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Abstract: Given a square matrix A, a Brauer’s theorem [Brauer A., Limits for the characteristic roots of a matrix. IV. Appli-
cations to stochastic matrices, Duke Math. J., 1952, 19(1), 75–91] shows how to modify one single eigenvalue of
A via a rank-one perturbation without changing any of the remaining eigenvalues. Older and newer results can
be considered in the framework of the above theorem. In this paper, we present its application to stabilization of
control systems, including the case when the system is noncontrollable. Other applications presented are related
to the Jordan form of A and Wielandt’s and Hotelling’s deflations. An extension of the aforementioned Brauer’s
result, Rado’s theorem, shows how to modify r eigenvalues of A at the same time via a rank-r perturbation without
changing any of the remaining eigenvalues. The same results considered by blocks can be put into the block
version framework of the above theorem.

MSC: 15A18, 93D15

Keywords: Eigenvalues • Pole assignment problem • Controllability • Low rank perturbation • Deflation techniques
© Versita Sp. z o.o.

1. Brauer’s Theorem

The relationship between the eigenvalues of an arbitrary matrix and the updated matrix by a rank-one additive pertur-bation was established by A. Brauer [1]. We will refer to this result as Brauer’s Theorem. It turns out that this result isrelated to older and well-known results on Wielandt’s and Hotelling’s deflations techniques [10]. Brauer’s Theorem findsits application also in the eigenvalue localization problem of control theory [5] and in stabilization of control systems.
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Perfect [7] applied an extension of Brauer’s result, Rado’s Theorem, to construct nonnegative matrices with a prescribedspectrum.In the first part of the paper (Sections 1 and 2), we give results that can be considered in a common framework ofBrauer’s Theorem as applications of it. A good introduction on the Brauer result and its application to the nonnegativeinverse eigenvalue problem can be followed in [9] where Rado’s Theorem is given. Rado’s Theorem is considered in thesecond part of this paper (Sections 3 and 4) and applied to obtain a block version of deflation results.Throughout the paper, we assume that all sets of eigenvalues of a matrix are feasible in the corresponding field (i.e.,closed under complex conjugation in the real field).
Brauer’s Theorem ([7, 9]).
Let A be an arbitrary n×n matrix with eigenvalues σ (A) = {λ1, λ2, . . . , λn}. Let xk be an eigenvector of A associated with
the eigenvalue λk , and let q be any n-dimensional vector. Then the matrix A+ xkqT has eigenvalues

{
λ1, . . . , λk−1, λk +

xTk q, λk+1, . . . , λn}.
Let xi be eigenvectors of A associated with eigenvalues λi. If xk is a Jordan chain of length 1, and the n-dimensionalvector q from the above theorem is orthogonal to xi, for all i = 1, 2, . . . , n, i 6= k , then the Jordan structures of A and
A+ xkqT are the same.The relationships between eigenvectors of A and A+ xkqT are given in the following result [8].
Proposition 1.1.
Let A be an arbitrary n×n matrix with eigenvalues σ (A) = {λ1, λ2, . . . , λn}. Let xi be an eigenvector of A associated
with the eigenvalue λi, 1 ≤ i ≤ n. Let q be any n-dimensional vector and let µk = λk +xTk q, with µk 6= λi, i = 1, 2, . . . , n.
Then, xk is an eigenvector of the matrix A + xkqT associated with the eigenvalue µk = λk + xTk q, and the eigenvectors
of A+ xkqT associated with λi, i 6= k, are

wi = xi −
qT xi
µk − λi

xk .

However, the changes of left eigenvectors of A and A + xkqT are inverse as we can see in the next result for adiagonalizable matrix A.
Proposition 1.2.
Let A be a diagonalizable n×n matrix with eigenvalues σ (A) = {λ1, λ2, . . . , λn}. Let lTi be a left eigenvector of A
corresponding to λi, 1 ≤ i ≤ n. Let q be any n-dimensional vector and let µk = λk + xTk q, with µk 6= λi, i = 1, 2, . . . , n.
Then, the left eigenvectors of A + xkqT corresponding to λi, i 6= k, are rTi = lTi , and the left eigenvector of A + xkqT
corresponding to µk is

rTk = lTk +∑
i6=k

qT xi
µk − λi

lTi .

Proof. Since lTi , i 6= k , is a left eigenvector of A corresponding to λi, we have lTi (A − λiI) = 0, i 6= k . So, 〈li, xk〉 = 0for all i 6= k and
lTi
(
A+ xkqT − λiI

) = lTi (A − λiI) + lTi (xkqT ) = 0 + (lTi xk )qT = 〈li, xk〉qT = 0.Hence lTi , i 6= k , is a left eigenvector of A+ xkqT corresponding to λi: rTi = lTi , i 6= k . SincelTk +∑
i6=k

qT xi
µk − λi

lTi

(A+ xkqT ) = lTk A+ lTk xkqT +∑
i6=k

qT xi
µk − λi

lTi A+∑
i6=k

qT xi
µk − λi

lTi xkqT

= λk lTk + qT +∑
i6=k

qT xi
µk − λi

λilTi = λk lTk +∑
i6=k

qT xi
µk − λi

λilTi + qT (x1lT1 + x2lT2 + · · ·+ xnlTn︸ ︷︷ ︸
I

)
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= (λk + qT xk︸︷︷︸
µk−λk

) lTk +∑
i6=k
(

qT xi
µk − λi

λi + qT xi
)
lTi = µk lTk +∑

i6=k
qT xi
µk − λi

µk lTi = µk

lTk +∑
i6=k

qT xi
µk − λi

lTi

 = µkrTk ,

we have
rTk = lTk +∑

i6=k
qT xi
µk − λi

lTi .

2. Related results

In this section we show that Brauer’s Theorem can be used to prove different related results. For instance, to examineexistence and convergence of the Page Rank Power Method, a stochastic matrix is updated by a rank-one matrix toconstruct the Google matrix [6]. The relationship between the spectrum of both matrices is given in [6, Theorem 5.1]. Thesame result can be obtained as a corollary of Brauer’s Theorem applied to the matrix αA and the vector q = (1− α)v .More precisely, if A is a row stochastic matrix with eigenvalues σ (A) = {1, λ2, . . . , λn} and e denotes the eigenvectorassociated with the eigenvalue 1, then the matrix αA + (1 − α)evT has eigenvalues {1, αλ2, . . . , αλn}, where vT is aprobability vector and 0 < α < 1.
2.1. Deflation techniques

In 1944 Wielandt presented a deflation method for general matrices shifting one eigenvalue to zero [10]. ApplyingBrauer’s Theorem for a vector q such that qT xk = −λk immediately gives this result.
Corollary 2.1 (Wielandt’s deflation).
Let assumptions of Brauer’s Theorem hold with q being any vector such that qT xk = −λk . Then the matrix A + xkqT
has the eigenvalues {λ1, . . . , λk−1, 0, λk+1, . . . , λn}.
Remark 2.2.If A is symmetric, then A is diagonalizable and we can choose an orthogonal matrix X = [x1 x2 . . . xn] made of theeigenvectors of A. In this case the matrix B = A + (µk − λk )xkxTk is symmetric (diagonalizable) and it can be verifiedthat the eigenvectors of B associated with λi, i 6= k , are the eigenvectors of A associated with λi, i 6= k .
The above result contains a well-known technique due to Hotelling, established in 1933, for symmetric matrices thatcan be extended to nonsymmetric matrices.
Corollary 2.3 (Hotelling’s deflation).
Let the assumptions of Brauer’s Theorem hold.(i) (Symmetric case) Let A be symmetric. Then the symmetric matrix A − λkxkxTk has the eigenvalues

{λ1, λ2, . . . , λk−1, 0, λk+1, . . . , λn}, provided that xTk xk = 1.

(ii) (Nonsymmetric case) Let lk be the left eigenvector of A, with lTk xk = 1. Then the matrix A − λkxk lTk has the
eigenvalues {λ1, . . . , λk−1, 0, λk+1, . . . , λn}.

Proof. Apply Brauer’s Theorem for a vector q = −λkxk in the symmetric case and q = −λk lk in the nonsymmetriccase.
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2.2. Pole assignment for SISO systems

Another application Brauer’s Theorem finds for single-input single-output (SISO) linear time invariant control systemsgiven by pairs (A, b), where A is an n×n matrix and b is an n-dimensional vector [3]. Given a SISO system we use astate feedback to place the poles of the closed-loop system at specified points in the complex plane. More precisely,the pole placement problem states as follows:
Consider a pair (A, b). Let σ (A) = {λ1, λ2, . . . , λn} and let µk be a number. Under what conditions on(A, b) does there exist a vector f such that the spectrum of the closed-loop system A+ bfT , σ (A+ bfT ), is
{λ1, . . . , λk−1, µk , λk+1, . . . , λn}?

The following result answers this question.
Proposition 2.4.
Consider a pair (A, b), let σ (A) = {λ1, λ2, . . . , λn} and let xk be an eigenvector of AT associated with λk . If bT xk 6= 0,
then there exists a vector f such that σ (A+ bfT ) = {λ1, . . . , λk−1, µk , λk+1, . . . , λn}.
Proof. As σ (AT ) = σ (A), by Brauer’s Theorem applied to AT , the matrix AT + xkqT has eigenvalues λ1, . . . , λk−1, λk +
qT xk , λk+1, . . . , λn, where q is any n-dimensional vector. It is clear that σ (A + qxTk ) = {λ1, . . . , λk−1, λk +
qT xk , λk+1, . . . , λn}.Consider q = b and f = xk . If bT xk 6= 0, we have

λk + qT xk = λk + bT xk = µk =⇒ bT xk = µk − λk .

Then, σ (A+ bfT ) = {λ1, . . . , λk−1, λk + qT xk , λk+1, . . . , λn}.
Remark 2.5.(a) Note that the assumption of bT xk 6= 0 is needed only to assure the change of the eigenvalue λk . Otherwise noeigenvalue changes.
(b) By this result we can say that the pole assignment problem has a solution if xk is not orthogonal to the vector b(that is, bT xk 6= 0), see [2, 4]. When this condition holds for all eigenvectors of AT , then the pair (A, b) is calledcompletely controllable; in this case the solution is unique [3].
(c) If µk 6= λi, for i = 1, 2, . . . , n, i 6= k , according to Proposition 1.1 the eigenvector of AT associated with λk and theeigenvectors of AT corresponding to λi, i 6= k , such that bT xi = 0, remain unchanged. Proposition 1.2 describes thechange of left eigenvectors of AT .
(d) If λi 6= λj for each i 6= j , and bT xi 6= 0, then one can show that bTwi 6= 0, where wi is defined in Proposition 1.1.
Example 2.6.Consider the pair (A, b):

A =

−2 −3 −2 02 3 2 03 3 3 00 1 −2 2

 , b =


0011
 .

This pair (A, b) is not completely controllable since the rank of the controllability matrix
C(A, b) = [b Ab A2b A3b] =


0 −2 −8 −260 2 8 −261 3 9 271 0 −4 −18


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is 3. Note that σ (A) = σ (AT ) = {0, 1, 2, 3} and the eigenvectors of AT are:
xTλ=0 = (α1, −α1, 0, 0) for all α1 6= 0 =⇒ bT xλ=0 = 0,
xTλ=1 = (α2, 0, α2, 0) for all α2 6= 0 =⇒ bT xλ=1 = α2,

xTλ=2 = (α3, 2α3, 0, α3) for all α3 6= 0 =⇒ bT xλ=2 = α3,
xTλ=3 = (α4, α4, α4, 0) for all α4 6= 0 =⇒ bT xλ=3 = α4.

Although the system is not completely controllable, we can change all the eigenvalues of A but λ = 0. For instance, ifwe change λ = 3 to µ = 0.7 and consider the eigenvector of AT associated with λ = 3, we obtain
bT xλ=3 = α4 = 0.7− 3 = −2.3 =⇒ α4 = −2.3.

Then, fT = (−2.3, −2.3, −2.3, 0) and
A+ bfT =


−2 −3 −2 02 3 2 00.7 0.7 0.7 0
−2.3 −1.3 −4.3 2

 with σ (A+ bfT ) = {0, 0.7, 1, 2}.

Consider a SISO discrete-time (or continuous-time) invariant linear system given by the pair (AT , b). Let σ (AT ) =
{λ1, λ2, . . . , λn}. The system is asymptotically stable if all eigenvalues λi of AT satisfy |λi| < 1 (or Re λi < 0), see forinstance [3, 5]. Applying Proposition 2.4 to an unstable pair (A, b) we can obtain the closed-loop system A+ bfT withthe feedback vector f equal to the eigenvector associated with the eigenvalue λk such that |λk | ≥ 1 (or Re λk ≥ 0).The following algorithm gives a verification of stabilization of the SISO system (AT , b) with application of Proposition 2.4and the Power Method [8] assuming that AT has a dominant eigenvalue. The advantage of the proposed method is thatwe do not need the system to be completely controllable.
Algorithm

Input: (AT , b).
Step 1. Set A0 = A1 = A, i = 1 and f0 the zero vector.
Step 2. Apply the Power Method to Ai, and obtain the dominant eigenvalue λi and the corresponding eigenvector xi.
Step 3. If |λi| < 1, then the pair (Ai, b) is asymptotically stable, where Ai = Ai−1 + fi−1bT . END.Otherwise,
Step 4. If 〈xi, b〉 = 0, then the pair (Ai, b) cannot be stabilized (Proposition 2.4). END.Otherwise,
Step 5. Choose a scalar αi such that the new eigenvalue µi = λi + (αixTi )b satisfies |µi| < 1. Let fi = fi−1 + αixi.
Step 6. Let Ai+1 = Ai + αixibT . Note that σ (Ai+1) = {λ1, . . . , λi−1, µi, λi+1, . . . , λn} with |µi| < 1. Let i = i + 1, GOTO

Step 2.
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3. Rado’s Theorem

H. Perfect [7] in 1955 presented a result, due to R. Rado, which shows how to modify, in only one step, r eigenvaluesof an arbitrary matrix A without changing any of the remaining n − r eigenvalues. Rado’s Theorem is an extension ofBrauer’s Theorem and it has been applied to generate sufficient conditions for the construction of nonnegative matriceswith prescribed spectrum [7, 9]. Similarly to Brauer’s Theorem, the immediate consequences of this result are the blockdeflation methods and the pole assignment problem when a MIMO linear control system is not completely controllable.
Rado’s Theorem ([9, Brauer’s Extended Theorem, Theorem 5]).
Let A be an arbitrary n×n matrix with eigenvalues {λ1, λ2, . . . , λn}. Let X = [x1 x2 . . . xr ] be an n×r matrix such
that rankX = r and Axi = λixi, i = 1, 2, . . . , r, r ≤ n. Let C be an arbitrary r×n matrix. Then the matrix A + XC
has eigenvalues {µ1, µ2, . . . , µr , λr+1, λr+2, . . . , λn}, where µ1, µ2, . . . , µr are eigenvalues of the matrix Ω + CX with Ω =diag (λ1, λ2, . . . , λr).
Rado’s Theorem shows how to change r eigenvalues of A in only one step. In general, the eigenvector xi associated with
λi of A, i = 1, 2, . . . , r, is not the eigenvector associated with the new eigenvalue µi of A+ XC . If the matrix Ω + CX isdiagonalizable the way in which xi changes is described below.
Proposition 3.1.
Let A be an arbitrary n×n matrix with eigenvalues {λ1, λ2, . . . , λn}. Let X = [x1 x2 . . . xr ] be an n×r matrix which column
vectors satisfy Axi = λixi, i = 1, 2, . . . , r, r ≤ n. Let C be an arbitrary r×n matrix and let Ω = diag (λ1, λ2, . . . , λr).
If µ1, µ2, . . . , µr are eigenvalues of the diagonalizable matrix Ω + CX and T is the transition matrix to its Jordan form,
then the column vectors of the matrix product XT are the eigenvectors of A+ XC associated with µ1, µ2, . . . , µr .
Proof. Since T is the transition matrix, we have

(A+ XC )X = X (Ω + CX ) = XT diag (µ1, µ2, . . . , µr)T−1.
Hence (A+ XC )XT = XT diag (µ1, µ2, . . . , µr) and the result follows.
Remark 3.2.If we take an arbitrary matrix C such that

CX = diag (µ1 − λ1, µ2 − λ2, . . . , µr − λr),
then Ω + CX = diag (µ1, µ2, . . . , µr) and the matrix T , of Proposition 3.1, is equal to the identity matrix. Therefore, theeigenvector xi associated with λi of A, i = 1, 2, . . . , r, is the eigenvector associated with the new eigenvalue µi of A+XC .
In this case, the eigenvectors associated with the eigenvalues λr+1, . . . , λn change in the following way.
Proposition 3.3.
Assume the assumptions of Rado’s Theorem and Remark 3.2 hold. Let xi be the eigenvector of A associated with the
eigenvalue λi, r + 1 ≤ i ≤ n. Then, the eigenvector of A+ XC associated with λi is given by

wi = xi −
r∑
j=1

cjxi
µj − λi

xj , r + 1 ≤ i ≤ n,
where cj is the j-th row of the matrix C.
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Proof. For xi, r + 1 ≤ i ≤ n, we have
(A+ XC )xi − r∑

j=1
cjxi

µj − λi
xj

 = Axi + XCxi −
r∑
j=1 (A+ XC ) cjxi

µj − λi
xj = λixi + r∑

j=1 (cjxi)xj − r∑
j=1

cjxi
µj − λi

µjxj

= λixi −
r∑
j=1
(
−cjxi + cjxi

µj − λi
µj
)
xj = λi

xi − r∑
j=1

cjxi
µj − λi

 xj .

4. Applications of Rado’s Theorem

In this section we give applications of Rado’s Theorem to deflation techniques and to the pole assignment problem forMIMO systems.
4.1. Block deflation techniques

Now using Rado’s Theorem we can obtain a block version of the deflation results working with particular matrices C .A direct application of Rado’s Theorem gives
Corollary 4.1 (Wielandt’s deflation).
Assume the assumptions of Rado’s Theorem hold. Let C be a matrix such that Ω + CX has all the eigenvalues zero.
Then the matrix B = A+ XC has eigenvalues {0, 0, . . . , 0, λr+1, λr+2, . . . , λn}.
Remark 4.2.If A is symmetric, then it is diagonalizable and we can choose an orthogonal matrix X = [x1 . . . xr xr+1 . . . xn] = [Xr Xn−r ]made of eigenvectors of A. Consider Θ = diag (µ1 − λ1, µ2 − λ2, . . . , µr − λr), then the matrix B = A + XrΘXT

r issymmetric (diagonalizable) and it can be verified that its eigenvectors associated with the eigenvalues λr+1, . . . , λn arethe eigenvectors of A.
Corollary 4.3 (Hotelling’s deflation).
Assume the assumptions of Rado’s Theorem hold.(i) (Symmetric case) Let A be symmetric. Then the symmetric matrix A − XΩXT has the eigenvalues

{0, 0, . . . , 0, λr+1, λr+2, . . . , λn}, provided that XTX = Ir .(ii) (Nonsymmetric case) Let L = [l1, l2, . . . , lr ] be an n×r matrix such that rank L = r, lTi A = λilTi and LTX = I.
Then the matrix B = A − XΩLT has eigenvalues {0, 0, . . . , 0, λr+1, λr+2, . . . , λn}.

Proof. Apply Rado’s Theorem with C = −ΩXT for the symmetric case and with C = −ΩLT for the nonsymmetriccase.
Remark 4.4.It is easy to check that the matrices A and A+XC have the same eigenvectors and the same Jordan structure associatedwith the eigenvalues λr+1, λr+2, . . . , λn.
4.2. Pole assignment of MIMO systems

Rado’s Theorem finds its application in control theory for multi-input multi-output (MIMO) systems defined by pairs(A,B), where A and B are n×n and n×m matrices [2]. Let the new eigenvalues µi be different from the eigenvalues λjto be changed, 1 ≤ i, j ≤ r. The pole assignment problem for MIMO systems states:
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Consider a pair (A,B) with A and B, n×n and n×m matrices and the set of numbers {µ1, µ2, . . . , µr}, and
let σ (A) = {λ1, λ2, . . . , λn}. What are the conditions on (A,B) so that the spectrum of the closed loop matrix
A+ BFT , σ (A+ BFT ), coincides with the set {µ1, µ2, . . . , µr , λr+1, λr+2, . . . , λn}, for some matrix F?

The following result answers this question.
Proposition 4.5.
Consider a pair (A,B), with A and B, n×n and n×m matrices. Let σ (A) = {λ1, λ2, . . . , λn}. Let X = [x1 x2 . . . xr ] be an
n×r matrix such that rankX = r and AT xi = λixi, i = 1, 2, . . . , r, r ≤ n. If there is a column bji of the matrix B such that
bTji xi 6= 0, for all i = 1, 2, . . . , r, then there exists a matrix F such that σ (A+ BFT ) = {µ1, µ2, . . . , µr , λr+1, λr+2, . . . , λn}.
Proof. As σ (AT ) = σ (A), by Rado’s Theorem applied to AT , we have that σ (AT + XC ) =
{µ1, µ2, . . . , µr , λr+1, λr+2, . . . , λn}, where {µ1, µ2, . . . , µr} are the eigenvalues of Ω + CX , with Ω = diag (λ1, λ2, . . . , λr).Then, σ (A+ CTXT ) = {µ1, µ2, . . . , µr , λr+1, λr+2, . . . , λn}.Let CT = [bj1 bj2 . . . bjr ], where bTji xi 6= 0 for i = 1, 2, . . . , r. Then

A+ CTXT = A+ [bj1 bj2 . . . bjr ]XT = A+ B [ej1 ej2 . . . ejr ]XT ,

where the matrix [ej1 ej2 . . . ejr ] is made of the corresponding unit vectors. Setting FT = [ej1 ej2 . . . ejr ]XT , we have
σ (A+ CTXT ) = σ (A+ BFT ) = {µ1, µ2, . . . , µr , λr+1, λr+2, . . . , λn},

where {µ1, µ2, . . . , µr} are the eigenvalues of Ω + [ej1 ej2 . . . ejr ]TBTX , with Ω = diag (λ1, λ2, . . . , λr).
Remark 4.6.(a) Note that the assumption of existence of a column bji of the matrix B such that bTji xi 6= 0, i = 1, 2, . . . , r, is neededonly to assure the change of the eigenvalue λi. Otherwise no eigenvalue changes.(b) In the MIMO systems the solution of the pole assignment is not unique as we can see in the next example. Further,note that Proposition 4.5 indicates that we can allocate poles even in the case of uncontrollable systems.
Example 4.7.Consider the pair (A,B):

A =

−2 −3 −2 02 3 2 03 3 3 00 1 −2 2

 , B =


0 00 01 11 1
 .

Note that this pair is not completely controllable since the rank of the matrix
C(A,B) = [B AB A2B A3B] =


0 0 −2 −2 −8 −8 −26 −260 0 2 2 8 8 −26 −261 1 3 3 9 9 27 271 1 0 0 −4 −4 −18 −18


is 3. The spectral computation gives σ (A) = σ (AT ) = {0, 1, 2, 3} and the eigenvectors of AT are:

xTλ=0 = (α1, −α1, 0, 0) for all α1 6= 0 =⇒ BT xλ=0 = [00]
xTλ=1 = (α2, 0, α2, 0) for all α2 6= 0 =⇒ BT xλ=1 = [α2

α2
]

xTλ=2 = (α3, 2α3, 0, α3) for all α3 6= 0 =⇒ BT xλ=2 = [α3
α3
]

xTλ=3 = (α4, α4, α4, 0) for all α4 6= 0 =⇒ BT xλ=3 = [α4
α4
]
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Since the above products are different from zero for the eigenvalues λ = 1, λ = 2 and λ = 3, we consider three casesaccording to the number of eigenvalues we want to change and the number of columns of the matrix B.
Case 1. Suppose we want to change the eigenvalues λ = 2 and λ = 3 to µ = 0.5 and µ = 0.7, respectively. Then,
r = m. Since bT1 xλ=2 6= 0 and bT1 xλ=3 6= 0,

CT = [b1 b1] = B
[1 10 0]

and the matrix Ω + CX = Ω + [1 01 0]BTX = [2 + α3 α4
α3 3 + α4

]
has the eigenvalues µ1 = 0.5 and µ2 = 0.7 when α3 = 1.95 and α4 = −5.75. So the feedback matrix F is

FT = [1 10 0]XT = [−3.8 −1.85 −5.75 1.950 0 0 0 ]
.

Then, the closed-loop matrix
A+ BFT =


−2 −3 −2 02 3 2 0
−0.8 1.15 −2.75 1.95
−3.8 −0.85 −7.75 3.95


has the spectrum σ (A+ BFT ) = {0, 0.5, 0.7, 1}.Note that working with the two column vectors of the matrix B, we obtain the feedback matrix

FT = [ 1.95 3.9 0 1.95
−5.75 −5.75 −5.75 0 ]

.

Case 2. Now, we want to change only the eigenvalue λ = 3 to µ = 0.7, in this case r < m. Since bT1 xλ=3 6= 0,
CT = [b1] = B

[10]

and the matrix Ω + CX = Ω + [1 0]BTX = 3 + α4 has the eigenvalue µ = 0.7 if α4 = −2.3. So the feedback matrix F is
FT = [10]XT = [−2.3 −2.3 −2.3 00 0 0 0] .

Then, the closed-loop matrix is
A+ BFT =


−2 −3 −2 02 3 2 00.7 0.7 0.7 0
−2.3 −1.3 −4.3 2


with the spectrum σ (A+ BFT ) = {0, 0.7, 1, 2}.
Case 3. Finally, we want to change the three eigenvalues λ = 1, λ = 2 and λ = 3 to µ1 = 0.2, µ2 = 0.5 and µ3 = 0.7,respectively. In this case r > m.Since bT1 xλ=1 6= 0, bT1 xλ=2 6= 0 and bT1 xλ=3 6= 0,

CT = [b1 b1 b1] = B
[1 1 10 0 0]
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and the matrix
Ω + CX = Ω + 1 01 01 0

BTX = 1 + α2 α3 α4
α2 2 + α3 α4
α2 α3 3 + α4


has eigenvalues µ1 = 0.2, µ2 = 0.5 and µ3 = 0.7 when α2 = −0.06, α3 = 3.51 and α4 = −8.05. So the feedback matrix
F is

FT = [1 1 10 0 0]XT = [−4.6 −1.03 −8.11 3.510 0 0 0 ]
.

Then, the closed-loop matrix is
A+ BFT =


−2 −3 −2 02 3 2 0
−1.6 1.97 −5.11 3.51
−4.6 −0.03 −10.11 5.51


with the spectrum σ (A+ BFT ) = {0, 0.2, 0.5, 0.7}.
Remark 4.8.As before, a MIMO discrete-time (or continuous-time) invariant linear system, given by the pair (AT , B), is asymptoticallystable if all eigenvalues λi of AT satisfy |λi| < 1 (or Re λi < 0), see for instance [3, 5]. Applying Proposition 4.5 to anunstable pair (AT , B) we can obtain the closed-loop system A + BFT with the feedback matrix F computed as in theproof of the above proposition.
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