VALUE_ABSTRACT, indicates
an abstract value type such as a value table, but it cannot be used with g_value_init(). The func-
tion returns a new GType for the given parameters.

The last step for setting up a new GType is to return the new value from my_ip_address_
get_type(), whether it was just registered or simply stored by the static value. This function is
used first to register the new type and then to retrieve the unique GType value. The returned
value can be used in many places such as if you derive a new widget from MyIPAddress or when
you create a new MyIPAddress widget.

Initializing the Widget Class

The next function in the source file is the implementation of the class initialization function
(GClassInitFunc), provided by my_ip_address_class_init(). This function accepts a
MyIPAddressClass object and the optional gpointer data parameter specified when registering
the type. The second parameter is ignored in Listing 11-7, since the user data parameter was
defined as NULL when defining the new GType.

Listing 11-7. Initializing MyIPAddressClass

static void
my_ip_address_class_init (MyIPAddressClass *klass)
{
 GObjectClass *gobject_class = G_OBJECT_CLASS (klass);

 /* Override the standard functions for setting and retrieving properties. */
 gobject_class->set_property = my_ip_address_set_property;
 gobject_class->get_property = my_ip_address_get_property;

7931.book Page 389 Thursday, March 1, 2007 8:06 PM

390 C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S

 /* Add MyIPAddressPrivate as a private data class of MyIPAddressClass. */
 g_type_class_add_private (klass, sizeof (MyIPAddressPrivate));

 /* Register the ip-changed signal, which will be emitted when the ip changes. */
 my_ip_address_signals[CHANGED_SIGNAL] =
 g_signal_new ("ip-changed", G_TYPE_FROM_CLASS (klass),
 G_SIGNAL_RUN_FIRST | G_SIGNAL_ACTION,
 G_STRUCT_OFFSET (MyIPAddressClass, ip_changed),
 NULL, NULL, g_cclosure_marshal_VOID__VOID, G_TYPE_NONE, 0);

 /* Register four GObject properties, one for each ip address number. */
 g_object_class_install_property (gobject_class, PROP_IP1,
 g_param_spec_int ("ip-number-1",
 "IP Address Number 1",
 "The first IP address number",
 0, 255, 0,
 G_PARAM_READWRITE));

 g_object_class_install_property (gobject_class, PROP_IP2,
 g_param_spec_int ("ip-number-2",
 "IP Address Number 2",
 "The second IP address number",
 0, 255, 0,
 G_PARAM_READWRITE));

 g_object_class_install_property (gobject_class, PROP_IP3,
 g_param_spec_int ("ip-number-3",
 "IP Address Number 3",
 "The third IP address number",
 0, 255, 0,
 G_PARAM_READWRITE));

 g_object_class_install_property (gobject_class, PROP_IP4,
 g_param_spec_int ("ip-number-4",
 "IP Address Number 1",
 "The fourth IP address number",
 0, 255, 0,
 G_PARAM_READWRITE));
}

7931.book Page 390 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S 391

The first thing you should do in the class initialization function is override any necessary
functions for the GObjectClass, from which your widget class derives. In this example, we
needed to override the default implementations of set_property() and get_property(). These
functions are called when the programmer calls g_object_set() and g_object_get() respec-
tively. You must always override these functions if your new object will have any number of
properties installed.

■Note There are a number of other functions provided in GObjectClass including a constructor, notify
signal callback, and finalization function. You can find a full list of functions that can be overridden in the
GObject API documentation.

Next, an instance of the MyIPAddressPrivate is associated with the widget class with
g_type_class_add_private(). This structure will hold the values for the four widget properties.

void g_type_class_add_private (gpointer klass,
 gsize private_size);

The first parameter of this function is the widget class that the private class will be associ-
ated with. This is followed by the size of the private structure, which can be obtained with
sizeof(). By implementing private data in this manner, GObject provides data hiding to the
extent allowed by the C programming language.

Installing Signals

After you override any necessary virtual functions, the next step in the widget class initializa-
tion function is to set up any signals required by your object with g_signal_new(). This is a very
long and complex function, so let us take it one parameter at a time.

guint g_signal_new (const gchar *signal_name,
 GType class_type,
 GSignalFlags signal_flags,
 guint class_offset,
 GSignalAccumulator accumulator,
 gpointer accumulator_data,
 GSignalCMarshaller c_marshaller,
 GType return_type,
 guint n_parameters,
 ...);

7931.book Page 391 Thursday, March 1, 2007 8:06 PM

392 C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S

The first parameter of g_signal_new() is the name of the new signal you are creating. In
this example, we are adding the ip-address signal. This name will be used by the programmer
in the g_signal_connect() family of functions to connect the signal to a callback function. It is
important to make this name as descriptive as possible so that the programmer can discern its
purpose from the name.

The next parameter of g_signal_new() provides the GType of the class that will contain the
signal. You can retrieve this type by calling G_TYPE_FROM_CLASS() or G_OBJECT_CLASS_TYPE() on
the instance. This is followed by a bitwise list of signal flags as defined by the GSignalFlags enu-
meration values that follow:

• G_SIGNAL_RUN_FIRST: Call the handler for this signal during the first emission stage. This
will be run while other object signals with this flag set are run.

• G_SIGNAL_RUN_LAST: Call the handler for this signal during the third emission stage. This
will be run while other object signals with this flag set are run.

• G_SIGNAL_RUN_CLEANUP: Call the handler for this signal during the last emission stage.
This will be run while other object signals with this flag set are run.

• G_SIGNAL_NO_RECURSE: If a signal on this object is already being emitted, a recursive call
will be prevented. Instead, the first emission will simply be restarted.

• G_SIGNAL_DETAILED: Add support for the ::detail descriptor added to the signal name
upon connections and emissions of the signal.

• G_SIGNAL_ACTION: If set, this signal can be emitted with g_signal_emit() and friends
without the need to perform pre- or post-emission adjustments to the object. This is
meant to allow a signal to be emitted by code that uses this object.

• G_SIGNAL_NO_HOOKS: Do not support emission hooks for this signal.

The next parameter in g_signal_new() is the structure offset in your class of the signal
prototype. For example, G_STRUCT_OFFSET() is used to get the offset of ip_changed() in
MyIPAddressClass. This function is defined by GLib as shown in the following code snippet,
which illustrates that the function simply returns the offset of member within struct_type. This
allows g_signal_new() to find the callback function prototype.

#define G_STRUCT_OFFSET(struct_type, member) \
 ((glong) ((guint8*) &((struct_type*) 0)->member))

7931.book Page 392 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S 393

Next, you can specify an optional function of the type GSignalAccumulator that will be
used for accumulation followed by data to pass to that function. In most cases, both of these
parameters will be set to NULL.

The next parameter, GSignalCMarshaller is called a closure marshal function, which is
used to translate arrays of parameters into callback invocations supported by C. There are a
number of closure marshal functions provided by GObject, which follow a standard naming
scheme. There should be no need to create your own in most cases.

The most basic type of closure marshal is g_cclosure_marshal_VOID__VOID(). Take note of
the specific notation, where the function includes two consecutive underscore characters! The
first VOID tells GObject that the return type of the callback function is void. The second VOID says
that there are no additional parameters beyond the instance and user data sent to the callback
function. The function prototype for this type of signal follows:

void (*callback) (gpointer instance, gpointer data);

Another example is g_cclosure_marshal_VOID__BOOLEAN(). The callback function proto-
type corresponding to this type of signal follows. It returns void and has an additional gboolean
parameter located between the object instance and the user data.

void (*callback) (gpointer instance, gboolean arg, gpointer data);

In addition to these two closures, there are a number of others that return other fundamen-
tal types. GObject also provides a few with nonvoid return values. For example, g_cclosure_
marshal_STRING__OBJECT_POINTER() returns a C string and accepts two additional parameters, a
GObject and a pointer. A full list of closure marshal functions available in GLib 2.12 follows:

• g_cclosure_marshal_VOID__*(): These functions return nothing and accept only a single
additional parameter of BOOLEAN, CHAR, UCHAR, INT, UINT, LONG, ULONG, ENUM, FLAGS, FLOAT,
DOUBLE, STRING, PARAM, BOXED, POINTER, OBJECT, or UINT_POINTER. A value of VOID will cause
the callback function to have only the two basic parameters.

• g_cclosure_marshal_STRING__OBJECT_POINTER(): This function type returns a string and
accepts addition parameters of a GObject and a pointer.

• g_cclosure_marshal_BOOLEAN__FLAGS(): This function type returns a gboolean value and
accepts bitwise fields defined by G_TYPE_FLAGS.

The next parameter of g_signal_new() gives the return type that will be used for the call-
back function. For example, the callback function in the MyIPAddress example has no return
value, so it is referred to as G_TYPE_NONE. A full list of fundamental types that are registered by
default is shown in Table 11-2.

7931.book Page 393 Thursday, March 1, 2007 8:06 PM

394 C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S

Table 11-2. Fundamental GLib Types

GType Definition

G_TYPE_BOOLEAN A standard Boolean type that holds either TRUE or FALSE

G_TYPE_BOXED A fundamental type referring to a boxed or structure type

G_TYPE_CHAR
G_TYPE_UCHAR

Signed and unsigned versions of the standard C char type

G_TYPE_DOUBLE A gdouble variable equivalent to the standard C double type

G_TYPE_ENUM A standard enumeration equivalent to the C enum type

G_TYPE_FLAGS Bitwise fields holding Boolean flags

G_TYPE_FLOAT A gfloat variable equivalent to the standard C float type

G_TYPE_INT
G_TYPE_UINT

Signed and unsigned versions of the standard C int type

G_TYPE_INT64
G_TYPE_UINT64

Signed and unsigned versions of GLib’s implementation of a 64-bit integer

G_TYPE_INTERFACE A fundamental type from which interfaces can be derived

G_TYPE_INVALID An invalid GType that is used as an error return value by some functions

G_TYPE_LONG
G_TYPE_ULONG

Signed and unsigned versions of the standard C long type

G_TYPE_NONE An empty type equivalent to void

G_TYPE_OBJECT A fundamental type that refers to any class derived from and cast as a
GObject

G_TYPE_PARAM A fundamental type that refers to any type derived from GParamSpec

G_TYPE_POINTER An untyped pointer type that is implemented as a void pointer

G_TYPE_STRING A NULL-terminated C string that is stored as a pointer to an array of gchar
characters

7931.book Page 394 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S 395

The last parameters of g_signal_new() are the number of parameters accepted by the
callback function excluding the instance and user data followed by a list of a types for each
parameter. In our example, there were no extra types added, so the number of parameters was
set to zero. Let us look at the following declaration for the populate-popup signal of the GtkEntry
widget.

g_signal_new ("populate_popup",
 G_OBJECT_CLASS_TYPE (gobject_class), /* or G_TYPE_FROM_CLASS() */
 G_SIGNAL_RUN_LAST,
 G_STRUCT_OFFSET (GtkEntryClass, populate_popup),
 NULL, NULL,
 _gtk_marshal_VOID__OBJECT, /* defined in gtkmarshal.h */
 G_TYPE_NONE, 1,
 GTK_TYPE_MENU);

In this signal declaration, there was one additional parameter sent to the callback func-
tion, which is cast as a GtkMenu. The GtkMenu type is defined by GTK_TYPE_MENU. This gives you a
more specific parameter cast type to use instead of the generic GObject defined by g_cclosure_
marshal_VOID__OBJECT().

Installing Properties

The last thing you need to do in the class initialization function for this example is install any
necessary properties. There are four properties installed in the MyIPAddress widget, all four of
them integers.

Properties are installed on a GObjectClass with g_object_class_install_property(). The
first two parameters of this function accept the GObjectClass corresponding to your new wid-
get class and the property identifier. The identifier is simply a unique unsigned integer that
refers to the specific property. These identifiers are normally defined in an enumeration, as
was done for MyIPAddress, so that they are guaranteed to be unique to the object.

void g_object_class_install_property (GObjectClass *object_class,
 guint property_id,
 GParamSpec *pspec);

7931.book Page 395 Thursday, March 1, 2007 8:06 PM

396 C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S

The last parameter of g_object_class_install_property() is a GParamSpec object, which
stores information about what type of variable the property holds, its name, and various other
characteristics. There are a number of functions for setting up GParamSpec objects.

In the MyIPAddress example, g_param_spec_int() is used to set up a new GParamSpecInt
implementation for a property of the type G_TYPE_INT. The first three parameters of this func-
tion refer to the property name, a short nickname for the property, and a description of the
property. The property name will be used to access it with calls to g_object_set() and
g_object_get().

GParamSpec* g_param_spec_int (const gchar *name,
 const gchar *nick,
 const gchar *blurb,
 gint minimum,
 gint maximum,
 gint default_value,
 GParamFlags flags);

The next three parameters define the minimum and maximum possible values and the
default value of the property. These are used to define the property bounds, as well as the initial
state. The last parameter allows you to define flags from the following GParamFlags enumera-
tion that can be applied to the property:

• G_PARAM_READABLE: It is possible to read the value of the parameter.

• G_PARAM_WRITABLE: It is possible to write a new value for the parameter.

• G_PARAM_CONSTRUCT: The parameter will be set when the object is constructed.

• G_PARAM_CONSTRUCT_ONLY: The parameter will be set only when the object is constructed.

• G_PARAM_LAX_VALIDATION: When g_param_value_convert() is used to convert a parame-
ter, strict validation will not be required.

• G_PARAM_STATIC_NAME: The parameter name will never be altered and will remain valid
during its whole existence.

• G_PARAM_STATIC_NICK: The parameter nickname will never be altered and will remain
valid during its whole existence.

• G_PARAM_STATIC_BLURB: The parameter description will never be altered and will remain
valid during its whole existence.

There is also an additional flag, G_PARAM_READWRITE, which is defined as a bitwise alias for
(G_PARAM_READABLE | G_PARAM_WRITABLE). This is included as a macro instead of an enumera-
tion value in GParamFlags.

7931.book Page 396 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S 397

There are GParamSpec structures available for all of the fundamental data types provided in
GLib. For a full list of function prototypes for creating other types of properties, you should ref-
erence the GObject API documentation.

Parameter and Value Definitions

There are a number of GParamSpec and GValue functions defined for many fundamental types.
The following list gives a description of each of these functions. The asterisk character can be
replaced by boolean, char, uchar, int, uint, long, ulong, int64, uint64, float, double, enum,
flags, string, param, boxed, pointer, object, or gtype in each of the following functions accord-
ing to the function’s case:

• G_IS_PARAM_SPEC_*(): Return TRUE if the given object is a valid parameter specification
object for the given type.

• G_PARAM_SPEC_*(): Cast a GParamSpec object to the specific parameter specification type.

• G_VALUE_HOLDS_*(): Return TRUE if the given GValue can hold the type defined by the
function.

• G_TYPE_PARAM_*(): Return GType for the given parameter specification type.

• g_param_spec_*(): Create a new parameter specification of the given type. This function
is normally used when defining new properties for a GObject. Every function accepts the
property name, nickname, a short description, and a bitwise list of GParamFlags values in
addition to parameters that relate to the given type. It returns a new GParamSpec object.

• g_value_set_*(): Set the value stored by the GValue object to the given variable. This
new value must be the same type as the function.

• g_value_get_*(): Retrieve the value stored by the GValue object, which is already cast to
the given type.

■Note In the previous list of functions, when you replace the asterisk character with a data type, you
should match the case of the function. For example, the asterisk in G_IS_PARAM_SPEC_*() should be
replaced by a data type in all upper case. For more examples, you should visit the API documentation.

Setting and Retrieving Object Properties

In the class initialization function, the default set_property() and get_property() functions
were overridden in GObjectClass. These two functions must be overridden if your new GObject
has one or more properties. Listing 11-8 is the implementation of the function that will be
called for every property sent to g_object_set().

7931.book Page 397 Thursday, March 1, 2007 8:06 PM

398 C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S

Listing 11-8. Setting Object Properties

static void
my_ip_address_set_property (GObject *object,
 guint prop_id,
 const GValue *value,
 GParamSpec *pspec)
{
 MyIPAddress *ipaddress = MY_IP_ADDRESS (object);
 gint address[4] = { -1, -1, -1, -1 };

 switch (prop_id)
 {
 case PROP_IP1:
 address[0] = g_value_get_int (value);
 my_ip_address_set_address (ipaddress, address);
 break;
 case PROP_IP2:
 address[1] = g_value_get_int (value);
 my_ip_address_set_address (ipaddress, address);
 break;
 case PROP_IP3:
 address[2] = g_value_get_int (value);
 my_ip_address_set_address (ipaddress, address);
 break;
 case PROP_IP4:
 address[3] = g_value_get_int (value);
 my_ip_address_set_address (ipaddress, address);
 break;
 default:
 G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
 break;
 }
}

When the property arrives, it is stored as a GValue object, which is a generic container used
to store any type of object. The g_value_get_int() function is used to retrieve the integer value
stored by GValue. There are functions available for converting between all fundamental data
types and GValue objects available, defined in the previous section.

The next step is to store the new value of the property if it is a valid property. The property
identifier is stored in prop_id, which can be compared to the installed property to find the one
that is being altered. The function my_ip_address_set_address() was used to apply the changes.
You can view the implementation of this function later in this section.

7931.book Page 398 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S 399

It would also be possible to implement the same functionality provided by this function
with the method shown in the following code snippet. However, it was given to you in the
expanded form, because it is a rare case when every property of a widget is the same type and
is stored in an array.

address[prop_id-1] = g_value_get_int (value);
my_ip_address_set_address (ipaddress, address);

The MyIPAddress example in this chapter is one of the simplest examples possible and
could be greatly expanded. If you were implementing this widget for use in an application, you
would want to provide further properties and signals, as well as provide further functionality.
Keep this in mind as you continue to examine this example.

The default get_property() function of the object class was overridden. Therefore, when
g_object_set() is called on a property of MyIPAddress, my_ip_address_get_property() will be
called as shown in Listing 11-9.

Listing 11-9. Retrieving Object Properties

static void
my_ip_address_get_property (GObject *object,
 guint prop_id,
 GValue *value,
 GParamSpec *pspec)
{
 MyIPAddress *ipaddress = MY_IP_ADDRESS (object);
 MyIPAddressPrivate *priv = MY_IP_ADDRESS_GET_PRIVATE (ipaddress);

 switch (prop_id)
 {
 case PROP_IP1:
 g_value_set_int (value, priv->address[0]);
 break;
 case PROP_IP2:
 g_value_set_int (value, priv->address[1]);
 break;
 case PROP_IP3:
 g_value_set_int (value, priv->address[2]);
 break;
 case PROP_IP4:
 g_value_set_int (value, priv->address[3]);
 break;
 default:
 G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
 break;
 }
}

7931.book Page 399 Thursday, March 1, 2007 8:06 PM

400 C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S

The my_ip_address_get_property() function takes the appropriate property from the
MyIPAddressPrivate structure and converts it to a GValue. The new value is then applied to the
user’s variable and cast to the correct variable type. The private structure is retrieved by using
the MY_IP_ADDRESS_GET_PRIVATE() function that was defined at the top of the source file.

Instantiating the Widget

The other initialization function that needs to be implemented is my_ip_address_init(), which
is called every time a new MyIPAddress widget is created. This differs from the class initializa-
tion function, which is only called in order to set up the object class, not every time the object
is instantiated. This instance initialization function, displayed in Listing 11-10, sets the initial
IP address values to zero, performs initial rendering, and connects the necessary signals.

Listing 11-10. Instantiating a MyIPAddress Object

static void
my_ip_address_init (MyIPAddress *ipaddress)
{
 MyIPAddressPrivate *priv = MY_IP_ADDRESS_GET_PRIVATE (ipaddress);
 PangoFontDescription *fd;
 guint i;

 for (i = 0; i < 4; i++)
 priv->address[i] = 0;

 fd = pango_font_description_from_string ("Monospace");
 gtk_widget_modify_font (GTK_WIDGET (ipaddress), fd);
 my_ip_address_render (ipaddress);
 pango_font_description_free (fd);

 /* The key-press-event signal will be used to filter out certain keys. We will
 * also monitor the cursor-position property so it can be moved correctly. */
 g_signal_connect (G_OBJECT (ipaddress), "key-press-event",
 G_CALLBACK (my_ip_address_key_pressed), NULL);
 g_signal_connect (G_OBJECT (ipaddress), "notify::cursor-position",
 G_CALLBACK (my_ip_address_move_cursor), NULL);
}

The my_ip_address_init()function accepts a MyIPAddress object that has already been
created and cast. Your task is to do any further processing that needs to be performed on the
widget before it is returned to the programmer and displayed to the user.

In this example, the function first initializes the four IP address values to zero. Then, the
font of the widget is set to Monospace. Notice that the size is not specified, which allows the
user’s theme to dictate the size. This is done so that users with large fonts will still be able to
read the content of the widget.

7931.book Page 400 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S 401

Lastly, the MyIPAddress widget is connected to two signals. The key-press-event callback
function will filter the keys that the widget will react to. Then, when cursor-position changes,
the position will be updated, so we can control where text is entered. Remember that, since
MyIPAddress is derived from GtkEntry, it inherits all of its members, properties, signals, func-
tions, and so on. It also inherits everything from GtkWidget, GtkObject, and GObject, since those
classes are its ancestors.

Next, a few private functions are implemented that will handle how the widget interacts
with the user. Listing 11-11 shows a function called my_ip_address_render(). This function
builds a string out of the IP address values and adds it to the GtkEntry widget. This is the only
function that will write to the GtkEntry widget.

Listing 11-11. Rendering the MyIPAddress Widget

/* Render the current content of the IP address in the GtkEntry widget. */
static void
my_ip_address_render (MyIPAddress *ipaddress)
{
 MyIPAddressPrivate *priv = MY_IP_ADDRESS_GET_PRIVATE (ipaddress);
 GString *text;
 guint i;

 /* Create a string that displays the IP address content, adding spaces if a
 * number cannot fill three characters. */
 text = g_string_new (NULL);
 for (i = 0; i < 4; i++)
 {
 gchar *temp = g_strdup_printf ("%3i.", priv->address[i]);
 text = g_string_append (text, temp);
 g_free (temp);
 }

 /* Remove the trailing decimal place and add the string to the GtkEntry. */
 text = g_string_truncate (text, 15);
 gtk_entry_set_text (GTK_ENTRY (ipaddress), text->str);
 g_string_free (text, TRUE);
}

This function uses GString to build a fifteen-character IP address string out of three peri-
ods and the four integers that are currently stored in the instance of MyIPAddressPrivate. This
string will be displayed to the user in the GtkEntry widget. If an integer does not fill up three
spaces, it is padded with one or two space characters so that the IP address will always have a
width of fifteen characters. This allows us to know exactly where the cursor should be placed at
all times, since the width is guaranteed.

7931.book Page 401 Thursday, March 1, 2007 8:06 PM

402 C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S

The MyIPAddress widget is built so that the cursor is forced to one of four positions. Each
number is always aligned to the right and padded with spaces on the left if necessary. Because
of this, the cursor is forced into the position on the right of one of the four numbers. This is
done in the notify::cursor-position callback function displayed in Listing 11-12.

Listing 11-12. Callback Functions for MyIPAddress

/* Force the cursor to always be at the end of one of the four numbers. */
static void
my_ip_address_move_cursor (GObject *entry,
 GParamSpec *spec)
{
 gint cursor = gtk_editable_get_position (GTK_EDITABLE (entry));

 if (cursor <= 3)
 gtk_editable_set_position (GTK_EDITABLE (entry), 3);
 else if (cursor <= 7)
 gtk_editable_set_position (GTK_EDITABLE (entry), 7);
 else if (cursor <= 11)
 gtk_editable_set_position (GTK_EDITABLE (entry), 11);
 else
 gtk_editable_set_position (GTK_EDITABLE (entry), 15);

}

/* Handle key presses of numbers, tabs, backspaces and returns. */
static gboolean
my_ip_address_key_pressed (GtkEntry *entry,
 GdkEventKey *event)
{
 MyIPAddressPrivate *priv = MY_IP_ADDRESS_GET_PRIVATE (entry);
 guint k = event->keyval;
 gint cursor, value;

 /* If the key is an integer, append the new number to the address. This is only
 * done if the resulting number will be less than 255. */
 if ((k >= GDK_0 && k <= GDK_9) || (k >= GDK_KP_0 && k <= GDK_KP_9))
 {
 cursor = floor (gtk_editable_get_position (GTK_EDITABLE (entry)) / 4);
 value = g_ascii_digit_value (event->string[0]);

 if ((priv->address[cursor] == 25) && (value > 5))
 return TRUE;

7931.book Page 402 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S 403

 if (priv->address[cursor] < 26)
 {
 priv->address[cursor] *= 10;
 priv->address[cursor] += value;
 my_ip_address_render (MY_IP_ADDRESS (entry));
 gtk_editable_set_position (GTK_EDITABLE (entry), (4 * cursor) + 3);
 g_signal_emit_by_name ((gpointer) entry, "ip-changed");
 }
 }

 /* Move to the next number or wrap around to the first. */
 else if (k == GDK_Tab)
 {
 cursor = (floor (gtk_editable_get_position (GTK_EDITABLE (entry)) / 4) + 1);
 gtk_editable_set_position (GTK_EDITABLE (entry), (4 * (cursor % 4)) + 3);
 }

 /* Delete the last digit of the current number. This just divides the number by
 * 10, relying on the fact that any remainder will be ignored. */
 else if (k == GDK_BackSpace)
 {
 cursor = floor (gtk_editable_get_position (GTK_EDITABLE (entry)) / 4);
 priv->address[cursor] /= 10;
 my_ip_address_render (MY_IP_ADDRESS (entry));
 gtk_editable_set_position (GTK_EDITABLE (entry), (4 * cursor) + 3);
 g_signal_emit_by_name ((gpointer) entry, "ip-changed");
 }

 /* Activate the GtkEntry widget, which corresponds to the activate signal. */
 else if ((k == GDK_Return) || (k == GDK_KP_Enter))
 gtk_widget_activate (GTK_WIDGET (entry));

 return TRUE;
}

Listing 11-12 also includes a second function, my_ip_address_key_pressed(), which is
called when the key-press-event signal is emitted. It handles specific keys, ignoring all of the
rest. For example, number keys are handled, but all letters and symbols are ignored. We will
walk through each set of keys that is handled one at a time.

The first conditional handles numbers pressed on the keyboard, whether along the top or
in the keypad, as defined in <gdk/gdkkeysyms.h>. GDK_KP_# corresponds to the digit keys on the
number pad, and GDK_# corresponds to the digit keys along the top of the keyboard, both of
which must be accounted for in the conditional statement.

7931.book Page 403 Thursday, March 1, 2007 8:06 PM

404 C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S

The floor() function is used to convert the cursor position into a number between zero
and three, which represents what IP address value should be edited. The event string is also
converted into an integer with g_ascii_digit_value().

Now that you have all of the necessary values, two conditionals check the validity of the
new value. The new integer will only be appended to the current value if the new value will not
exceed 255. If the number is within bounds, the current value is scaled, and the new integer is
appended. Next, the new IP address is rendered in the GtkEntry widget, and the cursor position
refreshed. Lastly, g_signal_emit_by_name() is used to inform the user that the IP address was
changed.

The second conditional handles the Tab key, which will cycle through each of the four
numbers when pressed. This could be altered in another implementation of the widget to cycle
to the next widget in the tab order when the end of the widget is reached.

Next, the Backspace key divides the current value by ten. Since you are dividing an integer
by an integer, the remainder is ignored, and the last digit is dropped off. Then, the widget is
rendered, and the ip-changed signal emitted.

Lastly, the Return and Enter keys call gtk_widget_activate() when pressed. This allows
the user to press these keys to activate the default widget of the window from within the
MyIPAddress widget. All other key presses besides those covered in this section are ignored.

Implementing Public MyIPAddress Functions

The last step to create the widget is to implement the public functions declared in the widget’s
header file. The first function is my_ip_address_new(), which creates a new MyIPAddress widget
in Listing 11-13.

Listing 11-13. Creating a New MyIPAddress Widget

GtkWidget*
my_ip_address_new ()
{
 return GTK_WIDGET (g_object_new (my_ip_address_get_type (), NULL));
}

You should notice that the only task this function provides is casting to a GtkWidget the
object returned by g_object_new(). This is simply a convenience function for many widgets, so
the programmer does not need to create the GObject instance itself. If you are using widgets
that accept parameters into their initialization functions, you would handle those here.

The my_ip_address_get_address() function in Listing 11-14 returns a string representa-
tion of the IP address that is currently stored by the widget. This returned string must be freed
when the programmer is finished with it, since it is created with g_strdup_printf(). While the
user can construct this programmatically, most widgets usually provide a number of conve-
nient functions that perform tasks that will be needed often.

7931.book Page 404 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S 405

Listing 11-14. Retrieving the Current IP Address

gchar*
my_ip_address_get_address (MyIPAddress *ipaddress)
{
 MyIPAddressPrivate *priv = MY_IP_ADDRESS_GET_PRIVATE (ipaddress);

 return g_strdup_printf ("%d.%d.%d.%d", priv->address[0], priv->address[1],
 priv->address[2], priv->address[3]);
}

The last function, my_ip_address_set_address(), applies programmatic changes to the IP
address and is displayed in Listing 11-15. You will notice that the function filters out numbers
that are less than 0 or greater than 255. By doing this, the programmer does not have to provide
new values for every IP address number. This means that we only need to provide one function
for programmatically updating the IP address, since the programmer can update a single value
with it.

Listing 11-15. Setting a New IP Address

void
my_ip_address_set_address (MyIPAddress *ipaddress,
 gint address[4])
{
 MyIPAddressPrivate *priv = MY_IP_ADDRESS_GET_PRIVATE (ipaddress);
 guint i;

 for (i = 0; i < 4; i++)
 {
 if (address[i] >= 0 && address[i] <= 255)
 {
 priv->address[i] = address[i];
 }
 }

 my_ip_address_render (ipaddress);
 g_signal_emit_by_name ((gpointer) ipaddress, "ip-changed");
}

Testing the Widget
The last step in this example is to test whether the widget works. The code in Listing 11-16 cre-
ates a window with a new MyIPAddress widget. An initial IP address of 1.20.35.255 is added,
and the ip-changed signal is connected to a callback function that prints the current state of the
IP address.

7931.book Page 405 Thursday, March 1, 2007 8:06 PM

406 C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S

Listing 11-16. Test the MyIPAddress Widget (ipaddresstest.c)

#include <gtk/gtk.h>
#include "myipaddress.h"

static void ip_address_changed (MyIPAddress*);

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *ipaddress;
 gint address[4] = { 1, 20, 35, 255 };

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "MyIPAddress");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);

 g_signal_connect (G_OBJECT (window), "destroy",
 G_CALLBACK (gtk_main_quit), NULL);

 ipaddress = my_ip_address_new ();
 my_ip_address_set_address (MY_IP_ADDRESS (ipaddress), address);
 g_signal_connect (G_OBJECT (ipaddress), "ip-changed",
 G_CALLBACK (ip_address_changed), NULL);

 gtk_container_add (GTK_CONTAINER (window), ipaddress);
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

/* When the IP address is changed, print the new value to the screen. */
static void
ip_address_changed (MyIPAddress *ipaddress)
{
 gchar *address = my_ip_address_get_address (ipaddress);
 g_print ("%s\n", address);
 g_free (address);
}

7931.book Page 406 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S 407

This MyIPAddress widget is a very simple example of creating a new widget. For use in an
actual application, it would have to be expanded greatly. For example, you would want to cus-
tomize the pop-up menu that is displayed when the user right-clicks the widget. Another
enhancement would be to allow the programmer to define custom IP address formats. You
may want to try expanding the MyIPAddress widget before continuing on to the next section so
that you can better understand what was covered in this section.

Creating a Widget from Scratch
Now that you have learned how to derive a new widget from one that already exists, it is time to
learn how to create a widget from scratch. You will notice that a lot of the code in this section is
similar to that in the previous. This is because new widgets are implemented in the same way as
those that are derived, since they both have a base type of GObject; it just takes a little more work.

In this section, you will learn how to implement a widget called MyMarquee. This widget
scrolls a message from the right side of the widget to the left side, over and over. Make sure you
understand this widget, because it will be your job to extend it in this chapter’s exercise.

You can view a screenshot of the MyMarquee widget in Figure 11-2. As with all of the examples
in this book, you can download the full source code for this example on the book’s web site.

Figure 11-2. The MyMarquee widget

Creating the MyMarquee Header File
The first step in setting up a new widget is to create the header file. This allows you to
define the programmatic interface that will be used to control the widget. Listing 11-7
gives the full header file for the MyMarquee widget, which should appear very similar to
the MyIPAddress header file.

Listing 11-17. MyMarquee Widget Header (mymarquee.h)

#ifndef __MY_MARQUEE_H__
#define __MY_MARQUEE_H__

#include <glib.h>
#include <gdk/gdk.h>
#include <gtk/gtkwidget.h>

7931.book Page 407 Thursday, March 1, 2007 8:06 PM

408 C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S

G_BEGIN_DECLS

#define MY_MARQUEE_TYPE (my_marquee_get_type ())
#define MY_MARQUEE(obj) (G_TYPE_CHECK_INSTANCE_CAST ((obj), \
 MY_MARQUEE_TYPE, MyMarquee))
#define MY_MARQUEE_CLASS(klass) (G_TYPE_CHECK_CLASS_CAST ((klass), \
 MY_MARQUEE_TYPE, MyMarqueeClass))
#define IS_MY_MARQUEE(obj) (G_TYPE_CHECK_INSTANCE_TYPE ((obj), \
 MY_MARQUEE_TYPE))
#define IS_MY_MARQUEE_CLASS(klass) (G_TYPE_CHECK_CLASS_TYPE ((klass), \
 MY_MARQUEE_TYPE))

typedef struct _MyMarquee MyMarquee;
typedef struct _MyMarqueeClass MyMarqueeClass;

struct _MyMarquee
{
 GtkWidget widget;
};

struct _MyMarqueeClass
{
 GtkWidgetClass parent_class;
};

GType my_marquee_get_type (void) G_GNUC_CONST;
GtkWidget* my_marquee_new (void);

void my_marquee_set_message (MyMarquee *marquee, const gchar *message);
gchar* my_marquee_get_message (MyMarquee *marquee);

void my_marquee_set_speed (MyMarquee *marquee, gint speed);
gint my_marquee_get_speed (MyMarquee *marquee);

void my_marquee_slide (MyMarquee *marquee);

G_END_DECLS

#endif /* __MY_MARQUEE_H__ */

Since MyMarquee is a new widget, it will be directly derived from GtkWidget. This is shown
by the fact that MyMarquee contains a GtkWidget object and MyMarqueeClass contains a
GtkWidgetClass class. Recall that neither of these members should be declared as pointers!
Deriving the widget from GtkWidget allows you to take advantage of all of the signals and prop-
erties that are common to every widget, including event handling.

7931.book Page 408 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S 409

The widget will have two properties that the programmer can set and retrieve. The user
can use my_marquee_set_message() to change the message that is scrolled by the widget. The
speed is an integer between 1 and 50. The message will be moved this many pixels to the left
every time my_marquee_slide() is called.

Creating the MyMarquee Widget
Now that the header file is created, Listing 11-18 performs basic initialization such as declaring
the private class, enumerating properties, and creating a new GType. There are no new signals
associated with this widget, so the signal enumeration and array of signal identifiers are
omitted.

Listing 11-18. Defining MyMarqueePrivate and MyMarquee GType (mymarquee.c)

#include "mymarquee.h"

#define MARQUEE_MIN_WIDTH 300

#define MY_MARQUEE_GET_PRIVATE(obj) (G_TYPE_INSTANCE_GET_PRIVATE ((obj), \
 MY_MARQUEE_TYPE, MyMarqueePrivate))

typedef struct _MyMarqueePrivate MyMarqueePrivate;

struct _MyMarqueePrivate
{
 gchar *message;
 gint speed;
 gint current_x;
};

enum
{
 PROP_0,
 PROP_MESSAGE,
 PROP_SPEED
};

/* Get a GType that corresponds to MyMarquee. The first time this function is
 * called (on object instantiation), the type is registered. */
GType
my_marquee_get_type ()
{
 static GType marquee_type = 0;

7931.book Page 409 Thursday, March 1, 2007 8:06 PM

410 C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S

 if (!marquee_type)
 {
 static const GTypeInfo marquee_info =
 {
 sizeof (MyMarqueeClass),
 NULL,
 NULL,
 (GClassInitFunc) my_marquee_class_init,
 NULL,
 NULL,
 sizeof (MyMarquee),
 0,
 (GInstanceInitFunc) my_marquee_init,
 };

 marquee_type = g_type_register_static (GTK_TYPE_WIDGET, "MyMarquee",
 &marquee_info, 0);
 }

 return marquee_type;
}

Listing 11-18 shows the first part of the implementation of the MyMarquee widget. We begin
this file by creating the MyMarqueePrivate structure, which will be used to hold the values of
necessary widget properties. This includes the displayed message, the scrolling speed, and the
current horizontal position of the message. The next position of the message will be calculated
based on this position, which allows us to easily handle resizing of the widget.

Since MyMarquee is derived directly from GtkWidget, you will need to register the widget with a
parent class type of GTK_TYPE_WIDGET, as shown in the implementation of my_marquee_get_type().
The implementation of this function is almost an exact replica of my_ip_address_get_type().

Listing 11-19 shows the MyMarquee class and instance initialization functions. In
my_marquee_class_init(), you will notice that we not only override functions in the GObjectClass
but also in the GtkWidgetClass.

Listing 11-19. Initializing the MyMarquee Class and Structure

/* Initialize the MyMarqueeClass class by overriding standard functions,
 * registering a private class and setting up signals and properties. */
static void
my_marquee_class_init (MyMarqueeClass *klass)
{
 GObjectClass *gobject_class;
 GtkWidgetClass *widget_class;

 gobject_class = (GObjectClass*) klass;
 widget_class = (GtkWidgetClass*) klass;

7931.book Page 410 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S 411

 /* Override the standard functions for setting and retrieving properties. */
 gobject_class->set_property = my_marquee_set_property;
 gobject_class->get_property = my_marquee_get_property;

 /* Override the standard functions for realize, expose, and size changes. */
 widget_class->realize = my_marquee_realize;
 widget_class->expose_event = my_marquee_expose;
 widget_class->size_request = my_marquee_size_request;
 widget_class->size_allocate = my_marquee_size_allocate;

 /* Add MyMarqueePrivate as a private data class of MyMarqueeClass. */
 g_type_class_add_private (klass, sizeof (MyMarqueePrivate));

 /* Register four GObject properties, the message and the speed. */
 g_object_class_install_property (gobject_class, PROP_MESSAGE,
 g_param_spec_string ("message",
 "Marquee Message",
 "The message to scroll",
 "",
 G_PARAM_READWRITE));

 g_object_class_install_property (gobject_class, PROP_SPEED,
 g_param_spec_int ("speed",
 "Speed of the Marquee",
 "The percentage of movement every second",
 1, 50, 25,
 G_PARAM_READWRITE));
}

/* Initialize the actual MyMarquee widget. This function is used to set up
 * the initial view of the widget and set necessary properties. */
static void
my_marquee_init (MyMarquee *marquee)
{
 MyMarqueePrivate *priv = MY_MARQUEE_GET_PRIVATE (marquee);

 priv->current_x = MARQUEE_MIN_WIDTH;
 priv->speed = 25;
}

The next step is to implement the class and instance initialization functions that were ref-
erenced by the GTypeInfo object. In this example, in addition to overriding functions in the
parent GObjectClass, we also need to override a few in GtkWidgetClass. These include overrid-
ing calls for realizing and exposing the widget as well as size requests and allocations.

You need to be especially careful when overriding functions in GtkWidgetClass, because
they perform crucial tasks for the widget. You can render the widget unusable if you do not per-
form all of the necessary functions. I would recommend that you view how other GTK+ widgets

7931.book Page 411 Thursday, March 1, 2007 8:06 PM

412 C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S

implement overridden functions when you do it yourself. For a full list of functions that can be
overridden, you should view the GtkWidgetClass structure in <gtk/gtkwidget.h>.

The MyMarqueePrivate structure was also added in the class initialization function to
MyMarqueeClass with g_type_class_add_private(). Since the object is not stored as a member
of the MyMarqueeClass structure, you need to use the definition of MY_MARQUEE_GET_PRIVATE() to
retrieve the MyMarqueePrivate object, as shown in the instance initialization function.

In my_marquee_init(), the current position of the message is set to be displayed beyond
the right side of the widget. By default, the message will then be scrolled 25 pixels to the left
when my_marquee_slide() is programmatically called.

The implementations of the overridden set_property() and get_property() functions are
similar to the previous example. These functions are displayed in Listing 11-20, which allow
the user to set and retrieve the message and speed properties of the widget.

Listing 11-20. Setting and Retrieving MyMarquee Properties

/* This function is called when the programmer gives a new value for a widget
 * property with g_object_set(). */
static void
my_marquee_set_property (GObject *object,
 guint prop_id,
 const GValue *value,
 GParamSpec *pspec)
{
 MyMarquee *marquee = MY_MARQUEE (object);

 switch (prop_id)
 {
 case PROP_MESSAGE:
 my_marquee_set_message (marquee, g_value_get_string (value));
 break;
 case PROP_SPEED:
 my_marquee_set_speed (marquee, g_value_get_int (value));
 break;
 default:
 G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
 break;
 }
}

/* This function is called when the programmer requests the value of a widget
 * property with g_object_get(). */
static void
my_marquee_get_property (GObject *object,
 guint prop_id,
 GValue *value,
 GParamSpec *pspec)

7931.book Page 412 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S 413

{
 MyMarquee *marquee = MY_MARQUEE (object);
 MyMarqueePrivate *priv = MY_MARQUEE_GET_PRIVATE (marquee);

 switch (prop_id)
 {
 case PROP_MESSAGE:
 g_value_set_string (value, priv->message);
 break;
 case PROP_SPEED:
 g_value_set_int (value, priv->speed);
 break;
 default:
 G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
 break;
 }
}

Listing 11-21 shows the implementation of my_marquee_new(). This is the function that the
programmer can call to create a new MyMarquee widget. It is simply a convenience function, so
you do not have to call g_object_new() directly.

Listing 11-21. Creating a New MyMarquee Widget

GtkWidget*
my_marquee_new ()
{
 return GTK_WIDGET (g_object_new (my_marquee_get_type (), NULL));
}

Realizing the Widget
Where the implementation of this widget is different from MyIPAddress is the overridden
GtkWidgetClass functions. The first of these functions is my_marquee_realize(), shown in
Listing 11-22. This function is called when the MyMarquee instance is first realized.

Listing 11-22. Realizing the MyMarquee Widget

static void
my_marquee_realize (GtkWidget *widget)
{
 MyMarquee *marquee;
 GdkWindowAttr attributes;
 gint attr_mask;

 g_return_if_fail (widget != NULL);
 g_return_if_fail (IS_MY_MARQUEE (widget));

7931.book Page 413 Thursday, March 1, 2007 8:06 PM

414 C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S

 /* Set the GTK_REALIZED flag so it is marked as realized. */
 GTK_WIDGET_SET_FLAGS (widget, GTK_REALIZED);
 marquee = MY_MARQUEE (widget);

 /* Create a new GtkWindowAttr object that will hold info about the GdkWindow. */
 attributes.x = widget->allocation.x;
 attributes.y = widget->allocation.y;
 attributes.width = widget->allocation.width;
 attributes.height = widget->allocation.height;
 attributes.wclass = GDK_INPUT_OUTPUT;
 attributes.window_type = GDK_WINDOW_CHILD;
 attributes.event_mask = gtk_widget_get_events (widget);
 attributes.event_mask |= (GDK_EXPOSURE_MASK);
 attributes.visual = gtk_widget_get_visual (widget);
 attributes.colormap = gtk_widget_get_colormap (widget);

 /* Create a new GdkWindow for the widget. */
 attr_mask = GDK_WA_X | GDK_WA_Y | GDK_WA_VISUAL | GDK_WA_COLORMAP;
 widget->window = gdk_window_new (widget->parent->window, &attributes, attr_mask);
 gdk_window_set_user_data (widget->window, marquee);

 /* Attach a style to the GdkWindow and draw a background color. */
 widget->style = gtk_style_attach (widget->style, widget->window);
 gtk_style_set_background (widget->style, widget->window, GTK_STATE_NORMAL);
 gdk_window_show (widget->window);
}

The first tasks performed by my_marquee_realize() are to check whether the widget is non-
NULL and whether it is a MyMarquee widget. The gtk_return_if_fail() function is used to return
from the function if either test returns FALSE. You should always perform these tests, because
your program can respond unexpectedly otherwise.

The purpose of the realization function is to set up a GdkWindow for the instance of the wid-
get so that it can be rendered to the screen. To do this, you first need a GdkWindowAttr object
that holds the desired properties of the new GdkWindow. Table 11-3 describes of all of the
GtkWindowAttr structure’s members.

Table 11-3. GtkWindowAttr Members

Variable Description

gchar *title The title of the window or NULL if the window is not a top-level
window. This usually does not need to be set.

gint event_mask A bitmask of GDK events that will be recognized by the widget.
You can use gtk_widget_get_events() to retrieve all of the
events that are currently associated with the widget and then
add your own.

7931.book Page 414 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S 415

In our implementation of my_marquee_realize(), we first set the horizontal and vertical
positions of the widget, which are relative to the top-left corner of the parent window. This is
easy, since they are already provided by the widget’s allocation. The allocation also provides
the initial width and height of the widget.

The next member, wclass, is set to one of two values. GDK_INPUT_OUTPUT refers to a nor-
mal GdkWindow widget, which should be used for most widgets. GDK_INPUT_ONLY is an invisible
GdkWindow widget that is used to receive events. Next, you can set the window type, which is
determined by a value from the following GdkWindowType enumeration:

• GDK_WINDOW_ROOT: A window that has no parent window and will cover the whole screen.
This is usually only used by the window manager.

• GDK_WINDOW_TOPLEVEL: A top-level window that will usually have decorations. For exam-
ple, GtkWindow uses this window type.

• GDK_WINDOW_CHILD: A child window of a top-level window or another child window. This
is used for most widgets that are not top-level windows themselves.

• GDK_WINDOW_DIALOG: This window type is depreciated and should not be used.

• GDK_WINDOW_TEMP: A window that is only going to be displayed temporarily, such as a
GtkMenu widget.

• GDK_WINDOW_FOREIGN: A foreign window type implemented by another library that needs
to be wrapped as a GdkWindow widget.

gint x, y The x and y coordinates of the GdkWindow object with respect to
the parent window. You can retrieve these values from the
widget’s allocation.

gint width, height The width and height of the GdkWindow object. You can retrieve
these values from the widget’s allocation.

GdkWindowClass wclass This should be set to GDK_INPUT_OUTPUT for most GdkWindow
objects or GDK_INPUT_ONLY if the window will be invisible.

GdkVisual *visual A GdkVisual object to use for the window. The default can be
retrieved with gtk_widget_get_visual().

GdkColormap *colormap A GdkColormap object to use for the window. The default can be
retrieved with gtk_widget_get_colormap().

GdkWindowType window_type The type of window that will be displayed as defined by the
GdkWindowType enumeration.

GdkCursor *cursor An optional GdkCursor object that will be displayed when the
mouse is over the top of the widget.

gchar *wmclass_name This property should be ignored. For more information, view
the documentation on gtk_window_set_wmclass().

gchar *wmclass_class This property should be ignored. For more information, view
the documentation on gtk_window_set_wmclass().

gboolean override_redirect If set to TRUE, the widget will bypass the window manager.

Variable Description

7931.book Page 415 Thursday, March 1, 2007 8:06 PM

416 C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S

The next call sets the event mask for the GdkWindow. A call to gtk_widget_get_events()
returns all events that are already installed on the widget, and then we add GDK_EXPOSURE_MASK
to the list. This will make sure that our exposure function will be called.

Next, we set the GdkVisual object that will be used for the GdkWindow widget. This object is used
to describe specific information about the video hardware. In most cases, you should use the
default GdkVisual assigned to the widget, which you can retrieve with gtk_widget_get_visual().

The last property set in the GdkWindowAttr structure is the color map. Again, we use
gtk_widget_get_colormap() to retrieve the default color map for the widget, since you will
usually not need to edit this.

The next step is to create a mask of specific GdkWindowAttributesType values, which indi-
cate which fields in the GdkWindowAttr should be honored. In this example, the specified x and
y coordinates, GdkVisual, and GdkColormap will be used.

attributes_mask = GDK_WA_X | GDK_WA_Y | GDK_WA_VISUAL | GDK_WA_COLORMAP;

We now have enough information to create a new GdkWindow for the widget with
gdk_window_new(). This function accepts the parent GdkWindow, a GdkWindowAttr object,
and a mask of attributes to honor.

GdkWindow* gdk_window_new (GdkWindow *parent,
 GdkWindowAttr *attributes,
 gint attributes_mask);

Next, the GtkWidget should be stored as the user data of the GdkWindow for custom widgets
with gdk_window_set_user_data(). This ensures that widget events such as expose-event are
recognized. If you do not call this, events will not be recognized.

void gdk_window_set_user_data (GdkWindow *window,
 gpointer user_data);

The window’s style is then attached to the window with gtk_style_attach(), which will
begin the process of creating graphics contexts for the style. You should always make sure to
store the returned value, since it may be a new style.

GtkStyle* gtk_style_attach (GtkStyle *style,
 GdkWindow *window);

Once the style is attached to the window, the background of the window is set. The
gtk_style_set_background() sets the background color of the GdkWindow to the color specified
by the GtkStyle in the given state.

void gtk_style_set_background (GtkStyle *style,
 GdkWindow *window,
 GtkStyleType state_type);

Lastly, the window is displayed to the user with a call to gdk_window_show(). If you do not
call this function, the widget will never be visible to the user. This function will also make sure
that all of the necessary initialization has been performed.

7931.book Page 416 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S 417

Specifying Size Requests and Allocations
We also overrode the size request and allocation functions of the parent GtkWindowClass. The
my_marquee_size_request() function in Listing 11-23 was simply used to specify default width
and height values to the requisition.

Listing 11-23. Handling Size Requests and Allocations

/* Handle size requests for the widget. This function forces the widget to have
 * an initial size set according to the predefined width and the font size. */
static void
my_marquee_size_request (GtkWidget *widget,
 GtkRequisition *requisition)
{
 PangoFontDescription *fd;

 g_return_if_fail (widget != NULL || requisition != NULL);
 g_return_if_fail (IS_MY_MARQUEE (widget));

 fd = widget->style->font_desc;
 requisition->width = MARQUEE_MIN_WIDTH;
 requisition->height = (pango_font_description_get_size (fd) / PANGO_SCALE) + 10;
}

/* Handle size allocations for the widget. This does the actual resizing of the
 * widget to the requested allocation. */
static void
my_marquee_size_allocate (GtkWidget *widget,
 GtkAllocation *allocation)
{
 MyMarquee *marquee;

 g_return_if_fail (widget != NULL || allocation != NULL);
 g_return_if_fail (IS_MY_MARQUEE (widget));

 widget->allocation = *allocation;
 marquee = MY_MARQUEE (widget);

 if (GTK_WIDGET_REALIZED (widget))
 {
 gdk_window_move_resize (widget->window, allocation->x, allocation->y,
 allocation->width, allocation->height);
 }
}

7931.book Page 417 Thursday, March 1, 2007 8:06 PM

418 C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S

The size request function sets the initial width to MARQUEE_MIN_WIDTH, which was set at the
top of the file. It also forces the height to be at least the height of the font plus 10 pixels. This will
make sure that the whole message can be displayed in the widget along with some padding.

The allocation function in Listing 11-23 begins by assigning the given allocation to the
widget. Then, if the widget is realized, it calls gdk_window_move_resize(). This function can be
used to resize a GdkWindow and move it in a single call. It accepts the GdkWindow to work on as
well as the new x coordinate, y coordinate, width, and height of the window.

void gdk_window_move_resize (GdkWindow *window,
 gint x,
 gint y,
 gint width,
 gint height);

Exposing the Widget
The my_marquee_expose() function is where things become especially interesting. This func-
tion is called when the widget is first shown to the user, when the widget is resized, and when a
part of the window is shown that was previously hidden. It is displayed in Listing 11-24.

Listing 11-24. Exposing the MyMarquee Widget

static gint
my_marquee_expose (GtkWidget *widget,
 GdkEventExpose *event)
{
 PangoFontDescription *fd;
 MyMarquee *marquee;
 MyMarqueePrivate *priv;
 PangoLayout *layout;
 PangoContext *context;
 gint width, height;

 g_return_val_if_fail (widget != NULL || event != NULL, FALSE);
 g_return_val_if_fail (IS_MY_MARQUEE (widget), FALSE);

 if (event->count > 0)
 return TRUE;

 marquee = MY_MARQUEE (widget);
 priv = MY_MARQUEE_GET_PRIVATE (marquee);
 fd = widget->style->font_desc;
 context = gdk_pango_context_get ();
 layout = pango_layout_new (context);
 g_object_unref (context);

7931.book Page 418 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S 419

 /* Create a new PangoLayout out of the message with the given font. */
 pango_layout_set_font_description (layout, fd);
 pango_layout_set_text (layout, priv->message, -1);
 pango_layout_get_size (layout, &width, &height);

 /* Clear the text from the background of the widget. */
 gdk_window_clear_area (widget->window, 0, 0, widget->allocation.width,
 widget->allocation.height);

 /* Draw the PangoLayout on the widget, which is the message text. */
 gdk_draw_layout (widget->window,
 widget->style->fg_gc[widget->state],
 priv->current_x,
 (widget->allocation.height - (height / PANGO_SCALE)) / 2,
 layout);

 return TRUE;
}

We begin by creating a new PangoLayout with pango_layout_new(). This layout will be used
to draw text onto the widget. This function accepts a PangoContext object; the default context
was retrieved with gdk_pango_context_get().

PangoLayout* pango_layout_new (PangoContext *context);

This implementation of PangoLayout is extremely simple. A call to pango_layout_set_text()
sets the textual content of the layout to the message property of the MyMarquee widget. The width
and height of the text are then retrieved with a call to pango_layout_get_size().

■Note The width and height values returned by pango_layout_get_size() are scaled by PANGO_SCALE.
Therefore, you will need to divide these integers by the scale in order to obtain their values in pixels.

After the PangoLayout is set up, the whole widget is cleared, which readies the widget to be
drawn. This is performed with gdk_window_clear_area(), which clears the area from the coor-
dinates (x,y) to (x + width,y + height).

void gdk_window_clear_area (GdkWindow *window,
 gint x,
 gint y,
 gint width,
 gint height);

7931.book Page 419 Thursday, March 1, 2007 8:06 PM

420 C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S

Once we clear the area, the layout can be drawn on the screen with gdk_draw_layout(). This
function first accepts the GdkDrawable object to draw on, which is the GdkWindow. The second
parameter is the graphics context to use, which is stored by the GtkStyle member of the class.

void gdk_draw_layout (GdkDrawable *drawable,
 GdkGC *gc,
 gint x,
 gint y,
 PangoLayout *layout);

Lastly, you need to specify the x and y positions at which to draw the layout. You should
note that these positions do not have to be in the window. Initially, the layout is drawn off the
right side of the widget, so that it can scroll to the left. Also, it will not be reset to the initial posi-
tion until it is completely hidden from view on the left side. Therefore, at the end of a scrolling
cycle, the x coordinate will actually be negative.

Drawing Functions
In addition to the ability to draw a PangoLayout object to a GdkWindow object, GDK provides a
number of other primitive drawing functions through the GdkDrawable object. A full list of these
can be found in the GDK API documentation. Table 11-4 lists these functions, so that you can
easily find the one that you need.

Table 11-4. GdkDrawable Functions

Function Description

gdk_draw_arc() Draw an arc beginning at (x,y) and ending at (x + width,y + height).
You have the option of whether to fill in the arc with color or not. You
also need to specify starting and ending angles to 1/64 of a degree.

gdk_draw_drawable() At times, it may be desirable to copy a specific portion of another
drawable area into your GdkDrawable. This function will allow you to
specify an area of the source drawable from which to copy.

gdk_draw_image() Draw a portion of a source GdkImage object onto the drawable area.
You can convert a GdkDrawable object into a GdkImage one, so this can
actually be a source drawable.

gdk_draw_layout() Draw a specific number of characters of text as defined by a
PangoLayout. This is used to place text on a GdkDrawable.

gdk_draw_layout_line() This is similar to gdk_draw_layout(), except it is only capable of
drawing a single line from a PangoLayout called a PangoLayoutLine.

gdk_draw_line() Draw a straight line from a starting point to an ending point. This
line will be drawn using the foreground color of the graphics context.

gdk_draw_lines() Draw a series of lines with endpoints specified in a GdkPoint array.
You must specify the number of points in the array.

7931.book Page 420 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S 421

Implementing Public Functions
The MyMarquee widget includes a number of public functions. The most important is
my_marquee_slide(), which will move the message speed pixels to the left when called. The
programmer can cause a marquee effect by adding this function as a timeout, calling it at a
specified interval of time.

Listing 11-25. Sliding the MyMarquee Message

void
my_marquee_slide (MyMarquee *marquee)
{
 PangoFontDescription *fd;
 GtkWidget *widget;
 MyMarqueePrivate *priv;
 PangoLayout *layout;
 PangoContext *context;
 gint width, height;

gdk_draw_pixbuf() Draw a portion of a GdkPixbuf image on a GdkDrawable object. You
must also specify additional parameters, which will be used when
rendering the image.

gdk_draw_point() Draw a single point on the screen using the foreground color
specified in the graphics context. You simply need to provide the x
and y coordinates for the point.

gdk_draw_points() Draw a number of points on the screen specified in an array of
GdkPoint objects. The GdkPoint structure holds an x and a y
coordinate. You must also specify the number of points in the array.

gdk_draw_polygon() Draw a polygon that connects the points listed in an array of GdkPoint
objects. If necessary, the last point will be connected to the first. You
also have the option of whether or not to fill in the polygon.

gdk_draw_rectangle() This is similar to gdk_draw_polygon(), except the resulting shape is
always a rectangle. You need to specify the x coordinate, y coordinate,
width, and height, as well as whether or not to fill in the rectangle.

gdk_draw_segments() Draw a number of unconnected line segments. Each of these line
segments is stored in a GdkSegment object that holds a start coordinate
and end coordinate. An array of GdkSegment objects is provided to this
function.

gdk_draw_trapezoids() Draw a number of trapezoids stored in an array of GdkTrapezoid
objects. The GdkTrapezoid structure holds y coordinates for the start
point and the end point. It also holds four x coordinates, one for
each corner of the trapezoid.

Function Description

7931.book Page 421 Thursday, March 1, 2007 8:06 PM

422 C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S

 g_return_if_fail (marquee != NULL);
 g_return_if_fail (IS_MY_MARQUEE (marquee));

 widget = GTK_WIDGET (marquee);
 priv = MY_MARQUEE_GET_PRIVATE (marquee);
 fd = widget->style->font_desc;
 context = gdk_pango_context_get ();
 layout = pango_layout_new (context);
 g_object_unref (context);

 /* Create a new PangoLayout out of the message with the given font. */
 pango_layout_set_font_description (layout, fd);
 pango_layout_set_text (layout, priv->message, -1);
 pango_layout_get_size (layout, &width, &height);

 /* Clear the text from the background of the widget. */
 gdk_window_clear_area (widget->window, 0, 0, widget->allocation.width,
 widget->allocation.height);

 /* Scroll the message "speed" pixels to the left or wrap around. */
 priv->current_x = priv->current_x - priv->speed;
 if ((priv->current_x + (width / PANGO_SCALE)) <= 0)
 priv->current_x = widget->allocation.width;

 /* Draw the PangoLayout on the widget, which is the message text. */
 gdk_draw_layout (widget->window,
 widget->style->fg_gc[widget->state],
 priv->current_x,
 (widget->allocation.height - (height / PANGO_SCALE)) / 2,
 layout);
}

You will notice that this function is very similar to the expose function that was previously
implemented. Let us look at the differences between the two functions.

This function must calculate the new position of the text, which is the current location
minus the speed property value. We then need to check whether the message is still visible on
the screen. If it has moved beyond the left bound of the widget, the position will be reset to the
right side of the widget, which loops the scrolling message. At this point, the drawing can be
done just like it was in my_marquee_expose().

■Tip Remember that height and width values retrieved from the PangoLayout are not in pixels. You must
divide the values by PANGO_SCALE in order to retrieve the values in pixels!

7931.book Page 422 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S 423

Lastly, we should provide the ability to set and retrieve the speed and message properties of
the MyMarquee widget. You should note that we have to retrieve the private data structure with
MY_MARQUEE_GET_PRIVATE() to access these properties.

Listing 11-26. Setting and Retrieving the Message and Speed

/* Set the message that is displayed by the widget. */
void
my_marquee_set_message (MyMarquee *marquee,
 const gchar *message)
{
 MyMarqueePrivate *priv = MY_MARQUEE_GET_PRIVATE (marquee);

 if (priv->message)
 {
 g_free (priv->message);
 priv->message = NULL;
 }

 priv->message = g_strdup (message);
}

/* Retrieve the message that is displayed by the widget. You must free this
 * string after you are done using it! */
gchar*
my_marquee_get_message (MyMarquee *marquee)
{
 return g_strdup (MY_MARQUEE_GET_PRIVATE (marquee)->message);
}

/* Set the number of pixels that the message will scroll. */
void
my_marquee_set_speed (MyMarquee *marquee,
 gint speed)
{
 MyMarqueePrivate *priv = MY_MARQUEE_GET_PRIVATE (marquee);
 priv->speed = speed;
}

/* Retrieve the number of pixels that the message will scroll. */
gint
my_marquee_get_speed (MyMarquee *marquee)
{
 return MY_MARQUEE_GET_PRIVATE (marquee)->speed;
}

7931.book Page 423 Thursday, March 1, 2007 8:06 PM

424 C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S

Testing the Widget
Now that the widget sources are written, it is time to test the widget. A small test application can
be viewed in Listing 11-27. A timeout is added, which will make a call to my_marquee_slide()
about every 150 milliseconds.

The marquee is set with an initial message to display of “Wheeeee!” and will move 10 pixels
to the left every time my_marquee_slide() is called.

Listing 11-27. Test the MyMarquee Widget (marqueetest.c)

#include <gtk/gtk.h>
#include "mymarquee.h"

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *marquee;
 PangoFontDescription *fd;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "MyMarquee");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);

 g_signal_connect (G_OBJECT (window), "destroy",
 G_CALLBACK (gtk_main_quit), NULL);

 fd = pango_font_description_from_string ("Monospace 30");
 marquee = my_marquee_new ();
 gtk_widget_modify_font (marquee, fd);
 my_marquee_set_message (MY_MARQUEE (marquee), "Wheeeee!");
 my_marquee_set_speed (MY_MARQUEE (marquee), 10);
 pango_font_description_free (fd);

 g_timeout_add (150, (GSourceFunc) my_marquee_slide, (gpointer) marquee);

 gtk_container_add (GTK_CONTAINER (window), marquee);
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

7931.book Page 424 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S 425

Implementing Interfaces
In past chapters, you have been introduced to a number of interfaces including GtkCellEditable,
GtkEditable, GtkFileChooser, GtkTreeModel, and GtkRecentChooser. Interfaces in GObject are very
similar to those in Java. New interfaces are derived from GTypeInterface as shown in Listing 11-28.

■Note The code in this section simply implements a very basic interface and object to illustrate what is
necessary to use interfaces. For any practical purposes, it would need to be greatly expanded to include much
more API.

Listing 11-28. The Interface Header File (myiface.h)

#ifndef __MY_IFACE_H__
#define __MY_IFACE_H__

#include <gtk/gtk.h>

G_BEGIN_DECLS

#define MY_TYPE_IFACE (my_iface_get_type ())
#define MY_IFACE(obj) (G_TYPE_CHECK_INSTANCE_CAST ((obj), \
 GTK_TYPE_IFACE, MyIFace))
#define MY_IS_IFACE(obj) (G_TYPE_CHECK_INSTANCE_TYPE ((obj), \
 GTK_TYPE_IFACE))
#define MY_IFACE_GET_INTERFACE(inst) (G_TYPE_INSTANCE_GET_INTERFACE ((inst), \
 MY_TYPE_IFACE, MyIFaceInterface))

typedef struct _MyIFace MyIFace;
typedef struct _MyIFaceInterface MyIFaceInterface;

struct _MyIFaceInterface
{
 GTypeInterface parent;

 void (*print_message) (MyIFace *obj, gchar *message);
};

GType my_iface_get_type ();
void my_iface_print_message (MyIFace *obj, gchar *message);

G_END_DECLS

#endif /* __MY_IFACE_H__ */

7931.book Page 425 Thursday, March 1, 2007 8:06 PM

426 C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S

You will notice that the myiface.h header file contains much of the same functions and
structures as when we were creating new widgets. There are four definitions; they return the
interface’s GType, cast the interface, check whether it is a valid GTK_TYPE_IFACE, and return the
associated interface.

When declaring interfaces, you must declare a type definition for the MyIFace structure,
but this is merely an opaque type that allows MY_IFACE() to work. The MyIFaceInterface is the
actual content of the interface. It should include a GTypeInterface object, which is the parent
type of every interface.

It also includes one or more function pointers. The programmer overrides these functions
when an object implements the given interface. This allows each object to implement the inter-
face in its own way, while still providing the consistency of naming across multiple objects.

Implementing the Interface
Listing 11-29 is a very basic implementation of the MyIFace source file. It provides functions
for registering a new interface GType, initializing the interface class, and calling the member
function.

Listing 11-29. The Interface Source File (myiface.c)

#include "myiface.h"

static void my_iface_class_init (gpointer iface);

GType
my_iface_get_type ()
{
 static GType type = 0;

 if (!type)
 {
 type = g_type_register_static_simple (G_TYPE_INTERFACE, "MyIFace",
 sizeof (MyIFaceInterface),
 (GClassInitFunc) my_iface_class_init,
 0, NULL, 0);

 g_type_interface_add_prerequisite (type, GTK_TYPE_WIDGET);
 }

 return type;
}

7931.book Page 426 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S 427

static void
my_iface_class_init (gpointer iface)
{
 GType iface_type = G_TYPE_FROM_INTERFACE (iface);

 /* Install signals & properties here ... */
}

void
my_iface_print_message (MyIFace *obj,
 gchar *message)
{
 MY_IFACE_GET_INTERFACE (obj)->print_message (obj, message);
}

The first function in Listing 11-29 is used to register the MyIFace type. This is done with
g_type_register_static_simple(). It first accepts the GType corresponding to the parent and a
name for the new type. The parent type is G_TYPE_INTERFACE for interfaces. The third parameter
is the size of the interface structure, which can be obtained with the sizeof() function.

GType g_type_register_static_simple (GType parent_type,
 const gchar *type_name,
 guint class_size,
 GClassInitFunc class_init,
 guint instance_size,
 GInstanceInitFunc instance_init,
 GTypeFlags flags);

Next, you need to specify a class initialization function. Both the instance size and the
instance initialization function can be ignored, since the instance structure is an opaque type.
The last parameter is a bitwise field of GTypeFlags, which can safely be set to zero for interfaces.

The other function, g_type_interface_add_prerequisite(), is used to force any object that
implements the interface to also implement prerequisite_type. Interfaces can have only one
prerequisite at most.

void g_type_interface_add_prerequisite (GType interface_type,
 GType prerequisite_type);

The class initialization function is similar to any other GObject class initialization function.
It should be used to set up any signals and properties that are needed by the interface. Adding
these to the interface means they will be available to any class that implements this interface.

The last function, my_iface_print_message(), is a public function that simply calls the func-
tion located in the current MyIFaceInterface instance. This means that it will call the instance of
the function that was added by the object that is implementing the interface.

7931.book Page 427 Thursday, March 1, 2007 8:06 PM

428 C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S

Using the Interface
Implementing the interface in an object is actually very simple. The first step is to add two
things to your GType registration function. Listing 11-30 shows an instance of this function for
an imaginary class called MyObject. This object includes only the bare essentials of an object in
order to show you how easy it is to use interfaces.

Listing 11-30. Creating the Object’s GType

GType
my_object_get_type (void)
{
 static GType type = 0;

 if (!type)
 {
 static const GTypeInfo info =
 {
 sizeof (MyObjectClass),
 NULL,
 NULL,
 (GClassInitFunc) my_object_class_init,
 NULL,
 NULL,
 sizeof (MyObject),
 0,
 (GInstanceInitFunc) my_object_init,
 };

 static const GInterfaceInfo iface_info =
 {
 (GInterfaceInitFunc) my_object_interface_init,
 NULL,
 NULL
 };

 type = g_type_register_static (GTK_TYPE_WIDGET, "MyObject", &info, 0);
 g_type_add_interface_static (type, MY_TYPE_INTERFACE, &iface_info);
 }

 return type;
}

The first thing this function does differently is declare a GInterfaceInfo object. This
structure holds three pieces of information. The first two are GInterfaceInitFunc and
GInterfaceFinalizeFunc functions that are called when the interface is initialized and final-
ized. The third member is a pointer of data that will be passed to each function. The second
two members can be safely ignored.

7931.book Page 428 Thursday, March 1, 2007 8:06 PM

C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S 429

The second difference is a call to g_type_add_interface_static(), which is used to add
an interface to an instance type. This function accepts three parameters: the instance GType,
the interface GType, and the GInterfaceInfo object that was previously defined.

void g_type_add_interface_static (GType instance_type,
 GType interface_type,
 const GInterfaceInfo *info);

Listing 11-31 shows the last two steps for implementing the MyIFace interface. The first func-
tion, my_object_print_message(), is the actual implementation of the print_message() function
that will be pointed to by the MyIFaceInterface member. This function will be called when the
programmer calls my_iface_print_message().

Listing 11-31. Initializing the Interface

static void
my_object_print_message (MyObject *object,
 gchar *message)
{
 g_print (message);
}

static void
my_object_interface_init (gpointer iface,
 gpointer data)
{
 MyIFaceInteface *iface = (MyIFaceInterface*) iface;
 iface->print_message =
 (void (*) (MyIFace *obj, gchar *message)) my_object_print_message;
}

The second function in Listing 11-31 is the implementation of the object’s interface initial-
ization function. It simply points MyIFaceInterface’s print_message() member to the object’s
implementation of the function.

This was a very simple example of implementing an interface, but it taught you all of the
essentials that you will need when creating more complex examples. By this point, you should
be able to derive your own objects from any other GObject as well as create and implement
your own interfaces, which is quite an accomplishment! In the next chapter, you will get back
to learning about widgets that are already built into GTK+.

Test Your Understanding
In this chapter’s exercise, you will be expanding on the MyMarquee widget to include new fea-
tures. This will require you to edit many parts of the code and explore new functions in the API
documentation. You should also consider adding your own enhancements to the widget that
are not mentioned in the exercise, such as a message-changed signal!

7931.book Page 429 Thursday, March 1, 2007 8:06 PM

430 C H A P T E R 1 1 ■ C R E A T I N G C U S T O M W I D G E T S

Exercise 11-1. Expanding MyMarquee

In this exercise, expand the MyMarquee with a few new abilities. First, the programmer should be able to specify
the scroll direction, whether it is to the left or to the right. Also, place a rectangular border around the widget. The
other property, the message, should now be a list of messages that are cycled. The initial message should be able
to be set in my_marquee_new().

Also, implement an override function that is called when the mouse enters the proximity of the widget. When this
happens, the message should stop scrolling until the mouse cursor leaves the proximity. To do this, you will have to
add new event masks to the GdkWindow object.

Summary
In this chapter, we walked through two examples that taught you how to derive new objects.
The first created a new widget called MyIPAddress, which was derived from GtkEntry. The sec-
ond new widget was MyMarquee, which scrolls a message across the screen. This example taught
you how to create a new widget from scratch, literally drawing it part by part on the screen.

Next, you were introduced to how interfaces are implemented and used in GTK+. This
allows you to create your own interfaces or to use those that already exist for new widgets that
you create.

In the next chapter, you will be learning about a number of widgets that did not fit into
previous chapters. These include printing widgets, recent file support, calendars, automatic
completion entries, status icons, and drawing areas.

7931.book Page 430 Thursday, March 1, 2007 8:06 PM

431

■ ■ ■

C H A P T E R 1 2

Additional GTK+ Widgets

You have learned, by now, almost everything this book has to teach you. However, there are a
number of widgets that did not quite fit into previous chapters. Therefore, this chapter will
cover those widgets.

The first two widgets are used for drawing and are named GtkDrawingArea and GtkLayout.
These two widgets are very similar except the GtkLayout widget allows you to embed arbitrary
widgets into it in addition to using functions for drawing.

In addition, you will learn about GtkEntry widgets that support automatic completion and
calendars. Lastly, you will be introduced to widgets that were added in GTK+ 2.10 including
status icons, printing support, and recent file managers.

In this chapter, you will learn the following:

• How to use the drawing widgets GtkDrawingArea and GtkLayout

• How to use the GtkCalendar widget to track information about months of the year

• How to use widgets introduced in GTK+ 2.10 that provide recent file tracking,
printing support, and status icons

• How to implement automatic completion in a GtkEntry widget by applying a
GtkEntryCompletion object

Drawing Widgets
In the previous chapter, you learned about the GdkDrawable object that allows you to draw
shapes and text on a GdkWindow. GTK+ provides the GtkDrawingArea widget, which is simply a
blank slate on which you can draw.

GtkDrawingArea only provides one nondeprecated function—gtk_drawing_area_new(),
which accepts no parameters and returns a new drawing area widget.

GtkWidget* gtk_drawing_area_new ();

To begin using the widget, you only need to use the functions covered in the last chapter
to draw on the widget’s GdkWindow. Remember that a GdkWindow object is also a GdkDrawable
object.

One advantage of GtkDrawingArea is that it derives from GtkWidget, which means that it can
be connected to GDK events. There are a number of events to which you will want to connect

7931.book Page 431 Thursday, March 8, 2007 7:02 PM

432 C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S

your drawing area. You will first want to connect to realize so that you can handle any tasks
that need to be performed when the widget is instantiated, such as creating GDK resources.
The configure-event signal will notify you when you have to handle a change in the size of the
widget. Also, expose-event will allow you to redraw the widget when a portion is exposed that
was previously hidden. The expose-event signal is especially important, because if you want
the content of the drawing area to persist over expose-event callbacks, you will have to redraw
its content. Lastly, you can connect to button and mouse click events so that the user can inter-
act with the widget.

■Note In order to receive certain types of events, you will need to add them to the list of widget events that
are supported with gtk_widget_add_events(). Also, to receive keyboard input from the user, you will need
to set the GTK_CAN_FOCUS flag, since only focused widgets can detect key presses.

A Drawing Area Example
Listing 12-1 implements a simple drawing program using the GtkDrawingArea widget. Points
will be drawn on the screen when the user clicks a mouse button and when the pointer is
dragged while a button is clicked. A screenshot of this application can be viewed in Figure 12-1.

Figure 12-1. A drawing area widget with text drawn with the mouse

The current content of the drawing area’s GdkWindow object is cleared when the user
presses the Delete key. While this is a very simple program, it nonetheless shows how to
interact with the GtkDrawingArea widget and use events with it.

7931.book Page 432 Thursday, March 8, 2007 7:02 PM

C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S 433

Listing 12-1. A Simple Drawing Program (drawingareas.c)

#include <gtk/gtk.h>
#include <gdk/gdkkeysyms.h>

static gboolean button_pressed (GtkWidget*, GdkEventButton*, GPtrArray*);
static gboolean motion_notify (GtkWidget*, GdkEventMotion*, GPtrArray*);
static gboolean key_pressed (GtkWidget*, GdkEventKey*, GPtrArray*);
static gboolean expose_event (GtkWidget*, GdkEventExpose*, GPtrArray*);

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *area;
 GPtrArray *parray;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Drawing Areas");
 gtk_widget_set_size_request (window, 400, 300);

 g_signal_connect (G_OBJECT (window), "destroy",
 G_CALLBACK (gtk_main_quit), NULL);

 /* Create a pointer array to hold image data. Then, add event masks to the new
 * drawing area widget. */
 parray = g_ptr_array_sized_new (5000);
 area = gtk_drawing_area_new ();
 GTK_WIDGET_SET_FLAGS (area, GTK_CAN_FOCUS);
 gtk_widget_add_events (area, GDK_BUTTON_PRESS_MASK |
 GDK_BUTTON_MOTION_MASK |
 GDK_KEY_PRESS_MASK);

 g_signal_connect (G_OBJECT (area), "button_press_event",
 G_CALLBACK (button_pressed), parray);
 g_signal_connect (G_OBJECT (area), "motion_notify_event",
 G_CALLBACK (motion_notify), parray);
 g_signal_connect (G_OBJECT (area), "key_press_event",
 G_CALLBACK (key_pressed), parray);
 g_signal_connect (G_OBJECT (area), "expose_event",
 G_CALLBACK (expose_event), parray);

7931.book Page 433 Thursday, March 8, 2007 7:02 PM

434 C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S

 gtk_container_add (GTK_CONTAINER (window), area);
 gtk_widget_show_all (window);

 /* You must do this after the widget is visible because it must first
 * be realized for the GdkWindow to be valid! */
 gdk_window_set_cursor (area->window, gdk_cursor_new (GDK_PENCIL));

 gtk_main ();
 return 0;
}

/* Redraw all of the points when an expose-event occurs. If you do not do this,
 * the drawing area will be cleared. */
static gboolean
expose_event (GtkWidget *area,
 GdkEventExpose *event,
 GPtrArray *parray)
{
 guint i, x, y;
 GdkPoint points[5];

 /* Loop through the coordinates, redrawing them onto the drawing area. */
 for (i = 0; i < parray->len; i = i + 2)
 {
 x = GPOINTER_TO_INT (parray->pdata[i]);
 y = GPOINTER_TO_INT (parray->pdata[i+1]);

 points[0].x = x; points[0].y = y;
 points[1].x = x+1; points[1].y = y;
 points[2].x = x-1; points[2].y = y;
 points[3].x = x; points[3].y = y+1;
 points[4].x = x; points[4].y = y-1;

 gdk_draw_points (area->window,
 area->style->fg_gc[GTK_WIDGET_STATE (area)],
 points, 5);
 }

 return TRUE;
}

7931.book Page 434 Thursday, March 8, 2007 7:02 PM

C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S 435

/* Draw a point where the user clicked the mouse and points on each of the
 * four sides of that point. */
static gboolean
button_pressed (GtkWidget *area,
 GdkEventButton *event,
 GPtrArray *parray)
{
 gint x = event->x, y = event->y;
 GdkPoint points[5] = { {x,y}, {x+1,y}, {x-1,y}, {x,y+1}, {x,y-1} };

 gdk_draw_points (area->window,
 area->style->fg_gc[GTK_WIDGET_STATE (area)],
 points, 5);

 g_ptr_array_add (parray, GINT_TO_POINTER (x));
 g_ptr_array_add (parray, GINT_TO_POINTER (y));

 return FALSE;
}

/* Draw a point where the moved the mouse pointer while a button was
 * clicked along with points on each of the four sides of that point. */
static gboolean
motion_notify (GtkWidget *area,
 GdkEventMotion *event,
 GPtrArray *parray)
{
 gint x = event->x, y = event->y;
 GdkPoint points[5] = { {x,y}, {x+1,y}, {x-1,y}, {x,y+1}, {x,y-1} };

 gdk_draw_points (area->window,
 area->style->fg_gc[GTK_WIDGET_STATE (area)],
 points, 5);

 g_ptr_array_add (parray, GINT_TO_POINTER (x));
 g_ptr_array_add (parray, GINT_TO_POINTER (y));

 return FALSE;
}

7931.book Page 435 Thursday, March 8, 2007 7:02 PM

436 C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S

/* Clear the drawing area when the user presses the Delete key. */
static gboolean

key_pressed (GtkWidget *area,
 GdkEventKey *event,
 GPtrArray *parray)
{
 if (event->keyval == GDK_Delete)
 {
 gdk_window_clear (area->window);
 g_ptr_array_remove_range (parray, 0, parray->len);
 }

 return FALSE;
}

You should notice a few things about Listing 12-1. First, a GPtrArray is used to track points
that are added to the drawing area. When a point is added to the screen, the points on all four
sides of the initial point are also activated. Then, the horizontal and vertical positions are
added to the array. When the expose-event callback function is called, all of the points are
redrawn. If you do not redraw the content of a drawing area, it will be cleared during expose-
event emissions.

To draw the points, this application uses gdk_draw_points(). This function draws an array
of npoints points onto the drawable object. It uses the default foreground color of the current
state of the widget.

void gdk_draw_points (GdkDrawable *drawable,
 GdkGC *gc,
 GdkPoint *points,
 gint npoints);

In addition to gdk_draw_points(), it is also possible to use any of the drawing functions
that were listed in Chapter 11 with drawing areas.

The Layout Widget
In addition to GtkDrawingArea, GTK+ provides another drawing widget called GtkLayout. This
widget is actually a container and differs from GtkDrawingArea in that it supports not only
drawing primitives but also child widgets. In addition, GtkLayout provides scrolling support
natively, so it does not need a viewport when added to a scrolled window.

■Note One important distinction to note with layouts is that you should draw to GtkLayout’s bin_window
member instead of GtkWidget’s window. For example, you would draw to GTK_LAYOUT(layout)->bin_window
instead of GTK_WIDGET(layout)->window. This allows child widgets to be correctly embedded into the widget.

7931.book Page 436 Thursday, March 8, 2007 7:02 PM

C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S 437

New GtkLayout widgets are created with gtk_layout_new(), which accepts horizontal and
vertical adjustments. Adjustments will be created for you if you pass NULL to both function
parameters. Since GtkLayout has native scrolling support, it can be much more useful than
GtkDrawingArea when you need to use it with a scrolled window.

GtkWidget* gtk_layout_new (GtkAdjustment *hadjustment,
 GtkAdjustment *vadjustment);

However, GtkLayout does add some overhead, since it is capable of containing widgets as
well. Because of this, GtkDrawingArea is a better choice if you only need to draw on the widget’s
GdkWindow.

Child widgets are added to a GtkLayout container with gtk_layout_put(), which will place
the child with respect to the top-left corner of the container. Since GtkLayout is derived directly
from GtkContainer, it is able to support multiple children.

void gtk_layout_put (GtkLayout *layout,
 GtkWidget *child_widget,
 gint x,
 gint y);

A call to gtk_layout_move() can be used at a later time to relocate the child widget to
another location in the GtkLayout container.

■Caution Because you place child widgets at specific horizontal and vertical locations, GtkLayout pre-
sents the same problems as GtkFixed. You need to be careful of these when using the layout widget! You
can read more about the problems with the GtkFixed widget in Chapter 3.

Lastly, if you want to force the layout to be a specific size, you can send new width
and height parameters to gtk_layout_set_size(). You should use this function instead of
gtk_widget_set_size_request(), because it will adjust the adjustment parameters as well.

void gtk_layout_set_size (GtkLayout *layout,
 guint width,
 guint height);

Also, unlike size requests, the layout sizing function requires unsigned numbers. This
means that you must specify an absolute size for the layout widget. This size should be the total
size of the layout, including portions of the widget that will not be visible on the screen because
they are beyond the bounds of the scrolling area! The size of a GtkLayout widget defaults to 100
pixels by 100 pixels.

Calendars
GTK+ provides the GtkCalendar widget, which is a widget that displays one month of a calendar.
It allows the user to move among months and years with scroll arrows, as shown in Figure 12-2.

7931.book Page 437 Thursday, March 8, 2007 7:02 PM

438 C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S

You can also display three-letter abbreviations of the day names and week numbers for the
chosen year.

Figure 12-2. GtkCalendar widget

There are number of members in the GtkCalendar structure that can be used but are read
only; these objects are explained in the following list. You should note that when the current
month or year is changed programmatically or by the user, all of these values would be reset.
Therefore, you will have to handle all changes.

• num_marked_dates: The number of days in the current month that are marked. This value
should be between zero and the number of days in the current month.

• marked_date: An array of unsigned integers containing num_marked_dates of days that are
marked for the current month.

• month: The current month the user is viewing. Month values are within the range of 0 to
11. When the month changes, the month-changed signal will be emitted. Also, if the calen-
dar is moved to the next or previous month, the next-month or previous-month signal will
be emitted.

• year: The current year for the month that is displayed. If the calendar is moved to the
next or previous year, the next-year or previous-year signal will be emitted.

• selected_day: The currently selected day, which is always a single day, although more
than one day can be marked. Days are within the range of one to the number of days in
the month.

New GtkCalendar widgets are created with gtk_calendar_new(). By default, the current
date is selected. Therefore, the current month and year stored by the computer will also be
displayed. You can retrieve the selected date with gtk_calendar_get_date() or select a new
day with gtk_calendar_select_day(). To deselect the currently selected day, you should use
gtk_calendar_select_day() with a date value of zero.

7931.book Page 438 Thursday, March 8, 2007 7:02 PM

C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S 439

To customize how the GtkCalendar widget is displayed and how it interacts with the user, you
should use gtk_calendar_set_display_options() to set a bitwise list of GtkCalendarDisplayOptions
values. The nondeprecated values of this enumeration follow:

• GTK_CALENDAR_SHOW_HEADING: If set, the name of the month and the year will be displayed.

• GTK_CALENDAR_SHOW_DAY_NAMES: If set, a three letter abbreviation of each day will be
shown above the corresponding column of dates. They are rendered between the head-
ing and the main calendar content.

• GTK_CALENDAR_NO_MONTH_CHANGE: Stop the user from changing the current month of the
calendar. If this flag is not set, arrows will be displayed that allow you to go to the next or
previous month. By default, the arrows are enabled.

• GTK_CALENDAR_SHOW_WEEK_NUMBERS: Display the week number along the left side of the
calendar for the current year. The week numbers are hidden by default.

In addition to selecting a single day, you can mark as many days in the month as you want
one at a time with gtk_calendar_mark_day(). This function will return TRUE if the day was suc-
cessfully marked.

gboolean gtk_calendar_mark_day (GtkCalendar *calendar,
 guint day);

Marks have a number of uses, such as selecting all days in the month that have events
associated with them. When marked, the date will be added to the marked_date array.

In addition to marking days, you can unmark one day with gtk_calendar_unmark_day(),
which will return TRUE if the day was successfully unmarked. You can also unmark every day
with gtk_calendar_clear_marks().

gboolean gtk_calendar_unmark_day (GtkCalendar *calendar,
 guint day);

There are two signals available for detecting when the user selects a day. The first signal,
day-selected, will be emitted when the user selects a new day with the mouse or the key-
board. The day-selected-double-click signal will be emitted when the user selects a day by
double-clicking it. This means that you should not need the button-press-event signal with
the GtkCalendar widget in most cases.

Status Icons
The GtkStatusIcon widget was introduced in GTK+ 2.10 and is used to display an icon in the
system tray (notification area) in a platform-independent manner. System tray icons are often
used to notify the user of some type of event in a nonintrusive way or provide easy access to a
minimized application.

The GtkStatusIcon implementation of the system tray icon provides the ability to add a
tooltip, add a pop-up menu for interaction with the icon, and make the icon blink to notify the
user of some type of event. It is also possible for the user to activate the icon by clicking it.

7931.book Page 439 Thursday, March 8, 2007 7:02 PM

440 C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S

■Note GtkStatusIcon is not derived from GtkWidget; it is a GObject! This is necessary because on
Microsoft Windows, system tray icons are not allowed to be added as widgets.

Five functions are provided for creating a new status icon. An empty GtkStatusIcon
instance is created with gtk_status_icon_new(). You will need to specify an image for the
system tray icon before setting the object as visible if you use that initialization function.

GtkStatusIcon* gtk_status_icon_new ();
GtkStatusIcon* gtk_status_icon_new_from_pixbuf (GdkPixbuf *pixbuf);
GtkStatusIcon* gtk_status_icon_new_from_file (const gchar *filename);
GtkStatusIcon* gtk_status_icon_new_from_stock (const gchar *stock_id);
GtkStatusIcon* gtk_status_icon_new_from_icon_name (const gchar *icon_name);

The other four functions create a status icon out of a GdkPixbuf object, from a file on the
system, a stock item, or an image in the current icon theme. All of these functions will scale the
image to fit in the notification area if necessary.

If you initialized the status icon with gtk_status_icon_new(), you can then set the image
with gtk_status_icon_set_from_pixbuf() and friends. Functions are provided for setting the
image from a GdkPixbuf object, file, stock item, or an image from the current icon theme. These
functions can also be used to change the image at a later time to reflect the current state of the
application. For example, if your application is an e-mail client, you could change the system
tray icon from your application’s icon to an envelope to show that a new message has arrived.

■Tip By default, the status icon is set as visible. You can hide the icon from view or set it as visible with
gtk_status_icon_set_visible().

When the user hovers over the system tray icon, it is possible to display a tooltip that gives
further information with gtk_status_icon_set_tooltip(). For example, this information could
be the number of new messages in an e-mail client or the percentage of progress that has been
made in a downloading application.

void gtk_status_icon_set_tooltip (GtkStatusIcon *icon,
 const gchar *tooltip_text);

If some event has occurred in your application that the user should know about, you can
make the status icon blink with gtk_status_icon_set_blinking(). Depending on the user’s
preferences, this feature may be disabled. In this case, this function will have no effect. When
using this function, do not forget to turn off blinking! Not turning off blinking when it is no
longer necessary is enough of an annoyance for some people to stop using your application.

void gtk_status_icon_set_blinking (GtkStatusIcon *icon,
 gboolean blinking);

7931.book Page 440 Thursday, March 8, 2007 7:02 PM

C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S 441

GtkStatusIcon provides three signals. The activate signal is emitted when the user acti-
vates the status icon. The size-changed signal is emitted when the available size for the icon
changes. This allows you to resize the icon or load a new icon to fit the new size, in which case
you should return TRUE. If you return FALSE, GTK+ will scale the current icon to fit the new size.

Lastly, the popup-menu signal is emitted when the user has indicated that a menu should be
shown. Usually right-clicking the icon does this, but this is also dependent on the user’s plat-
form. This function accepts the two unsigned integers indicating which button was pressed
and at what time it was activated. These two values should be sent to gtk_menu_popup() to dis-
play the menu. For the fourth parameter of gtk_menu_popup(), you will want to use gtk_status_
icon_position_menu(). This is a menu positioning function that will calculate where to place
the menu on the screen.

Printing Support
GTK+ 2.10 introduced a number of new widgets and objects that add printing support to the
library. While there are many objects in this API, in most instances, you will only need to
directly interact with GtkPrintOperation, which is a high-level printing API that can be used
across multiple platforms. It acts as a front-end interface for handling most print operations.

In this section, we are going to implement an application that will print the content of a
text file that the user selects in a GtkFileChooserButton widget. A screenshot of the default print
dialog on a Linux system can be viewed in Figure 12-3. The user will select a file from the disk
using a GtkFileChooserButton widget and click the Print button in the main window to open
this dialog.

Figure 12-3. Print dialog on a Linux system

7931.book Page 441 Thursday, March 8, 2007 7:02 PM

442 C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S

Listing 12-2 begins by defining the necessary data structures for the application and set-
ting up the user interface. The PrintData structure will be used to hold information about the
current print job that will help with rendering the final product. Widgets is a simple structure
that provides us with access to multiple widgets and the print job information in callback
functions.

Listing 12-2. GTK+ Printing Example (printing.c)

#include <gtk/gtk.h>
#include <math.h>

#define HEADER_HEIGHT 20.0
#define HEADER_GAP 8.5

/* A structure that will hold information about the current print job. */
typedef struct
{
 gchar *filename;
 gdouble font_size;
 gint lines_per_page;
 gchar **lines;
 gint total_lines;
 gint total_pages;
} PrintData;

typedef struct
{
 GtkWidget *window, *chooser;
 PrintData *data;
} Widgets;

GtkPrintSettings *settings;

static void print_file (GtkButton*, Widgets*);
static void begin_print (GtkPrintOperation*, GtkPrintContext*, Widgets*);
static void draw_page (GtkPrintOperation*, GtkPrintContext*, gint, Widgets*);
static void end_print (GtkPrintOperation*, GtkPrintContext*, Widgets*);

int main (int argc,
 char *argv[])
{
 GtkWidget *hbox, *print;
 Widgets *w;

7931.book Page 442 Thursday, March 8, 2007 7:02 PM

C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S 443

 gtk_init (&argc, &argv);

 w = g_slice_new (Widgets);
 w->window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (w->window), "Printing");
 gtk_container_set_border_width (GTK_CONTAINER (w->window), 10);

 g_signal_connect (G_OBJECT (w->window), "destroy",
 G_CALLBACK (gtk_main_quit), NULL);

 w->chooser = gtk_file_chooser_button_new ("Select a File",
 GTK_FILE_CHOOSER_ACTION_OPEN);
 gtk_file_chooser_set_current_folder (GTK_FILE_CHOOSER (w->chooser),
 g_get_home_dir ());

 print = gtk_button_new_from_stock (GTK_STOCK_PRINT);

 g_signal_connect (G_OBJECT (print), "clicked",
 G_CALLBACK (print_file), (gpointer) w);

 hbox = gtk_hbox_new (FALSE, 5);
 gtk_box_pack_start (GTK_BOX (hbox), w->chooser, FALSE, FALSE, 0);
 gtk_box_pack_start (GTK_BOX (hbox), print, FALSE, FALSE, 0);

 gtk_container_add (GTK_CONTAINER (w->window), hbox);
 gtk_widget_show_all (w->window);

 gtk_main ();
 return 0;
}

Two values are defined at the top of Listing 12-2 called HEADER_HEIGHT and HEADER_GAP.
HEADER_HEIGHT is the amount of space that will be available for the header text to be rendered.
This will be used to display information such as the file name and page number. HEADER_GAP
is padding that will be placed between the header and the actual page content.

The PrintData structure will be used to store information about the current print job.
This includes the location of the file on the disk, the size of the font, the number of lines that
can be rendered on a single page, the file’s content, the total number of lines, and the total
number of pages.

Print Operations
The next step is to implement the callback function that will be run when the GTK_STOCK_PRINT
button is clicked. This function is implemented in Listing 12-3. It will take care of creating the
PrintData object, connecting all of the necessary signals, and creating the print operation.

7931.book Page 443 Thursday, March 8, 2007 7:02 PM

444 C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S

Listing 12-3. Print and Print Preview

/* Print the selected file with a font of "Monospace 10". */
static void
print_file (GtkButton *button,
 Widgets *w)
{
 GtkPrintOperation *operation;
 GtkWidget *dialog;
 GError *error = NULL;
 gchar *filename;
 gint res;

 /* Return if a file has not been selected because there is nothing to print. */
 filename = gtk_file_chooser_get_filename (GTK_FILE_CHOOSER (w->chooser));
 if (filename == NULL)
 return;

 /* Create a new print operation, applying saved print settings if they exist. */H
 operation = gtk_print_operation_new ();
 if (settings != NULL)
 gtk_print_operation_set_print_settings (operation, settings);

 w->data = g_slice_new (PrintData);
 w->data->filename = g_strdup (filename);
 w->data->font_size = 10.0;

 g_signal_connect (G_OBJECT (operation), "begin_print",
 G_CALLBACK (begin_print), (gpointer) w);
 g_signal_connect (G_OBJECT (operation), "draw_page",
 G_CALLBACK (draw_page), (gpointer) w);
 g_signal_connect (G_OBJECT (operation), "end_print",
 G_CALLBACK (end_print), (gpointer) w);

 /* Run the default print operation that will print the selected file. */
 res = gtk_print_operation_run (operation, GTK_PRINT_OPERATION_ACTION_PRINT_DIALOG,
 GTK_WINDOW (w->window), &error);

 /* If the print operation was accepted, save the new print settings. */
 if (res == GTK_PRINT_OPERATION_RESULT_APPLY)
 {
 if (settings != NULL)
 g_object_unref (settings);
 settings = g_object_ref (gtk_print_operation_get_print_settings (operation));
 }
 /* Otherwise, report that the print operation has failed. */
 else if (error)

7931.book Page 444 Thursday, March 8, 2007 7:02 PM

C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S 445

 {
 dialog = gtk_message_dialog_new (GTK_WINDOW (w->window),
 GTK_DIALOG_DESTROY_WITH_PARENT,
 GTK_MESSAGE_ERROR, GTK_BUTTONS_CLOSE,
 error->message);

 g_error_free (error);
 gtk_dialog_run (GTK_DIALOG (dialog));
 gtk_widget_destroy (dialog);
 }

 g_object_unref (operation);
 g_free (filename);
}

The first step in printing is to create a new print operation, which is done by calling
gtk_print_operation_new(). What makes GtkPrintOperation unique is that it will use the
platform’s native print dialog if there is one available. On platforms like UNIX that do not
provide such a dialog, GtkPrintUnixDialog will be used.

■Note For most applications, you should use the GtkPrintOperation API when possible instead of
directly interacting with the print objects. GtkPrintOperation was created as a platform-independent
printing solution, which cannot be easily reimplemented without a lot of code.

The next step is to call gtk_print_operation_print_settings() to apply print settings to
the operation. In this application, the GtkPrintSettings object is stored as a global variable
called settings. If the print operation is successful, you should store the current print settings
so that these same settings can be applied to future print jobs.

You then set up the PrintData structure by allocating a new object with g_slice_new().
The file name is set to the currently selected file in the GtkFileChooserButton, which was
already confirmed to exist. The print font size is also set to 10.0 points. In text editing applica-
tions, you would usually retrieve this font from the current font of GtkTextView. In more
complex printing applications, the font size may vary throughout a document, but this is a
simple example meant only to get you started.

Next, we connect to three GtkPrintOperation signals, which will be discussed in detail later
in this section. In short, begin-print is called before the pages are rendered and can be used for
setting the number of pages and doing necessary preparation. The draw-page signal is called for
every page in the print job so that it can be rendered. Lastly, the end-print signal is called after
the print operation has completed, regardless of whether it succeeded or failed. This callback
function is used to clean up after the print job. There are a number of other signals that can be
used throughout the print operation; a full list can be found in Appendix B.

7931.book Page 445 Thursday, March 8, 2007 7:02 PM

446 C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S

Once the print operation has been set up, the next step is to begin the printing by calling
gtk_print_operation_run(). This function is where you define what task the print operation
will perform.

GtkPrintOperationResult gtk_print_operation_run (GtkPrintOperation *operation,
 GtkPrintOperationAction action,
 GtkWindow *parent,
 GError **error);

The GtkPrintOperationAction enumeration, shown in the following list, defines what
printing task the print operation will perform. To print the document, you should use GTK_PRINT_
OPERATION_ACTION_PRINT_DIALOG.

• GTK_PRINT_OPERATION_ACTION_PRINT_DIALOG: Show the default print dialog for the plat-
form, or use GtkPrintUnixDialog if one is not available. This is the usual action for most
print operations.

• GTK_PRINT_OPERATION_ACTION_PRINT: Start printing using the current printing settings
without presenting the print dialog. You should only do this if you are 100 percent sure
that the user approves of this action. For example, you should have already presented a
confirmation dialog to the user.

• GTK_PRINT_OPERATION_ACTION_PREVIEW: Preview the print job that will be performed with
the current settings. This uses the same callbacks for rendering as the print operation, so
it should take little work to get it up and running.

• GTK_PRINT_OPERATION_ACTION_EXPORT: Export the print job to a file. In order to use this
setting, you will have to set the export-filename property prior to running the operation.

The last two parameters of gtk_print_operation_run() allow you to define a parent
window to use for the print dialog and a GError structure or to use NULL to ignore either
parameter. This function will not return until all of the pages have been rendered and are
sent to the printer.

When the function does give back control, it will return a GtkPrintOperationResult enu-
meration value. These values give you instructions on what task you should perform next, and
whether the print operation succeeded or failed. The four enumeration values are shown in the
following list:

• GTK_PRINT_OPERATION_RESULT_ERROR: Some type of error has occurred in the print opera-
tion. You should use the GError object for more information.

• GTK_PRINT_OPERATION_RESULT_APPLY: Print settings were changed. Therefore, they
should be stored immediately, so changes will not be lost.

• GTK_PRINT_OPERATION_RESULT_CANCEL: The user cancelled the print operation, and you
should not save the changes to the print settings.

• GTK_PRINT_OPERATION_RESULT_IN_PROGRESS: The print operation has yet to be completed.
You will only get this value if you are running the task asynchronously.

7931.book Page 446 Thursday, March 8, 2007 7:02 PM

C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S 447

It is possible to run the print operation asynchronously, which means that gtk_print_
operation_run() may return before the pages have been rendered. This is set with
gtk_print_operation_set_allow_async(). You should note that not all platforms allow
this operation, so you should be prepared for this not to work!

If you run the print operation asynchronously, you can use the done signal to retrieve noti-
fication when the printing has completed. At this point, you will be given the print operation
result and will need to handle it accordingly.

After handling the print operation result, you should also handle the resulting error if it
was set and exists. A full list of possible errors under the GtkPrintError domain can be found
in Appendix E. Also, gtk_print_operation_get_error() can be used to retrieve the most recent
GError that occurred, if any, for the print operation. This can be used when running the print
operation asynchronously to retrieve more information about a print job that returned GTK_
PRINT_OPERATION_RESULT_ERROR.

One unique feature provided by GtkPrintOperation is the ability to show a progress dialog
while the print operation is running. This is turned off by default, but it can be turned on with
gtk_print_operation_set_show_progress(). This is especially useful if you allow the user to
run multiple print operations at the same time.

void gtk_print_operation_set_show_progress (GtkPrintOperation *operation,
 gboolean show_progress);

It may be necessary at times to cancel a current print job, which can be done by calling
gtk_print_operation_cancel(). This function is usually used within a begin-print, paginate,
or draw-page callback function. It also allows you to provide a Cancel button so that the user
can stop in the middle of an active print operation.

void gtk_print_operation_cancel (GtkPrintOperation *operation);

It is also possible to give a unique name to the print job, which will be used to identify it
within an external print monitoring application. Print jobs are given names with gtk_print_
operation_set_job_name(). If this is not set, GTK+ will automatically designate a name for the
print job and number consecutive print jobs accordingly.

If you are running the print job asynchronously, you may want to retrieve the current
status of the print job. By calling gtk_print_operation_get_status(), a GtkPrintStatus
enumeration value will be returned that gives more information about the status of the print
job. A list of possible print job status values follows:

• GTK_PRINT_STATUS_INITIAL: The print operation has yet to begin. This status will be
returned while the print dialog is still visible because it is the default initial value.

• GTK_PRINT_STATUS_PREPARING: The print operation is being split into pages, and the
begin-print signal was emitted.

• GTK_PRINT_STATUS_GENERATING_DATA: The pages are being rendered. This will be set
while the draw-page signal is being emitted. No data will have been sent to the printer
at this point.

• GTK_PRINT_STATUS_SENDING_DATA: Data about the print job is being sent to the printer.

7931.book Page 447 Thursday, March 8, 2007 7:02 PM

448 C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S

• GTK_PRINT_STATUS_PENDING: All of the data has been sent to the printer, but the job has
yet to be processed. It is possible that the printer may be stopped.

• GTK_PRINT_STATUS_PENDING_ISSUE: There was a problem during the printing. For exam-
ple, the printer could be out of paper, or there could be a paper jam.

• GTK_PRINT_STATUS_PRINTING: The printer is currently processing the print job.

• GTK_PRINT_STATUS_FINISHED: The print job has been successfully completed.

• GTK_PRINT_STATUS_FINISHED_ABORTED: The print job was aborted. No further action will
be taken unless you run the job again.

The value returned by gtk_print_operation_get_status() can be used within applications,
since it is a numerical value. However, GTK+ also provides the ability to retrieve a string with
gtk_print_operation_get_status_string(), which is a human-readable description of the print
job status. This can be used for debugging output or displaying more information to the user
about the print job. For example, it could be displayed on a status bar or in a message dialog.

Beginning the Print Operation
Now that the print operation is set up, it is time to implement the necessary signal callback
functions. The begin-print signal is emitted when the user initiates printing, which means that
all settings have been finalized from the user’s point of view.

In Listing 12-4, the begin_print() callback function is used to first retrieve the contents of
the file and split it into the number of lines. The total number of lines is then calculated, which
can be used to retrieve the number of pages.

Listing 12-4. Callback Function for the begin-print Signal

/* Begin the printing by retrieving the contents of the selected files and
 * splitting it into single lines of text. */
static void
begin_print (GtkPrintOperation *operation,
 GtkPrintContext *context,
 Widgets *w)
{
 gchar *contents;
 gdouble height;
 gsize length;

 /* Retrieve the file contents and split it into lines of text. */
 g_file_get_contents (w->data->filename, &contents, &length, NULL);
 w->data->lines = g_strsplit (contents, "\n", 0);

 /* Count the total number of lines in the file. */
 w->data->total_lines = 0;
 while (w->data->lines[w->data->total_lines] != NULL)
 w->data->total_lines++;

7931.book Page 448 Thursday, March 8, 2007 7:02 PM

C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S 449

 /* Based on the height of the page and font size, calculate how many lines can be
 * rendered on a single page. A padding of 3 is placed between lines as well. */
 height = gtk_print_context_get_height (context) - HEADER_HEIGHT - HEADER_GAP;
 w->data->lines_per_page = floor (height / (w->data->font_size + 3));
 w->data->total_pages = (w->data->total_lines - 1) / w->data->lines_per_page + 1;
 gtk_print_operation_set_n_pages (operation, w->data->total_pages);
 g_free (contents);
}

To calculate the number of pages required by the print operation, you need to figure out how
many lines can be rendered on every page. The total height of every page is retrieved with
gtk_print_context_get_height(), which is stored in a GtkPrintContext object. GtkPrintContext
is used to store information about how to draw the page. For example, it stores the page setup,
width and height dimensions, and dots per inch in both directions. We will go into more detail in
the draw-page callback function later in this chapter.

Once you have the total height of the page that will be available for rendering text, the next
step is to divide that height by the font size of the text plus 3 pixels of spacing to be added
between each line. The floor() function was used to round down the number of lines per page
so that clipping will not occur along the bottom of every full page.

Once you have the number of lines per page, you can calculate the number of pages. Then,
you must send this value to gtk_print_operation_set_n_pages() by the end of this callback
function. The number of pages will be used so that GTK+ knows how many times to call the
draw-page callback function. This must be set to a positive value, so rendering will not begin
until it is changed from its default value of -1.

Rendering Pages
The next step is to implement the draw-page callback function, which will be called once for
every page that needs to be rendered. This callback function requires the introduction of
another library called Cairo. Cairo is a vector graphics library that is used to render print oper-
ations, among other things.

Listing 12-5 begins by retrieving the Cairo drawing context for the current GtkPrintContext
with gtk_print_context_get_cairo_context(). The cairo_t object will be used to render print
content and then apply it to the PangoLayout.

At the beginning of this callback function, we also need to retrieve two other values from the
GtkPrintContext. The first is gtk_print_context_get_width(), which returns the width of the
document. Notice that we do not need to retrieve the height of the page, since we have already
calculated the number of lines that will fit on each page. If the text is wider than the page, it will
be clipped. You will have to alter this example in order to avoid clipping the document.

■Caution The width returned by the GtkPrintContext is in pixels. You need to be careful because dif-
ferent functions may use alternative scales such as Pango units or points!

7931.book Page 449 Thursday, March 8, 2007 7:02 PM

450 C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S

The next step is to create a PangoLayout with gtk_print_context_create_layout(), which
can be used for the print context. You should create Pango layouts in this manner for print
operations, because the print context will already have the correct font metrics applied.

Listing 12-5. Callback Function for the draw-page Signal

/* Draw the page, which includes a header with the file name and page number along
 * with one page of text with a font of "Monospace 10". */
static void
draw_page (GtkPrintOperation *operation,
 GtkPrintContext *context,
 gint page_nr,
 Widgets *w)
{
 cairo_t *cr;
 PangoLayout *layout;
 gdouble width, text_height;
 gint line, i, text_width, layout_height;
 PangoFontDescription *desc;
 gchar *page_str;

 cr = gtk_print_context_get_cairo_context (context);
 width = gtk_print_context_get_width (context);
 layout = gtk_print_context_create_pango_layout (context);
 desc = pango_font_description_from_string ("Monospace");
 pango_font_description_set_size (desc, w->data->font_size * PANGO_SCALE);

 /* Render the page header with the filename and page number. */
 pango_layout_set_font_description (layout, desc);
 pango_layout_set_text (layout, w->data->filename, -1);
 pango_layout_set_width (layout, -1);
 pango_layout_set_alignment (layout, PANGO_ALIGN_LEFT);
 pango_layout_get_size (layout, NULL, &layout_height);
 text_height = (gdouble) layout_height / PANGO_SCALE;

 cairo_move_to (cr, 0, (HEADER_HEIGHT - text_height) / 2);
 pango_cairo_show_layout (cr, layout);

 page_str = g_strdup_printf ("%d of %d", page_nr + 1, w->data->total_pages);
 pango_layout_set_text (layout, page_str, -1);
 pango_layout_get_size (layout, &text_width, NULL);
 pango_layout_set_alignment (layout, PANGO_ALIGN_RIGHT);

 cairo_move_to (cr, width - (text_width / PANGO_SCALE),
 (HEADER_HEIGHT - text_height) / 2);
 pango_cairo_show_layout (cr, layout);

7931.book Page 450 Thursday, March 8, 2007 7:02 PM

C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S 451

 /* Render the page text with the specified font and size. */
 cairo_move_to (cr, 0, HEADER_HEIGHT + HEADER_GAP);
 line = page_nr * w->data->lines_per_page;
 for (i = 0; i < w->data->lines_per_page && line < w->data->total_lines; i++)
 {
 pango_layout_set_text (layout, w->data->lines[line], -1);
 pango_cairo_show_layout (cr, layout);
 cairo_rel_move_to (cr, 0, w->data->font_size + 3);
 line++;
 }

 g_free (page_str);
 g_object_unref (layout);
 pango_font_description_free (desc);
}

The next operation performed by this function is to add the file name to the top-left corner
of the page. To start, pango_layout_set_text() sets the current text stored by the layout to the file
name. The width of the layout is set to -1 so that the file name does not wrap at forward slash
characters. The text is also aligned to the left of the layout with pango_layout_set_alignment().

Now that the text is added to the layout, cairo_move_to() is used to move the current point
in the Cairo context to the left of the page and the center of the header. Note that the height of
the PangoLayout must first be reduced by a factor of PANGO_SCALE!

void cairo_move_to (cairo_t *cairo_context,
 double x,
 double y);

Next, we call pango_cairo_show_layout() in order to draw the PangoLayout on the Cairo
context. The top-left corner of the layout is rendered at the current point in the Cairo context.
This is why it was first necessary to move to the desired position with cairo_move_to().

void pango_cairo_show_layout (cairo_t *cairo_context,
 PangoLayout *layout);

After rendering the file name, the same method is used to add the page count to the top-right
corner of each page. You should again note that the width returned by the PangoLayout had to be
scaled down by PANGO_SCALE so that it would be in the same units as other Cairo values.

The next step is to render all of the lines for the current page. We begin by moving to the
left of the page, HEADER_GAP units below the header. Then, each line is incrementally rendered
to the Cairo context with pango_cairo_show_layout(). One interesting thing to note is that the
cursor position in the loop is moved with cairo_rel_move_to().

void cairo_rel_move_to (cairo_t *cairo_context),
 double dx,
 double dy);

This function is used to move the current position relative to the previous position. There-
fore, after a line is rendered, the current position is moved down one line, which is equal to the
font size of the text since the font is Monospace.

7931.book Page 451 Thursday, March 8, 2007 7:02 PM

452 C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S

■Tip By moving the cursor relative to the previous position, it is easy to add an arbitrary amount of spacing
between each line of text and the adjacent one as long as this additional height was previously taken into con-
sideration when calculating the number of pages in the begin-print callback function.

When developing with GTK+, you have the whole Cairo library available to you. Some
more basics will be covered in the Cairo section of this chapter. However, if you are imple-
menting printing in your own applications, you should take the time to learn more about this
library from the Cairo API documentation.

Finalizing the Print Operation
After all of the pages have been rendered, the end-print signal will be emitted. Listing 12-6
shows a callback function that will be used for this signal. It frees all dynamically allocated
memory in the PrintData object and then frees the object itself.

Listing 12-6. Callback Function for the end-print Signal

/* Clean up after the printing operation since it is done. */
static void
end_print (GtkPrintOperation *operation,
 GtkPrintContext *context,
 Widgets *w)
{
 g_strfreev (w->data->lines);
 g_slice_free1 (sizeof (PrintData), w->data);
 w->data = NULL;
}

The printing API provided by GTK+ is very large, even without taking into consideration
the large APIs for PangoLayout and Cairo. Therefore, this example is obviously only a simple
one that is meant to get you started and help relieve the learning curve that the API presents.
You can use this example to get started with implementing printing in your own applications,
but you will need to delve further into the topic in most cases.

Cairo Drawing Context
Cairo is a graphics rendering library that is used throughout the GTK+ library. In the context of
this book, Cairo is used to render pages during a print operation. This section will introduce
you to the cairo_t object and some of the drawing functions associated with it.

7931.book Page 452 Thursday, March 8, 2007 7:02 PM

C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S 453

Pages of a print operation in GTK+ are rendered as cairo_t objects. This object allows you
to render text, draw various shapes and lines, and fill clipped areas with color. Let us look at a
few functions provided by Cairo for manipulating Cairo drawing contexts.

Drawing Paths
Shapes in Cairo contexts are rendered with paths. A new path is created with cairo_new_path().
You can then retrieve a copy of the new path with cairo_copy_path() and add new lines and
shapes to the path.

cairo_path_t* cairo_copy_path (cairo_t *cairo_context);

There are a number of functions provided for drawing paths, which are listed in
Table 12-1. More information about each function can be found in the Cairo API
documentation.

Table 12-1. Cairo Path-Drawing Functions

When you are finished with a subpath, you can close it with cairo_path_close(). This will
enclose the current path so that it can be filled with a color if necessary.

Function Description

cairo_arc() Draw an arc in the current path. You must provide the radius of the arc,
horizontal and vertical positions of its center, and the start and end
angle of the curve in radians.

cairo_curve_to() Create a Bezier curve in the current path. You must provide the end
position of the curve and two control points that will be used to
calculate the curve.

cairo_line_to() Draw a line from the current position to the specified point. The
current position will simply be moved if an initial point does not exist.

cairo_move_to() Move to a new position in the context, which will cause a new subpath
to be created.

cairo_rectangle() Draw a rectangle in the current path. You must provide the coordinates
of the top-left corner of the rectangle, its width, and its height.

cairo_rel_curve_to() This function is the same as cairo_curve_to(), except it is drawn with
respect to the current position.

cairo_rel_line_to() This function is the same as cairo_line_to(), except it is drawn with
respect to the current position.

cairo_rel_move_to() This function is the same as cairo_move_to(), except it is drawn with
respect to the current position.

7931.book Page 453 Thursday, March 8, 2007 7:02 PM

454 C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S

Rendering Options
The current color used for drawing operations on a source is cairo_set_source_rgb(). The
color will be used until a new color is set. In addition to choosing a color, you can use cairo_
set_source_rgba(), which accepts a fifth alpha parameter. Each of the color parameters is a
floating point number between 0.0 and 1.0.

void cairo_set_source_rgb (cairo_t *cairo_context,
 double red,
 double green,
 double blue);

After you have moved to a specific point and set the source color, you can fill the current
path with cairo_fill(), which accepts only the context. Alternatively, you can fill a rectan-
gular area with cairo_fill_extents(). This function will calculate an area with corners of
(x1,y1) and (x2,y2), filling all of the area that is in between those points that is also contained
by the current path.

void cairo_fill_extents (cairo_t *cairo_context,
 double *x1,
 double *y1,
 double *x2,
 double *y2);

Drawing operations such as curves can cause edges to become jagged. To fix this, Cairo
provides antialiasing to drawings with cairo_set_antialias().

void cairo_set_antialias (cairo_t *cairo_context,
 cairo_antialias_t antialias);

Antialiasing settings are provided by the cairo_antialias_t enumeration. A list of values
provided by this enumeration follows:

• CAIRO_ANTIALIAS_DEFAULT: The default antialiasing algorithm will be used.

• CAIRO_ANTIALIAS_NONE: No antialiasing will occur; instead, an alpha mask will be used.

• CAIRO_ANTIALIAS_GRAY: Use only a single color for antialiasing. This color is not necessar-
ily gray but is chosen based on the foreground and background colors.

• CAIRO_ANTIALIAS_SUBPIXEL: Use subpixel shading that is provided by LCD screens.

This is simply a short introduction to Cairo drawing contexts that is provided to give you a
taste of the topic. For further information on using Cairo, you should reference its API docu-
mentation, available at www.cairographics.org.

7931.book Page 454 Thursday, March 8, 2007 7:02 PM

C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S 455

Recent Files
In GTK+ 2.10, a new API was introduced that allows you to keep track of recently opened files
across applications. In this section, we are going to implement this functionality in the simple
text editing application. This application with a recent file chooser is shown in Figure 12-4.
Later, in this chapter’s exercise, you are going to add recent file support to your text editor.

Figure 12-4. Recent file chooser dialog used in a text editor

The code in Listing 12-7 sets up the text editing application. Two buttons allow
you to open an existing file using a GtkFileChooserDialog and save your changes. Then,
there is a GtkMenuToolButton that provides two functions. When the button is clicked, a
GtkRecentChooserDialog is displayed that allows you to select a recent file from the list.
The menu in the GtkMenuToolButton widget is of the type GtkRecentChooserMenu, which
shows the ten most recent files.

7931.book Page 455 Thursday, March 8, 2007 7:02 PM

456 C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S

Listing 12-7. Remembering Recently Opened Files (recentfiles.c)

#include <gtk/gtk.h>

typedef struct
{
 GtkWidget *window;
 GtkWidget *textview;
} Widgets;

static void open_file (GtkButton*, Widgets*);
static void save_file (GtkButton*, Widgets*);
static void open_recent_file (GtkButton*, Widgets*);
static void menu_activated (GtkMenuShell*, Widgets*);

int main (int argc,
 char *argv[])
{
 GtkWidget *vbox, *hbox, *open, *save, *swin, *icon, *menu;
 PangoFontDescription *fd;
 GtkRecentManager *manager;
 Widgets *w;

 gtk_init (&argc, &argv);

 w = g_slice_new (Widgets);
 w->window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (w->window), "Recent Files");
 gtk_container_set_border_width (GTK_CONTAINER (w->window), 5);
 gtk_widget_set_size_request (w->window, 600, 400);

 g_signal_connect (G_OBJECT (w->window), "destroy",
 G_CALLBACK (gtk_main_quit), NULL);

 w->textview = gtk_text_view_new ();
 fd = pango_font_description_from_string ("Monospace 10");
 gtk_widget_modify_font (w->textview, fd);
 pango_font_description_free (fd);

 swin = gtk_scrolled_window_new (NULL, NULL);
 open = gtk_button_new_from_stock (GTK_STOCK_OPEN);
 save = gtk_button_new_from_stock (GTK_STOCK_SAVE);
 icon = gtk_image_new_from_stock (GTK_STOCK_OPEN, GTK_ICON_SIZE_BUTTON);
 w->recent = gtk_menu_tool_button_new (icon, "Recent Files");

7931.book Page 456 Thursday, March 8, 2007 7:02 PM

C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S 457

 /* Load the default recent chooser menu and create a menu from it. */
 manager = gtk_recent_manager_get_default ();
 menu = gtk_recent_chooser_menu_new_for_manager (manager);
 gtk_menu_tool_button_set_menu (GTK_MENU_TOOL_BUTTON (w->recent), menu);

 gtk_recent_chooser_set_show_not_found (GTK_RECENT_CHOOSER (menu), FALSE);
 gtk_recent_chooser_set_local_only (GTK_RECENT_CHOOSER (menu), TRUE);
 gtk_recent_chooser_set_limit (GTK_RECENT_CHOOSER (menu), 10);
 gtk_recent_chooser_set_sort_type (GTK_RECENT_CHOOSER (menu),
 GTK_RECENT_SORT_MRU);

 g_signal_connect (G_OBJECT (menu), "selection-done",
 G_CALLBACK (menu_activated), (gpointer) w);

 /* ... Connect other signals and populate the window ... */

 gtk_container_add (GTK_CONTAINER (w->window), vbox);
 gtk_widget_show_all (w->window);

 gtk_main ();
 return 0;
}

/* Save the changes that the user made to the file to disk. */
static void
save_file (GtkButton *save,
 Widgets *w)
{
 const gchar *filename;
 gchar *content;
 GtkTextBuffer *buffer;
 GtkTextIter start, end;

 filename = gtk_window_get_title (GTK_WINDOW (w->window));
 buffer = gtk_text_view_get_buffer (GTK_TEXT_VIEW (w->textview));
 gtk_text_buffer_get_bounds (buffer, &start, &end);
 content = gtk_text_buffer_get_text (buffer, &start, &end, FALSE);

 if (!g_file_set_contents (filename, content, -1, NULL))
 g_warning ("The file '%s' could not be written!", filename);
 g_free (content);
}

7931.book Page 457 Thursday, March 8, 2007 7:02 PM

458 C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S

A central class called GtkRecentManager handles recent file information. It is possible to
create your own from scratch, but if you want to share recent files across applications, you can
retrieve the default with gtk_recent_manager_get_default(). This will allow you to share
recent files with applications such as GEdit, GNOME’s recent documents menu, and others
that take advantage of the GtkRecentManager API.

We next create a new GtkRecentChooserMenu widget from the default GtkRecentManager.
This menu displays recent files and will optionally number the menu items created with
gtk_recent_chooser_menu_new_for_manager(). The files are not numbered by default, but this
property can be changed by setting show-numbers to TRUE or by calling gtk_recent_chooser_
menu_set_show_numbers().

GtkRecentChooserMenu implements the GtkRecentChooser interface, which provides
the functionality you will need for interacting with the widget. In Listing 12-7, a number
of GtkRecentChooser properties are used to customize the menu. These also apply to two
other widgets that implement the GtkRecentChooser interface: GtkRecentChooserDialog and
GtkRecentChooserWidget.

It is possible that recent files in the list have been removed since they were added. In this
case, you may not want to display them in the list. You can hide recent files that no longer exist
with gtk_recent_chooser_set_show_not_found(). This property will only work with files that
are located on the local machine.

■Tip You may actually want to show files that are not found to the user. If the user selects a file that does
not exist, you can then easily remove it from the list after informing the user about the problem.

By default, only local files are shown, which means that they will have a Uniform Resource
Identifier (URI) prefix of file://. A URI is used to refer to things such as file locations or Inter-
net addresses based on their prefixes. Using only the file:// prefix will guarantee that they are
located on the local machine. You can set this property to FALSE in order to show recent files
that are located at a remote location. You should note that remote files are not filtered out if
they no longer exist!

If the list includes a large number of recent files, you will probably not want to list all
of them in the menu. A menu with a hundred items is quite large! Therefore, you can use
gtk_recent_chooser_set_limit() to set a maximum number of recent items that will be
displayed in the menu.

void gtk_recent_chooser_set_limit (GtkRecentChooser *chooser,
 gint limit);

7931.book Page 458 Thursday, March 8, 2007 7:02 PM

C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S 459

When you set a limit on the number of elements, which files are shown depends on the
sort type you defined with gtk_recent_chooser_set_sort_type(). By default, this is set to
GTK_RECENT_SORT_NONE. The available values in the GtkRecentSortType enumeration follow:

• GTK_RECENT_SORT_NONE: The list of recent files is not sorted at all and will be returned in
the order that they appear. This should not be used when you are limiting the number of
elements that are displayed, because you cannot predict which files will be displayed!

• GTK_RECENT_SORT_MRU: Sort the most recently added files first in the list. This is most likely
the sorting method you will want to use, because it places the most recent file at the
beginning of the list.

• GTK_RECENT_SORT_LRU: Sort the least-recently added files first in the list.

• GTK_RECENT_SORT_CUSTOM: Use a custom sorting function to sort the recent files. To use
this, you will need to use gtk_recent_manager_set_sort_func() to define the sorting
function to use.

The last part of this example saves the file under the specified name. When a file is opened
in this text editor, the window title is set to the file name. This file name is used to save the file.
Therefore, be careful because this simple text editor cannot be used to create new files!

Recent Chooser Menu
You have just learned about the GtkRecentChooserMenu widget. Listing 12-8 implements the
selection-done callback function that was connected in Listing 12-7. This function retrieves
the selected URI and opens the file if it exists.

Listing 12-8. Using GtkRecentChooserMenu

/* A menu item was activated. So, retrieve the file URI and open it. */
static void
menu_activated (GtkMenuShell *menu,
 Widgets *w)
{
 GtkTextBuffer *buffer;
 gchar *filename, *content, *fn;
 gsize length;

 filename = gtk_recent_chooser_get_current_uri (GTK_RECENT_CHOOSER (menu));

7931.book Page 459 Thursday, March 8, 2007 7:02 PM

460 C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S

 if (filename != NULL)
 {
 /* Remove the "file://" prefix from the beginning of the URI if it exists. */
 fn = g_filename_from_uri (filename, NULL, NULL);

 if (g_file_get_contents (fn, &content, &length, NULL))
 {
 gtk_window_set_title (GTK_WINDOW (w->window), fn);
 buffer = gtk_text_view_get_buffer (GTK_TEXT_VIEW (w->textview));
 gtk_text_buffer_set_text (buffer, content, -1);
 g_free (content);
 }
 else
 g_warning ("The file '%s' could not be read!", filename);

 g_free (filename);
 g_free (fn);
 }
}

You can use gtk_recent_chooser_get_current_uri() to retrieve the currently selected
recent file, since only one item can be selected. Since we restricted the menu to only displaying
local files, we need to remove the file:// prefix from the URI. If you are allowing remote files
to be displayed, you may need to remove different prefixes from the URI such as http://. You
can use g_filename_from_uri() to remove URI prefixes.

gchar* g_filename_from_uri (const gchar *uri,
 gchar **hostname,
 GError **error);

After the prefix is removed, GLib attempts to open the file. If the file was successfully
opened, the window title is set to the file name and the file is opened. Otherwise, a warning
is presented to the user that the file could not be opened.

Adding Recent Files
When the Open button is pressed, we want to allow the user to select a file to open from a
GtkFileChooserDialog. If the file is opened, it will be added to the default GtkRecentManager,
which is shown in Listing 12-9.

7931.book Page 460 Thursday, March 8, 2007 7:02 PM

C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S 461

Listing 12-9. Open a File and Add It to the List of Recent Files

/* Open a file selected by the user and add it as a new recent file. */
static void
open_file (GtkButton *open,
 Widgets *w)
{
 GtkWidget *dialog;
 GtkRecentManager *manager;
 GtkRecentData *data;
 GtkTextBuffer *buffer;
 gchar *filename, *content, *uri;
 gsize length;

 static gchar *groups[2] = {
 "testapp",
 NULL
 };

 dialog = gtk_file_chooser_dialog_new ("Open File", GTK_WINDOW (w->window),
 GTK_FILE_CHOOSER_ACTION_OPEN,
 GTK_STOCK_CANCEL, GTK_RESPONSE_CANCEL,
 GTK_STOCK_OPEN, GTK_RESPONSE_OK,
 NULL);

 if (gtk_dialog_run (GTK_DIALOG (dialog)) == GTK_RESPONSE_OK)
 {
 filename = gtk_file_chooser_get_filename (GTK_FILE_CHOOSER (dialog));

 if (g_file_get_contents (filename, &content, &length, NULL))
 {
 /* Create a new recently used resource. */
 data = g_slice_new (GtkRecentData);
 data->display_name = NULL;
 data->description = NULL;
 data->mime_type = "text/plain";
 data->app_name = (gchar*) g_get_application_name ();
 data->app_exec = g_strjoin (" ", g_get_prgname (), "%u", NULL);
 data->groups = groups;
 data->is_private = FALSE;
 uri = g_filename_to_uri (filename, NULL, NULL);

7931.book Page 461 Thursday, March 8, 2007 7:02 PM

462 C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S

 /* Add the recently used resource to the default recent manager. */
 manager = gtk_recent_manager_get_default ();
 gtk_recent_manager_add_full (manager, uri, data);

 /* Load the file and set the filename as the title of the window. */
 gtk_window_set_title (GTK_WINDOW (w->window), filename);
 buffer = gtk_text_view_get_buffer (GTK_TEXT_VIEW (w->textview));
 gtk_text_buffer_set_text (buffer, content, -1);

 g_free (content);
 g_free (uri);
 g_free (data->app_exec);
 g_slice_free (GtkRecentData, data);
 }
 else
 g_warning ("The file '%s' could not be read!", filename);

 g_free (filename);
 }

 gtk_widget_destroy (dialog);
}

If the file is successfully opened, gtk_recent_manager_add_full() is used to add it as a new
recent item to the default GtkRecentManager. In order to use this function, you need two items.
First, you need the URI, which is created by appending the file name to file:// to show that it
is a local file. This filename can be built with g_filename_to_uri().

gchar* g_filename_to_uri (const gchar *filename,
 const gchar *hostname,
 GError **error);

Secondly, you need an instance of the GtkRecentData structure. The content of this structure
is shown in the following code snippet, which contains seven parameters. The display_name is a
short name to display instead of the file name and description is a short description of the file.
Both of these values can safely be set to NULL.

typedef struct
{
 gchar *display_name;
 gchar *description;
 gchar *mime_type;
 gchar *app_name;
 gchar *app_exec;
 gchar **groups;
 gboolean is_private;
} GtkRecentData;

7931.book Page 462 Thursday, March 8, 2007 7:02 PM

C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S 463

You then have to specify a MIME type for the file, the name of your application, and the
command line used to open the file. The name of your application can be retrieved by calling
g_get_application_name(). Then, g_get_prgname() can be used to get the program name. The
%f and %u characters can be used to get the file path to the resource and the URI respectively.

Next, groups is a list of strings that designate what groups the resource belongs to. You are
able to use this to filter out files that do not belong to a specific group. For example, if a filter for
the group testapp is added to a GtkRecentChooser, only recent files added by this application
will be displayed.

The last member, is_private, specifies whether this resource will be available to applica-
tions that did not register it. By setting this to TRUE, you can prevent other applications that use
the GtkRecentManager API from displaying this recent file.

Once you construct the GtkRecentData instance, it can be added along with the recent file
URI as a new resource with gtk_recent_manager_add_full(). You can also add a new recent
item with gtk_recent_manager_add_item(), which will create a GtkRecentData object for you.

To remove a recent item, call gtk_recent_manager_remove_item(). This function will
return TRUE if a file with the specified URI is successfully removed. If not, an error under the
GtkRecentManagerError domain will be set. You can also remove all recent items from the list
with gtk_recent_manager_purge_items().

gboolean gtk_recent_manager_remove_item (GtkRecentManager *manager,
 const gchar *uri,
 GError **error);

■Caution You should avoid purging all of the items in the default GtkRecentManager! This will remove
recent items that are registered by every application, which the user probably does not want since your appli-
cation should usually not be altering recent resources from other applications.

Recent Chooser Dialog
GTK+ also provides another widget called GtkRecentChooserDialog, which displays recent files
in a convenient dialog. This widget implements the GtkRecentChooser interface, so it is very
similar in functionality to GtkRecentChooserMenu. Listing 12-10 shows you how to use this wid-
get to allow the user to choose a recent file to open.

Listing 12-10. Using GtkRecentChooserDialog

/* Allow the user to choose a recent file from the list in the dialog. */
static void
open_recent_file (GtkButton *recent,
 Widgets *w)
{
 GtkWidget *dialog;
 GtkRecentManager *manager;

7931.book Page 463 Thursday, March 8, 2007 7:02 PM

464 C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S

 GtkTextBuffer *buffer;
 GtkRecentFilter *filter;
 gchar *filename, *content, *fn;
 gsize length;

 manager = gtk_recent_manager_get_default ();
 dialog = gtk_recent_chooser_dialog_new_for_manager ("Open Recent File",
 GTK_WINDOW (w->window), manager,
 GTK_STOCK_CANCEL, GTK_RESPONSE_CANCEL,
 GTK_STOCK_OPEN, GTK_RESPONSE_OK, NULL);

 /* Add a filter that will display all of the files in the dialog. */
 filter = gtk_recent_filter_new ();
 gtk_recent_filter_set_name (filter, "All Files");
 gtk_recent_filter_add_pattern (filter, "*");
 gtk_recent_chooser_add_filter (GTK_RECENT_CHOOSER (dialog), filter);

 /* Add another filter that will only display plain text files. */
 filter = gtk_recent_filter_new ();
 gtk_recent_filter_set_name (filter, "Plain Text");
 gtk_recent_filter_add_mime_type (filter, "text/plain");
 gtk_recent_chooser_add_filter (GTK_RECENT_CHOOSER (dialog), filter);

 gtk_recent_chooser_set_show_not_found (GTK_RECENT_CHOOSER (dialog), FALSE);
 gtk_recent_chooser_set_local_only (GTK_RECENT_CHOOSER (dialog), TRUE);
 gtk_recent_chooser_set_limit (GTK_RECENT_CHOOSER (dialog), 10);
 gtk_recent_chooser_set_sort_type (GTK_RECENT_CHOOSER (dialog),
 GTK_RECENT_SORT_MRU);

 if (gtk_dialog_run (GTK_DIALOG (dialog)) == GTK_RESPONSE_OK)
 {
 filename = gtk_recent_chooser_get_current_uri (GTK_RECENT_CHOOSER (dialog));

 if (filename != NULL)
 {
 /* Remove the "file://" prefix from the beginning of the URI if it exists. */
 fn = g_filename_from_uri (filename, NULL, NULL);

7931.book Page 464 Thursday, March 8, 2007 7:02 PM

C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S 465

 if (g_file_get_contents (fn, &content, &length, NULL))
 {
 gtk_window_set_title (GTK_WINDOW (w->window), fn);
 buffer = gtk_text_view_get_buffer (GTK_TEXT_VIEW (w->textview));
 gtk_text_buffer_set_text (buffer, content, -1);
 g_free (content);
 }
 else
 g_warning ("The file '%s' could not be read!", filename);

 g_free (filename);
 g_free (fn);
 }
 }

 gtk_widget_destroy (dialog);
}

New GtkRecentChooserDialog widgets are created in a similar way to dialogs with
gtk_recent_chooser_dialog_new_for_manager(). This function accepts a title for the dialog,
a parent window, a GtkRecentManager widget to display, and pairs of buttons and response
identifiers.

Listing 12-10 then introduces recent file filters. New GtkRecentFilter objects are created
with gtk_recent_chooser_new(). Filters are used to display only recent files that follow installed
patterns.

gtk_recent_filter_set_name (filter, "All Files");
gtk_recent_filter_add_pattern (filter, "*");
gtk_recent_chooser_add_filter (GTK_RECENT_CHOOSER (dialog), filter);

The next step is to set the name of the filter. This name will be displayed in the combo box
where the user will choose which filter to use. There are many ways to create filters, including
with gtk_recent_filter_add_pattern(), which finds filters with matching patterns. The aster-
isk character can be used as the wildcard. There are also functions for matching MIME types,
image file types, application names, group names, and ages in days. Next, use gtk_recent_
chooser_add_filter() to add the GtkRecentFilter to the recent chooser.

With the GtkRecentChooserDialog widgets, it is possible to choose multiple files with
gtk_recent_chooser_set_select_multiple(). If the user can select multiple files, you will
want to use gtk_recent_chooser_get_uris() to retrieve all of the selected files.

gchar** gtk_recent_chooser_get_uris (GtkRecentChooser *chooser,
 gsize *length);

7931.book Page 465 Thursday, March 8, 2007 7:02 PM

466 C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S

This function also returns the number of elements in the NULL-terminated list of strings.
You should free the list with g_strfreev() after you are finished using it.

Automatic Completion
You learned about the GtkEntry widget in Chapter 4, but GTK+ also provides the
GtkEntryCompletion object. GtkEntryCompletion is derived from GObject and can be
used to provide the user with automatic completion in a GtkEntry widget. Figure 12-5
shows an example GtkEntry that is providing the user with multiple selections. Note
that the user also has the option of ignoring the choices and entering an arbitrary string.

Figure 12-5. GtkEntryCompletion automatic completion

Listing 12-11 implements a GtkEntry widget that asks you to enter the name of a GTK+
widget. All of the strings in the GtkEntryCompletion widget that have the same prefix as the
entered text are displayed as choices. This example shows just how easy it is to get automatic
completion up and running.

Listing 12-11. Automatic Completion (entrycompletion.c)

#include <gtk/gtk.h>

#define NUM_ELEMENTS 4

static gchar *widgets[] = { "GtkDialog", "GtkWindow", "GtkContainer", "GtkWidget" };

int main (int argc,
 char *argv[])

7931.book Page 466 Thursday, March 8, 2007 7:02 PM

C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S 467

{
 GtkWidget *window, *vbox, *label, *entry;
 GtkEntryCompletion *completion;
 GtkListStore *store;
 GtkTreeIter iter;
 unsigned int i;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Automatic Completion");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);

 label = gtk_label_new ("Enter a widget in the following GtkEntry:");
 entry = gtk_entry_new ();

 /* Create a GtkListStore that will hold autocompletion possibilities. */
 store = gtk_list_store_new (1, G_TYPE_STRING);
 for (i = 0; i < NUM_ELEMENTS; i++)
 {
 gtk_list_store_append (store, &iter);
 gtk_list_store_set (store, &iter, 0, widgets[i], -1);
 }

 completion = gtk_entry_completion_new ();
 gtk_entry_set_completion (GTK_ENTRY (entry), completion);
 gtk_entry_completion_set_model (completion, GTK_TREE_MODEL (store));
 gtk_entry_completion_set_text_column (completion, 0);

 vbox = gtk_vbox_new (FALSE, 5);
 gtk_box_pack_start (GTK_BOX (vbox), label, FALSE, FALSE, 0);
 gtk_box_pack_start (GTK_BOX (vbox), entry, FALSE, FALSE, 0);

 gtk_container_add (GTK_CONTAINER (window), vbox);
 gtk_widget_show_all (window);

 g_object_unref (completion);
 g_object_unref (store);

 gtk_main ();
 return 0;
}

7931.book Page 467 Thursday, March 8, 2007 7:02 PM

468 C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S

To implement a GtkEntryCompletion, you need to first create a new GtkListStore that will
display the choices. The model in this example only has one textual column, but it is acceptable
to provide a more complex GtkListStore as long as one column is of the type G_TYPE_STRING.

New GtkEntryCompletion objects are created with gtk_entry_completion_new(). You can
then apply it to an existing GtkEntry widget with gtk_entry_set_completion(). GTK+ will take
care of displaying matches and applying the choices by default.

Next, gtk_entry_completion_set_model() is used to apply the tree model to the
GtkEntryCompletion object. If there was already a model applied to the object, it will be
replaced. You will also have to use gtk_entry_completion_set_text_column() to designate
which column contains the string, since models do not have to be only a single column.
If you do not set the text column, automatic completion will not work because the text
column is set to -1 by default.

It is possible to display as much of the prefix as is common to all of the matches with
gtk_entry_completion_set_inline_completion(). You should note that inline completion is
case sensitive, but automatic completion is not! If you are using this, you may want to set
gtk_entry_completion_set_popup_single_match(), which will prevent the pop-up menu from
being displayed when there is only a single match.

You can use gtk_entry_completion_set_popup_set_width() to force the pop-up menu
to be the same width as the GtkEntry widget. This corresponds to GtkEntryCompletion’s popup-
set-width property.

If there are a lot of matches, you may want to set the minimum match length with
gtk_entry_completion_set_minimum_key_length(). This is useful when there is such a large
number of elements in the list that it would take a long time for the list to be rendered on
the screen.

Test Your Understanding
In this chapter’s exercise, you will be finishing the text editing application that has been the
focus of multiple exercises in past chapters. It will require you to integrate the automatic com-
pletion, printing, and recent file capabilities into your application.

Exercise 12-1. Creating a Full Text Editor

In this exercise, you are going to complete the text editor that you have been creating the last few chapters. You will
add three new features to the application.

First, add the automatic completion feature, which should be implemented to remember past searches in the search
toolbar. The application has to remember the past searches for only the current instance of the application runtimes.
Next, add printing support, which includes printing and print preview abilities. Printing support can be easily imple-
mented with the high-level GtkPrintOperation API. Lastly, instruct the text editor to remember the last five files
loaded using the GtkRecentManager API.

So that you do not have to rewrite previous aspects of the application, you should use the solution to a Chapter 10
exercise or download that solution from this book’s official web site.

7931.book Page 468 Thursday, March 8, 2007 7:02 PM

C H A P T E R 1 2 ■ A D D I T I O N A L G T K + W I D G E T S 469

Summary
In this chapter, you learned about a number of widgets that did not quite fit into previous
chapters. These widgets and objects are summarized in the following list:

• GtkDrawingArea: An empty widget that is meant to allow you to draw on its GdkWindow
object, which is also a GdkDrawable object.

• GtkLayout: This widget is like GtkDrawingArea, except it allows you to embed widgets
within its interface as well. It introduces overhead, so you should not use this widget if
you want only drawing capabilities.

• GtkCalendar: Display a single month for the chosen year. This widget allows the user to
select a date, and you can mark multiple dates programmatically.

• GtkStatusIcon: Display an icon in the task bar on supported platforms to provide a
message to the user. You can also provide a pop-up menu or tooltip and detect when
the icon is activated.

• GtkPrintOperation: A high-level printing API that is platform independent. There are
many other objects provided for implementing printing support, but most actions
should be handled with the GtkPrintOperation API so that it will function across multi-
ple platforms.

• GtkRecentManager: A simple API for managing lists of recent files. These lists can be shared
across applications. Menu and dialog widgets are provided for displaying recent files.

• GtkEntryCompletion: Provide automatic completion support to GtkEntry widgets. The
choices are composed of a GtkListStore object filled with possible matches.

You have now learned all of the topics that this book intended to introduce. In the next
chapter, you will be presented with five complete applications that take advantage of topics
that were covered in the past twelve chapters.

7931.book Page 469 Thursday, March 8, 2007 7:02 PM

7931.book Page 470 Thursday, March 8, 2007 7:02 PM

471

■ ■ ■

C H A P T E R 1 3

Putting It All Together

Throughout the past twelve chapters you have been given an in-depth view of everything you
can do with GTK+ and associated technologies. In this chapter, we’re going to put this knowl-
edge to work by building a few applications.

This chapter introduces five full applications: the file browser that was designed in Chapter 10,
a calculator, a ping utility, a Hangman game, and a calendar. However, the source code for the
examples is not contained in this chapter. The code for each of the applications in this chapter can
be downloaded from www.gtkbook.com.

Finally, I will conclude the final chapter of this book by offering some pointers to other
learning resources, so you can continue expanding your GTK+ knowledge.

File Browser
In Chapter 10, you implemented the user interface for a file browser application in Glade. That
user interface was then dynamically loaded with Libglade and all of the signals were autocon-
nected with glade_xml_signal_autoconnect().

At the end of that chapter, you were told that the callback functions would be imple-
mented in Chapter 13, and we will do so now. Figure 13-1 shows the file browser application
when it is first launched and is displaying the root folder.

Figure 13-1. The file browser using GtkTreeView

7931.book Page 471 Thursday, March 8, 2007 7:02 PM

472 C H A P T E R 1 3 ■ P U T T I N G I T A L L T O G E T H E R

Of special interest in this application are the actual file browsing abilities. These are very
similar to those in Exercise 8-1. In that exercise, you created a simple application using a
GtkTreeView widget that could browse throughout the user’s file system. The current location
of the file browser is stored in a linked list from which the full path can be built. Each node in
the list is one part of the path, and the directory separator is placed between each string to
build the full path. A GtkEntry widget is also provided to allow the user to edit the path with the
keyboard.

Navigation through the file system can be done using a few different methods. As previ-
ously mentioned, a location can be entered into the address bar, although the validity of the
location must be verified when the GtkEntry widget is activated. In addition to this method, the
user can use the Back, Forward, Up, or Home toolbar buttons to navigate throughout the
browsing history, move to the parent directory, or go to the home directory respectively. Lastly,
GtkTreeView’s row-activated signal allows the user to move into the selected directory or view
information about the selected file.

A GtkStatusBar widget is placed along the bottom of the window. It is used to keep track of
the total number of items in the current directory and the total size of these items. The sources
for this example, along with the four other applications in this chapter, can be downloaded
from www.gtkbook.com.

Calculator
A calculator is a simple application that is implemented in most GUI programming books. This
example is meant to show you just how easy it is to implement a calculator. A screenshot of the
application can be viewed in Figure 13-2.

Figure 13-2. A simple calculator application

This calculator application was designed in Glade, so the user interface was already com-
pleted with absolutely no code. Next, glade_xml_signal_autoconnect() was used to connect all
of the buttons to their signals. Since most of the widgets in this example are GtkButton widgets,
the clicked and destroy signals were the only two needed.

The calculator allows the user to enter numbers with an optional decimal point, perform
the four basic operations (add, subtract, multiply, and divide), negate numbers, and calculate
square roots and exponents. In order to cut down on the number of callback functions needed,
all of the numbers and the decimal place were connected to a single callback function called

7931.book Page 472 Thursday, March 8, 2007 7:02 PM

C H A P T E R 1 3 ■ P U T T I N G I T A L L T O G E T H E R 473

num_clicked(), and the four basic operations and the power operations were connected to
another. This allows you to take advantage of the fact that these groups of operations need a lot
of similar code to work.

When a number or the decimal point button is clicked, the character is appended to the
end of the current value, although the length of the number is restricted to ten digits. When an
operation button is clicked, the operation is performed, and the new value is stored. It also sets
a flag called clear_flag that tells the calculator that a new number should be started when the
user presses a number or decimal place.

The square root operation is not grouped with the other operations, because it is immedi-
ately performed on the displayed value in the sqrt_clicked() callback function. In order to do
this, it simply takes the current value displayed in the GtkEntry widget, calculates the square
root of the number, and stores the result back in the GtkEntry widget. Likewise, the negate
operation also takes effect immediately. The exponential operation, on the other hand, asks for
the power after it is clicked.

Hangman
The hangman application, shown in Figure 3-3, takes advantage of the GtkDrawingArea widget
that you learned about in the previous chapter. The character, border, and current puzzle are
drawn on the GtkDrawingArea widget. Next, a table of buttons, one for each of the alphabetic
characters, is placed along the bottom of the window. Each button becomes insensitive when
clicked.

Figure 13-3. A hangman game using GtkDrawingArea

The important thing to remember about drawing areas is that you will want to connect the
widget to the expose-event signal. Every time the user resizes the window, changes focus, or
moves the window, the widget will be cleared. In the hangman application, the drawing area
had to be reconstructed every time an expose-event occurred.

Within this callback function, gdk_draw_lines() was used to draw the border around the
window from a set of points. Next, gdk_draw_polygon() was used to draw the scaffolding from
a set of points. Notice in the solution that the third parameter of this function is set to TRUE,
which causes the polygon to be filled in with the color specified in the widget’s style.

7931.book Page 473 Thursday, March 8, 2007 7:02 PM

474 C H A P T E R 1 3 ■ P U T T I N G I T A L L T O G E T H E R

Then, the current puzzle string is added to a PangoLayout, where any characters that are
not yet discovered are set as the period character. The puzzle is aligned in the center of the bor-
der according to its width, since its size will vary depending on the current puzzle. The layout
is drawn to the drawing area’s GdkWindow with gdk_draw_layout().

Lastly, gdk_draw_line() and gdk_draw_polygon() are again used to draw the actual charac-
ter, although what is drawn depends on how many wrong guesses the user has made.

When a letter is clicked, the callback function loops through the current puzzle, revealing
any of the characters that have been found. If no matches are found, another appendage is
added to the hangman. If the state reaches 5, the user loses. If the whole solution was filled,
then the user wins.

Ping Utility
In Chapter 6, you learned how to use GIOChannel to communicate with applications through
pipes. A ping utility application is displayed in Figure 13-4; it allows the user to ping an address
a specific number of times or continually until the application is stopped.

Figure 13-4. A ping utility application

In this application, g_spawn_async_with_pipes() is used to fork an instance of the ping
application with the specified address. The shell command received by this function was
parsed with g_shell_parse_argv() so that it was in the correct format. The Ping button is also
disabled, which prevents the user from running multiple instances of the child process.

After spawning the child process, the output pipe is used to create a new GIOChannel object
that watches the pipe for read data. When data is ready to be read, it is parsed so that statistics
for each ping can be displayed in a GtkTreeView widget. This will continue the specified num-
ber of times or until the user stops the child.

When a child process is running, a Stop button is enabled, which allows the user to kill
the child process before it completes. This function simply calls the following instance of the
kill() function, which forces the child process to close:

kill (pid, SIGINT);

7931.book Page 474 Thursday, March 8, 2007 7:02 PM

C H A P T E R 1 3 ■ P U T T I N G I T A L L T O G E T H E R 475

When the process is killed, the pipe will be destroyed, which will cause the GIOChannel
to be shut down in the watch function. This ensures that we will be able to reuse the same
GIOChannel object for the next child process.

Calendar
The last application in this chapter creates a calendar that organizes events for the user. It uses
the GtkCalendar widget to allow the user to browse throughout dates and GtkTreeView to dis-
play events for the given day. Figure 13-5 shows this calendar application.

Figure 13-5. A calendar application with two events

Most of the code that was used to create the calendar application should look very familiar,
because it uses functions introduced in previous chapters. In addition to the familiar functions,
the application uses the XML parser provided by GLib to open calendar files, which are stored as
XML files. An example calendar file that contains one event is shown in Listing 13-1.

Listing 13-1. Calendar File (test.cal)

<calendar>
 <event>
 <name>Release of the Book</name>
 <location>Everywhere</location>
 <day>16</day>
 <month>3</month>
 <year>2007</year>
 <start>All Day</start>
 <end></end>
 </event>
</calendar>

7931.book Page 475 Thursday, March 8, 2007 7:02 PM

476 C H A P T E R 1 3 ■ P U T T I N G I T A L L T O G E T H E R

A new calendar is created by clicking the New toolbar button, which will ask for a calendar file
name and location. The calendar is saved every time you add or remove an event, so a Save button
is not provided. You can also open an existing calendar by pressing the Open toolbar button.

Markup Parser Functions
To open a calendar, this application uses GLib’s XML parser to retrieve the content of the file.
This parser is very easy to use and supports basic XML files. The first thing you need to do to use
the parser is to define a new GMarkupParser structure. This structure contains five functions,
which I will cover one at a time. Any of these functions can be set to NULL except error().

The first function, start_element() is called for every open tag such as <calendar> and
<event>. This function receives the name of the tag element along with arrays of attribute
names and values. This allows you to differentiate between starting elements, checking for
attributes when appropriate. In the calendar application, this function is used to free all of the
temporary data stored for the previous event, creating a clean slate for the next event.

void (*start_element) (GMarkupParseContext *context,
 const gchar *element_name,
 const gchar **attribute_names,
 const gchar **attribute_values,
 gpointer data,
 GError **error);

The next function, end_element(), is called for every close tag such as </calendar> and
</event>. It is also called for tags that have no close tag such as <tag/>. Similar to the previous
function, it accepts the tag name. In the calendar application, it is used to add the event to the
global tree if the </event> tag has been reached.

void (*end_element) (GMarkupParseContext *context,
 const gchar *element_name,
 gpointer data,
 GError **error);

The text() function is called for the data found between start_element() and end_element()
calls. It accepts the text between the two tags as well as the length of the text. You should note that
the text string is not NULL-terminated! This function is called in the calendar application to read the
content of an event.

void (*text) (GMarkupParseContext *context,
 const gchar *text,
 gsize text_len,
 gpointer data,
 GError **error);

■Note The text() function is not only called for tags that contain strings but also for tags that call other
tags. Therefore, this function may have a text parameter filled with spaces and new line characters! You can
use g_markup_parse_context_get_element() to retrieve the tag that contains the string.

7931.book Page 476 Thursday, March 8, 2007 7:02 PM

C H A P T E R 1 3 ■ P U T T I N G I T A L L T O G E T H E R 477

The passthrough() function is not used in the calendar application. It is called for ele-
ments that are not XML and should retain their current position such as comments. As with
text(), the passthrough_text string is not NULL-terminated!

void (*passthrough) (GMarkupParseContext *context,
 const gchar *passthrough_text,
 gsize text_len,
 gpointer data,
 GError **error);

Lastly, the error() function is called when an error occurs in the parsing. This is the only
function that must be set within GMarkupParser.

void (*error) (GMarkupParseContext *context,
 GError *error,
 gpointer data);

Parsing the XML File
The actual parsing of the XML text is done with a GMarkupParseContext object. You can create a
new parser with g_markup_parse_context_new():

GMarkupParseContext* g_markup_parse_context_new (const GMarkupParser *parser,
 GMarkupParseFlags flags,
 gpointer data,
 GDestroyNotify user_data_dnotify);

This function first accepts a GMarkupParser object, which contains functions that will be
called for elements within the XML file. Then, it accepts flags defined by GMarkupParseFlags.
There is only one available flag—G_MARKUP_TREAT_CDATA_AS_TEXT. If this flag is set, sections
marked as CDATA will be passed to your implementation of text() instead of passthrough().
The last two parameters of g_markup_parse_context_new() allow you to pass data to the
GMarkupParser functions and provide a function to call when the parser is freed.

Parsing of XML is performed with g_markup_parse_context_parse(). When you call this
function, it will step through all of the tags in the provided text string, calling the appropriate
GMarkupParser functions. This function will return TRUE if the parsing was successful.

gboolean g_markup_parse_context_parse (GMarkupParseContext *context,
 const gchar *text,
 gssize text_len,
 GError **error);

You should call g_markup_parse_context_free() when you are finished with the parse
context. This function cannot be called from within one of your GMarkupParser functions.

Further Resources
Congratulations! You have now completed reading this book and know enough to develop and
manage complex GTK+ applications. However, you may be wondering where you should go

7931.book Page 477 Thursday, March 8, 2007 7:02 PM

478 C H A P T E R 1 3 ■ P U T T I N G I T A L L T O G E T H E R

from here. There are a number of libraries and resources that will become indispensable as you
begin developing applications on your own.

The first resource, as mentioned throughout this book, is the official web site of this book,
which you can find at www.gtkbook.com. This site includes links to online resources for GTK+
developers as well as tutorials on topics that did not fit in this book. You can use it as a starting
point for finding help with GTK+ application development.

Another great resource is the GTK+ web site, found at www.gtk.org. This site includes
information about mailing lists, downloads, and bug tracking for GTK+. You can find
up-to-date documentation on this site as well. The GNOME developer’s home page, found
at http://developer.gnome.org is also an ideal place to learn more.

In addition to GTK+ and its supporting libraries, there are a number of other libraries used
to develop applications for GNOME that you will continually run across. The following list
gives a brief summary of the purposes of a few of these libraries; you can find more information
about these libraries at http://developer.gnome.org:

• Libgnome: Usually distributed with Libgnomeui, these libraries provide a number of other
objects and widgets that expand the functionality of current GTK+ widgets. In recent
releases, the most frequently used widgets from these libraries have been consolidated
into GTK+. For example, Libgnomeprint and Libgnomeprintui are now implemented as
printing support in GTK+.

• GConf: A system used by GNOME to store various settings for applications and the desk-
top environment itself. You can use the GConf library to store many types of settings for
your application and watch for changes so that your application can immediately be
updated. This is especially useful if multiple instances of your application are being run
at the same time.

• GnomeVFS: Short for the GNOME Virtual File System, this library is simply an abstrac-
tion layer for reading, writing, and executing local or remote files. It can also be used to
handle MIME file types and retrieve the MIME type of a specific file.

• ORBit: A library compliant with the Common Object Request Broker Architecture
(CORBA) that is used to allow your code to make program calls between computers.
It uses a standard definition that allows multiple programming languages to work
together.

• Libart: A vector-based graphics library used for rendering various widgets such as
GnomeCanvas. It handles complex drawing actions for the GNOME desktop environment.

• Bonobo: A set of libraries based on CORBA used by GNOME for modeling compound
documents.

• VTE: A terminal emulator widget that is used by many applications in GNOME. It allows
you to embed a terminal into any application as a GtkWidget.

7931.book Page 478 Thursday, March 8, 2007 7:02 PM

C H A P T E R 1 3 ■ P U T T I N G I T A L L T O G E T H E R 479

Summary
In the past thirteen chapters, you have become familiar with a large portion of GTK+ and its
supporting libraries. This knowledge can be used to implement graphical user interfaces for
applications on many platforms.

This book is intended to give you a thorough understanding of GTK+, and I hope that it will
continue to be a valuable resource as you develop applications. The first five appendixes are
indispensable references for topics that are not always thoroughly documented in the API doc-
umentation and can be used even when you become an expert. The sixth appendix provides
short descriptions of exercise solutions along with tips on how to complete them.

Now that you have this knowledge, practice and experience will help you become a great
graphical application developer. You have everything you need to continue on your own. I
hope you have had as much fun reading this book as I have had writing it!

7931.book Page 479 Thursday, March 8, 2007 7:02 PM

7931.book Page 480 Thursday, March 8, 2007 7:02 PM

481

■ ■ ■

A P P E N D I X A

GTK+ Properties

GObject provides a property system, which allows you to customize how widgets interact
with the user and how they are drawn on the screen. In the following sections, you will be
provided with a complete reference to widget and child properties available in GTK+ 2.10.

GTK+ Properties
Every class derived from GObject can create any number of properties. In GTK+, these properties
store information about the current state of the widget. For example, GtkButton has a property
called relief that defines the type of relief border used by the button in its normal state.

In the following code, g_object_get() was used to retrieve the current value stored by the
button’s relief property. This function accepts a NULL-terminated list of properties and vari-
ables to store the returned value. You can also use g_object_set() to set each object property
as well.

g_object_get (button, "relief", &value, NULL);

There are a great number of properties available to widgets; Tables A-1 to A-90 provide a full
properties list for each widget and object in GTK+ 2.10. Remember that object properties are
inherited from parent widgets, so you should investigate a widget’s hierarchy for a full list of
properties. For more information on each object, you should reference the API documentation.

Table A-1. GtkAboutDialog Properties

Property Type Description

artists GStrv A list of individuals who helped create
the artwork used by the application.
This often includes information such
as an e-mail address or URL for each
artist, which will be displayed as a link.

authors GStrv A list of individuals who helped
program the application. This often
includes information such as an e-mail
address or URL for each programmer,
which will be displayed as a link.

Continued

7931.book Page 481 Thursday, March 8, 2007 7:02 PM

482 A P P E N D I X A ■ G T K + P R O P E R T I E S

Table A-1. Continued

Property Type Description

comments gchararray A short string that describes the gen-
eral functionality of the program. This
is displayed in the main dialog win-
dow, so it should not be too long.

copyright gchararray Copyright information about the
application. This is displayed in the
main dialog window, so it should not
be too long. An example copyright
string would be "(C) Copyright 2007
Author".

documenters GStrv A list of individuals who helped write
documentation for the application.
This often includes information such
as an e-mail address or URL for each
documenter, which will be displayed
as a link.

license gchararray The content of the license for the
application. This is displayed with a
GtkTextView widget in a secondary
dialog, so the length of the string does
not matter.

logo GdkPixbuf An image that will be displayed
as the application’s logo in the
main window. If this is not set,
gtk_window_get_default_icon_list()
will be used.

logo-icon-name gchararray An icon name from the icon theme to
use as the logo in the main About dia-
log. If this is set, it will take precedence
over the logo property.

name gchararray The name of the application to
display in the main About dialog.
If you do not set this property,
g_get_application_name() will
be used.

translator-credits gchararray A string that holds information about
the translator(s) for the current lan-
guage. It should be set as translatable,
so each translator can provide a
custom string. This often includes
information such as an e-mail address
or URL for each translator, which will
be displayed as a link.

version gchararray The version of the application that the
user is running.

website gchararray A URL to the homepage for the appli-
cation. This string must be prefixed
with http://.

7931.book Page 482 Thursday, March 8, 2007 7:02 PM

A P P E N D I X A ■ G T K + P R O P E R T I E S 483

Table A-2. GtkAccelLabel Properties

Table A-3. GtkAction Properties

website-label gchararray A label to display in place of the web
site URL. If this is not set, website will
be set as the URL label.

wrap-license gboolean If set to TRUE, the license content will
be wrapped.

Property Type Description

accel-closure GClosure The closure that should be watched
for changes to the keyboard
accelerator.

accel-widget GtkWidget The widget that should be watched for
changes to the keyboard accelerator.

Property Type Description

action-group GtkActionGroup An action group that the action
belongs to. You can set this to NULL
if the action does not belong to an
action group.

hide-if-empty gboolean If set to TRUE, menu proxies that are
empty will be hidden from view.

icon-name gchararray The name of the icon to use from the
icon theme. This property is overrid-
den by the stock-id property.

is-important gboolean If a toolbar is in GTK_TOOLBAR_BOTH_
HORIZ mode, this property will display
the label for the item when set to TRUE.
Otherwise, it will have no effect.

label gchararray The text to display in the menu item or
button. Toolbar items use the short-
label property.

name gchararray A unique string that distinguishes the
action.

sensitive gboolean If set to TRUE, the action will be enabled.
Otherwise, the user will not be able to
interact with it.

short-label gchararray The text to display in the tool item.
Menu items and buttons use the label
property.

Continued

Property Type Description

7931.book Page 483 Thursday, March 8, 2007 7:02 PM

484 A P P E N D I X A ■ G T K + P R O P E R T I E S

Table A-3. Continued

Table A-4. GtkActionGroup Properties

Table A-5. GtkAdjustment Properties

Property Type Description

stock-id gchararray The stock icon to display for widgets
using the action. This property takes
precedence over icon-name.

tooltip gchararray A tooltip for the action that will be dis-
played when the user hovers over a
toolbar item.

visible gboolean If set to TRUE, the action will be visible
to the user.

visible-horizontal gboolean If set to TRUE, the action will be visible
in toolbars when the toolbar orienta-
tion is set as horizontal.

visible-overflown gboolean If set to TRUE, the action will be dis-
played in the toolbar overflow menu.
Otherwise, it will be hidden from view.

visible-vertical gboolean If set to TRUE, the action will be visible
in toolbars when the toolbar orienta-
tion is set as vertical.

Property Type Description

name gchararray A string that distinguishes the action
group.

sensitive gboolean If set to TRUE, the action group is set as
active or enabled.

visible gboolean If set to TRUE, the action group will be
visible to the user.

Property Type Description

lower gdouble The minimum gdouble value that the
adjustment can reach.

page-increment gdouble The increment that will be shifted
when moving one page forward or
backward.

7931.book Page 484 Thursday, March 8, 2007 7:02 PM

A P P E N D I X A ■ G T K + P R O P E R T I E S 485

Table A-6. GtkAlignment Properties

Table A-7. GtkArrow Properties

page-size gdouble The size of a page of the adjustment.
You should set this to zero when you
use GtkAdjustment for GtkSpinButton.

step-increment gdouble The increment that will be moved in
an individual step. For example, with
GtkSpinButton, a single step will be
taken when an arrow button is
pressed.

upper gdouble The maximum gdouble value that the
adjustment can reach.

value gdouble The current value of the adjust-
ment, which is always between lower
and upper.

Property Type Description

bottom-padding guint Padding added along the bottom of
the child widget

left-padding guint Padding added along the left side of
the child widget

right-padding guint Padding added along the right side of
the child widget

top-padding guint Padding added along the top of the
child widget

xalign (yalign) gfloat A number between 0.0 and 1.0 used to
align the child widget, where 1.0 is
aligned to the right side or bottom of
the container

xscale (yscale) gfloat A number between 0.0 and 1.0 used to
expand the child to fill extra space

Property Type Description

arrow-type GtkArrowType The direction the GtkArrow will point

shadow-type GtkShadowType The type of shadow to place around
the arrow

Property Type Description

7931.book Page 485 Thursday, March 8, 2007 7:02 PM

486 A P P E N D I X A ■ G T K + P R O P E R T I E S

Table A-8. GtkAspectFrame Properties

Table A-9. GtkBox Properties

Table A-10. GtkButton Properties

Property Type Description

obey-child gboolean If set to TRUE, use the aspect ratio
defined by the child widget instead
of the ratio property.

ratio gfloat A number between 0.0001 and 10,000
that defines the aspect ratio.

xalign (yalign) gfloat The alignment of the child within the
container as defined by a number
between 0.0 and 1.0, where 0.5 is
centered.

Property Type Description

homogeneous gboolean If set to TRUE, all of the children will be
set to the same size.

spacing gint The spacing to add between each child
and its neighbors.

Property Type Description

focus-on-click gboolean If set to TRUE, the button will grab
focus when it is clicked by the mouse.

image GtkWidget A widget to display beside the but-
ton’s text.

image-position GtkPositionType The position of image with respect to
the label.

label gchararray A text label to display within the but-
ton if the button contains a label.

relief GtkReliefStyle The type of border to place around the
button.

use-stock gboolean If set to TRUE, a stock item will be used
as the button’s content.

use-underline gboolean If set to TRUE, a mnemonic keyboard
accelerator will be used for the charac-
ter following an underscore.

xalign (yalign) gfloat A floating point number between 0.0
and 1.0 that aligns the child widget if it
is a GtkMisc or GtkAlignment widget,
where 0.5 is centered.

7931.book Page 486 Thursday, March 8, 2007 7:02 PM

A P P E N D I X A ■ G T K + P R O P E R T I E S 487

Table A-11. GtkButtonBox Properties

Table A-12. GtkCalendar Properties

Table A-13. GtkCellRenderer Properties

Property Type Description

layout-style GtkButtonBoxStyle The type of layout that is used for the
child buttons

Property Type Description

day gint The currently selected day between 1
and 31. A day of 0 will deselect the cur-
rent day.

month gint The currently selected month between
0 and 11, where 0 is January.

no-month-change gboolean If set to TRUE, the user will be pre-
vented from changing the month.

show-day-names gboolean If set to TRUE, the day names will be
displayed above the days.

show-heading gboolean If set to TRUE, the calendar heading will
be displayed.

show-week-numbers gboolean If set to TRUE, the week numbers for
the current month and year will be
displayed along the left side of the
calendar.

year gint The currently selected year.

Property Type Description

cell-background gchararray A string that represents the back-
ground color such as "Red" or
"#00CC00". For this property to take
effect, you have to also set cell-
background-set to TRUE.

cell-background-gdk GdkColor The background color of the cell.

height gint The height of the cell. Set this prop-
erty to -1 to use the default height of
the cell.

is-expanded gboolean If the row has children, this property will
be set to TRUE if the row is expanded.

is-expander gboolean Set to TRUE if the row has child rows.

Continued

7931.book Page 487 Thursday, March 8, 2007 7:02 PM

488 A P P E N D I X A ■ G T K + P R O P E R T I E S

Table A-13. Continued

Table A-14. GtkCellRendererAccel Properties

Property Type Description

mode GtkCellRendererMode The interactivity mode of the cell.

sensitive gboolean If set to TRUE, the user will be able to
interact with the cell.

visible gboolean If set the TRUE, the cell will be visible to
the user.

width gint The width of the cell. Set this property
to -1 to use the default width of the cell.

xalign (yalign) gfloat The alignment of the content within
the cell as defined by a number
between 0.0 and 1.0, where 0.5 is
centered.

xpad (ypad) guint Horizontal and vertical padding to
place on either side of the child con-
tent of the cell.

Property Type Description

accel-key guint The key value for the accelerator.
A list of key codes can be found in
gdkkeysyms.h.

accel-mode GtkCellRendererAccelMode A flag value that determines whether
the accelerators are GTK+ accelera-
tors. A value of GTK_CELL_RENDERER_
ACCEL_MODE_GTK will stop accelerators
that are already used from being
entered.

accel-mods GdkModifierType A modifier to use for the accelerator.

keycode guint The hardware key code for the key-
board accelerator. The accel-key
property should be used when the key
has a key value available.

7931.book Page 488 Thursday, March 8, 2007 7:02 PM

A P P E N D I X A ■ G T K + P R O P E R T I E S 489

Table A-15. GtkCellRendererCombo Properties

Table A-16. GtkCellRendererPixbuf Properties

Property Type Description

has-entry gboolean If set to TRUE, a GtkComboBoxEntry wid-
get will be displayed when the cell is
being edited.

model GtkTreeModel The tree model that defines the
choices in the GtkComboBox widget.

text-column gint The column number in model that will
be displayed when the cell is not being
edited.

Property Type Description

follow-state gboolean If set to TRUE, the pixbuf will be col-
ored based on GtkCellRendererState.

icon-name gchararray An icon to display from the icon
theme. The stock-id and pixbuf
properties take precedence over this
setting.

pixbuf GdkPixbuf An image to display in the cell.
This property takes precedence
over icon-name.

pixbuf-expander-closed GdkPixbuf An image to display as the expander
when the child rows are hidden.

pixbuf-expander-open GdkPixbuf An image to display as the expander
when the child rows are visible.

stock-detail gchararray A string that is sent to the theme
engine that gives more information
about rendering a stock item.

stock-id gchararray A stock identifier to use as the icon.
This property takes precedence over
icon-name.

stock-size guint The size of the stock icon to render.

7931.book Page 489 Thursday, March 8, 2007 7:02 PM

490 A P P E N D I X A ■ G T K + P R O P E R T I E S

Table A-17. GtkCellRendererProgress Properties

Table A-18. GtkCellRendererSpin Properties

Table A-19. GtkCellRendererText Properties

Property Type Description

text gchararray A text string that will be drawn over
the progress bar. If this is set to NULL,
the default string will be displayed.

value gint The amount of the progress bar that
is filled in as defined by a number
between 0 and 100, where 100 is com-
pletely filled.

Property Type Description

adjustment GtkAdjustment The adjustment that holds informa-
tion about the spin button when it is
being edited. This property must be
set for it to be editable.

climb-rate gdouble The rate of acceleration when an
arrow button is held down.

digits guint The number of decimal places to dis-
play in the spin button when the cell
is being edited. Note that this does
not affect the number of decimal
places being displayed when the cell
is not being edited. You should use a
cell data function to set the normal
state digits.

Property Type Description

alignment PangoAlignment The alignment of lines of text. You
must set align-set to TRUE for this
property to take effect.

attributes PangoAttrList A list of attributes that are applied to
the renderer’s text.

background gchararray The background color of the cell as a
string. You must set background-set to
TRUE for this property to take effect.

background-gdk GdkColor The background color of the cell.

editable gboolean If set to TRUE, the user will be able to
edit the text. You must set editable-
set to TRUE for this property to take
effect.

7931.book Page 490 Thursday, March 8, 2007 7:02 PM

A P P E N D I X A ■ G T K + P R O P E R T I E S 491

ellipsize PangoEllipsizeMode The place within the string to replace
text with ellipses if there is not enough
space to display the whole string. You
must set ellipsize-set to TRUE for this
property to take effect.

family gchararray The font family name such as Arial or
Monospace. You must set family-set
to TRUE for this property to take effect.

font gchararray The font description string such as
"Monospace Bold 10". You must set
font-set to TRUE for this property to
take effect.

font-desc PangoFontDescription A font description that defines the font
for the cell.

foreground gchararray The foreground color of the cell as a
string. You must set foreground-set to
TRUE for this property to take effect.

foreground-gdk GdkColor The foreground color of the cell.

language gchararray The language of the cell’s text as an
ISO code. In most cases, you will not
need to use this property. You must
set language-set to TRUE for this prop-
erty to take effect.

markup gchararray Text that will be rendered by the cell
that contains Pango markup.

rise gint The positive or negative offset of the
text. You must set rise-set to TRUE for
this property to take effect.

scale gdouble The scaling factor for the font as a
gdouble value. You must set scale-set
to TRUE for this property to take effect.

single-paragraph-mode gboolean If set to TRUE, all text will be forced into
one paragraph.

size gint The font size of the text, scaled by a
factor of PANGO_UNITS. You must set
size-set to TRUE for this property to
take effect.

size-points gdouble The font size of the text in points.

stretch PangoStretch A flag that is used to add or remove
spacing between text characters. You
must set stretch-set to TRUE for this
property to take effect.

Continued

Property Type Description

7931.book Page 491 Thursday, March 8, 2007 7:02 PM

492 A P P E N D I X A ■ G T K + P R O P E R T I E S

Table A-19. Continued

Table A-20. GtkCellRendererToggle Properties

Property Type Description

strikethrough gboolean If set to TRUE, a single line will be
placed through the text. You must set
strikethrough-set to TRUE for this
property to take effect.

style PangoStyle The style of the font such as italics or
oblique. You must set style-set to
TRUE for this property to take effect.

text gchararray The text to display in the cell.

underline PangoUnderline The style of underline to place below
the text. You must set underline-set
to TRUE for this property to take effect.

variant PangoVariant Set to PANGO_VARIANT_SMALL_CAPS to
render lower case characters as small
upper case characters. You must set
variant-set to TRUE for this property
to take effect.

weight gint The font weight. You must set weight-
set to TRUE for this property to take
effect.

width-chars gint The width of the cell in characters. If
you set this property to -1, GTK+ will
calculate the width.

wrap-mode PangoWrapMode The type of wrap to use for the text. By
default, this is set to PANGO_WRAP_CHAR.

wrap-width gint The width at which text will be
wrapped. If this property is set to
-1, then wrapping will be disabled.

Property Type Description

activatable gboolean If set to TRUE, the toggle button can be
activated by the user. Otherwise, the
toggle button can only be used to dis-
play a setting.

active gboolean If set to TRUE, the toggle button will be
set as activated.

inconsistent gboolean If set to TRUE, the toggle button is in a
state that is neither active nor inactive.

7931.book Page 492 Thursday, March 8, 2007 7:02 PM

A P P E N D I X A ■ G T K + P R O P E R T I E S 493

Table A-21. GtkCellView Properties

Table A-22. GtkCheckMenuItem Properties

Table A-23. GtkColorButton Properties

indicator-size gint The size of the check button or radio
button. By default, this is set to 12 pixels.

radio gboolean If set to TRUE, the toggle will be drawn
as a radio button. However, you will
have to implement the functionality of
the radio buttons yourself.

Property Type Description

background gchararray The background color of the cell as a
string. You must set background-set to
TRUE for this property to take effect.

background-gdk GdkColor The background color of the cell.

model GtkTreeModel The tree model associated with the
cell view. GtkCellView is used to dis-
play one column of a model.

Property Type Description

active gboolean If set to TRUE, the check menu item is
set as active.

draw-as-radio gboolean If set to TRUE, the menu item will be
drawn as a radio button. However, you
will have to implement the functional-
ity of the radio buttons yourself.

inconsistent gboolean If set to TRUE, the toggle button will
display an in-between state that is nei-
ther active nor inactive.

Property Type Description

alpha guint The transparency of the selected color,
where 0 is transparent and 65,535 is
opaque.

color GdkColor The currently selected color.

title gchararray The title to give the
GtkColorSelectionDialog
displayed when the user clicks
the button.

use-alpha gboolean If set to TRUE, the user will be given the
option to select transparency.

Property Type Description

7931.book Page 493 Thursday, March 8, 2007 7:02 PM

494 A P P E N D I X A ■ G T K + P R O P E R T I E S

Table A-24. GtkColorSelection Properties

Table A-25. GtkComboBox Properties

Property Type Description

current-alpha guint The transparency of the selected color,
where 0 is transparent and 65,535 is
opaque.

current-color GdkColor The currently selected color.

has-opacity-control gboolean If set to TRUE, the user will be given the
option to select transparency.

has-palette gboolean If set to TRUE, a color palette will be
displayed to the user.

Property Type Description

active gint The index of the current item that is
activated. This item will be equal to
the value returned by gtk_tree_path_
get_indices() for the selected row if it
is not a root element.

add-tearoffs gboolean If set to TRUE, menus will have tear-off
menu items if the combo box is using
a menu style.

column-span-column gint If you want a value to span multiple
columns in the list, set this to a non-
negative integer that points to a model
column with the type G_TYPE_INT. This
integer defines how many columns
the value will span.

focus-on-click gboolean If set to TRUE, the combo box will grab
focus when the user clicks it.

has-frame gboolean If set to TRUE, a frame will be drawn
around the selected item.

model GtkTreeModel The tree model that holds the choices
for the combo box.

popup-shown gboolean If set to TRUE, the combo box is cur-
rently displaying choices. You can
connect to this with the notify signal
to receive notification of when the
user is shown the pop-up window.

row-span-column gint This property performs the same func-
tionality as column-span-column except
in the vertical direction.

7931.book Page 494 Thursday, March 8, 2007 7:02 PM

A P P E N D I X A ■ G T K + P R O P E R T I E S 495

Table A-26. GtkComboBoxEntry Properties

Table A-27. GtkContainer Properties

Table A-28. GtkCurve Properties

tearoff-title gchararray The title to display when the pop-up
window of combo box choices is torn
from its original placement.

wrap-width gint You can set this property to a positive
integer so that a list can be displayed
in multiple columns. This property
defines the number of columns.

Property Type Description

text-column gint The column number in the
GtkTreeModel that holds data
with a GType of G_TYPE_STRING

Property Type Description

border-width guint An integer defining the number of
pixels to place along the outside of a
container’s children.

child GtkWidget A child widget of the container. You
can add a new child to the container
with this property. However, this
property should not be used if the
container holds multiple children.

resize-mode GtkResizeMode Defines how to handle resize requests
of a container and its children.

Property Type Description

curve-type GtkCurveType The type of curve. For example, types
of curves are linear, spline interpo-
lated, and freeform.

max-x (max-y) gfloat Numbers that define the maximum x
or y values.

min-x (min-y) gfloat Numbers that define the minimum x
or y values.

Property Type Description

7931.book Page 495 Thursday, March 8, 2007 7:02 PM

496 A P P E N D I X A ■ G T K + P R O P E R T I E S

Table A-29. GtkDialog Properties

Table A-30. GtkEntry Properties

Property Type Description

has-separator gboolean If set to TRUE, a separator will be
placed between the dialog’s GtkVBox
widget and its action area.

Property Type Description

activates-default gboolean If set to TRUE, the default widget for
the window will be activated when the
user presses the Enter key.

cursor-position gint An integer between 0 and 65,535 that
defines the current cursor position
within the GtkEntry widget.

editable gboolean If set to TRUE, the user will be able to
edit the content of the GtkEntry widget.

has-frame gboolean If set to TRUE, a border will be placed
around the widget.

inner-border GtkBorder An object that defines spacing to add
on all four sides of the text.

invisible-char guint When visibility is set to FALSE, this
character will be shown instead of the
actual text. This property is often used
to implement password entries.

max-length gint The maximum length of text that the
GtkEntry will accept; use 0 if there
should be no limit. GtkEntry is only
capable of handling strings up to
65,535 characters long.

scroll-offset gint An integer describing the number of
pixels of GtkEntry content that is
scrolled off the left of the widget.

selection-bound gint The integer index of the other end of
the selection from cursor-position in
the number of characters.

text gchararray The current content of GtkEntry.

truncate-multiline gboolean If set to TRUE, when the user pastes
text that spans multiple lines into a
GtkEntry widget, only the first line will
be inserted.

visibility gboolean If set to FALSE, all of the characters in
the GtkEntry widget will be replaced
by invisibility-char.

7931.book Page 496 Thursday, March 8, 2007 7:02 PM

A P P E N D I X A ■ G T K + P R O P E R T I E S 497

Table A-31. GtkEntryCompletion Properties

Table A-32. GtkEventBox Properties

width-chars gint The number of characters that will be
visible to the user. GtkEntry will usu-
ally be resized to accommodate this
property.

xalign gfloat The alignment of the text within the
GtkEntry widget described by a num-
ber between 0.0 and 1.0, where 0.5 is
centered.

Property Type Description

inline-completion gboolean If set to TRUE, the prefix that is com-
mon to all choices will be added to the
text. For this property to work, text-
column must be set.

minimum-key-length gint The minimum number of characters
that need to be entered into the
GtkEntry widget before matches will
be displayed.

model GtkTreeModel A tree model that holds all possible
choices. One of the columns should
have a GType of G_TYPE_STRING.

popup-completion gboolean If set to TRUE, all possible matches will
be displayed in a pop-up window.

popup-set-width gboolean If set to TRUE, the width of the pop-up
window will be the same as the
GtkEntry widget.

popup-single-match gboolean If set to TRUE, the pop-up window will
be displayed even if there is only one
choice. You should set this to FALSE if
inline-completion is set to TRUE.

text-column gint The index of the column in the model
property that has a GType of G_TYPE_
STRING. This column will provide the
content for matches.

Property Type Description

above-child gboolean If set to TRUE, the event box will receive
all events that occur within it. Other-
wise, events will first go to the children
and then to the event box.

visible-window gboolean If set to TRUE, the event box will be visi-
ble to the user.

Property Type Description

7931.book Page 497 Thursday, March 8, 2007 7:02 PM

498 A P P E N D I X A ■ G T K + P R O P E R T I E S

Table A-33. GtkExpander Properties

Table A-34. GtkFileChooser Properties

Property Type Description

expanded gboolean If set to TRUE, the expander is cur-
rently displaying its child widget.

label gchararray A text string to display beside the
expander’s arrow.

label-widget GtkWidget A GtkWidget to display beside the
expander’s arrow instead of the text
defined by label.

spacing gint An integer amount of spacing to place
between the expander’s label and its
child widget.

use-markup gboolean If set to TRUE, any Pango markup in
label will be parsed and applied.

use-underline gboolean If set to TRUE, mnemonic keyboard
accelerators will be supported in label.

Property Type Description

action GtkFileChooserAction The functionality performed by the file
chooser.

do-overwrite-
confirmation

gboolean If set to TRUE, a file chooser with an
action of GTK_FILE_CHOOSER_ACTION_
SAVE will ask the user for confirmation
if a file already exists.

extra-widget GtkWidget A supplementary widget that can
be used to provide extra options to
the user.

file-system-backend gchararray A name that refers to the file system
backend.

filter GtkFileFilter The currently selected file filter, which
is used to filter what files are displayed.

local-only gboolean If set to TRUE, only local files will be
displayed as choices.

preview-widget GtkWidget A widget to use for previewing the
content of a selected file.

preview-widget-active gboolean If you want to use preview-widget, this
property must be set to TRUE for it to
be displayed.

7931.book Page 498 Thursday, March 8, 2007 7:02 PM

A P P E N D I X A ■ G T K + P R O P E R T I E S 499

Table A-35. GtkFileChooserButton Properties

Table A-36. GtkFontButton Properties

select-multiple gboolean If set to TRUE, the user will be able to
select multiple files.

show-hidden gboolean If set to TRUE, hidden files and folders
will be visible in the file chooser.

use-preview-label gboolean If set to TRUE, a label will be displayed
with the name of the file currently
being previewed.

Property Type Description

dialog GtkFileChooserDialog The file chooser dialog that will be dis-
played when the user clicks the button.

focus-on-click gboolean If set to TRUE, the GtkFileChooserButton
widget will grab focus when the user
clicks it.

title gchararray The title of the GtkFileChoooserDialog
widget that is displayed when the user
clicks the button.

width-chars gint The width of the label within the file
chooser button, in characters.

Property Type Description

font-name gchararray The name of the font that is currently
selected such as "Monospace Bold 10".

show-size gboolean If set to TRUE, the font size will be dis-
played in the font button’s label.

show-style gboolean If set to TRUE, the font style will be dis-
played in the font button’s label.

title gchararray The title of the GtkFontSelectionDialog
widget that is displayed when the user
clicks the button.

use-font gboolean If set to TRUE, the font button’s label
will use the selected font when drawn.

use-size gboolean If set to TRUE, the font button’s label
will use the selected size when drawn.

Property Type Description

7931.book Page 499 Thursday, March 8, 2007 7:02 PM

500 A P P E N D I X A ■ G T K + P R O P E R T I E S

Table A-37. GtkFontSelection Properties

Table A-38. GtkFrame Properties

Table A-39. GtkHandleBox Properties

Property Type Description

font GdkFont The font that is currently selected in
the GtkFontSelection.

font-name gchararray A string that represents the currently
selected font.

preview-text gchararray Text that will be displayed as a pre-
view of the currently selected font.

Property Type Description

label gchararray Text to display along the label of the
GtkFrame

label-widget GtkWidget A widget to use instead of the text set
in the label property

label-xalign gfloat The horizontal alignment of the label
within the label, defined by a number
between 0.0 and 1.0

label-yalign gfloat The vertical alignment of the label
within the label, defined by a number
between 0.0 and 1.0

shadow-type GtkShadowType A flag that defines what shadow type
the GtkFrame uses

Property Type Description

handle-position GtkPositionType The position of the handle with
respect to the child widget.

shadow-type GtkShadowType A flag that defines what shadow type
the GtkHandleBox widget uses.

snap-edge GtkPositionType The position of the snap edge that will
be used to dock the GtkHandleBox wid-
get. You must set snap-edge-set to
TRUE for this property to take effect.

7931.book Page 500 Thursday, March 8, 2007 7:02 PM

A P P E N D I X A ■ G T K + P R O P E R T I E S 501

Table A-40. GtkIconView Properties

Property Type Description

column-spacing gint The amount of spacing to place
between columns of icons.

columns gint The number of columns that the icons
will be sorted into. Setting this to -1 will
tell GTK+ to choose this value for you.

item-width gint The width of each item in pixels. Set-
ting this to -1 will tell GTK+ to choose
this value for you.

margin gint The number of pixels of padding to
place along the edges of GtkIconView.

markup-column gint The column in the GtkTreeModel wid-
get that contains information about
markup. This column must have a
GType of G_TYPE_STRING.

model GtkTreeModel A tree model that defines the data dis-
played by the GtkIconView.

orientation GtkOrientation The horizontal or vertical orientation
of the icon and text with respect to
each other.

pixbuf-column gint The column in the GtkTreeModel
widget that contains the icon. This
column must have a GType of GDK_
TYPE_PIXBUF.

reorderable gboolean If set to TRUE, the items in a GtkIconView
widget can be reordered with drag
and drop.

row-spacing gint The amount of spacing to place
between rows of icons.

selection-mode GtkSelectionMode The selection mode of the icon view.

spacing gint The number of pixels of spacing to
place between items and their
neighbors.

text-column gint The column in GtkTreeModel that con-
tains each item’s text. This column
must have a GType of G_TYPE_STRING.

7931.book Page 501 Thursday, March 8, 2007 7:02 PM

502 A P P E N D I X A ■ G T K + P R O P E R T I E S

Table A-41. GtkImage Properties

Table A-42. GtkImageMenuItem Properties

Property Type Description

file gchararray A filename that specifies the location
of the icon image.

icon-name gchararray An icon from the current icon theme.
This will automatically be updated if
the icon theme changes. The size of
this icon is defined by icon-size.

icon-set GtkIconSet A GtkIconSet to display as the icon. The
size of this icon is defined by icon-size.

icon-size gint When using icon-name, icon-set, or
stock, you can use this property to
specify an icon size, defined by
GtkIconSize.

image GdkImage An image to display as the icon. If you
want to mask the icon with a GdkPixbuf,
use mask.

mask GdkPixmap A pixmap that is used to mask the icon
provided by image or pixmap.

pixbuf GdkPixbuf A pixbuf to display as the icon.

pixbuf-animation GdkPixbufAnimation An animated image to display as the
icon, which is an animated pixbuf
object.

pixel-size gint The size that should be used for pix-
els. This property takes precedence
over icon-size if the image is speci-
fied with icon-name.

pixmap GdkPixmap A pixmap to display as the image. If
you want to mask the icon with a
GdkPixbuf, use mask.

stock gchararray The stock identifier for the image to
display as the icon. The size of this
icon is defined by icon-size.

storage-type GtkImageType The type of image storage type that is
being used by the GtkImage.

Property Type Description

image GtkWidget The widget that will appear beside the
menu item’s label

7931.book Page 502 Thursday, March 8, 2007 7:02 PM

A P P E N D I X A ■ G T K + P R O P E R T I E S 503

Table A-43. GtkInvisible Properties

Table A-44. GtkLabel Properties

Property Type Description

screen GdkScreen The screen on which the GtkInvisible
window is displayed

Property Type Description

angle gdouble The angle of the text between 0.0 and
360.0 with respect to the x axis, rotat-
ing counterclockwise. For example,
with a value of 90.0, the bottom of the
text will be on the right side of the
screen. This property is ignored if you
set ellipsize, selectable, or wrapped.

attributes PangoAttrList A list of attributes that are applied to
the label’s text.

cursor-position gint If selectable is set to TRUE, this prop-
erty will be set the position of the
cursor within the label’s text.

ellipsize PangoEllipsizeMode The place within the string to replace
text with ellipses if there is not enough
space to display the whole string. You
must set ellipsize-set to TRUE for this
property to take effect.

justify GtkJustification The justification of the label. This is
used to justify labels that span multi-
ple lines, not to align the label within
its child!

label gchararray The text string displayed by the label.

max-width-chars gint The maximum number of characters
that will be displayed in a single line. If
you set this to -1, it will be calculated
automatically for you. This property is
overridden by max-chars.

mnemonic-keyval guint The key value for the label’s mne-
monic keyboard accelerator.

mnemonic-widget GtkWidget The widget that is activated when the
label’s mnemonic keyboard accelera-
tor is activated.

pattern gchararray A text string to display, where the
underscore character designates
which characters to underline.

Continued

7931.book Page 503 Thursday, March 8, 2007 7:02 PM

504 A P P E N D I X A ■ G T K + P R O P E R T I E S

Table A-44. Continued

Table A-45. GtkLayout Properties

Property Type Description

selectable gboolean If set to TRUE, the user will be able to
select the label with the mouse.

selection-bound gint The location of the other end of the
selected text, opposite of cursor-
position. If there is no selected text,
this will be equal to cursor-position.

single-line-mode gboolean If set to TRUE, the label will be forced
into one line of text.

use-markup gboolean If set to TRUE, Pango markup in the
label text will be parsed.

use-underline gboolean If set to TRUE, the underscore charac-
ter will be used to designate the key to
use for the mnemonic keyboard
accelerator.

width-chars gint The width of the label in characters.
Set this property to -1 to have it auto-
matically calculated by GTK+. This
property takes precedence over max-
width-chars.

wrap gboolean If set to TRUE, the label will be wrapped
if it cannot fit on one line.

wrap-mode PangoWrapMode The type of wrapping to perform if
wrap is set to TRUE.

Property Type Description

hadjustment GtkAdjustment The horizontal adjustment that is used
when scrolling the widget.

height guint The height of the GtkLayout widget, in
pixels. Since the widget supports
scrolling natively, the height can be
larger than the height of the screen.

vadjustment GtkAdjustment The vertical adjustment that is used
when scrolling the widget.

width guint The width of the GtkLayout widget in
pixels. Since the widget supports
scrolling natively, the height can be
larger than the width of the screen.

7931.book Page 504 Thursday, March 8, 2007 7:02 PM

A P P E N D I X A ■ G T K + P R O P E R T I E S 505

Table A-46. GtkLinkButton Properties

Table A-47. GtkMenu Properties

Table A-48. GtkMenuBar Properties

Table A-49. GtkMenuShell Properties

Table A-50. GtkMenuToolButton Properties

Property Type Description

uri gchararray The URI of the web site that the link
button visits. This must be a full URI
such as http://www.gtkbook.com.

Property Type Description

tearoff-state gboolean If set to TRUE, the menu will be able to
be torn from its attached widget.

tearoff-title gchararray The title that will be displayed when
the menu is torn from its attached
widget.

Property Type Description

child-pack-direction GtkPackDirection The direction that menu items of chil-
dren will be packed

pack-direction GtkPackDirection The direction that child menu items
will be packed

Property Type Description

take-focus gboolean If set to TRUE, menus and submenus
will grab focus from the keyboard.

Property Type Description

menu GtkMenu The menu that will be displayed when
the user clicks the arrow beside the
tool button

7931.book Page 505 Thursday, March 8, 2007 7:02 PM

506 A P P E N D I X A ■ G T K + P R O P E R T I E S

Table A-51. GtkMessageDialog Properties

Table A-52. GtkMisc Properties

Table A-53. GtkNotebook Properties

Property Type Description

buttons GtkButtonsType The button or buttons shown in the
action area of the message dialog.

image GtkWidget The widget image to display in the
GtkMessageDialog.

message-type GtkMessageType The type of message that is reported by
the GtkMessageDialog. The message
type defines what image is displayed in
the dialog unless image is set.

secondary-text gchararray Secondary text that is displayed below
the string defined in text.

secondary-use-markup gboolean If set to TRUE, markup in secondary-
text will be parsed.

text gchararray The main text displayed by the dialog,
which will appear above any second-
ary text.

use-markup gboolean If set to TRUE, markup in text will be
parsed.

Property Type Description

xalign (yalign) gfloat Horizontal or vertical alignment
defined by a number between 0.0
and 1.0, where 0.5 is centered

xpad (ypad) gint The padding to add on either side of
the widget, in pixels

Property Type Description

enable-popup gboolean If set to TRUE, a pop-up menu to allow
navigation to other pages will be dis-
played when the user clicks the right
mouse button over a tab.

group-id gint An integer group identifier used
for drag-and-drop operations on
GtkNotebook tabs.

7931.book Page 506 Thursday, March 8, 2007 7:02 PM

A P P E N D I X A ■ G T K + P R O P E R T I E S 507

Table A-54. GtkObject Properties

Table A-55. GtkPaned Properties

homogeneous gboolean If set to TRUE, all GtkNotebook tabs will
have the same width.

page gint The index of the currently selected
page, indexed starting with zero.

scrollable gboolean If set to TRUE, arrows will be drawn to
all the user to scroll tabs if there is not
enough space for them.

show-border gboolean If set to TRUE, a border will be displayed.

show-tabs gboolean If set to TRUE, the tabs will be visible to
the user.

tab-border guint The width of the border placed around
each tab label.

tab-hborder guint The width of the horizontal border
placed around each tab label.

tab-pos GtkPositionType The position of the tabs with respect
to the GtkNotebook children.

tab-vborder guint The width of the vertical border placed
around each tab label.

Property Type Description

user-data gpointer A piece of data with the type gpointer
associated with the GtkObject

Property Type Description

max-position gint The maximum position of the pane,
which is calculated based on the sizes
and types of its children.

min-position gint The minimum position of the pane,
which is calculated based on the sizes
and types of its children.

position gint A property used to explicitly set the
position of the separator, where 0
refers to the top or left side. You must
set position-set to TRUE for this prop-
erty to take effect.

Property Type Description

7931.book Page 507 Thursday, March 8, 2007 7:02 PM

508 A P P E N D I X A ■ G T K + P R O P E R T I E S

Table A-56. GtkPrinter Properties

Table A-57. GtkPrintJob Properties

Property Type Description

accepts-pdf gboolean If set to TRUE, the printer will be able to
accept PDF files.

accepts-ps gboolean If set to TRUE, the printer will be able to
accept PostScript files.

backend GtkPrintBackend The print backend used by the
GtkPrinter.

icon-name gchararray The name of the icon to use for the
GtkPrinter.

is-virtual gboolean If set to TRUE, GtkPrinter is a virtual
printer, which means that it may not
represent real hardware.

job-count gint The number of print jobs that are
currently waiting for GtkPrinter to
become available.

location gchararray A string that describes the location of
the printer.

name gchararray A unique name that identifies the
printer.

state-message gchararray A string that gives more information
about the current state of the printer.

Property Type Description

page-setup GtkPageSetup The page setup associated with the
print job. This property holds infor-
mation such as the page orientation
and size of the paper.

printer GtkPrinter The printer that was selected to pro-
cess the print job.

settings GtkPrintSettings The print settings associated with the
print job. This property holds infor-
mation such as the number of copies,
print quality, and resolution.

title gchararray A title given to the print job so that it
can be recognized. This usually differ-
entiates print jobs set up by your
application from those set up by
others.

track-print-settings gboolean If set to TRUE, the status-changed sig-
nal will continue to be emitted even
after the print job is sent to the printer.

7931.book Page 508 Thursday, March 8, 2007 7:02 PM

A P P E N D I X A ■ G T K + P R O P E R T I E S 509

Table A-58. GtkPrintUnixDialog Properties

Table A-59. GtkProgressBar Properties

Property Type Description

current-page gint The current page from the document.
Set this property to -1 to enable the
Range option.

page-setup GtkPageSetup The page setup associated with the
print dialog. This property holds infor-
mation such as the page orientation
and size of the paper.

print-settings GtkPrintSettings The print settings associated with the
print dialog. This property holds infor-
mation such as the number of copies,
print quality, and resolution.

selected-printer GtkPrinter The printer that is selected in the print
dialog.

Property Type Description

ellipsize PangoEllipsizeMode The place within the string to replace
text with ellipses if there is not enough
space to display the whole string. You
must set ellipsize-set to TRUE for this
property to take effect.

fraction gdouble The amount of the status bar that is
filled, defined by a number between
0.0 and 1.0, where 1.0 is completely
filled.

orientation GtkProgressBarOrientation The direction that the progress bar fills.

pulse-step gdouble Sets the distance along the progress
bar to move when the progress bar is
being pulsed. For example, a progress
bar will have to be pulsed 10 times for
the block to travel from one end to the
other if pulse-step is set to 0.1.

text gchararray The text to print on top of the
progress bar.

7931.book Page 509 Thursday, March 8, 2007 7:02 PM

510 A P P E N D I X A ■ G T K + P R O P E R T I E S

Table A-60. GtkRadioAction Properties

Table A-61. GtkRadioButton, GtkRadioMenuItem, and GtkRadioToolButton Properties

Table A-62. GtkRange Properties

Property Type Description

current-value gint The value of the member of the action
group that is currently activated.

group GtkRadioAction A radio action that specifies the radio
group to which the radio action belongs.

value gint An integer that is unique to the
GtkRadioAction in its radio group.
This property can be used along with
current-value to find the radio action
that is currently activated.

Property Type Description

group GtkWidget A radio button, radio menu item, or
radio tool button that links the radio
widget to others in the same radio group

Property Type Description

adjustment GtkAdjustment An adjustment that holds the current
value of the GtkRange as well as bound
information.

inverted gboolean If set to TRUE, the slider will switch the
locations of the larger and smaller
values.

lower-stepper-
sensitivity

GtkSensitivityType The sensitivity associated with
the button that decreases the
GtkAdjustment object’s value when
activated.

update-policy GtkUpdateType Defines how the GtkRange should be
updated on the screen.

upper-stepper-
sensitivity

GtkSensitivityType The sensitivity associated with
the button that increases the
GtkAdjustment object’s value when
activated.

7931.book Page 510 Thursday, March 8, 2007 7:02 PM

A P P E N D I X A ■ G T K + P R O P E R T I E S 511

Table A-63. GtkRecentChooser Properties

Table A-64. GtkRecentChooserMenu Properties

Property Type Description

filter GtkRecentFilter The currently selected file filter, which
is used to decide what resources are
displayed to the user.

limit gint The maximum number of items that are
shown in the GtkRecentChooser. Use -1
for no limit. This property should be set
when using GtkRecentChooserMenu so
that the pop-up menu does not become
unwieldy.

local-only gboolean If set to TRUE, only resources with a
prefix of file:// will be displayed.

recent-manager GtkRecentManager The manager that holds the recently
used resources to display. You can use
gtk_recent_manager_get_default() to
retrieve the default GtkRecentManager
for the current screen.

select-multiple gboolean If set to TRUE, the user will be able to
select multiple resources from the list.

show-icons gboolean If set to TRUE, an icon will be displayed
beside each resource that gives more
information about it, such as the
MIME type.

show-not-found gboolean This property can be set to FALSE to
hide files that are no longer available.
You should note that this will only
affect local resources.

show-private gboolean If set to TRUE, items that are set as pri-
vate to a specific application will be
displayed.

show-tips gboolean If set to TRUE, a tooltip will be dis-
played for each item if available.

sort-type GtkRecentSortType The method that will be used for sort-
ing the recent resource list, if any.

Property Type Description

show-numbers gboolean If set to TRUE, a number will be
prepended to the first ten recent
resources in the menu.

7931.book Page 511 Thursday, March 8, 2007 7:02 PM

512 A P P E N D I X A ■ G T K + P R O P E R T I E S

Table A-65. GtkRecentManager Properties

Table A-66. GtkRuler Properties

Table A-67. GtkScale Properties

Property Type Description

filename gchararray The location of the file that stores the
list of recently used resources

limit gint The greatest number of recently used
resources that will be returned by
GtkRecentManager when gtk_recent_
manager_get_items() is called

size gint The total number of items in the list of
recently used resources

Property Type Description

lower gdouble The smallest value displayed by
the ruler.

max-size gdouble The maximum size of the ruler. Set
this property to 0.0 so that it is not
restricted.

metric GtkMetricType The type of units used by the ruler,
such as pixels, inches, or centimeters.

position gdouble The current position of the ruler’s
marker.

upper gdouble The largest value displayed by the ruler.

Property Type Description

digits gint The maximum number, up to 64, of
decimal places of the value that are
displayed. Setting this property to -1
will tell GTK+ to choose for you.

draw-value gboolean If set to TRUE, the value will be drawn
beside the slider.

value-pos GtkPositionType The position of the GtkScale value
with respect to the slider.

7931.book Page 512 Thursday, March 8, 2007 7:02 PM

A P P E N D I X A ■ G T K + P R O P E R T I E S 513

Table A-68. GtkScrolledWindow Properties

Table A-69. GtkSeparatorToolItem Properties

Table A-70. GtkSizeGroup Properties

Property Type Description

hadjustment GtkAdjustment The adjustment for the horizontal
scrollbar.

hscrollbar-policy GtkPolicyType Defines whether the horizontal scroll-
bar is always shown, always hidden, or
only displayed when needed.

shadow-type GtkShadowType The type of shadow to place around
the child widget.

vadjustment GtkAdjustment The adjustment for the vertical
scrollbar.

vscrollbar-policy GtkPolicyType Defines whether the vertical scrollbar
is always shown, always hidden, or
only displayed when needed.

window-placement (set) GtkCornerType The placement of the child widget
with respect to the scrollbars. You
must set window-placement-set to TRUE
for this property to take effect.

Property Type Description

draw gboolean If set to TRUE, the separator tool item
will be drawn on the screen. Other-
wise, blank space will be added in
its place.

Property Type Description

ignore-hidden gboolean If set to TRUE, widgets that are not visi-
ble on the screen will be ignored when
the size of the group is calculated.

mode GtkSizeGroupMode A flag that defines how the size group
will determine its size and the sizes of
its children.

7931.book Page 513 Thursday, March 8, 2007 7:02 PM

514 A P P E N D I X A ■ G T K + P R O P E R T I E S

Table A-71. GtkSpinButton Properties

Table A-72. GtkStatusbar Properties

Property Type Description

adjustment GtkAdjustment The adjustment that holds informa-
tion about the spin button’s value and
bounds.

climb-rate gdouble The rate of acceleration when an
arrow button is held down.

digits guint The number, between 0 and 20, of
decimal places of the value to display.

numeric gboolean If set to TRUE, only numeric characters
will be recognized by the spin button.

snap-to-ticks gboolean If set to TRUE, the value will automati-
cally be updated to align with the
closest step increment.

update-policy GtkSpinButtonUpdatePolicy A flag that determines how often and
when the spin button will update.

value gdouble The current value stored by the spin
button. You can read and write this
value instead of interacting with the
spin button’s adjustment.

wrap gboolean If the spin button reaches its upper or
lower bound and this property is set to
TRUE, the spin button value will wrap
to the opposite end.

Property Type Description

has-resize-grip gboolean If this property is set to TRUE, the
GtkStatusbar widget will display a
graphic that allows the user to resize
the window by dragging it with the
mouse.

7931.book Page 514 Thursday, March 8, 2007 7:02 PM

A P P E N D I X A ■ G T K + P R O P E R T I E S 515

Table A-73. GtkStatusIcon Properties

Table A-74. GtkTable Properties

Property Type Description

blinking gboolean If set to TRUE, the status icon will blink
on platforms where this behavior is
supported.

file gchararray The location of the icon to display as
the status icon.

icon-name gchararray An icon from the icon theme to dis-
play as the status icon.

pixbuf GdkPixbuf An image to display as the status icon.

size gint The size of the icon to display.

stock gchararray A stock identifier that defines the icon
to display as the status icon.

storage-type GtkImageType The image type to display. This is used
to identify whether to use file, icon-
name, pixbuf, or stock.

visible gboolean If set to TRUE, the status icon will be
visible to the user in the system tray.

Property Type Description

column-spacing guint The number of pixels of spacing to add
between a column and each of its
neighbors.

homogeneous gboolean If set to TRUE, every cell will be given
the same height and width.

n-columns guint The total number of columns in the
GtkTable.

n-rows guint The total number of rows in the
GtkTable.

row-spacing guint The number of pixels of spacing to
add between a row and each of its
neighbors.

7931.book Page 515 Thursday, March 8, 2007 7:02 PM

516 A P P E N D I X A ■ G T K + P R O P E R T I E S

Table A-75. GtkTextBuffer Properties

Table A-76. GtkTextView Properties

Property Type Description

copy-target-list GtkTargetList A target list for the buffer that is used
to store information about copying
from clipboards and other drag-and-
drop sources.

cursor-position gint The current position of the cursor
within the buffer. You can monitor
this property with the notify signal to
know when the cursor is moved.

has-selection gboolean If set to TRUE, the text buffer currently
has selected text.

paste-target-list GtkTargetList A target list for the buffer that is used
to store information about pasting
to clipboards and drag-and-drop
destinations.

tag-table GtkTextTagTable A text tag table that holds all text tags
that are used by the text buffer.

text gchararray The text currently contained by the
text buffer excluding embedded
images and child widgets.

Property Type Description

accepts-tab gboolean If set to TRUE, the text view will insert a
tab character when the Tab key is
pressed instead of giving focus to the
next widget in the tab order.

buffer GtkTextBuffer The text buffer that is currently dis-
played by the text view.

cursor-visible gboolean If set to TRUE, the cursor will be visible
to the user.

editable gboolean If set to TRUE, the user will be able to
edit the content of the text view.

indent gint The number of pixels to indent each
paragraph, which is set to zero by
default.

justification GtkJustification The justification of the text to the left,
right, or center.

7931.book Page 516 Thursday, March 8, 2007 7:02 PM

A P P E N D I X A ■ G T K + P R O P E R T I E S 517

Table A-77. GtkToggleAction Properties

Table A-78. GtkToggleButton Properties

left-margin gint The number of pixels of spacing to add
between the left side of the text view
and the content.

overwrite gboolean If set to TRUE, new characters will over-
write those that already exist.
Otherwise, they will be inserted.

pixels-above-lines gint The number of pixels of padding to
place above each paragraph.

pixels-below-lines gint The number of pixels of padding to
place below each paragraph.

pixels-inside-wrap gint The number of pixels of padding to
place between lines that are wrapped
within a paragraph.

right-margin gint The number of pixels of spacing to add
between the right side of the text view
and the content.

tabs PangoTabArray A tab array that defines the content
that will be added when the user
presses the Tab key.

wrap-mode GtkWrapMode The type of wrapping to perform.

Property Type Description

active gboolean If set to TRUE, the GtkToggleAction will
be drawn as checked.

draw-as-radio gboolean If set to TRUE, the GtkToggleAction will
be drawn as a radio button.

Property Type Description

active gboolean If set to TRUE, the GtkToggleButton will
be drawn as checked.

draw-indicator gboolean If set to TRUE, the toggle aspect of the
GtkToggleButton will be displayed.

inconsistent gboolean If set to TRUE, the toggle button will
have an in-between state that is nei-
ther active nor inactive.

Property Type Description

7931.book Page 517 Thursday, March 8, 2007 7:02 PM

518 A P P E N D I X A ■ G T K + P R O P E R T I E S

Table A-79. GtkToggleToolButton Properties

Table A-80. GtkToolbar Properties

Table A-81. GtkToolButton Properties

Property Type Description

active gboolean If set to TRUE, the GtkToggleToolButton
will be drawn as checked.

Property Type Description

icon-size GtkIconSize The size of the toolbar icons. You
should only use this property for spe-
cialty toolbars. In most cases, you
should follow the user’s choice of
theme. You must set icon-size-set to
TRUE for the property to take effect.

orientation GtkOrientation The orientation of the toolbar—
horizontal or vertical.

show-arrow gboolean If set to TRUE, an arrow will be displayed
if all of the toolbar items do not fit. The
arrow will give access to a pop-up menu
displaying the overflow toolbar items.

toolbar-style GtkToolbarStyle The toolbar style that states whether
text or icons are displayed.

tooltips gboolean If set to TRUE, tooltips will be displayed
for toolbar items.

Property Type Description

icon-name gchararray The name of an icon from the icon
theme to display. The label, icon-
widget, and stock-id properties take
precedence over icon-name.

icon-widget GtkWidget A widget to display as the tool but-
ton’s icon.

label gchararray A text string to display as a label for
the tool button.

label-widget GtkWidget A widget to use as the tool button’s
label instead of label.

stock-id gchararray The stock icon to display for widgets
using the action. This property takes
precedence over icon-name.

use-underline gboolean If set to TRUE, the underscore charac-
ter will designate the character that
follows the underline as a mnemonic
keyboard accelerator.

7931.book Page 518 Thursday, March 8, 2007 7:02 PM

A P P E N D I X A ■ G T K + P R O P E R T I E S 519

Table A-82. GtkToolItem Properties

Table A-83. GtkTreeModelFilter Properties

Table A-84. GtkTreeModelSort Properties

Table A-85. GtkTreeView Properties

Property Type Description

is-important gboolean When a toolbar uses a toolbar-style
of GTK_TOOLBAR_BOTH_HORIZ, setting
this property to TRUE will tell GTK+ to
display the tool button’s label. Other-
wise, only the icon will be displayed.

visible-horizontal gboolean If set to TRUE, the tool item will be visi-
ble when the toolbar’s orientation is
set to GTK_ORIENTATION_HORIZONTAL.

visible-vertical gboolean If set to TRUE, the tool item will be visi-
ble when the toolbar’s orientation is
set to GTK_ORIENTATION_VERTICAL.

Property Type Description

child-model GtkTreeModel A tree model that holds the content
that is filtered by GtkTreeModelFilter.

virtual-root GtkTreePath A tree path that points to the root row
to use in child-model. This does not
have to be the absolute root path of
the tree model.

Property Type Description

model GtkTreeModel A tree model that holds the content
that is sorted by GtkModelSort

Property Type Description

enable-grid-lines GtkTreeViewGridLines A flag to place horizontal or vertical
grid lines.

enable-search gboolean If set to TRUE, the user will be able to
search the content of GtkTreeView with
the keyboard.

enable-tree-lines gboolean If set to TRUE, lines will be drawn that
define the hierarchy of the tree view
content.

expander-column GtkTreeViewColumn The tree view column where the
expander is displayed for tree views
using GtkTreeStore.

Continued

7931.book Page 519 Thursday, March 8, 2007 7:02 PM

520 A P P E N D I X A ■ G T K + P R O P E R T I E S

Table A-85. Continued

Property Type Description

fixed-height-mode gboolean If set to TRUE, GTK+ will assume that
every row is the same height, which
speeds up rendering. You should only
use this property if you are sure that
every row will have the same height.

hadjustment GtkAdjustment The horizontal adjustment used for
scrolling the widget.

headers-clickable gboolean If set to TRUE, the user will be able to
click the column headers.

headers-visible gboolean If set to TRUE, the column headers will
be visible to the user.

hover-expand gboolean If set to TRUE, a row will expand or col-
lapse if the mouse pointer hovers over it.

hover-selection gboolean If set to TRUE, a row will be selected if
the mouse pointer hovers over it with
a selection mode of GTK_SELECTION_
SINGLE or GTK_SELECTION_BROWSE.

level-indentation gint The number of pixels to add as extra
indentation for child rows. Even if this
is set to zero, child rows will still be
indented with the default padding.

model GtkTreeModel The tree model that is currently dis-
played by the tree view.

reoderable gboolean If set to TRUE, the tree view is reorder-
able by user interaction. For example,
you will be able to implement drag-
and-drop support.

rubber-banding gboolean If set to TRUE, the user will be able to
drag the mouse pointer to select mul-
tiple items.

rules-hint gboolean If set to TRUE, the theme engine will be
instructed to draw alternating rows in
different colors. You should note that
this is a hint and may not be honored
by the theme. Also, some themes color
alternating rows by default.

search-column gint The column number to search when
enable-search is set to TRUE.

show-expanders gboolean If set to TRUE, expanders will be dis-
played beside rows that have one or
more children.

vadjustment GtkAdjustment The vertical adjustment used for
scrolling the widget.

7931.book Page 520 Thursday, March 8, 2007 7:02 PM

A P P E N D I X A ■ G T K + P R O P E R T I E S 521

Table A-86. GtkTreeViewColumn Properties

Property Type Description

alignment gfloat The horizontal alignment of the col-
umn title within the header, defined
by a number between 0.0 and 1.0,
where 0.5 is centered.

clickable gboolean If set to TRUE, the user will be able to
click the column header.

expand gboolean If set to TRUE, the column will expand
to fill extra space allocated to the
GtkTreeView to which it belongs.

fixed-width gint A number of pixels that defines the
fixed width of the column.

max-width gint The maximum width, in pixels, to
which the column can be expanded .

min-width gint The minimum width, in pixels, to
which the column can be shrunk.

reorderable gboolean If set to TRUE, the column can be reor-
dered by using a method such as drag
and drop.

resizable gboolean If set to TRUE, the user will be able to
resize the column.

sizing GtkTreeViewColumnSizing A flag that sets the resizing mode for
the column.

sort-indicator gboolean If set to TRUE, an arrow will be dis-
played in the column header that
designates that the tree view is sorted
according to its content.

sort-order GtkSortType A flag that defines in which direction
the sort indicator will be displayed.

spacing gint The number of pixels of spacing that is
added between a row and each of its
neighbors.

title gchararray The title of the column that appears in
the header.

visible gboolean If set to TRUE, the column will be visi-
ble to the user.

widget GtkWidget Instead of placing the title string in
the column header, you can use this
property to place a widget in the
header instead.

width gint The width of the tree view column,
in pixels.

7931.book Page 521 Thursday, March 8, 2007 7:02 PM

522 A P P E N D I X A ■ G T K + P R O P E R T I E S

Table A-87. GtkUIManager Properties

Table A-88. GtkViewport Properties

Table A-89. GtkWidget Properties

Property Type Description

add-tearoffs gboolean If set to TRUE, menus generated by the
GtkUIManager will have tear-off menu
items unless they are pop-up menus.

ui gchararray The XML string that is used to gener-
ate the menu or toolbar user interface.
This was either explicitly set or loaded
from a file.

Property Type Description

hadjustment GtkAdjustment The horizontal adjustment of the
viewport used for native scrolling
support.

shadow-type GtkShadowType The type of shadow that is drawn
around the viewport’s child widget.

vadjustment GtkAdjustment The vertical adjustment of the view-
port used for native scrolling support.

Property Type Description

app-paintable gboolean If set to TRUE, GTK+ will draw directly
on the GtkWidget.

can-default gboolean If set to TRUE, the GtkWidget will be
able to become the window’s default
widget.

can-focus gboolean If set to TRUE, the GtkWidget will be
able to accept the window’s focus.

composite-child gboolean If set to TRUE, the widget is not derived
directly from GtkWidget.

events GdkEventMask A bitmask of all of the events from
GdkEventMask that the widget will
receive.

extension-events GdkExtensionMode A bitmask of all extension events from
GdkExtensionMode that the widget will
receive.

has-default gboolean If set to TRUE, the GtkWidget is cur-
rently the default widget of its parent
window.

has-focus gboolean If set to TRUE, the GtkWidget is cur-
rently the widget with focus.

7931.book Page 522 Thursday, March 8, 2007 7:02 PM

A P P E N D I X A ■ G T K + P R O P E R T I E S 523

Table A-90. GtkWindow Properties

height-request gint The requested height of the widget.
Use -1 to allow GTK+ to set the wid-
get’s height. This is a request and may
not be honored in some cases.

is-focus gboolean If set to TRUE, the widget has focus
within the top-level window.

name gchararray A unique name that can be used to
distinguish widgets of the same type.
This is often used to set widget styles
in resource files.

no-show-all gboolean If set to TRUE, the widget will not
be affected by calls to gtk_widget_
show_all().

parent GtkContainer The parent container of the widget.

receives-default gboolean If set to TRUE, when the widget has
focus, it will receive the default action.

sensitive gboolean If set to TRUE, the user will be able to
interact with the widget.

style GtkStyle The style associated with the widget
that is used to customize how it is
drawn.

visible gboolean If set to TRUE, the widget will be dis-
played on the screen.

width-request gint The requested width of the widget.
Use -1 to allow GTK+ to set the wid-
get’s width. This is a request and may
not be honored in some cases.

Property Type Description

accept-focus gboolean If set to TRUE, the window will be able
to receive focus for input.

allow-grow gboolean If set to TRUE, the user will be able to
resize the window larger than its ini-
tial size.

allow-shrink gboolean If set to TRUE, there will be no mini-
mum size for the window.

decorated gboolean If set to TRUE, the window will be
drawn with a title bar by the window
manager.

default-height gint The default height of the window. This
height is used when the window is first
mapped to the screen.

Continued

Property Type Description

7931.book Page 523 Thursday, March 8, 2007 7:02 PM

524 A P P E N D I X A ■ G T K + P R O P E R T I E S

Table A-90. Continued

Property Type Description

default-width gint The default width of the window. This
width is used when the window is first
mapped to the screen.

deletable gboolean If set to TRUE, the window’s title bar
will display a close button.

destroy-with-parent gboolean If set to TRUE, the window will be
destroyed along with its parent.

focus-on-map gboolean If set to TRUE, the window will receive
focus when it is mapped.

gravity GdkGravity The reference point of the window
when using gtk_window_move().

has-toplevel-focus gboolean This property will be set to TRUE when
a child of the window has focus.

icon GdkPixbuf An image that is shown as the window
icon on window managers that use
this property.

icon-name gchararray A named icon from the icon theme
that is shown as the window icon on
window managers that use this
property.

is-active gboolean If set to TRUE, the window is the cur-
rent window with focus.

modal gboolean If set to TRUE, the user will be prevented
from interacting with parent windows
until this one returns. The parent win-
dow is set with transient-for.

resizable gboolean If set to TRUE, the user will be able to
resize the window when it is not pre-
vented by other GTK+ settings.

role gchararray A unique string that distinguishes the
window that is used when the window
manager restores a past session.

screen GdkScreen The screen on which the window is
drawn.

skip-pager-hint gboolean If set to TRUE, the window manager will
recognize the window in its pager.

7931.book Page 524 Thursday, March 8, 2007 7:02 PM

A P P E N D I X A ■ G T K + P R O P E R T I E S 525

Child Widget Properties
A few containers in GTK+ have properties that are assigned to every child of the container.
Tables A-91 through A-100 list these properties.

Table A-91. GtkAssistant Child Properties

skip-taskbar-hint gboolean If set to TRUE, the window manager will
display the window in the task bar.

title gchararray The title of the window to display in
the title bar and task bar of the win-
dow manager.

transient-for GtkWindow The parent window of the current
window. This allows your window to
become modal.

type GtkWindowType The type of window, either top-level
or pop-up.

type-hint GdkWindowTypeHint A hint given to the window manager
about the purpose of the window. This
may affect how the window is drawn
on various window managers.

urgency-hint gboolean If set to TRUE, the user will be notified
that the window needs attention.

window-position GtkWindowPosition The position of the window when orig-
inally mapped. This is a hint and may
not be honored by all window
managers.

Property Type Description

complete gboolean If set to TRUE, the page is set as com-
plete, and navigation buttons will be
set as sensitive.

header-image GdkPixbuf An image that is displayed next to the
page header.

page-type GtkAssistantPageType The type of buttons to use.

sidebar-image GdkPixbuf An image that is displayed next to the
page as the sidebar.

title gchararray A string that is displayed as the title of
the page in the header.

Property Type Description

7931.book Page 525 Thursday, March 8, 2007 7:02 PM

526 A P P E N D I X A ■ G T K + P R O P E R T I E S

Table A-92. GtkBox Child Properties

Table A-93. GtkButtonBox Child Properties

Table A-94. GtkFixed Child Properties

Table A-95. GtkLayout Child Properties

Property Type Description

expand gboolean If set to TRUE, the child widget will get
extra space when the box grows. The
child can either fill the extra space
with itself or padding.

fill gboolean If set to TRUE, extra space allocated to
the child will be filled with the widget.
Otherwise, it will be filled with
padding.

pack-type GtkPackType The type of packing used by the child.

padding guint The number of pixels of padding
placed between the child widget and
its neighbors.

position gint The position of the child within the
box, indexed from zero.

Property Type Description

secondary gboolean If set to TRUE, the child button will be
placed in a secondary group of buttons.

Property Type Description

x (y) gint The horizontal and vertical position of
the child widget within the GtkFixed
widget

Property Type Description

x (y) gint The horizontal and vertical position of
the child widget within the GtkLayout
widget

7931.book Page 526 Thursday, March 8, 2007 7:02 PM

A P P E N D I X A ■ G T K + P R O P E R T I E S 527

Table A-96. GtkMenu Child Properties

Table A-97. GtkNotebook Child Properties

Property Type Description

bottom-attach gint The row that the bottom of the child
widget is attached to.

left-attach gint The column that the left side of the
child widget is attached to.

right-attach gint The column that the right side of the
child widget is attached to.

top-attach gint The row that the top of the child wid-
get is attached to.

Property Type Description

detachable gboolean If set to TRUE, the user will be able to
detach the tab from the parent
notebook.

menu-label gchararray The string to display for the tab in the
notebook’s tab selection menu.

position gint The current position of the child within
the notebook, indexed from zero.

reorderable gboolean If set to TRUE, the user will be able to
change the position of the current tab.

tab-expand gboolean If set to TRUE, the child’s tab will
expand to fill extra space allocated
to the notebook.

tab-fill gboolean If set to TRUE, the child’s tab will fill
extra space allocated to it.

tab-label gchararray The string to display as the child’s tab
label. This can be left unset if you want
to provide your own label widget.

tab-pack GtkPackType They type of packing that was used to
add the child.

7931.book Page 527 Thursday, March 8, 2007 7:02 PM

528 A P P E N D I X A ■ G T K + P R O P E R T I E S

Table A-98. GtkPaned Child Properties

Table A-99. GtkTable Child Properties

Table A-100. GtkToolbar Child Properties

Property Type Description

resize gboolean If set to TRUE, the child widget will be
resized to fill the whole pane.

shrink gboolean If set to TRUE, the child’s pane can be
resized smaller than the requested size
of the child widget.

Property Type Description

bottom-attach guint The row that the bottom of the child
widget is attached to.

left-attach guint The column that the left side of the
child widget is attached to.

right-attach guint The column that the right side of the
child widget is attached to.

top-attach guint The row that the top of the child wid-
get is attached to.

x-options (y-options) GtkAttachOptions Horizontal and vertical attach options
provided for the widget.

x-padding (y-padding) guint Horizontal and vertical padding to add
on either side of the child widget.

Property Type Description

expand gboolean If set to TRUE, the tool item will receive
extra space if the toolbar is enlarged.

homogeneous gboolean If set to TRUE, the tool item will be
forced to the same size as all other
items with this property set.

7931.book Page 528 Thursday, March 8, 2007 7:02 PM

529

■ ■ ■

A P P E N D I X B

GTK+ Signals

GTK+ is a system that relies on signals and callback functions. A signal is a notification to your
application that the user has performed some action. When a signal is emitted, you can tell
GTK+ to run a function named a callback function.

To connect a signal, you can use g_signal_connect(). This function accepts four parameters.
The first is the GObject you are watching for the signal. The signal_name is a string representing the
signal; a list of signal names can be found in the tables throughout this appendix.

gulong g_signal_connect (gpointer object,
 const gchar *signal_name,
 GCallback handler,
 gpointer data);

The third parameter is the name of the callback function that will be called when the signal
is emitted. The form for each callback function can be found in the GTK+ API documentation.
However, many of the function prototypes have incomplete documentation, so you can find
more information about nonstandard parameters in the signal reference tables throughout
this appendix.

The last parameter of g_signal_connect() allows you to send data of an arbitrary pointer
type to the callback function. You can do this because gpointer is equivalent to C’s void
pointer type.

You can also use g_signal_connect_swapped(), which works the same way as g_signal_
connect(), except the order of the object and data parameters is switched. This allows you to
call a function on the data parameter pointer.

This appendix provides a complete list of events and signals available to GTK+ objects
and widgets. The first section provides information about the GDK event types available to
GtkWidget and derivative classes. The sections that follow provide a complete list of signals’
names and a description for every object with signals in GTK+.

Events
Events are a special type of signal that are emitted by the X Window System. Once emitted, they
are sent from the window manager to your application to be interpreted by the signal system
provided by GLib.

In doing this, you can use the same signal connection and callback function methods as
with normal signals. One difference is that event callback functions return a gboolean value.

7931.book Page 529 Wednesday, March 14, 2007 8:28 PM

530 A P P E N D I X B ■ G T K + S I G N A L S

If you return TRUE, no further action will happen. If you return the default value of FALSE, GTK+
will continue to handle the event.

Table B-1. GtkWidget Event Types

Signal Name GdkEventType Value Description

delete-event GDK_DELETE The window manager
requested that the top-level
window be destroyed. This
can be used to confirm the
deletion of the window.

destroy-event GDK_DESTROY The widget’s GdkWindow was
destroyed. You should not use
this signal, because the widget
will usually be disconnected
before it can be emitted.

expose-event GDK_EXPOSE A new part of the widget
was shown and needs to be
drawn. This is emitted when
the window was previously
obscured by another object.

motion-notify-event GDK_MOTION_NOTIFY The mouse cursor has moved
while within the proximity of
the widget.

button-press-event GDK_BUTTON_PRESS A mouse button was clicked
once. This is emitted along
with GDK_2BUTTON_PRESS and
GDK_3BUTTON_PRESS events.

button-press-event GDK_2BUTTON_PRESS A mouse button was clicked
twice. This will also emit
GDK_BUTTON_PRESS, so you
need to check the event type
in the callback function.

button-press-event GDK_3BUTTON_PRESS A mouse button was clicked
three times. This will also
emit GDK_BUTTON_PRESS, so
you need to check the event
type in the callback function.

button-release-event GDK_BUTTON_RELEASE A previously clicked mouse
button was released.

key-press-event GDK_KEY_PRESS A keyboard key was pressed.
You can return TRUE to prevent
any text from being entered or
actions being taken because of
the key press.

7931.book Page 530 Wednesday, March 14, 2007 8:28 PM

A P P E N D I X B ■ G T K + S I G N A L S 531

key-release-event GDK_KEY_RELEASE A previously pressed key-
board key was released. This
is usually not as useful as
key-press-event.

enter-notify-event GDK_ENTER_NOTIFY The mouse cursor entered
the proximity of the widget.

leave-notify-event GDK_LEAVE_NOTIFY The mouse cursor exited the
proximity of the widget.

focus-in-event GDK_FOCUS_CHANGE Keyboard focus entered the
widget from another widget
within the window.

focus-out-event GDK_FOCUS_CHANGE Keyboard focus left the wid-
get for another widget within
the window.

configure-event GDK_CONFIGURE The size, position, or stacking
order of the widget changed.
This is normally emitted
when a new size is allocated
for the widget.

map-event GDK_MAP The widget was mapped onto
the display. It also means
that the widget was realized.

unmap-event GDK_UNMAP The widget was unmapped
from the display.

property-notify-event GDK_PROPERTY_NOTIFY A property of the widget has
been changed or deleted. You
can use this to track changes
to a specific widget property
stored by GObject.

selection-clear-event GDK_SELECTION_CLEAR The application no longer
has ownership of a selection,
so it needs to be cleared.

selection-request-
event

GDK_SELECTION_REQUEST The selection of the widget
was requested by another
application.

selection-notify-event GDK_SELECTION_NOTIFY The owner of a selection
responded to a selection
conversion request.

proximity-in-event GDK_PROXIMITY_IN An input device has come in
contact with a sensing sur-
face, such as a pen on a touch
screen.

Continued

Signal Name GdkEventType Value Description

7931.book Page 531 Wednesday, March 14, 2007 8:28 PM

532 A P P E N D I X B ■ G T K + S I G N A L S

Table B-1. Continued

Signal Name GdkEventType Value Description

proximity-out-event GDK_PROXIMITY_OUT An input device, such as a
pen on a touch screen, has
broken off contact with a
sensing surface.

event GDK_DRAG_ENTER The mouse pointer entered
the widget while a drag
action was in progress.

event GDK_DRAG_LEAVE The mouse pointer left the
widget while a drag action
was in progress.

event GDK_DRAG_MOTION The mouse pointer moved
within the widget while a
drag action was in progress.

event GDK_DRAG_STATUS The current status of a drag
action was changed.

event GDK_DROP_START A drop action on the widget
began.

event GDK_DROP_FINISHED A drop action on the widget
completed.

client-event GDK_CLIENT_EVENT An event for the widget
was received from another
application.

visibility-notify-
event

GDK_VISIBILITY_NOTIFY The visibility of the widget
changed. For example, some
portion of it has been cov-
ered or uncovered.

no-expose-event GDK_NO_EXPOSE The source region was com-
pletely available when parts of
a drawable area were copied.

scroll-event GDK_SCROLL The widget has been scrolled
in one direction or another.
This allows you to update the
widget’s visible area.

window-state-event GDK_WINDOW_STATE The state of the widget has
changed. If the widget is a
top-level window, this can
happen when it is mini-
mized, maximized, made
sticky, made into an icon,
and so forth.

event GDK_SETTING A setting was added, removed,
or modified for the widget.

7931.book Page 532 Wednesday, March 14, 2007 8:28 PM

A P P E N D I X B ■ G T K + S I G N A L S 533

Widget Signals
Tables B-2 through B-69 provide a complete list of signals for each class in GTK+ that has sig-
nals. In addition to signal names, a description is provided for each item. If the signal does not
follow the standard signal prototype, the additional parameters are listed; these additional
parameters do not include the object itself and the user data pointer.

Table B-2. GtkAction Signals

Table B-3. GtkActionGroup Signals

event GDK_OWNER_CHANGE The owner of the widget has
changed. This event was
introduced in GTK+ 2.6.

grab-broken-event GDK_GRAB_BROKEN The widget was grabbed by
the pointer or the keyboard,
but it was broken. This can
happen when the window
becomes invisible or when a
user attempts to repeat a
grab. This event was intro-
duced in GTK+ 2.8.

Signal Name Description

activate The associated menu or toolbar item was triggered.

Signal Name Additional Parameters Description

connect-proxy GtkAction *action
GtkWidget *proxy

A proxy that is used to syn-
chronize properties between
a GtkAction object and an
associated widget was added.

disconnect-proxy GtkAction *action
GtkWidget *proxy

A proxy that is used to syn-
chronize properties between
a GtkAction and an associ-
ated widget was removed.

post-activate GtkAction *action An action contained by the
action group was activated
after the signal was emitted.

pre-activate GtkAction *action An action contained by the
action group will be acti-
vated right after this signal is
emitted.

Signal Name GdkEventType Value Description

7931.book Page 533 Wednesday, March 14, 2007 8:28 PM

534 A P P E N D I X B ■ G T K + S I G N A L S

Table B-4. GtkAdjustment Signals

Table B-5. GtkAssistant Signals

Table B-6. GtkButton Signals

Table B-7. GtkCalendar Signals

Signal Name Description

changed One or more properties of the adjustment were changed, excluding
the value property.

value-changed The value property of the adjustment was changed.

Signal Name Additional Parameters Description

apply None The Apply button or the
Forward button was clicked
on any GtkAssistant page.

cancel None The Cancel button was clicked
on any GtkAssistant page.

close None The Close button or the Apply
button was clicked on the last
page in the GtkAssistant.

prepare GtkWidget *page A new page is about to
become visible. This signal
was emitted so that you can
perform any preparation
tasks before it is visible to
the user.

Signal Name Description

activate This signal is used to animate a button. You should never connect to
it! Instead, use the clicked signal.

clicked The button was clicked or released.

Signal Name Description

day-selected The user selected a day on the calendar.

day-selected-double-
click

The user selected a day by double-clicking it. This should be used to
force an update of any supplementary widgets if they exist.

month-changed The user selected a new month on the calendar by using one of the
arrow buttons.

next-month The displayed month was incremented. This will only be called
when the user manually changes the month.

7931.book Page 534 Wednesday, March 14, 2007 8:28 PM

A P P E N D I X B ■ G T K + S I G N A L S 535

Table B-8. GtkCellEditable Signals

Table B-9. GtkCellRenderer Signals

Table B-10. GtkCellRendererAccel Signals

next-year The displayed year was incremented. This will only be called when
the user manually changes the year.

prev-month The displayed month was decremented. This will only be called
when the user manually changes the month.

prev-year The displayed year was decremented. This will only be called when
the user manually changes the year.

Signal Name Description

editing-done The user finished editing the textual content of the cell. This signal
tells the cell renderer to update its value.

remove-widget The cell is finished editing, so the text editing widget can now
be destroyed.

Signal Name Additional Parameters Description

editing-canceled None The user chose to cancel the
editing of a cell. You can set
this up to occur in any case,
such as when the Escape key
is pressed.

editing-started GtkCellEditable *editable
gchar *path

A cell has become editable.
You can use this signal to
add a different type of edit-
ing widget instead of the
default associated with the
cell content.

Signal Name Additional Parameters Description

accel-cleared gchar *path_string The accelerator was removed
from the cell. The cell should
be reset to some type of
default text that tells the user
that it is empty, or it should
return to the default value.

accel-edited gchar *path_string
guint accel_key
GdkModifierType accel_mods

The accelerator chosen by
the user changed. The call-
back function provides
enough information for you
to apply the new selection
immediately.

Signal Name Description

7931.book Page 535 Wednesday, March 14, 2007 8:28 PM

536 A P P E N D I X B ■ G T K + S I G N A L S

Table B-11. GtkCellRendererText Signals

Table B-12. GtkCellRendererToggle Signals

Table B-13. GtkCheckMenuItem Signals

Table B-14.GtkColorButton Signals

Table B-15. GtkColorSelection Signals

Table B-16. GtkComboBox Signals

Signal Name Description

edited gchar *path_string
gchar *new_text

The textual content of the
renderer was changed. The
callback function receives the
path to the cell and the new
content of the cell.

Signal Name Additional Parameters Description

toggled gchar *path_string The cell was activated or
deactivated. If you set the
renderer to display as a radio
button, you will need to
update the renderer that was
originally activated.

Signal Name Description

toggled The state of the check box changed. You will have to check the active
property of the GtkCheckMenuItem class to discover the current status.

Signal Name Description

color-set The user chose a new color. This signal is not emitted when
you change the color programmatically! You need to track
GtkColorButton’s color and alpha properties to detect all changes.

Signal Name Description

color-changed The selected color changed. This signal is emitted whether it was the
user or your code that initiated the alteration.

Signal Name Description

changed The user selected a different item from the list, or your code made
a call to gtk_combo_box_set_active_iter(). This signal will also be
emitted when the user types into a GtkComboBoxEntry.

7931.book Page 536 Wednesday, March 14, 2007 8:28 PM

A P P E N D I X B ■ G T K + S I G N A L S 537

Table B-17. GtkContainer Signals

Table B-18. GtkCurve Signals

Table B-19. GtkDialog Signals

Signal Name Additional Parameters Description

add GtkWidget *child A child widget was added or
packed into the container.
This signal will be emitted
even if you do not explicitly
call gtk_container_add() but
use the widget’s built-in
packing functions instead.

check-resize None The container checked
whether it needs to be resized
before adding a child widget.

remove GtkWidget *child A child widget was removed
from the container.

set-focus-child GtkWidget *child A container’s child widget
gained focus from the win-
dow manager.

Signal Name Description

curve-type-changed A call was made to gtk_curve_set_gamma(), gtk_curve_reset(), or
gtk_curve_set_curve_type().

Signal Name Additional Parameters Description

close None The GtkDialog object was
closed.

response gint response A button in the GtkDialog’s
action area was activated;
the dialog received a delete
event, or you made a call to
gtk_dialog_response().
Delete events cause a
response identifier of
GTK_RESPONSE_NONE to be
emitted. Otherwise, the
response identifier will
already be defined.

7931.book Page 537 Wednesday, March 14, 2007 8:28 PM

538 A P P E N D I X B ■ G T K + S I G N A L S

Table B-20. GtkEditable Signals

Table B-21. GtkEntry Signals

Signal Name Additional Parameters Description

changed None The user changed the con-
tents of the editable widget.

delete-text gint start_pos
gint end_pos

Text was deleted from the
widget by the user between
the two positions.

insert-text gchar *new_text
gint text_length
gint *position

Text was inserted into the
widget by the user at the
given position.

Signal Name Additional Parameters Description

activate None The Enter key was pressed
while the GtkEntry widget
had focus. You should run
the dialog’s default button
associated with GtkEntry
when activated.

backspace None The Backspace key was
pressed. The character
located to the left of the
cursor was deleted, if it
existed.

copy-clipboard None Selected text was copied to
the clipboard.

cut-clipboard None Selected text was copied to
the clipboard and then
removed from the GtkEntry
widget.

delete-from-cursor GtkDeleteType type
gint num_deletions

Text was deleted from
around the cursor.

insert-at-cursor gchar *new_text Text was inserted at the loca-
tion of the cursor.

move-cursor GtkMovementStep step
gint num_steps
gboolean extended

The cursor moved a speci-
fied distance. The callback
function receives whether the
selection was extended.

paste-clipboard None Text from the clipboard was
inserted into the GtkEntry.

7931.book Page 538 Wednesday, March 14, 2007 8:28 PM

A P P E N D I X B ■ G T K + S I G N A L S 539

Table B-22. GtkEntryCompletion Signals

Table B-23. GtkExpander Signals

Table B-24. GtkFileChooser Signals

populate-popup GtkMenu *popup_menu The pop-up menu was shown,
because the user clicked the
right mouse button.

toggle-overwrite None The Insert key was pressed,
which toggles the overwrite
property, or the property was
explicitly changed.

Signal Name Additional Parameters Description

action-activated gint index An action item with the given
index was chosen from the
pop-up list.

insert-prefix gchar *prefix The automatic comple-
tion provided by
GtkEntryCompletion was
activated. This allows you
to change the default prefix
shown by the widget.

match-selected GtkTreeModel *model
GtkTreeIter *match

The user chose a match
from the list of items, which
is defined by the given
GtkTreeModel.

Signal Name Description

activate The expander was toggled. This signal is emitted both when the wid-
get is expanded and when it is retracted.

Signal Name Description

confirm-overwrite The user wants to save a file with a name of a file that already
exists. You need to return GTK_FILE_CHOOSER_CONFIRMATION_
ACCEPT_FILENAME to accept the user’s choice, GTK_FILE_CHOOSER_
CONFIRMATION_CONFIRM to present the default dialog to confirm the
overwriting, or GTK_FILE_CHOOSER_CONFIRMATION_SELECT_AGAIN to
make the user select a different name.

current-folder-changed The current folder shown by the GtkFileChooser was changed.
Examples of this can be when the user changes the folder, a book-
mark is clicked, or a function call explicitly changes the folder.

Continued

Signal Name Additional Parameters Description

7931.book Page 539 Wednesday, March 14, 2007 8:28 PM

540 A P P E N D I X B ■ G T K + S I G N A L S

Table B-24. Continued

Table B-25. GtkFontButton Signals

Table B-26. GtkHandleBox Signals

Table B-27. GtkIconView Signals

Signal Name Description

file-activated The user either double-clicked a file from the list or pressed the Enter
key. This is usually only used internally by GtkFileChooserDialog.

selection-changed The selected file was changed within GtkFileChooser. Examples of
this can be when the mouse or keyboard changes the selection or
when the code explicitly changes it.

update-preview The user performed some action, so the preview widget in the file
chooser should be re-created. You need to use this signal if the file
chooser has a preview widget.

Signal Name Description

font-set The user selected a new font. This signal is not emitted when you
change the font explicitly. To monitor all changes to the font,
you need to use the notify signal on GtkFontButton’s font-name
property.

Signal Name Additional Parameters Description

child-attached GtkWidget *child The handle box was re-
attached to the main window.

child-detached GtkWidget *child The handle box was detached
from the main window.

Signal Name Additional Parameters Description

activate-cursor-item None The user pressed the Enter key
while an icon was selected.

item-activated GtkTreePath *path The user double-clicked an
icon item or pressed the
Enter key. You can force this
signal to be emitted by call-
ing gtk_icon_view_item_
activated().

7931.book Page 540 Wednesday, March 14, 2007 8:28 PM

A P P E N D I X B ■ G T K + S I G N A L S 541

Table B-28. GtkIMContext Signals

move-cursor GtkMovementStep step
gint num_steps

The user selected a different
icon with the mouse cursor.
This can also be done with
the Up, Down, Ctrl+P,
Ctrl+N, Home, End, Page Up,
Page Down, Right, or Left
keys or a few other Shift and
Ctrl keyboard combinations.

select-all None All of the items were selected
by pressing Ctrl+A on the
keyboard.

select-cursor-item None The user selected an icon
item by pressing the space
bar on the keyboard.

selection-changed None The selected icons were
changed by a user action or
a call by your application.

set-scroll-adjustments GtkAdjustment *hadj
GtkAdjustment *vadj

The scroll adjustments of
GtkIconView were changed.

toggle-cursor-item None The user pressed Ctrl+space
bar on the keyboard.

unselect-all None All of the icon items were
deselected when the user
pressed Ctrl+Shift+A on the
keyboard.

Signal Name Additional Parameters Description

commit gchar *str The string is ready to be dis-
played by your application.

delete-surrounding gint offset
gint delete_chars

The input method needs to
delete the context text. TRUE
should be returned if the sig-
nal was handled.

preedit-changed None The preedited text was
changed.

preedit-end None The preedited text change
was completed.

Continued

Signal Name Additional Parameters Description

7931.book Page 541 Wednesday, March 14, 2007 8:28 PM

542 A P P E N D I X B ■ G T K + S I G N A L S

Table B-28. Continued

Table B-29. GtkInputDialog Signals

Table B-30. GtkItem Signals

Signal Name Additional Parameters Description

preedit-start None A preedited text change has
begun.

retrieve-surrounding None The input method needs to
know the context surround-
ing the cursor. You need to
use this signal to set the
surrounding context with
gtk_im_context_set_surroun
ding(), returning TRUE if it
was successfully handled.

Signal Name Additional Parameters Description

disable-device GdkDevice *deviceid The user changed the
mode of the input device
from GDK_MODE_SCREEN
or GDK_MODE_WINDOW to
GDK_MODE_DISABLED.

enable-device GdkDevice *deviceid The user changed the
mode of the input device
from GDK_MODE_DISABLED
to GDK_MODE_SCREEN or
GDK_MODE_WINDOW.

Signal Name Description

deselect The GtkItem widget was deselected by the user, or gtk_item_deselect()
was called.

select The GtkItem widget was selected by the user, or gtk_item_select()
was called.

toggle The GtkItem widget was toggled by the user, or gtk_item_toggle() was
called.

7931.book Page 542 Wednesday, March 14, 2007 8:28 PM

A P P E N D I X B ■ G T K + S I G N A L S 543

Table B-31. GtkLabel Signals

Table B-32. GtkLayout Signals

Table B-33. GtkMenu Signals

Signal Name Additional Parameters Description

copy-clipboard None The text from a GtkLabel
widget was copied to the
GtkClipboard. You can make a
GtkLabel widget selectable so
that portions of the label can
be copied as well as the whole.

move-cursor GtkMovementStep step
gint num_steps
gboolean extended

If you have allowed the
GtkLabel to be selected with
the mouse, a cursor will be
shown. You can then move
the cursor around the label,
which will emit this signal.
The callback function
receives whether the selec-
tion range was extended.

populate-popup GtkMenu *popup_menu The user right-clicked the
GtkLabel widget, and you
need to populate a new menu.

Signal Name Additional Parameters Description

set-scroll-adjustments GtkAdjustment *hadj
GtkAdjustment *vadj

The scroll adjustments of the
layout were changed.

Signal Name Additional Parameters Description

move-scroll GtkScrollType type The user scrolled the menu
with one of the GtkScrollType
values.

7931.book Page 543 Wednesday, March 14, 2007 8:28 PM

544 A P P E N D I X B ■ G T K + S I G N A L S

Table B-34. GtkMenuItem Signals

Table B-35. GtkMenuShell Signals

Signal Name Additional Parameters Description

activate None The menu item was activated.
If you need to catch activation
of a submenu, you should use
the activate-item signal.

activate-item None The menu item was activated,
or the menu item has a sub-
menu that was activated.

toggle-size-allocate gint new_size The menu item was allo-
cated with a new size.

toggle-size-request gpointer size The menu item requested a
new size.

Signal Name Additional Parameters Description

activate-current gboolean force_hide Activate the current
menu item contained by
GtkMenuShell.

cancel None Cancel the selection of the
selected menu item. This
will cause the selection-
done signal to be emitted.

cycle-focus GtkDirectionType type The focus moved to another
menu bar in the given
direction.

deactivate None The GtkMenuShell was deacti-
vated, which usually means
that it was erased from the
screen.

move-current GtkMenuDirectionType type The current menu item moved
within the menu shell in the
given direction.

selection-done None The selection within the
menu shell was completed.

7931.book Page 544 Wednesday, March 14, 2007 8:28 PM

A P P E N D I X B ■ G T K + S I G N A L S 545

Table B-36. GtkMenuToolButton Signals

Table B-37. GtkNotebook Signals

Table B-38. GtkObject Signals

Signal Name Description

show-menu This signal is emitted right before the menu is shown, giving you a
chance to update it before the user sees it.

Signal Name Additional Parameters Description

change-current-page gint pages_moved The page currently shown by
GtkNotebook was changed.

focus-tab GtkNotebookTab type The focus was moved by
changing the current tab. The
callback function returns TRUE
if the signal was handled.

move-focus-out GtkDirectionType type The focus was moved out of
the GtkNotebook widget in the
given direction.

page-added GtkWidget *child
guint page_num

A page was added to the
GtkNotebook widget. This sig-
nal was added in GTK+ 2.10.

page-removed GtkWidget *child
guint page_num

A page was removed from the
GtkNotebook widget. This sig-
nal was added in GTK+ 2.10.

page-reordered GtkWidget *child
guint page_num

The GtkNotebook widget pages
were reordered. This signal
was added in GTK+ 2.10.

select-page gboolean focus_moved A new page was selected for
the child widget. The call-
back function returns TRUE if
the signal was handled.

switch-page GtkNotebookPage *page
guint page_num

The notebook page was
changed to the given page.

Signal Name Description

destroy When the GtkObject widget has released all of its references, it will
be destroyed. This will result in finalization of the object when you
release all of the references.

7931.book Page 545 Wednesday, March 14, 2007 8:28 PM

546 A P P E N D I X B ■ G T K + S I G N A L S

Table B-39. GtkPaned Signals

Signal Name Additional Parameters Description

accept-position None Resizing of the pane was com-
pleted, and the user pressed
the Return key, Enter key, or
space bar. This signal will give
focus and activate the child
widget. The callback function
should return TRUE if the sig-
nal was handled.

cancel-position None Resizing the pane was
stopped, because the user
pressed the Escape key to
cancel the change. The call-
back function should return
TRUE if the signal was
handled.

cycle-child-focus gboolean reversed The user changed the child
focus by pressing F6 or
Shift+F6 while the GtkPaned
widget had focus. The call-
back function returns TRUE if
the signal was handled.

cycle-handle-focus gboolean reversed If the GtkPaned widget had
focus and the user presses
Tab, Ctrl+Tab, Shift+Tab, or
Ctrl+Shift+Tab, the signal is
emitted. The callback func-
tion should return TRUE if the
signal was handled.

move-handle GtkScrollType type The handle was moved, and
one of the following keys was
pressed while it was in focus:
Left, Right, Up, Down, Page
Up, Page Down, Home, or
End. The callback function
should return TRUE if the sig-
nal was handled.

toggle-handle-focus None The GtkPaned widget was
within focus, and F8 was
pressed to give or take away
focus from the handle. The
callback function should
return TRUE if the signal was
handled.

7931.book Page 546 Wednesday, March 14, 2007 8:28 PM

A P P E N D I X B ■ G T K + S I G N A L S 547

Table B-40. GtkPlug Signals

Table B-41. GtkPrinter Signals

Table B-42. GtkPrintJob Signals

Table B-43. GtkPrintOperation Signals

Signal Name Description

embedded The GtkPlug window was assigned to the socket window as its parent.
GtkPlug allows top-level widgets to be embedded into other processes.

Signal Name Additional Parameters Description

details-acquired gboolean success Detailed information about
the printer was requested
from the print backend.

Signal Name Description

status-changed The current status of the print job changed. You should use gtk_print_
job_get_status() to check the new status of the print job.

Signal Name Additional Parameters Description

begin-print GtkPrintContext *context The user just finished chang-
ing printer settings but
rendering has not yet begun.

create-custom-widget None The dialog was just dis-
played. You can return a
widget or a container widget
containing multiple widgets
from the callback function
so that it will be added as a
custom page to the dialog’s
GtkNotebook.

custom-widget-apply GtkWidget *widget Right before begin-print is
emitted, this signal is emit-
ted if a custom widget was
added in the create-custom-
widget signal handler.

Continued

7931.book Page 547 Wednesday, March 14, 2007 8:28 PM

548 A P P E N D I X B ■ G T K + S I G N A L S

Table B-43. Continued

Signal Name Additional Parameters Description

done GtkPrintOperationResult result Printing completed, and
you can now view the result.
You should use gtk_print_
operation_get_error() to
check the error message if
the result was GTK_PRINT_
OPERATION_RESULT_ERROR.

draw-page GtkPrintContext *context
gint page_num

Each page must be con-
verted into a Cairo context.
You can use this callback to
render a page manually.

end-print GtkPrintContext *context All of the pages were rendered.

paginate GtkPrintContext *context This signal is emitted after
begin-print but before page
rendering begins. It will con-
tinue to be emitted until
FALSE is returned or until it is
not handled. This allows you
to split the document into
pages in steps so that the
user interface is not notice-
ably blocked.

preview GtkPrintOperationPreview *preview
GtkPrintContext *context
GtkWindow *parent

The user requested a pre-
view of the document from
the main printing dialog. This
signal allows you to create
your own preview dialog. If
this signal is not handled, the
default handler will be used.
The callback function returns
TRUE if you are handling the
print preview.

request-page-setup GtkPrintContext *context
gint page_num
GtkPageSetup *setup

This signal is emitted for every
page, which gives you one last
chance to edit the setup of a
page before it is printed. Any
changes will be applied to
only the current page!

status-changed None The status of the print
operation changed. Possible
values are defined by the
GtkPrintStatus enumer-
ation, and the current
value can be retrieved with
gtk_print_operation_get_
status().

7931.book Page 548 Wednesday, March 14, 2007 8:28 PM

A P P E N D I X B ■ G T K + S I G N A L S 549

Table B-44. GtkRadioAction Signals

Table B-45. GtkRadioButton and GtkRadioMenuItem Signals

Table B-46. GtkRange Signals

Table B-47. GtkScale Signals

Signal Name Additional Parameters Description

changed GtkRadioAction *current The states of two radio but-
tons in a group were changed.
This signal is emitted on every
member of a radio group
when the selection is changed.

Signal Name Description

group-changed The radio button switched to a new group, or it was removed from a
radio group altogether.

Signal Name Additional Parameters Description

adjust-bounds gdouble value The bounds of a GtkRange
were altered by some type
of user action.

change-value GtkScrollType type
gdouble value

The current value of the range
was changed. You can pre-
vent the range from being
updated by returning TRUE,
but you will have to manually
round the displayed value to
the desired number of deci-
mal places.

move-slider GtkScrollType type The user pressed a keyboard
key such as Page Up, Page
Down, Home, End, or an
arrow key that caused the
slider to move.

value-changed None The range value was
changed. This can be
caused by user action or
a call within your code.

Signal Name Additional Parameters Description

format-value gdouble value A scale is about to be dis-
played, but GTK+ first gives
you an opportunity to cus-
tomize how it is displayed.
The callback function returns
a customized string display-
ing the value created by you.

7931.book Page 549 Wednesday, March 14, 2007 8:28 PM

550 A P P E N D I X B ■ G T K + S I G N A L S

Table B-48. GtkScrolledWindow Signals

Table B-49. GtkSocket Signals

Table B-50. GtkSpinButton Signals

Signal Name Additional Parameters Description

move-focus-out GtkDirectionType type The user moved focus from
the scrolled window by press-
ing Ctrl+Tab or Ctrl+Shift+Tab.
The given direction is always
either GTK_DIR_TAB_FORWARD or
GTK_DIR_TAB_BACKWARD.

scroll-child GtkScrollType type
gboolean horizontal

The child widget was scrolled
in one direction. This could
be caused by the mouse or
one of the following default
key bindings: Ctrl+Left,
Ctrl+Right, Ctrl+Up,
Ctrl+Down, Ctrl+Page Up,
Ctrl+Page Down, Page Up,
Page Down, Ctrl +Home,
Ctrl+End, Home, or End.

Signal Name Description

plug-added A client was successfully added to the socket.

plug-removed A client was removed from the socket. Usually, you will want to
destroy the GtkSocket widget, which is the default. To prevent this,
you can return TRUE from the callback function.

Signal Name Additional Parameters Description

change-value GtkScrollType type The displayed value of the
spin button was changed.
This was done by pressing
one of the following keyboard
bindings: Up, Down, Page Up,
Page Down, Ctrl+Page Up, or
Ctrl+Page Down.

input gpointer value The displayed value was
changed.

output None The displayed value of the
spin button was changed by
either setting a new value or
changing the digits property
of a realized widget. You
should return TRUE if you suc-
cessfully handle the signal so
that no further action is taken.

7931.book Page 550 Wednesday, March 14, 2007 8:28 PM

A P P E N D I X B ■ G T K + S I G N A L S 551

Table B-51. GtkStatusbar Signals

Table B-52. GtkStatusIcon Signals

value-changed None Any one of the properties
that require the spin button
value to be changed (e.g.,
value or digits) of the spin
button was changed.

wrapped None The spin button wrapped
from the maximum to the
minimum value or vice versa.
This signal was introduced in
GTK+ 2.10.

Signal Name Additional Parameters Description

text-popped guint context_id
gchar *message

The top message was
removed from the status
bar’s stack. The next mes-
sage will be displayed.

text-pushed guint context_id
gchar *message

A message was added to the
top of the status bar’s stack.

Signal Name Additional Parameters Description

activate None The status icon was acti-
vated. How the status icon
was activated is dependent
on the user’s platform. In any
case, you should take appro-
priate action.

popup-menu guint button
guint activate_time

The pop-up menu of the
status icon was shown. The
function parameters can
be passed to gtk_menu_
popup(). The pop-up menu
feature is not available
on every platform, so you
should always provide alter-
native functionality!

size-changed gint size The area available to the sta-
tus icon was changed. The
callback function returns
TRUE if you scaled the icon.
Otherwise, GTK+ will take
care of scaling for you.

Signal Name Additional Parameters Description

7931.book Page 551 Wednesday, March 14, 2007 8:28 PM

552 A P P E N D I X B ■ G T K + S I G N A L S

Table B-53. GtkTextBuffer Signals

Table B-54. GtkTextTag Signals

Signal Name Additional Parameters Description

apply-tag GtkTextTag *tag
GtkTextIter *start
GtkTextIter *end

A GtkTextTag widget was
applied to a section of the
text buffer.

begin-user-action None The user began some type of
action on the text buffer.

changed None The text buffer was changed
in some way, which resulted
in a change of visible or invis-
ible text, images, or widgets.

delete-range GtkTextIter *start
GtkTextIter *end

Text was deleted from the
text buffer.

end-user-action None Some type of user action on
the text buffer ended.

insert-child-anchor GtkTextIter *location
GtkTextChildAnchor *anchor

An anchor was inserted,
which allows the text buffer
to contain other widgets.

insert-pixbuf GtkTextIter *location
GdkPixbuf *pixbuf

A GdkPixbuf object was
inserted into the text buffer.

insert-text GtkTextIter *location
gchar *new_text
gint text_length

Text was inserted into the
text buffer.

mark-deleted GtkTextMark *mark A GtkTextMark object was
deleted from the text buffer.

mark-set GtkTextIter *location
GtkTextMark *mark

A GtkTextMark object was
added to the text buffer.

modified-changed None The text buffer was set as
modified or unmodified.

remove-tag GtkTextTag *tag
GtkTextIter *start
GtkTextIter *end

A tag was removed from the
text buffer between the given
iterators.

Signal Name Additional Parameters Description

event GObject *object
GdkEvent *event
GtkTextIter *location

An event occurred that was
within the range of the text
encompassed by GtkTextTag.

7931.book Page 552 Wednesday, March 14, 2007 8:28 PM

A P P E N D I X B ■ G T K + S I G N A L S 553

Table B-55. GtkTextTagTable Signals

Table B-56. GtkTextView Signals

Signal Name Additional Parameters Description

tag-added GtkTextTag *tag A GtkTextTag object was
added to the tag table.

tag-changed GtkTextTag *tag
gboolean size_changed

A property of a tag contained
by the tag table was changed.
The size of the displayed text
can be changed by other prop-
erties besides the size, such as
weight and font family.

tag-removed GtkTextTag *tag A GtkTextTag object was
removed from the tag table.

Signal Name Additional Parameters Description

backspace None One character was deleted
from the document from
behind the cursor.

copy-clipboard None Selected text was copied to
the clipboard.

cut-clipboard None Selected text was copied to
the clipboard and removed
from the document.

delete-from-cursor GtkDeleteType type
gint length

Text was deleted from
around the cursor.

insert-at-cursor gchar *text Text was inserted at the cur-
rent cursor position.

move-cursor GtkMovementStep step
gint num_steps
gboolean extended

The cursor was moved to a
new position, possibly extend-
ing the current selection.

move-focus GtkDirectionType type Focus has been moved in the
given direction.

move-viewport GtkScrollStep step
gint num_steps

Some type of scrolling
occurred, which is described
by the given step.

paste-clipboard None Text from the clipboard was
inserted into the document.

Continued

7931.book Page 553 Wednesday, March 14, 2007 8:28 PM

554 A P P E N D I X B ■ G T K + S I G N A L S

Table B-56. Continued

Table B-57. GtkToggleAction, GtkToggleButton, and GtkToggleToolButton Signals

Table B-58. GtkToolbar Signals

Signal Name Additional Parameters Description

populate-popup GtkMenu *menu The pop-up menu was
shown and is available for
editing.

select-all gboolean selected All of the text in the document
was selected or deselected.

set-anchor None An anchor was added to the
text view.

set-scroll-adjustments GtkAdjustment *hadj
GtkAdjustment *vadj

The adjustments of the text
view were set.

toggle-overwrite None The overwrite key was tog-
gled on or off.

Signal Name Description

toggled The state of the toggle was changed. You should connect to this
signal if you want to take some type of action when the toggle is
activated or deactivated.

Signal Name Additional Parameters Description

focus-home-or-end gboolean focus_home This signal is used internally
by GTK+ to move to the first
or last element in the toolbar
and cannot be used in appli-
cation code. The callback
function returns TRUE if the
signal was handled.

move-focus GtkDirectionType type This signal is used internally
by GTK+ to move the focused
item and cannot be used in
application code.

orientation-changed GtkOrientation dir The orientation of the toolbar
was changed to horizontal or
vertical.

7931.book Page 554 Wednesday, March 14, 2007 8:28 PM

A P P E N D I X B ■ G T K + S I G N A L S 555

Table B-59. GtkToolButton Signals

Table B-60. GtkToolItem Signals

popup-context-menu gint x_position
gint y_position
gint button

The user right-clicked the
toolbar or pressed a key bind-
ing that causes a pop-up
menu to be displayed. You
can use this to display a cus-
tom context menu for the
toolbar. You should return
TRUE if the signal was handled.

style-changed GtkToolbarStyle style The style of the toolbar was
changed.

Signal Name Description

changed The tool button was clicked with the mouse. This signal can also be
emitted if the tool button was activated with a keyboard binding.

Signal Name Additional Parameters Description

create-menu-proxy None The toolbar needs to know
whether the item should
appear in an overflow menu.
To handle this signal, you
should either call gtk_tool_
item_set_proxy_menu_item()
or return FALSE to prevent it
from appearing in the over-
flow menu. You should
return TRUE if the signal was
handled.

set-tooltip GtkTooltips *tooltips
gchar *tip_text
gchar *tip_private

The tooltip of an item
was changed to the given
configuration.

toolbar-reconfigured None Some property of the tool
item’s parent was changed
that requires the child to be
changed. This is caused by a
change in the orientation,
style, icon size, or relief style
of the toolbar.

Signal Name Additional Parameters Description

7931.book Page 555 Wednesday, March 14, 2007 8:28 PM

556 A P P E N D I X B ■ G T K + S I G N A L S

Table B-61. GtkTreeModel Signals

Table B-62. GtkTreeSelection Signals

Table B-63. GtkTreeSortable Signals

Signal Name Additional Parameters Description

row-changed GtkTreePath *path
GtkTreeIter *iter

A row in the tree model at the
given location was changed.

row-deleted GtkTreePath *path A row was removed from
the tree model at the given
location.

row-has-child-toggled GtkTreePath *path
GtkTreeIter *iter

A row at the given location
was given its first child, or
its last remaining child was
removed.

row-inserted GtkTreePath *path
GtkTreeIter *iter

A row was added to the tree
model. This signal is called
immediately after the row is
added, so it may not yet con-
tain any data.

rows-reordered GtkTreePath *path
GtkTreeIter *iter
gpointer row_nums

Rows within a tree model
were reordered by some
method besides drag and
drop. The callback function
receives an array of reordered
row numbers.

Signal Name Description

changed The selection may have been changed. This signal is not always
reliable, because it is only emitted once when multiple rows are
selected with the Shift key and can be emitted when nothing at all
has occurred. You should build error protection into callback func-
tions for this signal.

Signal Name Description

sort-column-changed The sort column is the column that will be used to sort all of the rows
within a GtkTreeSortable model. This signal is emitted when the
chosen sort column is changed.

7931.book Page 556 Wednesday, March 14, 2007 8:28 PM

A P P E N D I X B ■ G T K + S I G N A L S 557

Table B-64. GtkTreeView Signals

Signal Name Additional Parameters Description

columns-changed None Columns were added or
removed from the tree view,
which caused the number
of columns to change.

cursor-changed None The position of the cursor
within a cell with focus
changed.

expand-collapse-
cursor-row

gboolean logical
gboolean expanded
expand_children

A row located at the cursor
position needs to expanded
or collapsed. You should
return TRUE if the signal is
handled.

move-cursor GtkMovementStep step
gint num_steps

The cursor was moved by
using one of the following
key bindings: Right, Left, Up,
Down, Page Up, Page Down,
Home, or End. You should
return TRUE if the signal was
handled.

row-activated GtkTreePath *path
GtkTreeViewColumn *column

The user double-clicked a
row, or gtk_tree_view_row_
activated() was called. It can
also be emitted with the fol-
lowing key bindings: Space,
Shift+space bar, Return, or
Enter.

row-collapsed GtkTreeIter *iter
GtkTreePath *path

The child nodes of the given
row were hidden.

row-expanded GtkTreeIter *iter
GtkTreePath *path

The child nodes of the given
row were shown.

select-all None All of the rows within the tree
view were selected. This can
be done by pressing Ctrl+A or
Ctrl+/.

select-cursor-parent None The user pressed the Back-
space key while the row had
cursor focus. The callback
function should return TRUE if
the signal was handled.

Continued

7931.book Page 557 Wednesday, March 14, 2007 8:28 PM

558 A P P E N D I X B ■ G T K + S I G N A L S

Table B-64. Continued

Signal Name Additional Parameters Description

select-cursor-row gboolean editing A noneditable row was
selected by pressing one of
the following key bindings:
space bar, Shift+space bar,
Return, or Enter. The callback
function should return TRUE if
the signal was handled.

set-scroll-adjustments GtkAdjustment *hadj
GtkAdjustment *vadj

Horizontal and vertical scroll
adjustments were set for the
tree view. The callback func-
tion should return TRUE if the
signal was handled.

start-interactive-
search

None The user pressed Crtl+F while
the tree view had focus. You
should return TRUE if the sig-
nal was handled.

test-collapse-row GtkTreeIter *iter
GtkTreePath *path

A row is about to be collapsed.
The callback function should
return TRUE to go forward with
the collapse.

test-expand-row GtkTreeIter *iter
GtkTreePath *path

A row is about to be expanded.
The callback function should
return TRUE to go forward with
the expansion.

toggle-cursor-row None The user pressed Ctrl+space
bar while a row had focus.
You should return TRUE if the
signal was handled.

unselect-all None All of the rows in a tree view
were deselected by pressing
Shift+Ctrl+A or Shift+Ctrl+/.
You should return TRUE if the
signal was handled.

7931.book Page 558 Wednesday, March 14, 2007 8:28 PM

A P P E N D I X B ■ G T K + S I G N A L S 559

Table B-65. GtkTreeViewColumn Signals

Table B-66. GtkUIManager Signals

Table B-67. GtkViewport Signals

Signal Name Description

clicked The user pressed the tree view column’s header button. This usually
causes the tree view’s rows to be sorted according to that column in
views that support sorting.

Signal Name Additional Parameters Description

actions-changed None A set of actions within the UI
manager were changed.

add-widget GtkWidget *widget A menu bar or toolbar was
generated. This signal is not
emitted for pop-up menus,
so you will have to use gtk_
ui_manager_get_widget() to
retrieve those.

connect-proxy GtkAction *action
GtkWidget *proxy

A proxy was connected to an
action within the group. You
can use this signal for cus-
tomizations that are used by
many actions.

disconnect-proxy GtkAction *action
GtkWidget *proxy

A proxy was connected to an
action within the group.

post-activate GtkAction *action An action was just activated.
This signal can be used to
retrieve notice of activation
of all actions.

pre-activate GtkAction *action An action is about to be acti-
vated. This signal can be used
to retrieve notice of activa-
tion of all actions.

Signal Name Additional Parameters Description

set-scroll-adjustments GtkAdjustment *hadj
GtkAdjustment *vadj

The adjustments for the
viewport were changed.

7931.book Page 559 Wednesday, March 14, 2007 8:28 PM

560 A P P E N D I X B ■ G T K + S I G N A L S

Table B-68. GtkWidget Signals with Events Removed

Signal Name Additional Parameters Description

accel-closures-changed None An accelerator was added or
removed from the widget’s
accelerator group. This sig-
nal is also emitted when an
accelerator path is set up.

can-activate-accel guint signal_id You can use this signal to
override the default handler
for whether an accelerator
can be activated. You should
return TRUE if the signal can
be activated.

child-notify GParamSpec *pspec A child property was changed
for the widget. This signal
can be used to monitor a sig-
nal property.

composited-changed None The composited status of the
widget was changed; com-
posited is a property that
determines whether the wid-
get’s alpha channel will be
honored.

direction-changed GtkTextDirection dir The direction of the text within
the widget was changed. This
is usually initiated by a call to
gtk_widget_set_direction().

drag-begin GdkDragContext *context A drag action began. This
signal is emitted on the drag
source. You can use this sig-
nal to set up a custom icon to
display when dragging.

drag-data-delete GdkDragContext *context A drag action was success-
fully completed. This signal is
used to delete the data that
was being dragged when the
action is completed.

drag-data-get GdkDragContext *context
GtkSelectionData *data
guint info
guint timestamp

The drop site requested the
data that was dragged.

drag-data-received GdkDragContext *context
gint x_position
gint y_position
GtkSelectionData *data
guint int
guint timestamp

The drag data was received
by the drop site.

7931.book Page 560 Wednesday, March 14, 2007 8:28 PM

A P P E N D I X B ■ G T K + S I G N A L S 561

drag-drop GdkDragContext *context
gint x_position
gint y_position
guint timestamp

The user dropped data onto a
widget. You must determine
whether the cursor position
is within the accepted drop
region. You should return
TRUE if the drop is acceptable.

drag-end GdkDragContext *context A drag action was completed,
which can be used to undo
actions performed in the
drag-begin callback.

drag-leave GdkDragContext *context
guint timestamp

The cursor left the proximity
of the drop site. This signal
can be used to undo actions
performed in the drag-motion
callback.

drag-motion GdkDragContext *context
gint x_position
gint y_position
guint timestamp

The cursor was moved over
the drop site during a drag.
You should return TRUE if the
cursor is within an accept-
able drop area.

focus GtkDirectionType type The widget received focus.
You should return TRUE if the
signal was handled.

grab-focus None The widget forced focus on
itself by calling gtk_widget_
grab_focus(). This signal can
also be initiated with mne-
monic accelerators.

grab-notify gboolean was_grabbed The widget became shad-
owed because of an explicit
call to gtk_grab_add() on
another widget, or it became
unshadowed because of a
removed grab.

hide None The widget was hidden from
the user’s view. The user
interface will be redrawn to
accommodate for the miss-
ing widget.

hierarchy-changed GtkWidget *toplevel The widget is considered to
be anchored when its top-
level ancestor is a GtkWindow
widget. This signal is emitted
when the child becomes
anchored or unanchored.

Continued

Signal Name Additional Parameters Description

7931.book Page 561 Wednesday, March 14, 2007 8:28 PM

562 A P P E N D I X B ■ G T K + S I G N A L S

Table B-68. Continued

Signal Name Additional Parameters Description

map None The widget requested
to be mapped. This can
be initiated by calling
gtk_widget_show() or
gtk_widget_map().

mnemonic-activate gboolean shift_focus A mnemonic accelerator was
used to activate the widget.

parent-set GtkObject *old_parent The parent widget was
changed.

popup-menu None The user requested a pop-up
menu to be shown. This call-
back function returns TRUE if
it was handled.

realize None The widget requested to be
realized because of a call to
gtk_widget_realize(). This is
not usually explicitly called
by your code unless you are
creating your own custom
widget.

screen-changed GdkScreen *screen The widget was moved to a
new screen.

selection-get GtkSelectionData *data
guint info
guint timestamp

Selection data was requested
from the widget.

selection-received GtkSelectionData *data
guint timestamp

The owner of a selection
responded to a request for
selection data for the widget.

show None The widget was set as visible.
The user interface will be
redrawn to accommodate the
newly visible widget.

show-help GtkWidgetHelpType type The user requested help with
the widget by pressing Ctrl+F1.
Help types are defined by
GtkWidgetHelpType, which is
composed of GTK_WIDGET_
HELP_TOOLTIP and GTK_WIDGET_
HELP_WHATS_THIS.

size-allocate GtkAllocation *alloc The widget was given a new
size allocation.

size-request GtkRequisition *req The widget requested a new
size by using gtk_widget_
set_size_request().

7931.book Page 562 Wednesday, March 14, 2007 8:28 PM

A P P E N D I X B ■ G T K + S I G N A L S 563

Table B-69. GtkWindow Signals

state-changed GtkStateType state The current state of the wid-
get changed to the given state.

style-set GtkStyle *prev_style The widget’s style was
modified. This is caused
by changing the whole style
or by changing specific
elements of the style.

unmap None The widget requested to be
unmapped. This can be initi-
ated by calling gtk_widget_
unmap().

unrealize None The widget requested to be
unrealized. This will cause all
of its associated resources
and the resources of any
child widgets to be freed.

Signal Name Additional Parameters Description

activate-default None The default widget of the
window was activated.
This is usually because the
user pressed the Return or
Enter key.

activate-focus None The child widget of the
window that has focus was
activated. This is usually
because the user pressed
the space bar.

frame-event GdkEvent *event An event other than key-
press-event, key-release-
event, or a change in focus
was received on the win-
dow’s frame.

keys-changed None A mnemonic accelerator was
added, removed, or changed
within the window. This can
also be caused by setting a
mnemonic modifier.

move-focus GtkDirectionType type The focus was changed
within the child widgets of
the window. This usually
happens when the user
presses one of the following
key bindings: Tab, Shift+Tab,
Up, Down, Left, or Right.

set-focus GtkWidget *widget The focus was changed to a
different child in the window.

Signal Name Additional Parameters Description

7931.book Page 563 Wednesday, March 14, 2007 8:28 PM

7931.book Page 564 Wednesday, March 14, 2007 8:28 PM

565

■ ■ ■

A P P E N D I X C

GTK+ Styles

GTK+ provides many ways to customize the styles of widgets. Most customization of widget
styles is done through style properties and resource (RC) files, which were covered in the
Widget Styles section of Chapter 4.

In addition to the information in Chapter 4, this appendix provides a reference to default
RC file elements that can be applied to any widget, the Pango Text Markup Language, and
GtkTextTag styles.

Default RC File Styles
Resource files are introduced in Chapter 4, but this section can be used as a reference of the
default styles supported by every widget.

Along with the background, foreground, base, and text color styles, you need to specify a
widget state for which many styles will be attributed. States are also required when specifying
stock icons for some functions. The five widget states follow:

• NORMAL: The state of the widget during normal operation.

• ACTIVE: The state of an active widget, such as when a toggle is depressed.

• PRELIGHT: The mouse pointer is over the widget, which will respond to button clicks.

• SELECTED: The widget or widget text has been selected.

• INSENSITIVE: The widget is deactivated and will not respond to the user.

Colors can be specified in multiple formats. These may include hexadecimal formats like
#RGB, #RRGGBB, #RRRGGGBBB, and #RRRRGGGGBBBB where R, G, and B are hexadecimal digits represent-
ing red, green, and blue values respectively. You can also specify colors as { R, G, B } where the
values are given as integers between 0 and 65,535 or floating point values between 0.0 and 1.0.

Table C-1 gives a complete list of the default RC file styles that are supported as of GTK+ 2.10.
Some of the style descriptions also include examples of how they are implemented.

7931.book Page 565 Wednesday, March 14, 2007 8:28 PM

566 A P P E N D I X C ■ G T K + S T Y L E S

Table C-1. RC File Styles

Style Description

base[state] Set the background color of widgets that allow text to be edited (e.g.,
GtkEntry) in one of the five states.
Example: base[ACTIVE] = { 0.5, 0.3, 1.0 }

bg[state] Set the background color for most widgets in one of the five states.
Example: bg[NORMAL] = "#036"

bg_pixmap[state] Set an image to use as the background for the widget in one of the five
states. If the image file is relative, it will be searched for in one of the
paths specified by pixmap_path.
Example: bg_pixmap[SELECTED] = "image.xpm"

class::property Set a style property for the specific widget class. For example, GtkWidget
properties include cursor-aspect-ratio, cursor-color, and draw-border.
Example: class::cursor-aspect-ratio = 0.1

color["color_name"] As of GTK+ 2.10, you can define your own colors. A color is referred to as
@color_name. More information can be found immediately after this table.

engine Theme engines allow you to define your own widget styles from an RC
file. More information about using engines can be found in the GTK+
documentation.

fg Set the foreground color for most widgets in one of the five states.
Example: fg[PRELIGHT] = "#123456"

font_name The font and fontset styles are ignored as of GTK+ 2.10 in favor of this
style. You should specify this font name as you would to a Pango Font
Description string.
Example: font_name = "Sans Bold 12"

stock["stockid"] Define a new stock item that can be used by the application. The stock
item accepts the image filename, text direction (left to right or right to
left), widget state, and size. Sizes include gtk-menu, gtk-small-toolbar,
gtk-large-toolbar, gtk-button, and gtk-dialog. The asterisk (*) charac-
ter can be used as a wildcard for any of the last three parameters.
Example: stock["myitem"] = { "myitem.png", LTR, NORMAL, "gtk-
menu" }

text[state] Set the text color for widgets such as GtkEntry. Example: fg[PRELIGHT] =
{ 0, 65535, 0 }

xthickness Set horizontal padding for various values in GTK+. This value is speci-
fied as an integer.

ythickness Set vertical padding for various values in GTK+. This value is specified as
an integer.

7931.book Page 566 Wednesday, March 14, 2007 8:28 PM

A P P E N D I X C ■ G T K + S T Y L E S 567

As of GTK+ 2.10, you can define your own colors. Four functions are provided that allow
you to alter existing colors. Each of the following methods accepts any of the supported color
expressions:

• shade (factor, color): Make the specified color lighter or darker. The factor can be a
floating point number, where 1.0 leaves the color as it is. A smaller factor will darken the
color, while larger factors will lighten it.

• darker (color): This expression is equivalent to shade (0.7, color).

• lighter (color): This expression is equivalent to shade (1.3, color).

• mix (factor, color1, color2): Create a new color by mixing the two colors, where a fac-
tor of 0.0 outputs color2 and a factor of 1.0 outputs color1.

These methods can also be used together to create colors. To help you understand, a few
examples of color creation expressions follow:

color["blackwhite"] = mix (0.5, "#000000", "#FFFFFF")
color["darker"] = shade (0.5, @blackwhite)
color["multiple"] = shade (1.4, mix (0.1, "#369", { 0, 1.0, 0 }))

Pango Text Markup Language
The Pango Text Markup Language allows you to change the styles of text with XML tags in some
widgets, such as GtkLabel.

The tag can be used with many attributes to define the styles of text. For example,
Text sets the text between the tags with the specified
font. Table C-2 gives a list of supported attributes for the tag.

Table C-2. Span Tag Attributes

Attribute Description

background A value that describes the background color. Possible values include the
hexadecimal RGB value in the form #RRGGBB or a supported color name
like blue.

face A font family name such as Sans or Monospace. This tag is the same thing
as font_family.

Continued

7931.book Page 567 Wednesday, March 14, 2007 8:28 PM

568 A P P E N D I X C ■ G T K + S T Y L E S

Table C-2. Continued

Attribute Description

fallback When enabled, which is the default, the system will try to find the font
that most closely matches the specified font. You should not turn this
off, but if it is necessary, you should use a value of false.

font_desc A font description string that would be supported by PangoFontDescription
such as “Sans Bold 12”.

font_family A font family name such as Sans or Monospace. This tag is the same thing
as face.

foreground A value that describes the foreground color. Possible values include the
hexadecimal RGB value in the form #RRGGBB or a supported color name
like blue.

lang A language code that states what language the text string is in.

rise This value allows you to create superscripts and subscripts by specify-
ing a vertical displacement, in 10,000ths of an em unit. Negative values
create a subscript, and positive values create a superscript.

size The size of the font, in 1,024ths of a point. You can also use xx-small,
x-small, small, medium, large, x-large, xx-large, larger, or smaller.
Absolute sizes are usually easier to specify by using font_desc.

stretch How much the text will be stretched. Possible values include
ultracondensed, extracondensed, condensed, semicondensed, normal,
semiexpanded, expanded, extraexpanded, and ultraexpanded.

strikethrough You should specify true to place a single line through the text or false to
turn it off.

strikethrough_color A value that describes the strikethrough line color. Possible values
include the hexadecimal RGB value in the form #RRGGBB or a supported
color name like blue.

style The italicized style of the text. Possible values include normal, oblique,
and italic.

underline A value describing how the text will be underlined. Possible values
include single, double, low, and none.

underline_color A value that describes the underline color. Possible values include the
hexadecimal RGB value in the form #RRGGBB or a supported color name
like blue.

variant A value of normal or smallcaps, which allows text to be rendered as all
capital letters.

weight The weight of the text. Possible values include ultralight, light, normal,
bold, ultrabold, heavy, and a numeric weight value.

7931.book Page 568 Wednesday, March 14, 2007 8:28 PM

A P P E N D I X C ■ G T K + S T Y L E S 569

The Pango Text Markup Language also provides a number of convenience tags. These tags
can be used in place of various attributes. As with the tag, you must always pro-
vide a closing tag (e.g.,).

• : Make the font bold, which is equivalent to .

• <big>: Make the font larger than the current font, which is equivalent to <span
size="larger">.

• <i>: Equivalent to , which makes the font italic.

• <s>: Strike through the text, which is equivalent to .

• <sub>: Make the text string subscript. This uses the default value for subscript text.

• <sup>: Make the text string superscript. This uses the default value for superscript text.

• <small>: Make the font larger than the current font, which is equivalent to <span
size="smaller">.

• <tt>: Make the font a monospace font. This can be used for code segments or other
strings that require monospaced characters.

• <u>: Underline the text, which is equivalent to .

GtkTextTag Styles
Text tags allow you to define styles for specific sections of a GtkTextBuffer. Table C-3 is a com-
plete list of styles supported by GtkTextTag along with a description of what type of values each
style supports.

Table C-3. GtkTextTag Style Properties

Property Type Description

background gchararray The background color as a hexadecimal
string. Strings should be specified in the
following format: #RRGGBB.

background-full-height gboolean Indicates whether the background color
fills the entire line height or only the
height of each individual character.

background-gdk GdkColor The background color.

Continued

7931.book Page 569 Wednesday, March 14, 2007 8:28 PM

570 A P P E N D I X C ■ G T K + S T Y L E S

Table C-3. Continued

Property Type Description

background-stipple GdkPixmap A bitmap to draw as the background of
the widget.

direction GtkTextDirection The default text direction, set as GTK_
TEXT_DIR_NONE, GTK_TEXT_DIR_LTR, or
GTK_TEXT_DIR_RTL.

editable gboolean Indicates whether the text can be modified.

family gchararray The formal name of the font family such
as Sans or Monospace.

font gchararray A string describing the full font in the
form accepted by PangoFontDescription.

font-desc PangoFontDescription A font to apply to the widget. You can also
use font to specify the actual font string.

foreground gchararray The foreground color as a hexadecimal
string. Strings should be specified in the
following format: #RRGGBB.

foreground-gdk GdkColor The foreground color.

foreground-stipple GdkPixmap A bitmap to use as a foreground mask.

indent gint Integer that sets the number of pixels to
indent the paragraph.

invisible gboolean Indicates whether the text is hidden.

justification GtkJustification The type of justification, set as GTK_JUSTIFY_
LEFT, GTK_JUSTIFY_RIGHT, or GTK_JUSTIFY_
CENTER.

language gchararray The ISO code of the default language. Use
NULL to remove a previous setting.

left-margin gint The width of the left margin in pixels.

name gchararray A string that can be used as the name of
the text tag. Use NULL to remove a previ-
ous setting.

paragraph-background gchararray Paragraph background color as a hexa-
decimal string. Strings should be
specified in the following format: #RRGGBB.

paragraph-background-gdk GdkColor The paragraph’s background color.

pixels-above-lines gint The number of pixels of space to add
above paragraphs.

pixels-below-lines gint The number of pixels of space to add
below paragraphs.

7931.book Page 570 Wednesday, March 14, 2007 8:28 PM

A P P E N D I X C ■ G T K + S T Y L E S 571

pixels-inside-wrap gint The number of pixels of space to add
between wrapped lines.

right-margin gint The width of the right margin in pixels.

rise gint The offset of text above the bottom of
the line.

scale gdouble The font size as a Pango scale value,
set as PANGO_SCALE_XX_SMALL,
PANGO_SCALE_X_SMALL, PANGO_SCALE_SMALL,
PANGO_SCALE_MEDIUM, PANGO_SCALE_LARGE,
PANGO_SCALE_X_LARGE or
PANGO_SCALE_XX_LARGE.

size gint The font size in Pango units.

size-points gdouble The font size in points.

stretch PangoStretch A value defining how much the text
will be stretched, set as
PANGO_STRETCH_ULTRA_CONDENSED,
PANGO_STRETCH_EXTRA_CONDENSED,
PANGO_STRETCH_CONDENSED,
PANGO_STRETCH_SEMI_CONDENSED,
PANGO_STRETCH_NORMAL,
PANGO_STRETCH_SEMI_EXPANDED,
PANGO_STRETCH_EXPANDED,
PANGO_STRETCH_EXTRA_EXPANDED, or
PANGO_STRETCH_ULTRA_EXPANDED.

strikethrough gboolean Indicates whether a line should be placed
through the text.

style PangoStyle A font style value, set as
PANGO_STYLE_NORMAL,
PANGO_STYLE_OBLIQUE, or
PANGO_STYLE_ITALIC.

tabs PangoTabArray A custom tab array to use for all tab char-
acters within the tag’s range.

underline PangoUnderline An underline style, set as
PANGO_UNDERLINE_NONE,
PANGO_UNDERLINE_SINGLE,
PANGO_UNDERLINE_DOUBLE,
PANGO_UNDERLINE_LOW, or
PANGO_UNDERLINE_ERROR.

variant PangoVariant All of the text should be rendered as all cap-
ital letters (PANGO_VARIANT_SMALL_CAPS) or
normally (PANGO_VARIANT_NORMAL).

Continued

Property Type Description

7931.book Page 571 Wednesday, March 14, 2007 8:28 PM

572 A P P E N D I X C ■ G T K + S T Y L E S

Table C-3. Continued

Widget Style Properties
Many widgets have style properties that can be altered with RC files. Tables C-4 through C-32
give a complete listing of the style properties provided by those widgets that can be customized
using this method.

Table C-4. GtkArrow Style Properties

Table C-5. GtkAssistant Style Properties

Property Type Description

weight gint Font weight, set as
PANGO_WEIGHT_ULTRALIGHT,
PANGO_WEIGHT_LIGHT,
PANGO_WEIGHT_NORMAL,
PANGO_WEIGHT_SEMIBOLD,
PANGO_WEIGHT_BOLD,
PANGO_WEIGHT_ULTRABOLD, or
PANGO_WEIGHT_HEAVY.

wrap-mode GtkWrapMode The wrap mode, set as GTK_WRAP_NONE,
GTK_WRAP_CHAR, GTK_WRAP_WORD, or
GTK_WRAP_WORD_CHAR.

Property Type Description

arrow-scaling gfloat A number between 0.0 and 1.0 used for
scaling the arrow size, where the default
is 0.7

Property Type Description

content-padding gint The number of pixels of padding that are
added around the content of each page

header-padding gint The number of pixels of padding that are
added around the header of each page

7931.book Page 572 Wednesday, March 14, 2007 8:28 PM

A P P E N D I X C ■ G T K + S T Y L E S 573

Table C-6. GtkButton Style Properties

Table C-7. GtkButtonBox Style Properties

Table C-8. GtkCheckButton Style Properties

Property Type Description

child-displacement-x gint Horizontal displacement of the button’s
child widget that will occur when the but-
ton is pressed.

child-displacement-y gint Vertical displacement of the button’s child
widget that will occur when the button is
pressed.

default-border GtkBorder Extra border to add along the button when
it is capable of becoming the default widget.

default-outside-border GtkBorder Extra border to add along the outside of
the button when it is capable of becom-
ing the default widget.

displace-focus gboolean If set to TRUE, the child displacement style
properties will be used.

image-spacing gint The number of pixels of spacing that are
added between the image and text con-
tained by the button.

inner-border GtkBorder The border to place along the edges of the
button and its child widget.

Property Type Description

child-internal-pad-x gint Padding that is placed on either side of
each child widget

child-internal-pad-y gint Padding that is placed above and below
each child widget

child-min-height gint The minimum height of each button
within the container

child-min-width gint The minimum width of each button
within the container

Property Type Description

indicator-size gint The size of the check or radio button
in pixels

indicator-spacing gint Padding to add around the check button
indicator

7931.book Page 573 Wednesday, March 14, 2007 8:28 PM

574 A P P E N D I X C ■ G T K + S T Y L E S

Table C-9. GtkCheckMenuItem Style Properties

Table C-10. GtkComboBox Style Properties

Table C-11. GtkDialog Style Properties

Table C-12. GtkEntry Style Properties

Table C-13. GtkExpander Style Properties

Property Type Description

indicator-size gint The size of the check button indicator
in pixels

Property Type Description

appears-as-list gboolean If set to TRUE, the drop-down window that
is shown when the widget is activated will
appear like a list instead of a menu.

arrow-size gint The size, in pixels, of the arrow displayed
by the combo box. This is the minimum
value and will be enlarged if the font size
is set larger.

Property Type Description

action-area-border gint The number of pixels of padding to place
around the action area, which is found
along the bottom of the dialog

button-spacing gint Spacing to add between buttons in the
dialog’s action area

content-area-border gint The number of pixels of padding to place
around the dialog’s main content

Property Type Description

inner-border GtkBorder The number of pixels of padding to place
between the GtkEntry widget’s text and
its edges

Property Type Description

expander-size gint The size of the expander’s arrow in pixels

expander-spacing gint Padding to place around the expander’s
arrow in pixels

7931.book Page 574 Wednesday, March 14, 2007 8:28 PM

A P P E N D I X C ■ G T K + S T Y L E S 575

Table C-14. GtkIconView Style Properties

Table C-15. GtkMenu Style Properties

Table C-16. GtkMenuBar Style Properties

Table C-17. GtkMenuItem Style Properties

Property Type Description

selection-box-alpha guchar The alpha value of the selection box,
which is set to 64 by default

selection-box-color GdkColor The color displayed by the selection box

Property Type Description

double-arrow gboolean If set to TRUE, both arrows will be dis-
played when scrolling through a menu.

horizontal-offset gint The horizontal offset, in pixels, of a sub-
menu from its original position. This
value can be either positive or negative!
In fact, the default value is -2.

horizontal-padding gint The number of pixels of padding to add
along the left and right sides of the menu.

vertical-offset gint The horizontal offset, in pixels, of a sub-
menu from its original position. This
value can be either positive or negative!

vertical-padding gint The number of pixels of padding to add
along the top and bottom edges of the
menu.

Property Type Description

internal-padding gint Padding to place between the menu items
and the edge of the menu bar

shadow-type GtkShadowType The type of shadow to place around the
edges of the menu bar

Property Type Description

arrow-spacing gint Padding that is added between the menu
item’s label and its arrow when the item
contains a submenu

horizontal-padding gint The number of pixels of padding placed
on either side of the menu item

Continued

7931.book Page 575 Wednesday, March 14, 2007 8:28 PM

576 A P P E N D I X C ■ G T K + S T Y L E S

Table C-17. Continued

Table C-18. GtkMessageDialog Style Properties

Table C-19. GtkNotebook Style Properties

Table C-20. GtkPaned Style Properties

Property Type Description

selected-shadow-type GtkShadowType The type of shadow to place around the
edges of the menu item

toggle-spacing gint The number of pixels of padding placed
between the icon and text of a menu item

Property Type Description

message-border gint Padding to add around both the image
and label in the message dialog.

use-separator gboolean If set to TRUE, a separator will be drawn
between the content of the message dia-
log and its buttons.

Property Type Description

arrow-spacing gint Padding to place between the scrolling
arrows and the GtkNotebook widget’s tabs.

has-backward-stepper gboolean If set to TRUE, the backward scroll arrow
will be displayed.

has-forward-stepper gboolean If set to TRUE, the forward scroll arrow will
be displayed.

has-secondary-backward-
stepper

gboolean If set to TRUE, a second backward scroll
arrow will be placed on the other side of
the tabs.

has-secondary-forward-
stepper

gboolean If set to TRUE, a second forward scroll arrow
will be placed on the other side of the tabs.

tab-curvature gint The size difference between the selected
tab and the deselected tabs.

tab-overlap gint The number of pixels by which adjacent
tabs will overlap.

Property Type Description

handle-size gint The width or height of the separator placed
between the two panes

7931.book Page 576 Wednesday, March 14, 2007 8:28 PM

A P P E N D I X C ■ G T K + S T Y L E S 577

Table C-21. GtkProgressBar Style Properties

Table C-22. GtkRange Style Properties

Table C-23. GtkScale Style Properties

Property Type Description

xspacing gint Horizontal spacing to add to the width of
the widget

yspacing gint Vertical spacing to add to the height of
the widget

Property Type Description

activate-slider gboolean If set to TRUE, the slider will be drawn as
active when it is dragged, which will cause
the shadow to be drawn inwards.

arrow-displacement-x gint When the horizontal arrow is pressed, the
range will move this far in the direction
that the arrow points.

arrow-displacement-y gint When the vertical arrow is pressed, the
range will move this far in the direction
that the arrow points.

slider-width gint The width or height of the actual scroll-
bar or the scale area, depending on the
orientation of the widget.

stepper-size gint The size of the stepper buttons, depend-
ing on the type of range widget.

stepper-spacing gint The amount of padding to add between
the stepper buttons and the thumb. If this
is set to a positive number, it will cause
trough-under-steppers to be set.

trough-border gint Padding added between the steppers and
the outer trough.

trough-side-details gboolean If set to TRUE, details will be placed on the
side of the stepper.

trough-upper-steppers gboolean If set to TRUE, the trough will be drawn
along the whole range.

Property Type Description

slider-length gint The length of the GtkScale’s slider in pixels

value-spacing gint Padding to place between the scale’s
value and trough, if it is displayed

7931.book Page 577 Wednesday, March 14, 2007 8:28 PM

578 A P P E N D I X C ■ G T K + S T Y L E S

Table C-24. GtkScrollbar Style Properties

Table C-25. GtkScrolledWindow Style Properties

Table C-26. GtkSpinButton Style Properties

Table C-27. GtkStatusbar Style Properties

Property Type Description

fixed-slider-length gboolean If set to TRUE, the slider will be forced to
remain the minimum length, regardless
of the size of the range.

has-backward-stepper gboolean If set to TRUE, the backward arrow will be
displayed.

has-forward-stepper gboolean If set to TRUE, the forward arrow will be
displayed.

has-secondary-backward-
stepper

gboolean If set to TRUE, a second backward arrow
will be placed on the other side of the
scrollbar.

has-secondary-forward-
stepper

gboolean If set to TRUE, a second forward arrow will
be placed on the other side of the
scrollbar.

min-slider-length gint The minimum length of the slider. This
will be the constant size of the scroller if
fixed-slider-length is set to TRUE.

Property Type Description

scrollbar-spacing gint The number of pixels of padding to place
between the scrollbars and the content of
the scrolled window

Property Type Description

shadow-type GtkShadowType The type of shadow to draw around the
spin button. By default, the shadow type
is GTK_SHADOW_IN.

Property Type Description

shadow-type GtkShadowType The type of shadow to draw around the
status bar’s content. By default, the shadow
type is GTK_SHADOW_IN.

7931.book Page 578 Wednesday, March 14, 2007 8:28 PM

A P P E N D I X C ■ G T K + S T Y L E S 579

Table C-28. GtkTextView Style Properties

Table C-29. GtkToolbar Style Properties

Table C-30. GtkToolButton Style Properties

Table C-31. GtkTreeView Style Properties

Property Type Description

error-underline-color GdkColor The color that will be used to draw under-
lines below text marked with errors.

Property Type Description

button-relief GtkReliefStyle The type of border to place around tool-
bar buttons.

internal-padding gint The number of pixels of padding to place
between the toolbar’s border and the tool
buttons.

max-child-expand gint The maximum width or height that each
tool item can resize to.

shadow-type GtkShadowType The type of shadow to draw around the
toolbar. By default, the shadow type is
GTK_SHADOW_OUT.

space-size gint The width or height of spacers found on
the toolbar.

space-style GtkToolbarSpaceStyle The type of spacer that will be displayed
by the toolbar. This can be set to GTK_
TOOLBAR_SPACE_EMPTY or GTK_TOOLBAR_
SPACE_LINE, which will display empty
padding or a line respectively.

Property Type Description

icon-spacing gint The number of pixels of padding to place
between the icon and label of the tool
button

Property Type Description

allow-rules gboolean If set to TRUE, rows can be drawn in alter-
nating colors. Note that this does not
enable this feature, it simply allows it to
be done!

even-row-color GdkColor The background color of even-numbered
rows when alternating rows are drawn
with different colors.

Continued

7931.book Page 579 Wednesday, March 14, 2007 8:28 PM

580 A P P E N D I X C ■ G T K + S T Y L E S

Table C-31. Continued

Table C-32. GtkWidget Style Properties

Property Type Description

expander-size gint The size of the row expander, in pixels,
where the default value is 12.

grid-line-pattern gchararray The pattern to use for grid lines drawn in
the tree view.

grid-line-width gint The width of grid lines drawn in the
tree view.

horizontal-separator gint Horizontal spacing to place between cells,
which must be a positive, even integer.

indent-expanders gboolean If set to TRUE, expanders will be indented
when the row content is expanded.

odd-row-color GdkColor The background color of odd-numbered
rows when alternating rows are drawn
with different colors.

row-ending-details gboolean If set to TRUE, row background theming
will be enabled.

tree-line-pattern gchararray A string that describes the pattern used
for drawing tree view lines.

tree-line-width gint The width of tree view lines, in pixels.

vertical-separator gint Vertical spacing to place between cells,
which must be a positive, even integer.

Property Type Description

cursor-aspect-ratio gfloat The aspect ratio to draw the insertion cur-
sor, between 0.0 and 1.0, where the default
value is 0.04.

cursor-color GdkColor The color that will be used to draw the
insertion cursor.

draw-border GtkBorder The amount of border that will be placed
beyond the widget’s initial allocation.

focus-line-pattern gchararray A string that describes the pattern that is
drawn around the widget when it has focus.

focus-line-width gint The width of the line that is drawn when
the widget has focus.

focus-padding gint The number of pixels of padding to
place between the focus line and the
widget’s edge.

interior-focus gboolean If set to TRUE, the focus line will be drawn
for widgets.

7931.book Page 580 Wednesday, March 14, 2007 8:28 PM

A P P E N D I X C ■ G T K + S T Y L E S 581

link-color GdkColor The color that will be used to draw unvis-
ited links.

scroll-arrow-hlength gint The length of horizontal scroll arrows in
widgets that have them.

scroll-arrow-vlength gint The length of vertical scroll arrows in wid-
gets that have them.

secondary-cursor-color GdkColor The color that will be used to draw the
secondary insertion cursor. This cursor
is displayed when you are editing both
left-to-right and right-to-left text at the
same time.

separator-height gint The height of many types of separators dis-
played in different widgets. This property
will only work if wide-separators is set.

separator-width gint The width of many types of separators dis-
played in different widgets. This property
will only work if wide-separators is set.

visited-link-color GdkColor The color that will be used to draw vis-
ited links.

wide-separators gboolean If set to TRUE, separator width and height
properties can be set with separator-
width and separator-height. They will be
drawn as boxes instead of lines in this
case.

Property Type Description

7931.book Page 581 Wednesday, March 14, 2007 8:28 PM

7931.book Page 582 Wednesday, March 14, 2007 8:28 PM

583

■ ■ ■

A P P E N D I X D

GTK+ Stock Items

Stock items are commonly used items that provide an image and some accompanying text.
They are used for items in menus, toolbars, and buttons as well as in a few other places. A stock
string identifies each stock item, but preprocessor macros are provided for convenience.

Stock items may have right-to-left variants, which are used for locales that prefer them.
These include GTK_STOCK_GOTO_FIRST, GTK_STOCK_GOTO_LAST, GTK_STOCK_GO_BACK, GTK_STOCK_GO_
FORWARD, GTK_STOCK_INDENT, GTK_STOCK_JUMP_TO, GTK_STOCK_MEDIA_FORWARD, GTK_STOCK_MEDIA_
NEXT, GTK_STOCK_MEDIA_PLAY, GTK_STOCK_MEDIA_PREVIOUS, GTK_STOCK_REWIND, GTK_STOCK_REDO,
GTK_STOCK_REVERT_TO_SAVED, GTK_STOCK_UNDELETE, GTK_STOCK_UNDO, and GTK_STOCK_UNINDENT.

It is also possible for you to register your own stock items in applications. Table D-1 lists
the 98 items available as of GTK+ 2.10. Some of the items have been introduced since the
release of GTK+ 2.0; the introduction date of each item has been specified.

Table D-1. GTK+ Stock Items

Stock ID Display Introduced

GTK_STOCK_ABOUT About GTK+ 2.6

GTK_STOCK_ADD Add GTK+ 2.0

GTK_STOCK_APPLY Apply GTK+ 2.0

GTK_STOCK_BOLD Bold GTK+ 2.0

GTK_STOCK_CANCEL Cancel GTK+ 2.0

GTK_STOCK_CDROM CD-Rom GTK+ 2.0

GTK_STOCK_CLEAR Clear GTK+ 2.0

GTK_STOCK_CLOSE Close GTK+ 2.0

GTK_STOCK_COLOR_PICKER Color picker GTK+ 2.2

GTK_STOCK_CONNECT Connect GTK+ 2.6

GTK_STOCK_CONVERT Convert GTK+ 2.0

GTK_STOCK_COPY Copy GTK+ 2.0

GTK_STOCK_CUT Cut GTK+ 2.0

GTK_STOCK_DELETE Delete GTK+ 2.0

Continued

7931.book Page 583 Wednesday, March 14, 2007 8:28 PM

584 A P P E N D I X D ■ G T K + S T O C K I T E M S

Table D-1. Continued

Stock ID Display Introduced

GTK_STOCK_DIALOG_AUTHENTICATION Authentication GTK+ 2.4

GTK_STOCK_DIALOG_ERROR Error GTK+ 2.0

GTK_STOCK_DIALOG_INFO Information GTK+ 2.0

GTK_STOCK_DIALOG_QUESTION Question GTK+ 2.0

GTK_STOCK_DIALOG_WARNING Warning GTK+ 2.0

GTK_STOCK_DIRECTORY Directory GTK+ 2.6

GTK_STOCK_DISCONNECT Disconnect GTK+ 2.6

GTK_STOCK_DND Drag-And-Drop GTK+ 2.0

GTK_STOCK_DND_MULTIPLE Drag-And-Drop multiple GTK+ 2.0

GTK_STOCK_EDIT Edit GTK+ 2.6

GTK_STOCK_EXECUTE Execute GTK+ 2.0

GTK_STOCK_FILE File GTK+ 2.6

GTK_STOCK_FIND Find GTK+ 2.0

GTK_STOCK_FIND_AND_REPLACE Find and Replace GTK+ 2.0

GTK_STOCK_FLOPPY Floppy GTK+ 2.0

GTK_STOCK_FULLSCREEN Fullscreen GTK+ 2.8

GTK_STOCK_GO_BACK Back GTK+ 2.0

GTK_STOCK_GO_DOWN Down GTK+ 2.0

GTK_STOCK_GO_FORWARD Forward GTK+ 2.0

GTK_STOCK_GO_UP Up GTK+ 2.0

GTK_STOCK_GOTO_BOTTOM Bottom GTK+ 2.0

GTK_STOCK_GOTO_FIRST First GTK+ 2.0

GTK_STOCK_GOTO_LAST Last GTK+ 2.0

GTK_STOCK_GOTO_TOP Top GTK+ 2.0

GTK_STOCK_HARDDISK Harddisk GTK+ 2.4

GTK_STOCK_HELP Help GTK+ 2.0

GTK_STOCK_HOME Home GTK+ 2.0

GTK_STOCK_INDENT Increase Indent GTK+ 2.4

GTK_STOCK_INDEX Index GTK+ 2.0

GTK_STOCK_INFO Information GTK+ 2.8

GTK_STOCK_ITALIC Italic GTK+ 2.0

GTK_STOCK_JUMP_TO Jump to GTK+ 2.0

7931.book Page 584 Wednesday, March 14, 2007 8:28 PM

A P P E N D I X D ■ G T K + S T O C K I T E M S 585

GTK_STOCK_JUSTIFY_CENTER Center GTK+ 2.0

GTK_STOCK_JUSTIFY_FILL Fill GTK+ 2.0

GTK_STOCK_JUSTIFY_LEFT Left GTK+ 2.0

GTK_STOCK_JUSTIFY_RIGHT Right GTK+ 2.0

GTK_STOCK_LEAVE_FULLSCREEN Leave Fullscreen GTK+ 2.8

GTK_STOCK_MEDIA_FORWARD Forward GTK+ 2.6

GTK_STOCK_MEDIA_NEXT Next GTK+ 2.6

GTK_STOCK_MEDIA_PAUSE Pause GTK+ 2.6

GTK_STOCK_MEDIA_PLAY Play GTK+ 2.6

GTK_STOCK_MEDIA_PREVIOUS Previous GTK+ 2.6

GTK_STOCK_MEDIA_RECORD Record GTK+ 2.6

GTK_STOCK_MEDIA_REWIND Rewind GTK+ 2.6

GTK_STOCK_MEDIA_STOP Stop GTK+ 2.6

GTK_STOCK_MISSING_IMAGE Missing Image GTK+ 2.0

GTK_STOCK_NETWORK Network GTK+ 2.4

GTK_STOCK_NEW New GTK+ 2.0

GTK_STOCK_NO No GTK+ 2.0

GTK_STOCK_OK OK GTK+ 2.0

GTK_STOCK_OPEN Open GTK+ 2.0

GTK_STOCK_ORIENTATION_LANDSCAPE Landscape GTK+ 2.10

GTK_STOCK_ORIENTATION_PORTRAIT Portrait GTK+ 2.10

GTK_STOCK_ORIENTATION_REVERSE_LANDSCAPE Reverse Landscape GTK+ 2.10

GTK_STOCK_ORIENTATION_REVERSE_PORTRAIT Reverse Portrait GTK+ 2.10

GTK_STOCK_PASTE Paste GTK+ 2.0

GTK_STOCK_PREFERENCES Preferences GTK+ 2.0

GTK_STOCK_PRINT Print GTK+ 2.0

GTK_STOCK_PRINT_PREVIEW Print Preview GTK+ 2.0

GTK_STOCK_PROPERTIES Properties GTK+ 2.0

GTK_STOCK_QUIT Quit GTK+ 2.0

GTK_STOCK_REDO Redo GTK+ 2.0

GTK_STOCK_REFRESH Refresh GTK+ 2.0

GTK_STOCK_REMOVE Remove GTK+ 2.0

Continued

Stock ID Display Introduced

7931.book Page 585 Wednesday, March 14, 2007 8:28 PM

586 A P P E N D I X D ■ G T K + S T O C K I T E M S

Table D-1. Continued

Stock ID Display Introduced

GTK_STOCK_REVERT_TO_SAVED Revert GTK+ 2.0

GTK_STOCK_SAVE Save GTK+ 2.0

GTK_STOCK_SAVE_AS Save As GTK+ 2.0

GTK_STOCK_SELECT_ALL Select All GTK+ 2.10

GTK_STOCK_SELECT_COLOR Color GTK+ 2.0

GTK_STOCK_SELECT_FONT Font GTK+ 2.0

GTK_STOCK_SORT_ASCENDING Ascending GTK+ 2.0

GTK_STOCK_SORT_DESCENDING Descending GTK+ 2.0

GTK_STOCK_SPELL_CHECK Spell Check GTK+ 2.0

GTK_STOCK_STOP Stop GTK+ 2.0

GTK_STOCK_STRIKETHROUGH Strikethrough GTK+ 2.0

GTK_STOCK_UNDELETE Undelete GTK+ 2.0

GTK_STOCK_UNDERLINE Underline GTK+ 2.0

GTK_STOCK_UNDO Undo GTK+ 2.0

GTK_STOCK_UNINDENT Decrease Indent GTK+ 2.4

GTK_STOCK_YES Yes GTK+ 2.0

GTK_STOCK_ZOOM_100 Normal Size GTK+ 2.0

GTK_STOCK_ZOOM_FIT Best Fit GTK+ 2.0

GTK_STOCK_ZOOM_IN Zoom In GTK+ 2.0

GTK_STOCK_ZOOM_OUT Zoom Out GTK+ 2.0

7931.book Page 586 Wednesday, March 14, 2007 8:28 PM

587

■ ■ ■

A P P E N D I X E

GError Types

GLib provides a standard method for error propagation called GError. In this appendix, you
will find a complete list of the GError domains, as of GTK+ 2.10, along with the error types that
correspond to each domain.

The GError structure provides three elements: the error domain, a message string, and an
error code.

struct GError
{
 GQuark domain;
 gchar *message;
 gint code;
};

Each error domain represents a group of similar error types. Example error domains
include G_BOOKMARK_FILE_ERROR, GDK_PIXBUF_ERROR, and G_FILE_ERROR. They are always named
as <NAMESPACE>_<MODULE>_ERROR, where the namespace is the library containing the function,
and the module is the widget or object type.

The message is a human-readable string that describes the error. If the user would expect
visual feedback for the type of error that occurred, you should output message. It is also very
useful when debugging your code.

The error code is specific to the error that occurred under the domain. Each error code
consists of the domain name with the error type appended to it. For example, the error type
G_BOOKMARK_FILE_ERROR_INVALID_URI falls under the G_BOOKMARK_FILE_ERROR domain.

Most error code domains also include <NAMESPACE>_<MODULE>_ERROR_FAILED, a generic fail
code. This will be returned if a specific error is not available.

Tables E-1 to E-14 provide a complete reference to GError enumerations found throughout
GTK+ and its supporting libraries. Along with each error is a description of what has occurred.

Table E-1. GBookmarkFileError Enumeration Values

Error Value Description

G_BOOKMARK_FILE_ERROR_INVALID_URI The URI provided to the function was not for-
matted correctly.

G_BOOKMARK_FILE_ERROR_INVALID_VALUE The requested field was not found.

Continued

7931.book Page 587 Wednesday, March 14, 2007 8:28 PM

588 A P P E N D I X E ■ G E R R O R T Y P E S

Table E-1. Continued

Table E-2. GdkPixbufError Enumeration Values

Table E-3. GFileError Enumeration Values

Error Value Description

G_BOOKMARK_FILE_ERROR_APP_NOT_REGISTERED The requested application did not register the
bookmark.

G_BOOKMARK_FILE_ERROR_URI_NOT_FOUND The requested URI provided to the function was
not found.

G_BOOKMARK_FILE_ERROR_READ The document was not formatted correctly.

G_BOOKMARK_FILE_ERROR_UNKNOWN_ENCODING An unknown encoding was attributed to the
document being parsed.

G_BOOKMARK_FILE_ERROR_WRITE The bookmark could not be successfully writ-
ten. Some type of write error occurred.

G_BOOKMARK_FILE_ERROR_FILE_NOT_FOUND The requested bookmark file was not found.

Error Value Description

GDK_PIXBUF_ERROR_CORRUPT_IMAGE The image file is broken in some way.

GDK_PIXBUF_ERROR_INSUFFICIENT_MEMORY Not enough memory is available to store
the image.

GDK_PIXBUF_ERROR_BAD_OPTION A bad option was passed. This error can occur
while saving an image.

GDK_PIXBUF_ERROR_UNKNOWN_TYPE The function is unable to detect the image type.

GDK_PIXBUF_ERROR_UNSUPPORTED_OPERATION This function is unable to perform the opera-
tion on the specified image.

GDK_PIXBUF_ERROR_FAILED This is the generic failure code for all other errors.

Error Value Description

G_FILE_ERROR_EXIST The application does not have permissions to
perform the operation.

G_FILE_ERROR_ISDIR The file is a directory, which cannot be opened
for writing.

G_FILE_ERROR_ACCESS File permissions do not allow the current
operation.

G_FILE_ERROR_NAMETOOLONG The specified filename is too long.

G_FILE_ERROR_NOENT The file or directory does not exist.

G_FILE_ERROR_NOTDIR The specified location is not a directory, but the
option requires a directory.

7931.book Page 588 Wednesday, March 14, 2007 8:28 PM

A P P E N D I X E ■ G E R R O R T Y P E S 589

Table E-4. GKeyFileError Enumeration Values

G_FILE_ERROR_NXIO The device on which the file is located cannot
be found.

G_FILE_ERROR_NODEV The file type does not support mapping.

G_FILE_ERROR_ROFS The file system is read-only.

G_FILE_ERROR_TXTBSY The text file is currently busy.

G_FILE_ERROR_FAULT A pointer to a bad memory location was passed.

G_FILE_ERROR_LOOP Circular symbolic links have been detected.

G_FILE_ERROR_NOSPC The disk is full; no space is available.

G_FILE_ERROR_NOMEM No memory is available, and virtual memory
is full.

G_FILE_ERROR_MFILE The current process already has too many
open files.

G_FILE_ERROR_NFILE Too many files are open on the entire system.

G_FILE_ERROR_BADF A reading file descriptor has been specified for
writing or vice versa.

G_FILE_ERROR_INVAL The wrong argument has been passed.

G_FILE_ERROR_PIPE The pipe is broken or has been blocked.

G_FILE_ERROR_AGAIN Resources are broken but may work if you try
again later.

G_FILE_ERROR_INTR The function call has been interrupted.

G_FILE_ERROR_IO A read or write error has occurred on the disk.

G_FILE_ERROR_PERM The operation is not permitted.

G_FILE_ERROR_NOSYS The function has not been implemented for
your operating system.

G_FILE_ERROR_FAILED The operation failed for an unspecified reason.

Error Value Description

G_KEY_FILE_ERROR_UNKNOWN_ENCODING An unknown encoding was attributed to the
document being parsed.

G_KEY_FILE_ERROR_PARSE The document that was being parsed was not
formatted correctly.

G_KEY_FILE_ERROR_NOT_FOUND The file provided to the function was not found.

G_KEY_FILE_ERROR_KEY_NOT_FOUND The key requested by the function was not found.

Continued

Error Value Description

7931.book Page 589 Wednesday, March 14, 2007 8:28 PM

590 A P P E N D I X E ■ G E R R O R T Y P E S

Table E-4. Continued

Table E-5. GMarkupError Enumeration Values

Table E-6. GOptionError Enumeration Values

Error Value Description

G_KEY_FILE_ERROR_GROUP_NOT_FOUND The group requested by the function was
not found.

G_KEY_FILE_ERROR_INVALID_VALUE The value provided to the function could not be
successfully parsed.

Error Value Description

G_MARKUP_ERROR_BAD_UTF8 The text being parsed was not specified in valid
UTF-8 format. You need to change the format-
ting and try again.

G_MARKUP_ERROR_EMPTY The document did not have any content or it
contained only whitespace.

G_MARKUP_ERROR_PARSE The document that was being parsed was not
formatted correctly.

G_MARKUP_ERROR_UNKNOWN_ELEMENT The element specified to the function was
not found. This value should only be set by
GMarkupParser functions.

G_MARKUP_ERROR_UNKNOWN_ATTRIBUTE The attribute specified to the function was
not found. This value should only be set by
GMarkupParser functions.

G_MARKUP_ERROR_INVALID_CONTENT The document caused an error because of a
problem with its contents. This value should
only be set by GMarkupParser functions.

Error Value Description

G_OPTION_ERROR_UNKNOWN_OPTION The parser did not recognize the option pro-
vided to the function. This will only be reported
if you have configured GOptionContext so that is
does not ignore unknown options.

G_OPTION_ERROR_BAD_VALUE A value could not be correctly parsed.

G_OPTION_ERROR_FAILED A callback function of type GOptionArgFunc
failed.

7931.book Page 590 Wednesday, March 14, 2007 8:28 PM

A P P E N D I X E ■ G E R R O R T Y P E S 591

Table E-7. GShellError Enumeration Values

Table E-8. GSpawnError Enumeration Values

Error Value Description

G_SHELL_ERROR_BAD_QUOTING Quoting was not matched correctly, or it was
garbled.

G_SHELL_ERROR_EMPTY_STRING The string to be parsed was completely empty.

G_SHELL_ERROR_FAILED Some other type of GShellError occurred. You
should reference error->message for more
information.

Error Value Description

G_SPAWN_ERROR_FORK The fork failed because there was not enough
memory available.

G_SPAWN_ERROR_READ The pipe could not be selected or read from.

G_SPAWN_ERROR_CHDIR The working directory could not be successfully
changed.

G_SPAWN_ERROR_ACCES Search permission was denied for the path
prefix, the new file was not an ordinary file,
execute permissions were denied, or the file
was mounted on a file system with execution
disabled (execv() failed with EACCES).

G_SPAWN_ERROR_PERM The operation was not permitted because the
process did not have the correct permissions
(execv() failed with EPERM).

G_SPAWN_ERROR_2BIG The process’s argument list was too long
according to the limits set by the system
(execv() failed with E2BIG).

G_SPAWN_ERROR_NOEXEC The file does not have permissions to be exe-
cuted (execv() failed with ENOEXEC).

G_SPAWN_ERROR_NAMETOOLONG The length of a component of the path or of the
whole path exceeded the maximum (execv()
failed with ENAMETOOLONG).

G_SPAWN_ERROR_NOENT The process file did not exist (execv() failed
with ENOENT).

G_SPAWN_ERROR_NOMEM There is a maximum virtual memory allocation
for processes, and more memory was required
than the maximum (execv() failed with ENOMEM).

Continued

7931.book Page 591 Wednesday, March 14, 2007 8:28 PM

592 A P P E N D I X E ■ G E R R O R T Y P E S

Table E-8. Continued

Table E-9. GThreadError Enumeration Values

Table E-10. GtkFileChooserError Enumeration Values

Error Value Description

G_SPAWN_ERROR_NOTDIR The path prefix did not point to a valid direc-
tory (execv() failed with ENOTDIR).

G_SPAWN_ERROR_LOOP The function detected too many symbolic links
to the path (execv() failed with ELOOP).

G_SPAWN_ERROR_TXTBUSY The process cannot be opened because it was
already opened by another process (execv()
failed with ETXTBUSY).

G_SPAWN_ERROR_IO An input or output error occurred while read-
ing (execv() failed with EIO).

G_SPAWN_ERROR_NFILE The maximum number of open files supported
by the system was reached (execv() failed with
ENFILE).

G_SPAWN_ERROR_MFILE The maximum number of open files for one
process supported by the system was reached
(execv() failed with EMFILE).

G_SPAWN_ERROR_INVAL A parameter passed to the function was not for-
matted correctly (execv() failed with EINVAL).

G_SPAWN_ERROR_ISDIR The file was found to be a directory, and you
were trying to perform a nonsupported opera-
tion on it (execv() failed with EISDIR).

G_SPAWN_ERROR_LIBBAD The shared library you tried to access was cor-
rupted (execv() failed with ELIBBAD).

G_SPAWN_ERROR_FAILED Some other fatal error occurred. You should ref-
erence error->message for more information.

Error Value Description

G_THREAD_ERROR_AGAIN There were not enough resources available to
create the thread. In this case, you should try
again at a later time.

Error Value Description

GTK_FILE_CHOOSER_ERROR_NONEXISTENT A file specified to GtkFileChooser does not exist.

GTK_FILE_CHOOSER_ERROR_BAD_FILENAME The filename specified to the function was not
formatted correctly.

GTK_FILE_CHOOSER_ERROR_ALREADY_EXISTS The filename specified to the function already
exists.

7931.book Page 592 Wednesday, March 14, 2007 8:28 PM

A P P E N D I X E ■ G E R R O R T Y P E S 593

Table E-11. GtkIconThemeError Enumeration Values

Table E-12. GtkPrintError Enumeration Values

Table E-13. GtkRecentChooserError Enumeration Values

Table E-14. GtkRecentManagerError Enumeration Values

Error Value Description

GTK_ICON_THEME_NOT_FOUND The icon specified as a parameter to the func-
tion does not exist within GtkIconTheme.

GTK_ICON_THEME_FAILED Some other type of GtkIconTheme error
occurred. You should use error->message for
more information.

Error Value Description

GTK_PRINT_ERROR_GENERAL A general printing error occurred. You should
use error->message for more information.

GTK_PRINT_ERROR_INTERNAL_ERROR An error occurred internally in the printing sys-
tem. This signifies a problem on the user’s system.

GTK_PRINT_ERROR_NOMEM Not enough memory was found to continue the
printing operation.

Error Value Description

GTK_RECENT_CHOOSER_ERROR_NOT_FOUND The file specified to the function does not exist.

GTK_RECENT_CHOOSER_ERROR_INVALID_URI The URI specified to the function was not for-
matted correctly.

Error Value Description

GTK_RECENT_MANAGER_ERROR_NOT_FOUND The URI specified to the function did not exist
within the list.

GTK_RECENT_MANAGER_ERROR_INVALID_URI The URI specified to the function was not for-
matted correctly.

GTK_RECENT_MANAGER_ERROR_INVALID_ENCODING The specified string was not provided in UTF-8
encoding.

GTK_RECENT_MANAGER_ERROR_NOT_REGISTERED The item specified to the function was not reg-
istered by any application.

GTK_RECENT_MANAGER_ERROR_READ Reading the recently used resources file failed.

GTK_RECENT_MANAGER_ERROR_WRITE Writing the recently used resources file failed.

GTK_RECENT_MANAGER_ERROR_UNKNOWN Some other type of error occurred. You should
use error->message for more information.

7931.book Page 593 Wednesday, March 14, 2007 8:28 PM

7931.book Page 594 Wednesday, March 14, 2007 8:28 PM

595

■ ■ ■

A P P E N D I X F

Exercise Solutions and Hints

This last appendix will walk you through the solutions for each of the exercises found in this
book, although the full code for the solutions can be downloaded at www.gtkbook.com. If you get
stuck, this appendix will give you the tools to solve the exercises before you look at the code.
You can then reference the downloadable solutions to see how I implemented each of the exer-
cise applications.

■Note As the exercises become more complex, the solutions may differ greatly from your implementa-
tions. Even if your application works successfully, you should check out the downloadable solutions for
comparison.

Exercise 2-1. Using Events and Properties
The solution for this exercise should appear very similar to the exercises found throughout
Chapter 2. To begin, your application should include the following four basic steps that are
required by every GTK+ application:

1. Initialize GTK+ with gtk_init().

2. Create your top-level GtkWindow widget.

3. Show the GtkWindow widget to the user.

4. Move into the main loop with gtk_main().

In addition to these basic steps, you must also add a GtkLabel widget to the top-level win-
dow. This label widget can be set as selectable with gtk_label_set_selectable(). Next, you
should connect the GtkWindow widget to the key-press-event signal, which will be called every
time the user presses a key when the window has focus.

■Note The key-press-event will not work if it is connected to the GtkLabel widget! You will learn in
Chapter 3 that the label widget cannot receive GDK events, since it does not have its own GdkWindow.

7931.book Page 595 Wednesday, March 14, 2007 8:25 PM

596 A P P E N D I X F ■ E X E R C I S E S O L U T I O N S A N D H I N T S

In the key-press-event callback function, you can use g_ascii_strcasecmp() to determine
whether the label is currently displaying the first or last name. The window and label text
should be switched accordingly. You should then return FALSE so that the application will
continue to handle the key-press-event.

The last step in creating this first application is to connect the top-level window to the
destroy signal. Calling gtk_main_quit() from within the destroy signal’s callback function will
quit the application. You do not need to use the delete-event signal, since you want to destroy
the window on all delete-event emissions.

Exercise 2-2. GObject Property System
This exercise is very similar to Exercise 2-1, except you need to use the functions provided
by the GObject library for changing properties. For example, in the main() function, the title,
width, height, and resizability of the GtkWindow widget should be set with g_object_set().

In addition, within the key-press-event callback function, you should use g_object_get()
and g_object_set() to interact with the title property of the GtkWindow and the label property
of the GtkLabel.

You are also instructed to provide notification when the window’s title property is
changed. Connecting the window to the notify::title signal, which will monitor the value
of the given property, can do this. Then, g_message() will output the new window title to stan-
dard output. You should see the message in the terminal output if you launch your application
from a terminal emulator.

Exercise 3-1. Using Multiple Containers
This exercise helps you gain experience using a variety of container widgets that were covered
in Chapter 3, including GtkNotebook, GtkVBox, and GtkHBox. Let us analyze the content of each
of these containers one at a time.

The GtkNotebook container should contain four tabs. Each tab in a notebook is associated
with a label widget and a child widget. The gtk_notebook_append_page() function can be used
to add new pages to a notebook. Each of these tabs should contain a GtkButton widget that is
connected to the clicked signal. When a button is clicked, the notebook should move to the
next page, wrapping around when the last page is reached. Connecting each clicked signal to
the same callback function can do this.

Within the callback function, which is called next_tab() in the downloadable solution,
you first need to check the page number. If the page number is less than three, you can simply
call gtk_notebook_next_page() to move to the next page. Otherwise, you can use gtk_notebook_
set_page() to set the page number to zero. This same method can be used for moving to the
previous page in the notebook.

The next container is a GtkHBox that holds two buttons. The first button should move to the
previous page in the GtkNotebook container when pressed. As previously stated, you can use
the same method that was used for moving to the next page for moving to the previous page,
although it will have to be reversed. The other button should close the window and exit the
application when clicked. These buttons can be packed with gtk_box_pack_end() so that they
appear against the right side of the horizontal box instead of the left side.

7931.book Page 596 Wednesday, March 14, 2007 8:25 PM

A P P E N D I X F ■ E X E R C I S E S O L U T I O N S A N D H I N T S 597

The last container in the application is a GtkVBox widget that should hold the GtkNotebook
and GtkHBox widgets. This vertical box can be packed into the top-level GtkWindow widget to
complete the application’s user interface.

Exercise 3-2. Even More Containers
This exercise solution is very similar to the previous exercise. The first difference is that the
GtkNotebook tabs should be hidden with gtk_notebook_set_show_tabs(). Then, a GtkExpander
container should be placed between each GtkButton widget and the notebook tab. This will
allow you to show and hide the button found in each tab. The expander’s label can also be used
to tell you which tab is currently displayed.

The last difference is that, instead of using a GtkVBox widget to pack the notebook and
horizontal box, you should use a GtkVPaned widget. This container will allow you to redistribute
the allocated space for each of its two children by dragging the horizontal separator located
between the two widgets.

Exercise 4-1. Renaming Files
In this exercise, you need to use several widgets that you learned about in Chapter 4, includ-
ing the stock buttons GtkEntry and GtkFileChooserButton. The purpose of this exercise is to
allow the user to rename the selected file with a function built into GLib.

The first step is to set up your user interface, which includes three interactive widgets.
The first is a file chooser button, created with gtk_file_chooser_button_new(). The chooser’s
action should be set to GTK_FILE_CHOOSER_ACTION_OPEN. This will allow you to select only a sin-
gle file. The gtk_file_chooser_set_current_folder() function can be used to set the current
folder of the file chooser button to the user’s home directory, found at g_get_home_dir().

This GtkFileChooserButton widget should be connected to the selection-changed signal.
Within its callback function, you need to verify whether the file can be renamed. This can
be done with a GLib function called g_access(). The following call can use used within your
application:

gint mode = g_access (fn, W_OK);

If the file cannot be accessed or changed by the current user, the GtkEntry and GtkButton
widgets should be disabled. This can be done by sending the opposite Boolean value as mode to
gtk_widget_set_sensitive().

The next widget in the exercise is a GtkEntry, which allows the user to enter a new name for
the widget. This is a new name for the file excluding the location, since this file name will be
appended to the GtkFileChooserButton’s location when the file is renamed. The last widget,
the GtkButton, should call the renaming function when clicked.

Within the button’s callback function, you first need to retrieve the current file and loca-
tion from the file chooser button. The location, along with the content of the GtkEntry widget,
can be used to build a new absolute path for the file. Lastly, you should use the g_rename()
function to rename the file. You should note that you must include <glib/gstdio.h> for
g_rename() to work!

7931.book Page 597 Wednesday, March 14, 2007 8:25 PM

598 A P P E N D I X F ■ E X E R C I S E S O L U T I O N S A N D H I N T S

Exercise 4-2. Spin Buttons and Scales
This exercise is very different from the previous exercise; it gives you practice with the
GtkCheckButton, GtkSpinButton, and GtkHScale widgets. When the check button is activated,
the values of the spin button and horizontal scale should be synchronized. Otherwise, they
can move independently of each other.

To do this, the first step is to create two identical adjustments, one for each range widget.
The toggle button in the solution is active on application launch so that the values will be
immediately synced.

The next step is to connect each of the range widgets to the same callback function for the
value-changed signal. Within this function, the first step is to retrieve the current values of the
spin button and scale. If the toggle button is active, these values are compared. Action is only
taken if the values are not the same so that the value-changed signal is not repeatedly emitted.

Lastly, the callback function can use GTK_IS_SPIN_BUTTON() to figure out which type of
widget holds the new value. Based on the result of the test, the other widget should be given the
new value.

Exercise 5-1. Implementing File Chooser Dialogs
In this chapter’s only exercise, you are supposed to re-create the four types of file chooser dia-
logs by embedding a GtkFileChooserWidget widget into a GtkDialog widget. The results of each
action can simply be printed to standard output.

The main application window will include four buttons, one for each of the GtkFileChooser
action types, where the GTK_FILE_CHOOSER_ACTION_OPEN action will allow you to select multiple
files. These buttons can be packed into a vertical box and then into the top-level window.

Each of the callback functions follows the same pattern. It first creates a GtkDialog widget
and packs a GtkFileChooserWidget above the dialog’s action area by packing the dialog’s vbox
member with gtk_box_pack_start().

The next step is to run the dialog with gtk_dialog_run(). If the returned result is the
response associated with acceptance of the action, you should output what would occur with
g_print(). For example, you should tell the user that the file will be saved,; the folder has
been created; the files will be opened; or the folder was selected. In the case of a GTK_FILE_
CHOOSER_ACTION_OPEN action, you should output all of the selected files.

Exercise 6-1. Working with Files
This exercise is meant to take what you have learned about file manipulation in Chapter 6 and
integrate it with the widgets from previous chapters. The user interface for this exercise should
include three widgets: GtkEntry, GtkFileChooserButton, and GtkButton.

The GtkEntry widget will allow the user to enter a single line of text that will be saved in a
file on the system. The location of the file is chosen in the GtkFileChooserButton widget with an
action of GTK_FILE_CHOOSER_ACTION_SELECT_FOLDER. Lastly, the GtkButton widget will initiate
the saving of the file when it is clicked. In the downloadable exercise solution, the text will be
saved to a file named arbitrary_file at the selected location when the user clicks the button.

In the button’s callback function, you can first build the file path out of the selected loca-
tion and the file name that you choose. Then, g_file_set_contents() can be used to save the

7931.book Page 598 Wednesday, March 14, 2007 8:25 PM

A P P E N D I X F ■ E X E R C I S E S O L U T I O N S A N D H I N T S 599

contents of the GtkEntry widget to the file. If an error occurs when writing the file, you should
report it to the user with the message reporting system covered in Chapter 6. For example, the
write operation will fail if the user does not have write access to the chosen location.

Exercise 6-2. Timeout Functions
In this exercise, you are using a timeout function to create a timer, which is actually a very sim-
ple thing to do. First, you need to create two widgets, a GtkLabel that will output the current
count and a GtkButton that will reset the count to zero when clicked. The timeout should be
created with g_timeout_add_full() as follows:

g_timeout_add_full (G_PRIORITY_DEFAULT, 1000,
 (GSourceFunc) timeout_function,
 (gpointer) widget, NULL);

The previous timeout will call timeout_function() every 1,000 milliseconds. Within this
function, the count of seconds is incremented and the label updated.

The second part of the exercise is to reimplement the timer’s creation using GTimer. Try
doing this by placing a second label within your previous solution so that the counts can be
compared. You should notice that the timeout counts slower than GTimer, which keeps accu-
rate time. This is because of the fact that timeout_function() is called every 1,000 milliseconds
plus the time it takes to run the function! The next counting period for a timeout does not begin
until the previous call is complete, which prevents the overlap of function calls. This is why
timeout functions should never be used to keep track of time, which is what this exercise has
illustrated.

Exercise 7-1. Text Editor
This exercise is the first instance of the text editor application that you will encounter. It asks
you to implement all of the functionality of the text editor.

■Note The downloadable exercise solution includes only very basic functionality of a text editor. It is meant
to get you started if you are having trouble. However, you are encouraged to continue to expand your text edi-
tor implementation beyond the provided solution!

There are a number of callback functions implemented for the text editor. These are the
ability to create a new file; open an existing file; save the file; cut, copy, and paste selected text;
and search for text in the document.

To create a new document, you should first ask the user whether or not the application
should continue with a GtkMessageDialog widget. If the user chooses to continue, the down-
loadable exercise solution simply clears the GtkTextBuffer object and destroys the dialog.
Otherwise, the dialog is just destroyed.

Opening a document in the provided solution does not ask the user for confirmation, since
it is easy to cancel the operation from the GtkFileChooserDialog widget. The file chooser dialog

7931.book Page 599 Wednesday, March 14, 2007 8:25 PM

600 A P P E N D I X F ■ E X E R C I S E S O L U T I O N S A N D H I N T S

has an action type of GTK_FILE_CHOOSER_ACTION_OPEN. When a file is selected, its contents are read
with g_file_get_contents() and written into the text buffer. Saving in the exercise solution asks
for a new file name every time the button is pressed. It calls g_file_set_contents() to save the
text to the selected file.

The clipboard functions are similar to those provided in Chapter 7’s clipboard example.
It uses the built-in text buffer functions for cut, copy, and paste actions. These actions are per-
formed on the default clipboard, GDK_SELECTION_CLIPBOARD.

The last callback function searches the current text for a case-sensitive string. The solu-
tion used is similar to the function shown in Listing 7-6 in Chapter 7, so you should refer to
its description for more information.

Exercise 8-1. File Browser
In this chapter’s exercise, you will be implementing a very simple file browser. It will allow the
user to browse throughout the system’s file structure and will differentiate between files and
folders. This exercise is meant to give you practice using the GtkTreeView widget. It will be
greatly expanded in Chapter 13 into a more functional file browser.

The first step is to configure the tree view, which will include a single column. This col-
umn will include two cell renderers, one for a GdkPixbuf and one for the file or folder name,
so you will have to use the expanded method of tree view column creation that was discussed
in Chapter 8. The first cell renderer should use GtkCellRendererPixbuf and the second,
GtkCellRendererText.

The tree model, a GtkListStore is created with two columns with types of GDK_TYPE_PIXBUF
and G_TYPE_STRING. Remember that the list store should be unreferenced with g_object_unref()
after you add it to the tree view so that it will be destroyed along with the tree view widget.

After the tree model is created in the downloadable exercise solution, the populate_tree_
model() function is called, which displays the root folder of the file system on startup. The
current path displayed by the file browser is stored in a global linked list called current_path.
If the list is empty, the root folder is displayed. Otherwise, a path is built out of the list’s con-
tent, and the ".." directory entry is added to the tree model.

Then, GDir is used to walk through the contents of the directory, adding each file or folder
to the tree model. You can use g_file_test() along with G_FILE_TEST_IS_DIR to check whether
each is a file or folder, displaying the correct icon depending on the result.

The last step is to handle directory moves, which is done with GtkTreeView’s row-activated
signal. If the selection is the ".." entry, then the last element in the path is removed, and the tree
model repopulated. Otherwise, the new path is built out of the current location and the selection.
If the selection is a folder, then the tree model is repopulated in the new directory. If it is a file,
then the action is ignored and nothing else is done.

7931.book Page 600 Wednesday, March 14, 2007 8:25 PM

A P P E N D I X F ■ E X E R C I S E S O L U T I O N S A N D H I N T S 601

Exercise 9-1. Toolbars
This exercise alters Exercise 7-1 replacing the buttons along the side with a GtkToolbar created
with GtkUIManager. The following UI file can be used for creating the toolbar:

<ui>
 <toolbar name="Toolbar">
 <toolitem name="FileNew" action="New"/>
 <toolitem name="FileOpen" action="Open"/>
 <toolitem name="FileSave" action="Save"/>
 <separator/>
 <toolitem name="EditCut" action="Cut"/>
 <toolitem name="EditCopy" action="Copy"/>
 <toolitem name="EditPaste" action="Paste"/>
 </toolbar>
</ui>

Within your application, you next need to create an array of GtkActionEntry objects that
will be associated with each of the toolbar items in the UI file. These actions are organized in a
GtkActionGroup object, and then the toolbar is created with a GtkUIManager object. The rest of
the text editor’s implementation is the same as in Exercise 7-1.

Exercise 9-2. Menu Bars
This exercise is an alteration of Exercise 7-1 where the buttons along the side are replaced by a
GtkMenuBar widget created with GtkUIManager. The following UI file can be used for creating the
toolbar:

<ui>
 <menubar name="MenuBar">
 <menu name="FileMenu" action="File">
 <menuitem name="FileNew" action="New"/>
 <menuitem name="FileOpen" action="Open"/>
 <menuitem name="FileSave" action="Save"/>
 </menu>
 <menu name="EditMenu" action="Edit">
 <menuitem name="EditCut" action="Cut"/>
 <menuitem name="EditCopy" action="Copy"/>
 <menuitem name="EditPaste" action="Paste"/>
 </menu>
 </menubar>
</ui>

7931.book Page 601 Wednesday, March 14, 2007 8:25 PM

602 A P P E N D I X F ■ E X E R C I S E S O L U T I O N S A N D H I N T S

Within your application, you next need to create an array of GtkActionEntry objects that
will be associated with each of the toolbar items in the UI file. These actions are organized in a
GtkActionGroup object, and then the menu bar is created with a GtkUIManager object. The rest
of the text editor’s implementation is the same as in Exercise 7-1.

Exercise 10-1. Glade Text Editor
This exercise expands on Exercise 7-1 yet again by asking you to redesign the whole user interface
in Glade. Instead of using buttons, you should implement a toolbar for text editing functions. You
can then use Libglade to load the graphical user interface and connect the necessary signals.
Figure F-1 is a screenshot of the application for this exercise using a toolbar.

Figure F-1. The text editor application with a toolbar designed in Glade

Exercise 10-2. Glade Text Editor with Menus
This exercise also expands on Exercise 7-1 by asking you to redesign the whole user interface in
Glade. This time, though, instead of using buttons, you should implement a menu bar for text
editing functions. You can then use Libglade to load the graphical user interface and connect
the necessary signals. Figure F-2 is a screenshot of the application for this exercise using a
menu bar.

7931.book Page 602 Wednesday, March 14, 2007 8:25 PM

A P P E N D I X F ■ E X E R C I S E S O L U T I O N S A N D H I N T S 603

Figure F-2. The text editor application with a menu bar in Glade

Exercise 11-1. Expanding MyMarquee
In this exercise, you will be extending the MyMarquee widget that was built in Chapter 11. This
section contains a number of tips for implementing the extra features required by the exercise.

The first extension is to add a border around the widget. This can be done with the gdk_draw_
rectangle() function. The following function draws a rectangular border with the given width
and height and the top-left corner positioned at (x,y):

void gdk_draw_rectangle (GdkDrawable *drawable,
 GdkGC *gc,
 gboolean filled,
 gint x,
 gint y,
 gint width,
 gint height);

The next thing you need to do is provide the ability to scroll through multiple messages. To
do this, you need to store the messages as a private, linked list. You should then provide func-
tions for adding and removing a message. When a message has scrolled beyond the bounds of
the widget, the next message in the list should begin to scroll.

7931.book Page 603 Wednesday, March 14, 2007 8:25 PM

604 A P P E N D I X F ■ E X E R C I S E S O L U T I O N S A N D H I N T S

Next, you need to provide the ability to scroll the message in either direction, whether left
or right. This is handled in your slide function, moving speed pixels in the correct direction
every time the function is called. The only thing you need to be careful of is that the message
will scroll off of the widget in the direction specified by the scroll direction!

Lastly, the message should stop scrolling when the mouse pointer is over the widget. This is
accomplished by overriding the default enter-notify-event and leave-notify-event callback
functions. You should use a gboolean flag to specify whether the message should be scrolled. You
can check this in my_marquee_slide() to decide whether the message should be moved during
that call.

Exercise 12-1. Full Text Editor
This last text editor exercise is an extension of Exercise 10-1. In it, you should add two addi-
tional features. The first is printing support, which allows the user to print the current text in
the GtkTextBuffer widget. The printing support in the downloadable solution for this exercise
is very similar to the printing example built in Chapter 12, so you should check out that exam-
ple’s description for more information about how this solution works.

The other additional feature is a recent file chooser menu for the Open toolbar item. In
order to create this, you must convert the Open toolbar item to a GtkMenuToolItem widget. The
default recent manager, obtained with gtk_recent_manager_get_default(), can be used to
provide the recent files. Then, you can create the recent file chooser menu with gtk_recent_
choose_menu_new_for_manager(). This menu should be added to the Open menu tool button’s
GtkMenu. You can use the selection-done signal to figure out which menu item is selected and
what file should be opened.

7931.book Page 604 Wednesday, March 14, 2007 8:25 PM

605

Index

■Symbols
(pound) symbol, RC files and, 97

* (asterisks)

as invisibility characters, 86

as wildcards, 96, 105

_ (underscore symbol), 28, 61

<gdk/gdkkeysyms.h>, 323

<glib/gstdio.h>, 178

<separator/> tags, 340

<toolbar> tags, 340

<toolitem> tags, 340

` (backquote symbol), 21

- (dash symbol), 28, 39

/ (forward slash character), to end tags, 340

. (periods), widget hierarchy and, 96

■A
AbiWord, 224

About dialog, 126–132, 481–483

Accel label properties, 483

Accessibility Toolkit (ATK)

basics of, 2, 9

designing user interface and, 356

installing GTK+ and, 10

Action properties, 483–484

Action group properties, 484

activate signal, status icon, 441

add signal (GtkContainer class), 46

Adjustment properties, 484–485

adjustment parameters, 89

alignment of text marks, 246

Alignment properties, 485

allocations

GtkAllocation structure, 45

specifying, MyMarquee widget and, 417–418

alternating rows, differentiating, 270

antialiasing settings, Cairo, 454

applications

calculator, 472–473

calendar, 475–477

gtk-demo, 12

hangman, 473–474

pkg-config, 21–22

applications, creating with GTK+, 15–41

buttons, 36–38

container widgets and layout, 25–26

event structures, specific, 31–32

event types, 29–32

events and properties, using, 40–41

functions, 32–36

GCC and pkg-config for compilation, 21–22

Greeting the World Again (helloworld2.c)
(code listing), 23–24

Greeting the World (helloworld.c) (code
listing), 16

GTK+ windows, 19–20

GtkButton Widget (buttons.c) (code
listing), 37–38

GtkLabel widget, 24–25

GtkWidget functions, 32–33

GtkWindow functions, 33–35

Hello World, 15–21

Hello World, extending, 23–26

initializing GTK+, 16–17

main loop function, 20–21

notify property, using (code listing), 39

process pending events functions, 35–36

7931indextight.fm Page 605 Tuesday, March 27, 2007 8:48 PM

606 ■I N D E X

applications, creating with GTK+ (continued)

signals and callback functions, 27–29

widget hierarchy, 17–19

widget properties, 38–40

apply signal, 152

argv list, 210

arrays

GLib, 194–197

Pango tab, 229–231

pointer, 196

Arrow properties, 485

Aspect frame properties, 486

Assistant child properties, 525

assistant_forward() function, 155

asterisks (*)

as default characters, 86

replacing with data types, 397

as wildcards, 96, 105

ATK. See Accessibility Toolkit (ATK)

autoconf tool, 10

autoconnecting signals, Libglade, 375–377

automake, 10

automatic completion, 466–468

automatic indentation, GtkSourceView
and, 257

■B
background colors, setting, 296–298

backquote symbol (`), 21

binary trees, balanced (GLib), 188–190

blinking of status icon, 440

Bonobo libraries, 478

Boolean values, displaying as text, 266

Box child properties, 526

Box properties, 486

boxes

combo, 288–289

event, 68–72

handle, 62–64

horizontal and vertical, 46–50

bracket matching, GtkSourceView and, 257

built-in dialogs, 122–146

About, 126–132

color selection, 139–143

file chooser, 132–138

file chooser dialogs exercise, 156

font selection, 143–146

GtkAboutDialog, Using (aboutdialogs.c)
(code listing), 127–128

GtkColorSelectionDialog, Using
(colorselection.c) (code listing),
140–143

GtkFileChooserDialog, Using to Create
Folders (createfolder.c) (code
listing), 136–137

GtkFileChooserDialog, Using to Select
Multiple Files (multiplefiles.c) (code
listing), 138

GtkFileChooserDialog to Save Files
(savefile.c) (code listing), 133–134

GtkFontSelectionDialog, Using
(fontselection.c) (code listing),
144–146

GtkMessageDialog, using
(messagedialogs.c) (code listing),
123–124

message, 122–126

button clicked signals, 152

Button properties, 486

Button box child properties, 526

Button box properties, 487

button-press-event signal

calendar widget and, 439

event boxes and, 68

event types and, 31

pop-up menus and, 316, 318, 319

buttons. See also toggle tool buttons

color, 97–101

file chooser, 101–105

font, 106–108

font selection, 108

GtkButton widget, 36–38

GtkRadioButton, 27

7931indextight.fm Page 606 Tuesday, March 27, 2007 8:48 PM

607■I N D E X

Find it faster at http://superindex.apress.com

spin, 88–91

of GtkToggleToolButton, 336–337

byte arrays, 197

■C
caches, GLib, 5

Cairo

antialiasing settings, 454

drawing functions, 452–454

graphics library, 4, 7

path-drawing functions, 453

rendering options for drawing, 454

rendering pages for printing and, 449–452

calculator application, 472–473

calendar

application basics, 475–477

properties, 487

widget, 437–439

callback functions

basics of, 27–29

of file browsers, 471–472

of pop-up menus, 319–321

cancel signal, 152

cell data functions, 266, 295–298

cell renderers, 299–313

basics of, 265–266

Cell Data Function for Floating Point
Numbers (code listing), 303–304

combo box renderers, 305–308

GdkPixbuf Cell Renderers (code listing), 302

GtkCellRenderer properties, 487–488

GtkCellRendererAccel properties, 488

GtkCellRendererCombo properties, 489

GtkCellRendererPixbuf properties, 489

GtkCellRendererProgress properties, 490

GtkCellRendererSpin properties, 490

GtkCellRendererText properties, 490–492

GtkCellRendererToggle properties, 492–493

GtkCellRendererToggle Toggled Callback
Function (code listing), 300–301

keyboard accelerator renderers, 309–313

Pixbuf renderers, 301–302

progress bar renderers, 308–309

spin button renderers, 302–305

toggle button renderers, 299–301

cells, editable example, 293

Cell view properties, 493

change-current-page signal, 67

changed signal

GtkAdjustment class, 89

GtkTreeSelection, 282

check buttons, 80–82

check menu items, 329–330

check-resize signal (GtkContainer class), 46

Check menu item properties, 493

child widget properties, 525–528

child widgets

adding, 43–44

adding to dialog, 115

inserting into text buffers, 254–256

reordering, 50

resizing, 44–45

child-pack-direction property, 333

children, packing in two-dimensional space, 53

class directive, 96

clicked signal, 36

climb rate (spin buttons), 90–91

clipboard class, 240

clipboard functions, 88

clipboard objects, 238, 240–241

close signal, 152

closure marshal functions, 393

code listings

Adding Accelerators to Menu Items
(accelerators.c), 322

Adding Events to a GtkLabel
(eventboxes.c), 68–69

Adding New Products (selections.c),
285–287

Autoconnecting Signals, 376

Automatic Completion
(entrycompletion.c), 466–467

Find it faster at http://superindex.apress.com

7931indextight.fm Page 607 Tuesday, March 27, 2007 8:48 PM

608 ■I N D E X

code listings (continued)

begin-print Signal, Callback Function
for, 448–449

Calendar File (test.cal), 475

Callback Function for begin-print Signal,
448–449

Callback Function for draw-page Signal,
450–451

Callback Function for end-print Signal, 452

Callback Functions for MyIPAddress,
402–403

Callback Functions for the Simple Pop-up
Menu (popupmenus.c), 320–321

Cell Data Function for Floating Point
Numbers, 303–304

Check Button Interaction
(checkbuttons.c), 80–81

Child Widgets, Inserting into Text Buffers
(childwidgets.c), 255–256

Color Buttons and GdkColors
(colorbuttons.c), 98–99

Combo Box Cell Renderers, 306–308

Container with Multiple Pages
(notebooks.c), 64–66

Converting Between Paths and Strings, 279

Creating Object’s GType, 428

Current IP Address, Retrieving, 405

Custom Dialog, First (dialogs.c), 113–114

Defining Widget Styles (.gtkrc), 95

Detachable Widgets (handleboxes.c), 62–63

Directories, Getting Contents of
(directories.c), 177

Displaying More Information About a Menu
Item (statusbarhints.c), 326–327

Drawing Program (drawingareas.c), 433–436

draw-page Signal, Callback Function for,
450–451

Editing a Cell’s Text (editable.c), 293–294

Editing a Clicked Row, 292

Editing Information in a Dialog
(dialogs3.c), 120–122

end-print Signal, Callback Function for, 452

Events, Adding to a GtkLabel
(eventboxes.c), 68–69

Exact Locations, Specifying (fixed.c), 58

File Chooser Button, Using
(filechooserbuttons.c), 102–103

First Custom Dialog (dialogs.c), 113–114

Font Selection Button, Using
(fontbuttons.c), 106–107

GdkPixbuf Cell Renderers, 302

Global Enumerations and Structures
(myipaddress.c), 385–386

GObject Directives, 383

Greeting the World Again (helloworld2.c),
23–24

Greeting the World (helloworld.c), 16

Groups of Menus, Creating (menubars.c),
331–333

GTK+ Printing Example (printing.c),
442–443

GtkAboutDialog, Using (aboutdialogs.c),
127–128

GtkAssistant Widget (assistant.c), 147–151

GtkButton Widget (buttons.c), 37–38

GtkCellRendererToggle Toggled Callback
Function, 300–301

GtkColorSelectionDialog, Using
(colorselection.c), 140–143

GtkFileChooserDialog, Using to Create
Folders (createfolder.c), 136–137

GtkFileChooserDialog, Using to Select
Multiple Files (multiplefiles.c), 138

GtkFileChooserDialog to Save Files
(savefile.c), 133–134

GtkFontSelectionDialog, Using
(fontselection.c), 144–146

GtkIconFactory (iconfactory.c), 349–351

GtkMessageDialog, using
(messagedialogs.c), 123–124

GtkRecentChooserDialog, Using, 463–465

GtkRecentChooserMenu, Using, 459–460

GtkTable Displaying Name (tables.c), 52

GtkTextView Properties, Using
(textview2.c), 227–228

GtkTreeStore, Creating (treestore.c),
275–277

GtkTreeView, Creating (liststore.c), 267–269

7931indextight.fm Page 608 Tuesday, March 27, 2007 8:48 PM

609■I N D E X

Find it faster at http://superindex.apress.com

Header File Function Prototypes, 385

Horizontal Pane (panes.c), 51

Images, Inserting into Text Buffers
(images.c) (code listing), 253–254

Initializing the Interface, 429

Integer and Floating-point Number
Selection (spinbuttons.c), 90

Integer and Floating-point Number
Selection with Scales (scales.c), 92–93

Interface Header File (myiface.h), 425–426

Interface Source File (myiface.c), 426–427

IO Channels, Using for Files (files2.c),
201–202

IO Channels, Using for Pipes
(iochannels.c), 205–208

IP Address, Setting New, 405

Keyboard Accelerator Cell Renderers
(accelerators.c), 310–312

Loading Menus with GtkUManager
(uimanager.c), 342–343

Loading User Interface (browser.c),
373–374

Menu UI File (menu.ui), 339–340

Multiple Objects, Allocating, 166–167

MyIPAddress, Setting New, 405

MyIPAddress Header File
(myipaddress.h), 382

MyIPAddress Object, Instantiating,
400–401

MyIPAddress Structure, 384

MyIPAddress Type, Creating New, 387

MyIPAddress Widget, Rendering, 401

MyIPAddressClass, Initializing, 389–391

MyMarquee Class and Structure,
Initializing, 410–412

MyMarquee Properties, Setting and
Retrieving, 413

MyMarquee Widget Header
(mymarquee.h), 407–408

MyMarquee Widget, Setting and Retrieving
Message Speed Property, 423

MyMarqueePrivate and MyMarquee
GType, Defining (mymarquee.c),
409–413

New IP Address, Setting, 405

New MyIPAddress Type, Creating, 387

New MyMarquee Widget, Creating, 413

Nonmodal Message Dialog (dialogs2.c), 118

notify Property, using, 39

Object Properties, Retrieving, 399–400

Object Properties, Setting, 398

Opening Files and Adding to List of Recent
Files, 461–462

Packing Parameters, Specifying
(boxes2.c), 48–50

Paths and Strings, Converting Between, 279

Plug-in (modules-plugin.c), 212–213

Plug-in, Loading (modules.c), 213–214

Pop-up Menu, Simple (popupmenus.c),
316–318

Pop-up UI File (popup.ui), 341

Print and Print Preview, 444–445

Recently Opened Files, Remembering
(recentfiles.c), 456–458

Removing One or More Products
(selections.c), 290–291

Rendering MyIPAddress Widget, 401

Retrieving Current IP Address, 405

Retrieving Object Properties, 399–400

Retrieving User Information (entries.c),
85–86

Scrolled Windows, Using
(scrolledwindows.c), 221–222

Selected For-Each Functions, 283

Selfish Toggle Buttons (radiobuttons.c), 83

Setting New IP Address, 405

Single Objects, Allocating, 167–168

Size Requests and Allocations,
Handling, 417

Sliding MyMarquee Message, 421–422

Spin Button Cell Renderers, 304–305

Stock Items (stockitems.c), 76

Test MyIPAddress Widget
(ipaddresstest.c), 406

Text Tags, Using (texttags.c), 247–251

Timeout, Adding (timeouts.c), 181–182

7931indextight.fm Page 609 Tuesday, March 27, 2007 8:48 PM

610 ■I N D E X

code listings (continued)

Toggle Buttons, Using (togglebuttons.c),
77–78, 102–103

Toggling, Elapsed Time Between
(timers.c), 174–175

Toolbar UI File (toolbar.ui), 340–341

User Information, Retrieving (entries.c),
85–86

Vertical Boxes with Default Packing
(boxes.c), 46–47

Widget Styles, Defining (.gtkrc), 95

Widgets, Showing & Hiding (expanders.c),
60–61

Write and Read Files (files.c), 175–176

color

background color, setting, 296

color buttons, 97–101

Color Buttons and GdkColors
(colorbuttons.c) (code listing), 98–99

color selection dialogs, 139–143

Color button properties, 493

Color selection properties, 494

color-set signal, 100

Setting Background Color with Cell Data
Functions (celldatafunctions.c)
(code listing), 296–298

storing in GdkColor, 100

columns

model vs. tree, 264

renderers and, GtkListStore, 271–272

tree, 265–266

combo boxes

Combo box properties, 494–495

Combo box entry properties, 495

GtkComboBox widget, 288–289

renderers, 305–308

Common Object Request Broker
Architecture (CORBA), ORBit library
and, 478

communications, interprocess with pipes, 204

compilation, GCC and pkg-config for, 21–22

configuration options, 11

Container properties, 495

container widgets, 43–72, 596–597

Adding Events to a GtkLabel
(eventboxes.c) (code listing), 68–69

Container with Multiple Pages
(notebooks.c) (code listing), 64–66

Detachable Widgets (handleboxes.c)
(code listing), 62–63

event boxes, 68–72

exercise, using multiple containers, 72–73,
596–597

expanders, 60–61

fixed containers, 57–60

GtkContainer class, 43–46

GtkTable Displaying Name (tables.c)
(code listing), 52

handle boxes, 62–64

horizontal and vertical boxes, 46–50

horizontal and vertical panes, 50–53

layout and, 25–26

notebooks and, 64–68

Packing Parameters, Specifying (boxes2.c)
(code listing), 48–50

Showing & Hiding Widgets (expanders.c)
(code listing), 60–61

Specifying Exact Locations (fixed.c) (code
listing), 58

tables, 53–57

Vertical Boxes with Default Packing
(boxes.c) (code listing), 46–47

containers. See container widgets

contexts and sources, GLib, 179–180

convenience tags, Pango Text Markup
Language, 569

copying text, 238–241

CORBA (Common Object Request Broker
Architecture), ORBit library and, 478

Curve properties, 495

custom widgets, creating. See widget class;
widgets, creating from scratch;
widgets, deriving new

cutting, copying and pasting text, 238–241

7931indextight.fm Page 610 Tuesday, March 27, 2007 8:48 PM

611■I N D E X

Find it faster at http://superindex.apress.com

■D
dash symbol (-), 28, 39

data

accessing, 40

cell data functions, 266, 295–298

data lists. See GtkListStore

linked lists and data storage, 139

retrieving row data, 288

data fields, adding to objects, 40

data functions, cell, 295–298

data types, GLib, 184–200

arrays, 194–197

balanced binary trees, 188–190

GLib library, 160–161

hash tables, 197–199

keyed data lists, 199–200

linked lists, 186–188

n-ary trees, 191–193

quarks, 199

strings, 184–186

data types, GObject, 6–7

dates. See calendar

day-selected signal, 439

decorator containers, 43–44

delete-event, 29–31

design

MVC, 262

of user interfaces, dynamic, 355–358

destroy signal, 27, 29

Dialog properties, 496

dialog widgets, 111–157

built-in dialogs. See built-in dialogs

complex dialog example, 119–122

message dialogs, creating. See message
dialogs, creating

with multiple pages. See multiple pages,
dialogs with

nonmodal message dialogs, 118–119

overview, 111–112

recent chooser dialog widget, 463–465

directories, accessing (GLib), 177–178

double clicks, 292

doubly linked lists, 186–188

drawing functions

Cairo, 452–454

drawing areas, hangman application and,
473–474

widgets and, 420–421

drawing widgets, 431–437

drawing area example, 432–436

layout widget, 436–437

dynamic menu creation, 339–348

action types, additional, 345–346

Loading Menus with GtkUManager
(uimanager.c) (code listing), 342–343

Menu UI File (menu.ui) (code listing),
339–340

placeholders in UI files, 347–348

Pop-up UI File (popup.ui) (code listing), 341

Toolbar UI File (toolbar.ui) (code listing),
340–341

UI files, creating, 339–341

UI files, loading, 341–345

dynamic modules, GLib, 212–215

■E
editable text renderers, 292–295

editable text views, 229

edited signal, 294, 305

editing-canceled signal, 271

editing-started signal, 271

emitting and stopping signals, 29

end_element() function, 476

end-print signal, 445, 452

enter-notify-event signal, 325, 327

Entry properties, 496–497

Entry completion properties, 497

environment variables, GLib, 171–172

error() function, 477

error propagation. See GError structure

event boxes, 68–72

Event box properties, 497

7931indextight.fm Page 611 Tuesday, March 27, 2007 8:48 PM

612 ■I N D E X

events

basics of, 29–30

event types, 31

events and properties exercise, solution
to, 595–596

processing pending, 35–36

specific structures, 31–32

watch events (pipes), 204

exercises

containers, using multiple, 72–73

events and properties, using, 40–41

file browsers, creating, 314

file chooser dialogs, implementing, 156

files, working with, GLib, 216

Glade text editor implementation, 378

GObject property system, 41

menu bar, creating, 352

MyMarquee, expanding, 430

renaming files, 109

solutions and hints for, 595–604

spin buttons and scales, 109–110

text editor, creating, 258, 468

timeout functions, GLib, 216

toolbar, creating, 352

verifying installation, 12

expand and fill properties, 49

expand property, Glade, 366

Expander properties, 498

expanders, 60–61

expose-event signal, 432, 473

EXtensible Markup Language (XML)

dynamically creating menus with, 339

parsing files, calendar application, 477

■F
Fedora Core, installing GTK+ and, 10

feedback through message dialogs, 358

file browsers

callback functions, implementation of,
471–472

creating, 313

creating with Glade and Libglade. See user
interfaces, dynamic

exercises, 600

file chooser buttons, 101–105, 499

file chooser dialogs

basics of, 132–138

exercise, 156, 598

implementing, 598

file filters, 105

File chooser properties, 498–499

files

exercise in working with, GLib, 216, 598–599

file manipulation, GLib, 174–177

file system, GLib, 178–179

GIOChannels and, GLib, 201–203

opening, 135

recently opened. See recently opened files

renaming files exercise, 109, 597

saving, 132

selecting multiple, 137–139

fill property/packing options, Glade, 366–367

filters, file, 105

Fixed child properties, 526

fixed containers, 57–60

floating point numbers

cell data functions and, 298, 303

display of, 305

spin buttons and, 88, 89

folders, creating and selecting, 135–137

font buttons, 106–108

font selection buttons, 108

font selection dialogs, 143–146

Font button properties, 499

fontconfig

library, 8

package, 10

Font selection properties, 500

font-set signal, 108

fork() function, 204, 208

forward slash character (/), to end tags, 340

Frame properties, 500

7931indextight.fm Page 612 Tuesday, March 27, 2007 8:48 PM

613■I N D E X

Find it faster at http://superindex.apress.com

FreeType library, 8, 10

freezing problem, 35–36

functions. See also specific functions

basics of in creating GTK+ applications,
32–36

Cairo drawing functions, 452–454

callback functions, 27–29

drawing functions, 420–421

GtkWidget functions, 32–33

GtkWindow functions, 33–35

process pending events, 35–36

public MyIPAddress functions,
implementing, 404–405

window functions, 33–35

■G
g_ascii_strcasecmp() function, 40, 288

g_build_filename() function, 176

g_chdir() function, 179

g_clear_error() function, 131–132

g_datalist_init() function, 199–200

g_file functions, 176

g_free() function, 169

g_get environment utility functions, 172

g_get_home_dir() function, 104

g_idle functions, 183

g_io_channel functions, 201–203, 208–210

g_log() function, 164–165

g_main_loop_new() function, 17

g_malloc() function, 166–167, 170, 171

g_mem_profile() function, 169

g_memmove() function, 194

g_message() function, 41

g_mkdir() function, 179

g_node functions, 192

g_node_traverse() function, 193

g_object_set() function, 39, 272, 294

g_object_set_data() function, 40

g_print() function, 164–165

g_quark functions, 199

g_remove() function, 178–179

g_rmdir() function, 178–179

g_setenv() function, 172

g_signal_connect() function, 28–29, 30,
376–377, 529

g_signal_connect_swapped() function, 38

g_signal_emit_by_name() function, 29

g_source_attach() function, 180

g_spawn_async_with_pipes() function,
210, 211

g_timeout functions, 180–183

GArray functions, GLib, 194–196

GBaseInitFunc Initializer, 388

GByteArray, 194, 197

GCC, for compilation, 21–22

GClassInitFunc Initializer, 388

GCompareFunc, 188

GConf library, 478

GConnectFlags enumeration, 377

GConvertError, 203

GDataForeachFunc, 200

GDestroyNotify function, 181, 200

GDir structure, 177–178

GDK (GIMP Drawing Kit) graphics
library, 7

GDK color object, storing colors in, 100

gdk_cursor_new(), 71

gdk_window_set_cursor(), 71

GdkColor values, 264

GdkCursorType enumeration, 71

GdkDrawable functions, 420–421

GdkEventKey structure, 32

GdkEventMask enumeration, 70–71

GdkEventProximity objects, 327

GdkEventType enumeration, 31

GdkGravity enumeration, 35

GdkInterpType modes, 130

GdkModifierType enumeration, 323

GdkPixbuf

class, 129–130

GdkPixbufError enumeration values,
131, 588

7931indextight.fm Page 613 Tuesday, March 27, 2007 8:48 PM

614 ■I N D E X

GdkPixbuf (continued)

library, 7–8

objects, 252–254

GdkWindow class, 71

GdkWindowType enumeration, 415

gdouble values (numbers), 89, 93

GEdit, 224, 256

GEqualFunc prototype, 198

GError structure, 130–132

GError types, 587–593

GBookmarkFileError enumeration values,
587–588

GdkPixbufError enumeration values, 588

GFileError enumeration values, 588–589

GKeyFileError enumeration values,
589–590

GMarkupError enumeration values, 590

GOptionError enumeration values, 590

GShellError enumeration values, 591

GSpawnError enumeration values,
591–592

GThreadError enumeration values, 592

get_accelerator_parse() function, 344

get_file_chooser_add_filter() function, 105

GFileTest enumerations, 176–177

GHashTable functions, 197–199

Gimp Drawing Kit. See GDK (GIMP Drawing
Kit) graphics library

GIMP Toolkit (GTK+), 2, 478

GInitiallyUnowned class, 18

GIOChannel

files and, GLib, 201–203

GIOChannel functions, 209

pipes and, GLib, 203–210

GIOCondition enumeration, 209

GIOFunc callback function, 209

GIOStatus values, 209–210

Glade user interface builder, 359–372

address bar, creating, 367–369

exercise, Glade text editor
implementation, 378, 602–603

interface, 360–361

menus, creating, 371–372

overview, 359

status bar, adding, 369

toolbars, adding, 364–367

typing tags with, 8

widget signals, setting up, 370–371

windows, creating, 362–364

GladeXML object, 372, 374–375, 377

GLib library, 159–218

data types. See data types, GLib

dynamic modules, 212–215

exercises, 216, 598–599

input-output channels. See input-output
channels

installing GTK+ and, 10

macros, 161–163

main loop, 179–183

mathematical macros, 163

memory management, 165–171

message logging, 164–165

Multiple Objects, Allocating (code listing),
166–167

overview of, 5, 159

Plug-in (modules-plugin.c) (code listing),
212–213

Plug-in, Loading (modules.c) (code
listing), 213–214

Single Objects, Allocating (code listing),
167–168

Timeout, Adding (timeouts.c) (code
listing), 181–182

types, 394

utility functions. See utility functions, GLib

version information, 162

GLib Object System. See GObject (GLib
Object System)

glib_check_version() function, 162

glib_mem_profiler_table, 170

GMainContext, 179

GMainLoop, 180

GMemVTable, 169–170

7931indextight.fm Page 614 Tuesday, March 27, 2007 8:48 PM

615■I N D E X

Find it faster at http://superindex.apress.com

GModule

to find symbols, 366

GModule library, 213–214

Libglade autoconnection signals and, 375

structure, 212–215

uses of, 159

GModuleFlags enumeration values, 215

GNode structures, 191–193

GNOME (GNU Object Modeling
Environment)

Human Interface Guidelines, 38, 356

Imaging Model (Imlib) DP, 7

Libgnome library, 478

resources for, 478

Virtual File System library, 478

GNU Compiling Collection (GCC), 1

GNU Image Manipulation Program (GIMP), 2

GNU linker (ld), 212

GNU tools, installing GTK+ and, 10

GObject (GLib Object System)

basics of, 6–7

class, 18

data type, 7

GObjectClass, functions provided in, 391

hierarchy system, 17

properties, setting and retrieving, 397–400

property system, 38, 596

GParamFlags enumeration, 396

GParamSpec

function, 397

object, 39

gpointers, 28, 139

GPtrArray, 194, 196

grab-focus signal, 27

group-changed signal, 27

GSignalFlags enumeration values, 392

GSList data type, 138–139, 186-188

GSpawnChildSetupFunc callback function,
211

GSpawnFlags, 211

GString structure, 184–186

GTimer structure, 172

GtkDialog widget, creating, 114–115

Gtk# language binding, 9

gtk_bin_get_child() function, 44

gtk_box_pack functions, 48, 49, 372

gtk_button_new() function, 36, 75–76

gtk_button_set_relief() function, 38

GTK_CAN_FOCUS flag, 432

gtk_container_add() function

to add child widget, 25, 44

creating toggle buttons and, 83

text buffers and, 226

gtk_dialog_run() function, 180

gtk_editable_insert_text() function, 87

gtk_events_pending() function, 35

GTK_EXPAND values, 56

GTK_FILE_CHOOSER_ACTION types, 135

GTK_FILL values, 56

gtk_hbox_new() function, 47

gtk_init() function, 16-17, 179

gtk_label_set_selectable() function, 24

gtk_main() functions, 20–21, 27, 35, 179

gtk_menu() functions, 328

gtk_notebook() functions, 67, 68

gtk_paned() functions, 52

gtk_rc_parse() function, 95

GTK_RESPONSE_ACCEPT, 135

GTK_RESPONSE_CANCEL, 135

GTK_SHRINK values, 56

GTK_STOCK buttons, 126, 146, 289, 291

gtk_table() functions, 55, 57

gtk_text_view functions, 236, 242–246,
252, 254

gtk_tree_model functions, 288

gtk_vbox_new() function, 47

gtk_widget_add_accelerator() function, 323

gtk_widget_destroy() function, 32, 38, 116

GTK_WIDGET_FLAGS(), 79

gtk_widget_grab_focus() function, 33

gtk_widget_hide() functions, 20, 26

gtk_widget_modify_fg(), 100, 101

7931indextight.fm Page 615 Tuesday, March 27, 2007 8:48 PM

616 ■I N D E X

gtk_widget_modify_font(), 108

gtk_widget_realize(), 71

gtk_widget_set() functions, 33, 45, 71, 95, 229

GTK_WIDGET_SET_FLAGS(), 79

gtk_widget_show() functions, 20, 26, 71

gtk_widget_size_allocate() function, 45

GTK_WIDGET_UNSET_FLAGS(), 79

gtk_window() functions

gtk_window_new() function, 17

GTK_WINDOW_POPUP, 19

gtk_window_set_default_size() function, 34

gtk_window_set_icon_from_file()
function, 35

gtk_window_set_modal() function, 115

gtk_window_set_title() function, 20

GTK_WINDOW_TOPLEVEL, 19

GTK+ 2, 2

GTK+ applications, creating. See
applications, creating with GTK+

GTK+ overview, 1–13

exercise, verifying installations, 12

history, 2

installing GTK+, 10–12

language bindings, 9

supporting libraries. See libraries

X Window System (X11), 2–3

Gtk2-perl language binding, 9

GtkAboutDialog widget, 126–132, 481–483

GtkAccelGroup, 323

GtkAction, 340

GtkActionEntry, 344

GtkActionGroup, 341

GtkAdjustment class, spin buttons and, 88–89

GtkAdjustment objects (scrollbars), 220

GtkAllocation structure, 45

GtkAssistant pages, basics of, 151–153

GtkAssistant widget, basics of, 146–153

GtkAssistantPageFunc functions, 154–155

GtkAttachOptions enumeration, 56

GtkBin class, 18, 26, 44

GtkBox widget, 66

GtkBuilder object, 355

GtkButton widget, 36

GtkButtonBox, 112

GtkButtonsType values, 125

GtkCalendar widget, 437–439

GtkCellRenderer class, 271–272

GtkCellRenderer object, 265–266

GtkCellRendererAccel, 309–313

GtkCellRendererCombo, 305–308

GtkCellRendererPixbuf, 301–302

GtkCellRendererProgress, 308–309

GtkCellRendererSpin, 302–305

GtkCellRendererText, 266, 271, 273, 292–295

GtkCellRendererToggle, 299–301

GtkCheckButton widget, 77, 80, 82

GtkCheckMenuItem, 329–330

GtkClipboard, 238, 240

GtkColorButton widget, 97–101

GtkColorSelectionDialog widget, 139–143

GtkComboBox widget, 288–289

GtkComboBoxEntry widget, 308

GtkContainer class, 25, 26, 43–46

container signals, 46

decorator containers, 43–44

layout containers, 44

resizing child widgets, 44–45

widget hierarchy and, 18

GtkCornerType value, 223

gtk-demo application, 12

GtkDialog, 112

GtkDialogFlags enumeration, 114

GtkDrawingArea widget. See also drawing
widgets

hangman application and, 473

GtkEditable interface, 84–85

GtkEntry text, manipulating, 87–88

GtkEntry widget

file browser callback functions and, 472

font selection dialogs and, 146

text entries and, 84, 87

7931indextight.fm Page 616 Tuesday, March 27, 2007 8:48 PM

617■I N D E X

Find it faster at http://superindex.apress.com

GtkEntryCompletion object. See automatic
completion

GtkEventBox, 68–72

GtkExpander widget, 60-61, 274

GtkFileChooser interface, 104, 131–132

GtkFileChooserButton widget, 101–105, 132

GtkFileChooserDialog, 132

GtkFileChooserWidget, 132

GtkFileFilter objects, 105

GtkFixed widget, 57–60

GtkFontButton button, 106–108

GtkFontSelectionDialog structure, 143–146

GtkFrame widget, 44

GtkHandleBox widget, 62–64

GtkHBox container widget, 46–47, 72

GtkHPaned widget, 50, 52

GtkHScale widget, 91

GtkIconFactory, 348–351

GtkIconSet, 348

GtkIconSize enumeration, 117

GtkIconSource, 348

GtkImage widget, 117

GtkImageMenuItem, 329

GtkLabel widget, 24–25, 66, 368

GtkLayout widget, 436–437

GtkListStore, 266–274

creating, 272

described, 263

GtkTreeView, Creating (liststore.c) (code
listing), 267–269

renderers and columns, 271–272

tree view, creating, 270

GtkMenu widget, 315

GtkMenuBar, 330–333

GtkMenuItem widget, 318, 319, 328

GtkMenuPositionFunc, 321

GtkMenuShell, 319

GtkMenuToolButton, 337–338

GtkMessageDialog widget, 122

GtkMessageType enumeration, 124

Gtkmm C++ bindings, 9

GtkModifierType enumeration, 313

GtkNotebook container, 64-68, 156, 356

GtkObject class, 6, 18

GtkPackDirection enumeration, 332–333

GtkPaned widget, 50

GtkPolicyType enumeration, 222

GtkPositionType enumeration, 67, 93

GtkPrintOperation widget. See printing
support

GtkPrintOperationAction enumeration,
446–447

GtkProgressBar widget

basics of, 153–154

detecting GDK events and, 316

progress bar renderers and, 308

GtkRadioActionEntry, 345–346

GtkRadioButton widget, 27, 77

GtkRadioMenuItem widget, 330

GtkRadioToolButton, 337

GtkRange widget, 88, 93

GtkRecentChooserDialog widget. See recent
chooser dialog widget

GtkRecentChooserMenu widget. See recently
opened files

GtkRecentManager. See recently opened files

GtkRecentSortType enumeration, 459

GtkReliefStyle enumeration, 38

GtkResponseType enumeration, 116

GtkScale, 91–93

GtkScrolledWindow widget, 219, 261

GtkSelectionMode enumeration, 282

GtkSeparatorMenuItem, 318, 340

GtkSeparatorToolItem, 335

GtkShadowType enumeration, 64, 223

GtkSourceView library, 256-258

GtkSpinButton widget, 88–91

GtkStateType enumeration, 101

GtkStatusBar widget, 323–325, 472

GtkStatusIcon widget, 439–441

GtkStyle structure, 93–94, 108

GtkTable widget, 53

7931indextight.fm Page 617 Tuesday, March 27, 2007 8:48 PM

618 ■I N D E X

GtkTextBuffer class, 225, 230

GtkTextBuffer functions, 232–237

GtkTextBuffer’s tag table, 251

GtkTextChildAnchor, 256

GtkTextIter, 231–232

GtkTextMark, 231–232, 245–246

GtkTextSearchFlags enumeration values, 244

GtkTextTag, 246–252

GtkTextView widget. See text views

GtkToggleActionEntry, 345–346

GtkToggleButton widget, 77, 82

GtkToggleToolButton, 336–337

GtkToolbar, 333–336

GtkToolButton, 335–336

GtkToolItem class, 335

GtkTreeIter object, 281, 288

GtkTreeModel interface, 263–264

GtkTreePath, 278–280

GtkTreeRowReference objects, 280

GtkTreeSelection object, 282–283

GtkTreeSelectionForeachFunc, 283

GtkTreeStore

basics of, 263

creating, 274–278

GtkTreeView. See tree view widget

GtkTreeViewColumn, 265–266, 270, 271–272

GtkUIManager, 340, 341

GtkUIManagerItemType enumeration
options, 347

GtkVBox container widget, 46–47, 72, 364

GtkViewport widget, 219, 223, 224

GtkVPaned widget, 50

GtkVScale widget, 91

GtkWidget class, widget hierarchy and, 18

GtkWidget functions, 32–33

GtkWidgetFlags, 79–80

GtkWindow

class, 112

derivation of, 26

functions, 33–35

GtkWindowType enumeration, 19

widget hierarchy, 18

GtkWrapMode enumeration, 228

GTraverseFlags enumeration, 193

GTraverseFunc prototype, 190

GTraverseType enumeration, 193

GTree structure, 188–190

GType

Creating Object’s GType (code listing),
428

GType system, 6

GTypeInfo members, 388–389

MyMarqueePrivate and MyMarquee
GType, Defining (mymarquee.c)
(code listing), 409–413

registering new, 387–389

GValue data type, 7

GValue functions, 397

■H
handle boxes, 62–64

Handle box properties, 500

hangman application, 473–474

hash tables, GLib, 5, 197–199

header files

Interface Header File (myiface.h) (code
listing), 425–426

for MyIPAddress, creating, 382–385

MyMarquee widget header files, creating,
407–409

tree view, 270

Hello World application

creating, 15–21

extending, 23–26

hide signal, 27

hierarchy of widgets, 17–19

highlighting current lines, GtkSourceView
and, 257

history of GTK+, 2

■I
icons

custom stock, menus, 348–351

custom stock, toolbars, 348–351

7931indextight.fm Page 618 Tuesday, March 27, 2007 8:48 PM

619■I N D E X

Find it faster at http://superindex.apress.com

GtkIconFactory (iconfactory.c) (code
listing), 349–351

Icon view properties, 501

setting, 35

idle functions, 21, 183

Image properties, 502

Image menu item properties, 502

images

image menu items, 329

inserting in text buffers, 252–254

loading, 117

include directive, 97

indexes (in text buffers), 225

initializing GTK+, 16–17

input-output channels, 201–211

GIOChannel and files, 201–203

GIOChannel and pipes, 203–210

IO Channels, Using for Files (files2.c)
(code listing), 201–202

IOChannels, Using for Pipes
(iochannels.c) (code listing), 205–208

setting up, 208–210

spawning processes, 210–211

install command, 11

installing GTK+, 10–12

Integer and Floating-point Number
Selection (spinbuttons.c) (code
listing), 90

Integer and Floating-point Number
Selection with Scales (scales.c) (code
listing), 92–93

integer spin buttons, 88

interface, Glade, 360–361

interfaces, implementing, 425–429

Creating Object’s GType (code listing), 428

Initializing the Interface (code listing), 429

interfaces, implementing, 425–429

Interface Header File (myiface.h) (code
listing), 425–426

Interface Source File (myiface.c) (code
listing), 426–427

interprocess communication with pipes, 204

invisibility character, 85, 86

invisible property, 503

IO channels. See input-output channels

IP addresses

Retrieving Current IP Address (code
listing), 405

Setting New IP Address (code listing), 405

ip-changed signal, 384, 386

iterators, 281

■J
Java-Gnome language binding, 9

justification values, 229

■K
keyboard accelerators

basics of, 321–323

loading UI files and, 344

renderers, 309–313

using standard, 357

keyed data lists, 199–200

key-press-event, 31, 401, 406

keys, binary tree nodes and, 189–190

■L
Label properties, 503–504

labeling widgets, 24–25

languages. See also EXtensible Markup
Language (XML); Pango Text Markup
Language

language bindings, 9

layout

container widgets and, 25–26

Layout child properties, 526

layout containers, 44

Layout properties, 504

layout widget, 436–437

ldconfig command, 11, 212

leaf nodes, 189

leave-notify-event signal, 325, 327

Lesser General Public License (LGPL), 2

Libart graphics library, 478

7931indextight.fm Page 619 Tuesday, March 27, 2007 8:48 PM

620 ■I N D E X

Libglade, 372–377

advantages of, 372

autoconnecting signals, 375–377

Loading User Interface (browser.c) (code
listing), 373–374

user interface, loading, 373–375

libiconv package, 10

libintl package, 10

libraries, 3–9

ATK (Accessibility Toolkit), 8

GDK (GIMP Drawing Kit graphics library), 7

GdkPixbuf, 7–8

GLib utility, 5

GObject (GLib Object System), 6–7

GtkSourceView library, 258

Pango, 8

libtool tool, 10

line numbering, GtkSourceView and, 257

Link button properties, 505

linked lists

data storage and, 139

GLib, 186–188

Linux

installing GTK+ on, 10

Pango library and, 8

X11 and, 2

lists

of data. See GtkListStore

keyed data lists, GLib, 199–200

linked, and data storage, 139

linked, and data types, 186–188

■M
macros, GLib library, 161–163

main loop

function, 20–21

GLib, 179–183

make command, 11

make tool, 10

malloc() function, 166

margins

scrollable area and, 246

setting in text, 229

markup parser functions, calendar
application, 476–477

mathematical macros, GLib library, 163

memcpy() function, 194

memory, GLib, 165–171

allocation of, 168–169

profiling, 169–171

slab allocation of, 166

slices, 5, 165–168

Menu child properties, 527

Menu properties, 505

Menu bar properties, 505

menus. See also toolbars

Adding Accelerators to Menu Items
(accelerators.c) (code listing), 322

check menu items, 329–330

creating with Glade, 371–372

custom stock icons, 348–351

dynamic menu creation. See dynamic
menu creation

exercise, menu bar creation, 352

Groups of Menus, Creating (menubars.c)
(code listing), 331–333

GtkIconFactory (iconfactory.c) (code
listing), 349–351

image menu items, 329

keyboard accelerators, 321–323

menu bars, 330–333

menu items, 328

pop-up menus. See pop-up menus

radio menu items, 330

recent chooser menu, 459–460

status bars. See status bars

submenus, 328

Menu shell properties, 505

Menu tool button properties, 505

message dialogs

built-in, 122–126

feedback and, 358

7931indextight.fm Page 620 Tuesday, March 27, 2007 8:48 PM

621■I N D E X

Find it faster at http://superindex.apress.com

message dialogs, creating, 112–117

First Custom Dialog (dialogs.c) (code
listing), 113–114

GtkImage widget, 117

GtkDialog widget, creating, 114–115

GtkImage widget, 117

response identifiers, 115–116

message logging, GLib library, 164–165

Message dialog properties, 506

MIME types, 105

Misc properties, 506

mnemonics

defined, 25, 318

mnemonic label, 36

modal dialogs, creating, 119

model vs. tree columns, 264

model-view-controller (MVC) design, 262

module_path directive, 97

modules, dynamic (GLib), 212–215

Mono Project, 9

move-handle signal (GtkPaned), 53

multiple containers exercise, solution to,
596–597

multiple pages, dialogs with, 146–156

basics of, 154–156

GtkAssistant pages, 151–153

GtkAssistant Widget (assistant.c) (code
listing), 147–151

GtkProgressBar widget, 153–154

page forward functions, 154–156

multiple selections of rows, 283–284

MyIPAddress source files, creating, 385–405

Callback Functions for MyIPAddress (code
listing), 402–403

Current IP Address, Retrieving (code
listing), 405

Global Enumerations and Structures
(myipaddress.c) (code listing),
385–386

initializing widget class. See widget class

instantiating MyIPAddress object, 400–404

New IP Address, Setting (code listing), 405

New MyIPAddress Type, Creating (code
listing), 387

public MyIPAddress functions,
implementing, 404–405

registering new GType, 387–389

Rendering MyIPAddress Widget (code
listing), 401

setting and retrieving GObject properties,
397–400

MyMarquee

exercise for expanding, 424, 603–604

MyMarquee Class and Structure,
Initializing (code listing), 410–412

MyMarquee Properties, Setting and
Retrieving (code listing), 413

MyMarquee widget, creating, 409–413

MyMarquee widget, exposing, 418–420

MyMarquee widget header files, creating,
407–409

MyMarquee widget, realizing, 413–414

MyMarquee Widget, Setting and
Retrieving Message Speed Property
(code listing), 423

MyMarqueePrivate and MyMarquee
GType, Defining (mymarquee.c)
(code listing), 409–413

MyMarqueePrivate structure, 410

New MyMarquee Widget, Creating (code
listing), 413

Sliding MyMarquee Message (code
listing), 421–422

testing widget, 424

■N
n-ary trees, GLib, 191–193

nodes, binary trees, 189

nonmodal message dialogs, 118–119

notebooks

container widgets and, 64–68

Notebook child properties, 527

Notebook properties, 506–507

numbers

gdouble values (numbers), 89

storage of, 89

7931indextight.fm Page 621 Tuesday, March 27, 2007 8:48 PM

622 ■I N D E X

■O
Object properties, 507

offset characters (text buffers), 225

opacity control, 143

ORBit library, 478

OxFFFC characters, 254, 256

■P
packing

Glade options, 363

Packing Parameters, Specifying (boxes2.c)
(code listing), 48–50

table packing, 55–57

Vertical Boxes with Default Packing
(boxes.c) (code listing), 46–47

page forward functions, 154–156

pages

changing current, 68

rendering for printing, 449–452

panes

horizontal and vertical, 50–53

Paned child properties, 528

Paned properties, 507

Pango

installing GTK+ and, 10

library, 8

PangoFontDescription object, 8, 108

PangoLayout, implementing, 419

PangoLayout object, 229, 230

PangoTabArray object, 229

tab arrays, 229–231

Pango Text Markup Language

ease of use and, 8

formatting message dialog’s text and, 125

Glade address bars and, 368

style methods and, 25

styles reference and, 567–569

parameter and value definitions, widget
class, 397

parent/child widget relationships, 25–26

parsing XML files for calendar application, 477

passthrough() function, 477

password text entry, 84–86

pasting text, 238–241

path-drawing functions, Cairo, 453

paths

Converting Between Paths and Strings
(code listing), 279

converting iterators to, 281

converting to strings, 279–280

tree paths, 278–280

periods (.), widget hierarchy and, 96

PHP-GTK language binding, 9

ping utility, 474–475

pipe() function, 208

pixbuf objects, adding to text buffer, 252–254

pixmap_path directive, 97

pkg-config, for compilation, 21–22

pointer arrays, 196

poll() system calls, 179

populate-popup signal, 315

pop-up menu signal, 318, 321, 441

pop-up menus, 315–321

callback functions of, 319–321

creating, 316–319

Pop-up Menu, Simple (popupmenus.c)
(code listing), 316–318

Pop-up UI File (popup.ui) (code listing), 341

in UI files, 341

pop-up windows, 19

POSIX signals, 27

pound (#) symbol, RC files and, 97

prepare signal, 152

Printer properties, 508

printf() function, 125, 126

printing support, 441–452

Callback Function for begin-print Signal
(code listing), 448–449

Callback Function for draw-page Signal
(code listing), 450–451

Callback Function for end-print Signal
(code listing), 452

finalizing print operations, 452

7931indextight.fm Page 622 Tuesday, March 27, 2007 8:48 PM

623■I N D E X

Find it faster at http://superindex.apress.com

GTK+ Printing Example (printing.c) (code
listing), 442–443

implementing print operations, 448–449

Print and Print Preview (code listing),
444–445

print operations setup, 443–448

rendering pages, 449–452

Print job properties, 508

Print unix dialog properties, 509

private structure, 414–415

MyMarquee, 410

private data structure, retrieving, 423

Pro PHP-GTK (Apress, 2006), 9

process ID (pid), 204

process in UNIX, 204

process pending events, 35–36

progress bar renderers, 308–309

progress bars, 153–154

Progress bar properties, 509

properties. See also specific properties

events and properties exercise, solution
to, 595–596

expand and fill properties, 49

GtkTextView Properties, Using
(textview2.c) (code listing), 227–228

installing, widget class initialization,
395–397

resize and shrink properties (panes), 52–53

of text views, 226–229

public functions, implementing

MyIPAddress, 404–405

widgets, creating and, 421–423

PyGTK language binding, 9

Python bindings, 9

■Q
quarks, GLib, 199

■R
radio actions, creating, 345–346

radio buttons, 82–84

radio menu items, 330

radio tool buttons, 337

Radio action properties, 510

Radio button properties, 510

Radio menu item properties, 510

Radio tool button properties, 510

Range properties, 510

RC files (resource files), 94–97

recent chooser dialog widget, 463–465

recent chooser menu, 459–460

Recent chooser properties, 511

Recent chooser menu properties, 511

recently opened files, 455–466

adding recent files, 460–463

GtkRecentChooserDialog, Using (code
listing), 463–465

GtkRecentChooserMenu, Using (code
listing), 459–460

Opening Files and Adding to List of Recent
Files (code listing), 461–462

recent chooser dialog widget, 463–465

recent chooser menu, 459–460

Recently Opened Files, Remembering
(recentfiles.c) (code listing), 456–458

Recent manager properties, 512

RedHat Package Manager (RPM), 10

redo and undo, Glade 2, 360, 369

relief property, 39

remove signal (GtkContainer class), 46

removing multiple rows, 289–292

renaming files (exercise), 109, 597

renderers and columns, GtkListStore, 271–272

rendering

Cairo options for drawing, 454

pages for printing, 449–452

resizing

in GTK+, 50

panes, 50, 52–53

windows, 34

resource files (RC files), 94–97

resources, 477–478. See also web sites for
further information

response identifiers, 115–116

response signal, 119

7931indextight.fm Page 623 Tuesday, March 27, 2007 8:48 PM

624 ■I N D E X

retrieving

Current IP Address, Retrieving (code
listing), 405

GObject properties, 397–400

MyMarquee Properties, Setting and
Retrieving (code listing), 413

private data structure, 423

Retrieving Current IP Address (code
listing), 405

Retrieving Object Properties (code listing),
399–400

Retrieving User Information (entries.c)
(code listing), 85–86

row data, 288

text iterators and marks, 235–237

rich text editing, 246

rows

adding, 277–278, 284–289

Adding New Products (selections.c) (code
listing), 285–287

alternating rows, differentiating, 270

double clicks, 292

Editing a Clicked Row (code listing), 292

multiple selections, 283–284

referencing, 278–282

removing data from, 278

removing from tree store, 277–278

removing multiple, 289–292

Removing One or More Products
(selections.c) (code listing), 290–291

retrieving row data, 288

row-activated signal (GtkTreeView), 292

Selected For-Each Functions (code
listing), 283

selecting and adding, 282–292

single selections, 282–283

RPM (RedHat Package Manager), 10

Ruler properties, 512

■S
saving files, 132, 133–134

scales

horizontal and vertical, 91–93

Scale properties, 512

spin buttons and (exercise), 109–110, 598

scrolled windows

basics of, 219–224

Scrolled Windows, Using
(scrolledwindows.c) (code listing),
221–222

Scrolled window properties, 513

selecting text, 87–88, 245

selection_bound text mark, 232

selection-done callback function, 459

sensitive property, 78–79

separators

menu, 319

Separator tool item properties, 513

set-focus-child signal (GtkContainer class), 46

signals

activate signal, status icon, 441

autoconnecting with Libglade, 375–377

basics of, 27–29

button-press-event signal. See
button-press-event signal

changed signal (GtkAdjustment class), 89

color-set signal, 100

container signals, 46

day-selected signal, 439

end-print signal, 445, 452

expose-event signal, 432, 473

font-set signal, 108

installing, widget class initialization,
391–395

ip-changed signal, 384, 386

key-press-event signal, 406

populate-popup signal, 315

popup-menu signal, 441

size-changed signal, status icon, 441

value-changed signal (GtkAdjustment
class), 89, 93

widget signals, Glade, 370–371

signals reference, 529–563

Action signals, 533

Action group signals, 533

7931indextight.fm Page 624 Tuesday, March 27, 2007 8:48 PM

625■I N D E X

Find it faster at http://superindex.apress.com

Adjustment signals, 534

Assistant signals, 534

Button signals, 534

Calendar signals, 534–535

Cell editable signals, 535

Cell renderer signals, 535

Cell renderer accel signals, 535

Cell renderer text signals, 536

Cell renderer toggle signals, 536

Check menu item signals, 536

Color button signals, 536

Color selection signals, 536

Combo box signals, 536

Container signals, 537

Curve signals, 537

Dialog signals, 537, 542

Editable signals, 538

Entry signals, 538–539

Entry completion signals, 539

event types, GtkWidget (listed), 529–533

Expander signals, 539

File chooser signals, 539–540

Font button signals, 540

Handle box signals, 540

Icon view signals, 540–541

IM context signals, 541–542

Item signals, 542

Label signals, 543

Layout signals, 543

Menu signals, 543

Menu item signals, 544

Menu shell signals, 544

Menu tool button signals, 545

Notebook signals, 545

Object signals, 545

Paned signals, 546

Plug signals, 547

Printer signals, 547

Print job signals, 547

Print operation signals, 547–548

Radio action signals, 549

Range signals, 549

Scale signals, 549

Scrolled window signals, 550

Socket signals, 550

Spin button signals, 550–551

Statusbar signals, 551

Status icon signals, 551

Text buffer signals, 552

Text tag table signals, 553

Text view signals, 553–554

Toggle action signals, 554

Toggle button signals, 554

Toggle tool button signals, 554

Tool bar signals, 554–555

Tool button signals, 555

Tool item signals, 555

Tree model signals, 556

Tree selection signals, 556

Tree sortable signals, 556

Tree view signals, 557–558

Tree view column signals, 559

UI manager signals, 559

Viewport signals, 559

Widget signals with Events Removed,
560–563

Window signals, 563

singly linked lists, 186–188

size requests and allocations, widgets,
417–418

size-changed signal, status icon, 441

Size group properties, 513

slab allocation of memory, GLib, 166

source code for examples, 15

source markers, GtkSourceView and, 257

spacing

adding to text, 229

of tables, 57

spawning processes, GLib, 210–211

spin button cell renderers, 302–305

spin buttons, 88–91, 109–110, 514, 598

7931indextight.fm Page 625 Tuesday, March 27, 2007 8:48 PM

626 ■I N D E X

start_element() function, 476

states, widget, 94, 565

status bars, 323–328

adding with Glade, 369

Displaying More Information About a
Menu Item (statusbarhints.c) (code
listing), 326–327

menu item information, 325–328

status bar widget, 324–325

Statusbar properties, 514

status icon widget, 439–441

Status icon properties, 515

stock items, 75–76, 357, 583–586

stopping and emitting signals, 29

storage

of color in GdkColor, 100

linked lists and data storage, 139

of numbers, 89

strings

converting to paths, 279–280

GLib, 5, 184–186

styles, widget, 93–97

styles reference, 565–581

Arrow style properties, 572

Assistant style properties, 572

Button style properties, 573

Button box style properties, 573

Check button style properties, 573

Check menu item style properties, 574

Combo box style properties, 574

Dialog style properties, 574

Entry style properties, 574

Expander style properties, 574

Icon view style properties, 575

Menu style properties, 575

Menu bar style properties, 575

Menu item style properties, 575–576

Message dialog style properties, 576

Notebook style properties, 576

Paned style properties, 576

Pango Text Markup Language and, 567–569

Progress bar style properties, 577

Range style properties, 577

RC file styles, default, 565–567

Scale style properties, 577

Scrollbar style properties, 578

Scrolled window style properties, 578

Span Tag attributes for defining styles,
567–568

Spin button style properties, 578

Statusbar style properties, 578

Text tag style properties, 569–572

Text view style properties, 579

Toolbar style properties, 579

Tool button style properties, 579

Tree view style properties, 579–580

Widget style properties, 580–581

submenus, 328

switch() statements, 122, 130

symbols functions, GLib, 213

syntax highlighting, GtkSourceView and,
257–258

■T
tab arrays, Pango, 229–231

Table child properties, 528

Table properties, 515

tables

container widgets and, 53–57

GtkTable Displaying Name (tables.c)
(code listing), 52

GtkTable widget, 53

GtkTextBuffer’s tag table, 251

hash tables, GLib, 197–199

spacing of, 57

Table child properties, 528

table packing, 55–57

Table properties, 515

tabs

notebooks and, 66, 67–68

tab-position property, 66–67

text

cutting, copying and pasting, 238–241

7931indextight.fm Page 626 Tuesday, March 27, 2007 8:48 PM

627■I N D E X

Find it faster at http://superindex.apress.com

deleting, 87–88

entries, basic widgets and, 84–88

restricting length of, 86

rich text editing, 246

selecting, 87–88, 245

text() function, 476

text buffers

basics of, 225–226

changing contents, 237

editing, 232–237

inserting child widgets into, 254–256

inserting images into, 252–254

scrolling, 245–246

searching, 242–245

Text buffer properties, 516

text editor exercises, 468, 599–600, 604

text iterators and marks, 231–246

basics of, 231–232

Cut, Copy, and Paste Operations, Using
(cutcopypaste.c) (code listing),
238–240

GtkTextIter Find Function (find.c) (code
listing), 242–244

retrieving, 235–237

text, cutting, copying and pasting, 238–241

text buffer contents, changing, 237

text buffers, editing, 232–237

text buffers, scrolling, 245–246

text buffers, searching, 242–245

Text Iterators, Using (iterators.c) (code
listing), 233–235

text mark, inserting, 232

text tags

basics of, 246–252

Text Tags, Using (texttags.c) (code listing),
247–251

text view widgets, 219–259

exercise, creating text editor, 258

GtkSourceView widget, 256–258

images, inserting in text buffers, 252–254

inserting child widgets into text buffers,
254–256

scrolled windows, 219–224

text iterators and marks. See text iterators
and marks

text tags, 246–252

text views. See text views

text views, 224–231

GtkTextView Properties, Using
(textview2.c) (code listing), 227–228

number bytes and, 8

overview of, 224

Pango tab arrays, 229–231

properties, 226–229

Simple GtkTextViewExample (textview.c)
(code listing), 225–226

text buffers, 225–226

Text view properties, 516–517

themes, design of, 357

timeouts functions

defined, 21

exercises, 216, 599

timers, GLib, 172–174

toggle menus (tools), creating, 345–346

toggle tool buttons

basics of, 336–337

Toggle button properties, 517

Toggle tool button properties, 518

Toggle action properties, 517

toggled signal, 330

toolbars, 333–335, 600. See also dynamic
menu creation; menus

adding with Glade, 364–367

custom stock icons, 348–351

exercise, toolbar creation, 352, 601–602

GtkIconFactory (iconfactory.c) (code
listing), 349–351

GtkMenuToolButton, Using (code
listing), 338

GtkToolbar Widget, Creating (toolbars.c)
(code listing), 334–335

menu tool buttons, 337–338

radio tool buttons, 337

toggle tool buttons, 336–337

7931indextight.fm Page 627 Tuesday, March 27, 2007 8:48 PM

628 ■I N D E X

toolbars (continued)

Toolbar child properties, 528

toolbar items, 335–336

Toolbar properties, 518

Tool button properties, 518

Tool item properties, 519

top-level windows, creating, 19

traversal functions, 190

tree paths, 278–280

tree row reference objects, 280

tree view widget, 261–314. See also rows

adding new rows, 284-289

cell data functions, 295–298

cell renderers. See cell renderers

Converting Between Paths and Iterators
(code listing), 281

Converting Between Paths and Strings
(code listing), 279

editable text renderers, 292–295

exercise, creating file browser, 314

GtkCellRenderer object, 265–266

GtkListStore. See GtkListStore

GtkTreeModel interface, 263–264

GtkTreeStore, creating, 274–278

GtkTreeViewColumn object, 265–266

overview, 261–262

rows, referencing, 278–282

Setting Background Color with Cell Data
Functions (celldatafunctions.c)
(code listing), 296–298

Tree model filter properties, 519

Tree model sort properties, 519

Tree view properties, 519–520

Tree view column properties, 521

■U
UI (user interface) files. See user interface

(UI) files

UI manager properties, 522

underscore symbol (_), 28, 61

undo and redo

in Glade 2, 360, 369

support, GtkSourceView and, 257

undoing actions, 358

Uniform Resource Identifier (URI), 458

UNIX, process in, defined, 204

user interface (UI) files

creating, 339–341

loading, 341–345

Loading Menus with GtkUManager
(uimanager.c) (code listing), 342–343

Menu UI File (menu.ui) (code listing),
339–340

placeholders in, 347–348

Pop-up UI File (popup.ui) (code listing), 341

Toolbar UI File (toolbar.ui) (code listing),
340–341

user interfaces, dynamic, 355–379

design of, 355–358

Glade user interface builder. See Glade
user interface builder

Libglade. See Libglade

user-defined widget styles, 94–97

UTF-8

characters, 236

encoding, 8

utility functions, GLib, 171–179

directories, 177–178

Elapsed Time Between Toggling (timers.c)
(code listing), 174–175

environment variables, 171–172

file manipulation, 174–177

file system, 178–179

Getting Contents of Directories
(directories.c) (code listing), 177

timers, 172–174

Write and Read Files (files.c) (code listing),
175–176

■V
Valgrind tool, 170

value definitions, widget class, 397

value-changed signal (GtkAdjustment class),
89, 93

Viewport properties, 522

7931indextight.fm Page 628 Tuesday, March 27, 2007 8:48 PM

629■I N D E X

Find it faster at http://superindex.apress.com

void pointer, 29

VTE terminal emulator widget, 478

■W
watch events (pipes), 204

web sites for downloading

GCC, 1

GNOME Human Interface Guidelines,
38, 356

GTK+, 41

Libglade, 359

source code for examples, 15

web sites for further information

Bonobo libraries, 478

Cairo, 4, 454

code for Chapter 10 applications, 471

code listings for examples, 267

GConf library, 478

gettext, 129

GNOME, 38, 478

GTK+, 41, 478

Gtk2-perl language binding, 9

Java-Gnome language binding, 9

language bindings list, 9

Libart graphics library, 478

Libgnome library, 478

Mono Project, 9

ORBit library, 478

PHP-GTK language binding, 9

PyGTK language binding, 9

RC files, 97

site for this book, 478

VTE terminal emulator widget, 478

X11, 3

widget class

Initializing MyIPAddressClass (code
listing), 389–391

installing properties, 395–397

installing signals, 391–395

parameter and value definitions, 397

widget_class directive, 96

widget signals

setting up, Glade, 370–371

table of, Glade, 371

widgets. See also specific widgets; widgets,
basics of

child properties, 525–528

container widgets. See container widgets

grabbing keyboard focus with, 33

labeling, 24–25

parent/child widget relationships, 25–26

setting as inactive, 33

setting size, 33

showing and hiding, 20

widget directive, 96

widget flags, 78–79

widget hierarchy, 17–19

widget palette, Glade, 361

widget properties, 38–40, 522–523

widget properties dialog in Glade, 363

widget states, 94, 565

widgets, basics of, 75–110

Check Button Interaction (checkbuttons.c)
(code listing), 80–81

color buttons, 97–101

Defining Widget Styles (.gtkrc) (code
listing), 95

exercise, renaming files, 109

exercise, spin buttons and scales, 109–110

file chooser buttons, 101–105

font buttons, 106–108

Integer and Floating-point Number
Selection (spinbuttons.c) (code
listing), 90

Integer and Floating-point Number
Selection with Scales (scales.c) (code
listing), 92–93

radio buttons, 82–84

scales, horizontal and vertical, 91–93

Selfish Toggle Buttons (radiobuttons.c)
(code listing), 83

spin buttons, 88–91

stock items, using, 75–76

7931indextight.fm Page 629 Tuesday, March 27, 2007 8:48 PM

630 ■I N D E X

widgets, basics of (continued)

text entries, 84–88

toggle buttons, 77–84, 102–103. See also
check buttons; widgets, widget flags

User Information, Retrieving (entries.c)
(code listing), 85–86

widget states, 94

widget styles, 93–97

widgets, creating from scratch, 407–430

drawing functions, 420–421

exercise, expanding My Marquee, 430

MyMarquee Class and Structure,
Initializing (code listing), 410–412

MyMarquee Properties, Setting and
Retrieving (code listing), 413

MyMarquee widget, creating, 409–413

MyMarquee widget, exposing, 418–420

MyMarquee widget header files, creating,
407–409

MyMarquee widget, realizing, 413–414

MyMarquee Widget, Setting and
Retrieving Message Speed Property
(code listing), 423

MyMarquee widget, testing, 424

MyMarqueePrivate and MyMarquee
GType, Defining (mymarquee.c)
(code listing), 409–413

New MyMarquee Widget, Creating (code
listing), 413

public functions, implementing, 421–423

size requests and allocations, specifying,
417–418

Sliding MyMarquee Message (code
listing), 421–422

widgets, deriving new, 381–407

GObject Directives (code listing), 383

Header File Function Prototypes (code
listing), 385

MyIPAddress header files, creating, 382–385

MyIPAddress source files, creating. See
MyIPAddress source files, creating

MyIPAddress widget, testing, 405–407

windows

attaching styles to, 416

GTK+ windows, 19–20

setting background to, 416

setting title of, 20

sizing, 34

window functions, 33–35

window properties, 523–525

wrap mode, 228

■X
X Window System (X11), 2–3

X11. See X Window System (X11)

XML (EXtensible Markup Language)

dynamically creating menus with, 339

parsing files, calendar application, 477

X.Org Foundation, 2

7931indextight.fm Page 630 Tuesday, March 27, 2007 8:48 PM

	Table of Content
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Index

