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Modified Gershgorin Disks for
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Abstract. All the zeros of a polynomial are contained in the union of Gershgorin disks derived from
its companion matrix, a consequence of Gershgorin’s theorem. However, this theorem does
not exploit the structure of the companion matrix. We will use this structure to obtain
smaller zero inclusion regions, thereby providing some nonstandard results to accompany
and illustrate this frequently covered topic in numerical and matrix analysis.
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1. Introduction. A convenient way to obtain information on the location of the
zeros of a polynomial is by locating the eigenvalues of its companion matrix. A
well-known and easy tool to obtain such information is that of the Gershgorin disks,
centered at the diagonal elements of the matrix, whose radii are simple functions of
the matrix elements. Gershgorin’s theorem states that the union of these disks is
guaranteed to contain all the eigenvalues. Several classical bounds on the moduli of
a polynomial’s zeros such as, e.g., Cauchy’s bound, follow easily from applying the
Gershgorin disks to the companion matrix of the polynomial.

However, Gershgorin’s theorem is almost always used as a black box, i.e., without
taking into account any structure the matrix might have, and, as we will see in the
next section, more detailed localization techniques can be developed.

We first review Gershgorin’s theorem, its proof, and its application to the com-
panion matrix of a polynomial, and then use the structure of this companion matrix
to modify and improve the theorem. The modifications lead to the replacement of the
disks by the intersection with another disk, with the exterior of a disk, with a plane,
or, perhaps more interestingly, with an oval of Cassini. Such ovals also play a role in a
different eigenvalue inclusion set, namely, the Brauer set. We thus demonstrate in an
elementary way that more than just ordinary disks result from Gershgorin’s idea for
companion matrices. It allows us to present some nonstandard results to accompany
and illustrate the general subject of eigenvalue and polynomial zero inclusion regions,
which is often studied in a first numerical or matrix analysis course.

Eigenvalue inclusion regions have a rich and interesting history, starting with the
work of Lucien Lévy, who obtained an equivalent formulation of Gershgorin’s theorem
for real matrices in 1881 [10]. The result was independently rediscovered many times
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356 AARON MELMAN

[14]. An in-depth study with many newer results can be found in [15], while Chapter
6 in [8] provides a good introduction and useful references.

Estimates for the zeros of polynomials usually take the form of bounds on their
moduli. Well-known bounds were derived by Cauchy, as mentioned before, but also
by Montel and Kojima, to name but a few (see [8, section 5.6]), while more advanced
results can be found in, e.g., [11], [12], [13], and references therein. Our focus will be
less on bounds and more on specific regions in the complex plane that contain the
zeros. These regions will then also generate bounds that fall, generally speaking, into
the same category as the aforementioned classical bounds. It is worth mentioning that
modern software is able to compute polynomial zeros rapidly and to high precision
by computing the eigenvalues of the companion matrix.

In the following section we will define the companion matrix mentioned above
and explain how Gershgorin’s theorem can be adapted to its specific structure. Two
changes based on this adaptation are then carried out in subsequent sections.

2. Companion Matrices and Gershgorin’s Theorem. We begin by formally
stating Gershgorin’s theorem and its application to companion matrices, after which
we will informally delve into its proof.

Theorem 2.1 (see Gershgorin [7]). All the eigenvalues of the n × n complex
matrix A with elements aij are located in the union of n disks,

n⋃
i=1


z ∈ C : |z − aii| ≤

n∑
j=1

j �=i

|aij |


 .

An analogous statement holds for the columns of the matrix, because the spectra
of A and AT are identical.

This means that all the eigenvalues must lie in a union of disks, each centered
at a diagonal element of the matrix and having a radius equal to the corresponding
deleted row sum, i.e., the sum of the moduli of the off-diagonal elements in the row
corresponding to the diagonal element. We concentrate here on the Gershgorin set,
but there exist more complicated eigenvalue inclusion sets, such as, e.g., the Brauer
set (see [4], [8, Chapter 6] or more recent ones, a good survey of which can be found
in [15].

A common way to obtain inclusion regions for the zeros of a polynomial is by
finding eigenvalue inclusion regions for a companion matrix of the polynomial, whose
eigenvalues are precisely the zeros of the polynomial. This idea is used in, e.g., [1],
[3], [5], [11], [12], and [16], to name just a few references from the vast literature on
this subject.

For a polynomial p(z) = zn+αn−1z
n−1+ · · ·+α1z+α0 with complex coefficients

and with α0 �= 0, we will use the standard companion matrix C(p) from [8, p. 146],
defined as

C(p) =




0 0 . . . 0 −α0

1 0 . . . 0 −α1

0 1 . . . 0 −α2

...
...

...
...

...
0 0 . . . 1 −αn−1




.

Its eigenvalues are the zeros of the polynomial p. This can easily be shown using
determinants, but an elegant proof avoiding determinants can also be found in [8, p.
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146]. Although we focus on C(p), there exist other companion matrices (see, e.g., [2],
[6]).

A direct application of Gershgorin’s theorem to C(p) guarantees that all the zeros
of the polynomial p must lie in Γ(0), where

Γ(0) =

n⋃
j=1

Γj ,

and

Γ1 = {z ∈ C : |z| ≤ |α0|} ,

Γj = {z ∈ C : |z| ≤ 1 + |αj−1|} (2 ≤ j ≤ n− 1) ,
Γn = {z ∈ C : |z + αn−1| ≤ 1} .

Examples. Figure 2.1 shows Γ(0) for the polynomials p1(z) = z4 − 3z3 + 2iz2 −
2z + 4 (on the left) and p2(z) = z4 + 2z3 + z2 + iz + 2 (on the right). The individual
disks are outlined inside the Gershgorin sets and the black dots represent the zeros.

Fig. 2.1 The Γ(0) sets for p1 (left) and p2 (right).

The set Γ(0) provides the following upper bound on the modulus of any zero z̃ of
the polynomial p:

(2.1) |z̃| ≤ |Γ(0)| = max{|α0|, 1 + |α1| , . . . , 1 + |αn−1|} ,

where |S| denotes the largest modulus of any element in the set S of complex numbers.
This bound implies Cauchy’s bound, given by |z̃| ≤ 1 + max{|α0|, |α1| , . . . , |αn−1|}.

The superscript (0) in Γ(0) denotes the unmodified Gershgorin set, i.e., the set
obtained by a “black box” application of Gershgorin’s theorem, with C(p) being
treated just like any other matrix. Of course, C(p) is very much unlike any other
matrix and its structure can be exploited to modify and improve Γ(0).

This is a good place to mention that, instead ofC(p), one could considerQC(p)Q−1

for a nonsingular matrix Q. This new matrix has the same eigenvalues as C(p) but
may have smaller eigenvalue inclusion sets. A convenient choice for Q is a diagonal
matrix with no zeros on the diagonal (see [8, Chapter 6]). When all the coefficients
of the polynomial are nonzero, then an appropriately chosen diagonal matrix leads to
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358 AARON MELMAN

Kojima’s bound (see (5.6.45) in [8]):

(2.2) |z̃| ≤ max

{
|α0|, 2

∣∣∣∣α1

α2

∣∣∣∣ , . . . , 2
∣∣∣∣αn−2

αn−1

∣∣∣∣ , 2 |αn−1|
}

.

Although beyond our scope here, diagonal similarities can also be applied to the sets
we are about to derive.

Our goal is now to find relatively simple modifications that can, at least some-
times, make a significant difference. To explain our strategy for improving Γ(0), we
first need to understand the proof of Theorem 2.1 for a general complex matrix.

Proof of Theorem 1. Following the same standard procedure as in [8], assume
that λ is an eigenvalue of a complex n×n matrix A with corresponding eigenvector x,
i.e., Ax = λx. Since x is an eigenvector, it has at least one nonzero component. Define
xρ as a component of x with the largest absolute value, so that |xρ| ≥ |xi| for all i =
1, 2, . . . , n and xρ �= 0. Because (Ax)ρ = (λx)ρ, we have

λxρ = aρρxρ +

n∑
j=1

j �=ρ

aρjxj , from which it follows that (λ − aρρ)xρ =

n∑
j=1

j �=ρ

aρjxj .

Taking absolute values on both sides, using the triangle inequality, and dividing by
|xρ| yields

|λ− aρρ| ≤
n∑

j=1

j �=ρ

|aρj | |xj |
|xρ| ≤

n∑
j=1

j �=ρ

|aρj | ,

because |xj |/|xρ| ≤ 1 for all j �= ρ, i.e., λ must lie in a disk with center aρρ. Without
knowing the eigenvectors, we do not know which ρ each eigenvalue corresponds to,
so we must take the union of all such disks to obtain a region that is guaranteed to
contain all eigenvalues, and that concludes the proof.

However, any structure the matrix A might exhibit is lost in the proof’s uniform
treatment of the elements of A and its premature use of absolute values, which wipes
out many connections between the components of x. We will therefore revisit the proof
while explicitly using the form of the companion matrix. Specifically, C(p)x = λx
means that

λx1 = −α0xn ,(2.3)

λx2 = x1 − α1xn ,(2.4)

λxj = xj−1 − αj−1xn (3 ≤ j ≤ n− 2) ,(2.5)

λxn−1 = xn−2 − αn−2xn ,(2.6)

λxn = xn−1 − αn−1xn ,(2.7)

and it is this set of equations that we will use.
The modifications to the black box Gershgorin set Γ(0) will be carried out in two

stages, modifying Γ1 and Γ2, respectively, with further possible modifications briefly
mentioned later on. Each stage produces a new zero inclusion set Γ(j) (j = 1, 2) and
these sets satisfy Γ(2) ⊆ Γ(1) ⊆ Γ(0). We will also compute an upper bound on the
moduli of the zeros for each of the modified sets. The first modification is derived in
the next section.
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3. Γ(1): The First Modified Set. We now proceed as in the proof above, namely,
we consider a component of x with the largest magnitude and take absolute values to
arrive at inequalities that must be satisfied by λ. However, contrary to what we did
before, we will first rewrite our equations by exploiting their specific structure and
only then take absolute values.

Our first modification is very modest, namely, we just use the first equation (2.3)
to eliminate xn in the last equation (2.7), which turns it into λ (λ+ αn−1)x1 =
−α0xn−1. This means that when x1 has the largest magnitude of all the components
of x, we obtain, in addition to |λ| ≤ |α0|, another inequality that must be satisfied by
λ, namely, |λ| |λ+ αn−1| ≤ |α0|.

We define

K1 = {z ∈ C : |z| |z + αn−1| ≤ |α0|} and Ω1 = Γ1 ∩K1 .

The boundary of K1 is a quartic curve known as an oval of Cassini with foci
−αn−1 and the origin. It consists of either one or two loops. Ovals of Cassini also
appear in a different and slightly more complicated eigenvalue inclusion set, namely,
the Brauer set (see [4], [8, p. 380]), and it is interesting that we should encounter such
an oval here as well.

We can therefore replace Γ1 by Ω1 in the Gershgorin set, which proves the fol-
lowing theorem.

Theorem 3.1. All the zeros of the polynomial p(z) = zn + αn−1z
n−1 + · · · +

α1z + α0 with complex coefficients and with α0 �= 0 can be found in Γ(1), where

Γ(1) = Ω1 ∪

 n⋃

j=2

Γj


 .

Since Ω1 ⊆ Γ1, we clearly have that Γ
(1) ⊆ Γ(0), i.e., the new inclusion set

is potentially smaller than Γ(0). We can expect this to happen when |α0| is large
enough for Γ1 to dominate Γ

(0). In that case, the intersection with the oval of Cassini
will cut Γ1 down to size, as in the following examples.

Examples. Consider the polynomials p1 and p2, defined as

p1(z) = z4 − 3z3 + 2z2 + 2z + 5 and p2(z) = z4 + 6z3 + 2z2 + 4z + 8 .

Their corresponding zero inclusion sets with the Gershgorin circles and ovals of Cassini
are illustrated in Figure 3.1. The Γ(0) and Γ(1) sets are the areas shaded in dark and
light gray, respectively. Those for p1 are on the left, while those for p2 are on the
right. The Gershgorin circles are drawn slightly thicker than the ovals of Cassini. For
p1, the area of Γ

(1) is approximately 40% of the area of Γ(0), whereas for p2, this
percentage is approximately 42%.

The Set K1 and Ovals of Cassini. We need the basic properties of an oval of
Cassini to describe the set Ω1, and we summarize them here. They can be found in,
e.g., [9, pp. 153–155].

The oval described by |z| |z + αn−1| = |α0| consists of one loop containing both
foci if 2

√|α0| > |αn−1| and of two loops, each containing one of the foci, if 2
√|α0| ≤

|αn−1|. The oval is symmetric with respect to the line through its two focal points,
and with respect to the perpendicular line that goes through the center of the segment
connecting the foci. The set K1 consists of the closed interior of the loop or loops.
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360 AARON MELMAN

Fig. 3.1 The Γ(0) and Γ(1) sets for the polynomials p1 (left) and p2 (right).

Fig. 3.2 The set K1 for 2
√|α0| < |αn−1| (left) and 2

√|α0| > |αn−1| (right).

Figure 3.2 shows the set K1 for 2
√|α0| < |αn−1| on the left and 2

√|α0| > |αn−1|
on the right. The white dots are the foci: the origin on the left and −αn−1 on the
right. The distances q−, q+, and r from the origin, which are defined below, are
indicated by black dots.

The point on the boundary curve of K1 that is furthest away from the origin lies
at a distance of

r =
1

2

(
|αn−1|+

√
|αn−1|2 + 4|α0|

)

from the origin in the direction of −αn−1 along the line connecting the foci. When
there are two loops, they intersect this line between the origin and −αn−1 at two
points, which lie at distances

q± =
1

2

(
|αn−1| ±

√
|αn−1|2 − 4|α0|

)

from the origin in the direction of −αn−1. The entire oval, whether it consists of one
or two loops, is contained in the disk with radius r and centered at the origin. When
there are two loops, then each loop is contained in a disk centered at the corresponding
focus with radius q−.

The Set Ω1 = Γ1 ∩K1. Let us now have a closer look at the set Ω1, which was
the intersection of the disk Γ1 with the oval K1. There are several possible scenarios.
Observe, e.g., that the intersection is the entire oval when |α0| ≥ r (see the leftmost
figure of Case Ia in Figure 3.3), or part of it when |α0| < r (see the leftmost figure of
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Case Ia

|α0| > |αn−1|+ 1
|α0| ≤ |αn−1|2/4

Case Ib

|α0| ≥ max{|αn−1| − 1, |αn−1|/2}
|α0| ≤ min{|αn−1|+ 1, |αn−1|2/4}

Case Ic

|α0| < |αn−1| − 1

Case Id

|α0| ≥ |αn−1| − 1
|α0| ≤ min{|αn−1|/2, |αn−1|2/4}

Fig. 3.3 Scenarios for Ω1 when 2
√|α0| ≤ |αn−1|.

Case Ib in Figure 3.3). In the latter case, the part of the oval that is included depends
on the values of q− and q+. However, q−, q+, and r are all functions of |α0| and |αn−1|,
which makes the aforementioned conditions implicit and a little difficult to visualize.
They have been made explicit in terms of |α0| and |αn−1| in Figures 3.3 and 3.4: for
each case the figure on the left represents the particular scenario, the figure on the
right shows the set of values in the (|α0|, |αn−1|)-plane for which it occurs, and in the
middle is given the algebraic description of this same set, the derivation of which is

D
ow

nl
oa

de
d 

03
/0

9/
24

 to
 7

8.
11

.1
31

.5
1 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

362 AARON MELMAN

Case IIa

|α0| > max{|αn−1|+ 1, |αn−1|2/4}

Case IIb

|α0| > |αn−1|2/4
|α0| ≤ |αn−1|+ 1

Fig. 3.4 Scenarios for Ω1 when 2
√|α0| > |αn−1|.

explained in detail in Appendix A. The relative sizes of these sets give a sense of how
likely the situations they describe are to occur. Eventually, they will be merged into
three regions.

Bounds. The set Γ(1) can be used to obtain a bound on the largest modulus
of the zeros of a polynomial just like Γ(0). The result is presented in the following
theorem.

Theorem 3.2. Any zero z̃ of the polynomial p(z) = zn+αn−1z
n−1+· · ·+α1z+α0

with complex coefficients and with α0 �= 0 satisfies |z̃| ≤ |Γ(1)|, where

|Γ(1)| = max {γ, 1 + |α1| , . . . , 1 + |αn−1|} ,

and

γ =




1

2

(
|αn−1|+

√|αn−1|2 + 4|α0|
)

(|α0| > 1 + |αn−1|),

0 (|α0| ≤ 1 + |αn−1|) .

Proof. We have that

(3.1) |Γ(1)| = max{|Ω1|, 1 + |α1| , . . . , 1 + |αn−1|} ,

and, clearly, |Γ(1)| is an upper bound on the modulus of any zero of p.
From the bounds on the moduli of the elements in Ω1 that were established in the

description of the subcases of Case I and Case II, we conclude that in Case Ia and Case
IIa, |Ω1| = r; in Case Ib, Case Id, and Case IIb, |Ω1| = |α0|; and in Case Ic, |Ω1| = q−.
See Appendix A. Combining the different regions from the third column in Figures 3.3

D
ow

nl
oa

de
d 

03
/0

9/
24

 to
 7

8.
11

.1
31

.5
1 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MODIFIED GERSHGORIN DISKS FOR COMPANION MATRICES 363

Fig. 3.5 The regions corresponding to q− (darker gray), r (lighter gray), and |α0| (lightest gray).

and 3.4, these three possibilities correspond to the regions of the (|α0|, |αn−1|)-plane
in Figure 3.5 shaded in lighter gray, lightest gray, and darker gray, respectively. This
means that
(3.2)

|Ω1| =




1

2

(
|αn−1|+

√|αn−1|2 + 4|α0|
)

(|α0| > 1 + |αn−1|),

|α0| (|αn−1| − 1 ≤ |α0| ≤ |αn−1|+ 1),

1

2

(
|αn−1| −

√|αn−1|2 − 4|α0|
)

(|α0| < |αn−1| − 1) .

However, for the computation of the maximum value the only important distinc-
tion is between |α0| > |αn−1| + 1 and |α0| ≤ 1 + |αn−1|. This is so because in the
former case we have that

max {|Ω1|, 1 + |αn−1|} = max
{
1

2

(
|αn−1|+

√
|αn−1|2 + 4|α0|

)
, 1 + |αn−1|

}
,

and in the latter case, |Ω1| = |α0| or |Ω1| = q− = min{|α0|, q−}, so that |Ω1| ≤ |α0| ≤
1 + |αn−1|. In this case we obtain

max{|Ω1|, 1 + |αn−1|} = 1 + |αn−1| = max{0, 1 + |αn−1|} .

This completes the proof.
Figure 3.5 shows, at a glance, the situation a given (|α0|, |αn−1|)-pair corresponds

to: above the curve there are two loops, below it, just one. If the pair corresponds,
e.g., to a point in the area shaded in darker gray, then α0 is such that the intersection
with the disk consists of the entire loop containing the origin, etc.

Note also that an alternative way to express |Γ(1)| is

|Γ(1)| = max
{
min

{
|α0|, 1

2

(
|αn−1|+

√
|αn−1|2 + 4|α0|

)}
, 1 + |α1| , . . . , 1 + |αn−1|

}
,

because

min

{
|α0|, 1

2

(
|αn−1|+

√
|αn−1|2 + 4|α0|

)}D
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is not greater than 1 + |αn−1| when |α0| ≤ 1 + |αn−1| and when |α0| > |αn−1| + 1,
we are in Case Ia or Case IIa and |Ω1| is clearly determined by the minimum of |α0|
and r.

Since Ω1 ⊆ Γ1, we have that |Γ(1)| ≤ |Γ(0)|. As we mentioned before, the effect
of our modification can be significant when |α0| is large enough to dominate the
computation of Γ(0). Let us illustrate this with a few examples.

Examples. Table 3.1 lists the values of |Γ(0)| and |Γ(1)|, along with the modulus of
the largest zero |z̃max|, for five polynomials that are identical except for the constant
term α0. As |α0| increases, the difference between the bounds becomes more pro-
nounced. Here, Kojima’s bound is the same as |Γ(0)|, except for the top polynomial,
for which it is equal to 4.

Table 3.1 Comparison of |Γ(0)| and |Γ(1)|.

p |Γ(0)| |Γ(1)| |z̃max|
z5 + 2z4 + 3iz3 − 4z2 + 3z + 2 5 5 2.7838
z5 + 2z4 + 3iz3 − 4z2 + 3z + 6 6 5 2.7394
z5 + 2z4 + 3iz3 − 4z2 + 3z + 10 10 5 2.6896
z5 + 2z4 + 3iz3 − 4z2 + 3z + 20 20 5.5826 2.5274
z5 + 2z4 + 3iz3 − 4z2 + 3z + 40 40 7.4031 2.3876

It is also sometimes possible to compute a lower bound on the moduli of the zeros,
as in Case Ia and Case Ib, although we will not go into detail here.

4. Γ(2): The Second Modified Set. In this section, we continue what we started
in the previous one. There, we used (2.3) to eliminate xn in (2.7). Here, we will, in
addition, use it to replace xn by −λx1/α0 in (2.4). This yields

(4.1) λx2 =

(
1 +

α1

α0
λ

)
x1 .

Now assume that |x2| ≥ |xj | for all j. Then from (4.1) we have

|λ||x2| =
∣∣∣∣1 + α1

α0
λ

∣∣∣∣ |x1| ,

which, after dividing both sides by |x2|, becomes

(4.2) |λ| ≤
∣∣∣∣1 + α1

α0
λ

∣∣∣∣ .

Defining

K2 =

{
z ∈ C : |z| ≤

∣∣∣∣1 + α1

α0
z

∣∣∣∣
}

,

we have that λ ∈ K2. However, since we assumed that |x2| ≥ |xj | for all j, we also
have from (2.4) that λ ∈ Γ2, which was a disk centered at the origin with radius
1 + |α2|. We conclude that, in this case, λ ∈ Γ2 ∩K2. Defining

Ω2 = Γ2 ∩K2 ,

this means that we have proved the following theorem.
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Theorem 4.1. All the zeros of the polynomial p(z) = zn + αn−1z
n−1 + · · · +

α1z + α0 with complex coefficients and with α0 �= 0 can be found in Γ(2), where

Γ(2) = Ω1 ∪ Ω2 ∪

 n⋃

j=3

Γj


 .

Since Ω2 ⊆ Γ2, we have that Γ
(2) ⊆ Γ(1).

Examples. Figure 4.1 shows Γ(2) for the polynomials p1 (on the left) and p2 (on
the right) defined by

p1(z) = z7+3z6−4z5+z4+6z3−5z2+8z+8 and p2(z) = z5+2z4+iz3−2z2+6z+8 .
For p1, the zero inclusion regions Γ

(0) and Γ(1) are identical. Γ(2) is shaded in lighter
gray and is superimposed on Γ(0), which is shaded in darker gray with its invisible
part hiding behind Γ(2). The zeros of p1 are indicated by the black dots. For p2, Γ

(0)

is shaded in darker gray, Γ(1) in lighter gray, and Γ(2) in darkest gray. The white dots
are the zeros of p2.

For p1, Γ
(1) is identical to Γ(0) and the area of Γ(2) is approximately 82% of the

area of Γ(0). For p2 the areas of Γ
(1) and Γ(2) are approximately 77% and 19% of the

area of Γ(0), respectively.

Fig. 4.1 The Γ(2) sets for p1 (left) and p2 (right).

The Set K2. To understand what Ω2 looks like, we first need to know what K2

looks like, and that is what the next lemma is about.
Lemma 4.2. The set K2 has the following properties.
(1) The set K2 contains the origin.
(2) If α1 = 0, then K2 is the closed unit disk.
(3) If |α0| > |α1| > 0, then K2 is a closed disk with radius |α0|2/

(|α0|2 − |α1|2
)

and center

|α1|2
|α0|2 − |α1|2

(
α0

α1

)
·

(4) If 0 < |α0| < |α1|, then K2 is the closed exterior of a disk with radius
|α0|2/

(|α1|2 − |α0|2
)

and center

|α1|2
|α0|2 − |α1|2

(
α0

α1

)
·
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(5) If 0 < |α0| = |α1|, then K2 is the closed half-plane

Re

(
α0

α1

)
x+ Im

(
α0

α1

)
y +

1

2
≥ 0 ,

which contains α0/α1.
Proof. If α1 = 0, then statements (1) and (2) follow immediately from the defi-

nition of K2. If α1 �= 0, then the inequality in the definition of K2 can be rewritten
as

∣∣∣∣α0

α1

∣∣∣∣ |z| ≤
∣∣∣∣α0

α1
+ z

∣∣∣∣ ,

which is of the form |a||z| ≤ |z + a|, with a = α0/α1. Setting z = x + iy and
a = a1 + ia2 in this inequality and squaring both sides yields

|a|2 (x2 + y2
) ≤ (x+ a1)

2 + (y + a2)
2 ,

which can be rewritten as

(4.3)
(|a|2 − 1)x2 +

(|a|2 − 1) y2 − 2a1x− 2a2y − |a|2 ≤ 0 .

When |a| > 1 we can divide by |a|2− 1, preserving the direction of the inequality, and
then complete the square to obtain

(4.4)

(
x− a1

|a|2 − 1
)2

+

(
y − a2

|a|2 − 1
)2

≤ |a|4
(|a|2 − 1)2 ·

This represents the closed interior of a disk with center (a1/(|a|2 − 1) , a2/(|a|2 − 1))
and radius |a|2/(|a|2 − 1), which, with the definition of a and after a little algebra,
yields precisely statement (3).

When |a| < 1 we obtain, analogously, the closed exterior of a disk (the inequality’s
direction is reversed) with the same expression for the center and with radius |a|2/(1−
|a|2), which leads directly to statement (4).

When |a| = 1, then we obtain from (4.3) that

a1x+ a2y +
1

2
≥ 0 ,

which is a half-plane containing the point a, and this completes the proof.

The Set Ω2 = Γ2 ∩K2. With the previous lemma we now know that Γ2 ∩K2 is
the intersection of two disks, or of a disk with the exterior of a disk, or of a disk with
a half-plane. Figure 4.2 shows a few possible situations for Γ2 ∩K2, which is shaded
in gray. The set Γ2 is the larger of the two disks in the top left and middle subfigures,
and in the bottom left subfigure. It is the left disk in the top right subfigure and the
only disk in the bottom right subfigure.
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Fig. 4.2 Examples of the set Γ2 ∩K2 (shaded areas).

The set Ω2 is never empty. This is shown in the next theorem, which also computes
|Ω2|.

Theorem 4.3. The set Ω2 is nonempty. Moreover,

|Ω2| =



1 +

|α1|
|α0| − |α1| (|α0| > 1 + |α1|),

1 + |α1| (|α0| ≤ 1 + |α1|) .

Proof. When α1 = 0, K2 is the unit disk so that its intersection with Γ2 is the
very same nonempty unit disk. Consequently,

|Ω2| = 1 = 1 + |α1| = 1 + |α1|
|α0| − |α1| ,

which proves the theorem when α1 = 0. When α1 �= 0, and with a = α0/α1, assume
first that |a| > 1, i.e., |α0| > |α1|. From the previous lemma, we know that in this
case, K2 is a closed disk and Γ2 ∩K2 �= ∅ because the distance d between the centers
of Γ2 and K2 is not greater than the sum of the radii. To prove this, we need to show
that

d =
|a|

|a|2 − 1 ≤ |a|2
|a|2 − 1 + 1 + |α1| .

Multiplying both sides of the inequality by |a|2 − 1 turns this condition into
(2 + |α1|)|a|2 − |a| − (1 + |α1|) ≥ 0 ,

and this inequality is satisfied for |a| > 1. The intersection must therefore be
nonempty. This scenario corresponds to the top left or the top right subfigure in
Figure 4.2. Because we have the intersection of two disks, one of which is centered at
the origin, it follows that

(4.5) |Γ2 ∩K2| = min
{
1 + |α1|, d+ |a|2

|a|2 − 1
}

.
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Since

d+
|a|2

|a|2 − 1 =
|a|

|a|2 − 1 +
|a|2

|a|2 − 1 =
|a|(|a|+ 1)

(|a| − 1)(|a|+ 1) =
|a|

|a| − 1 ,

and recalling that a = α0/α1, (4.5) can be rewritten as

|Γ2 ∩K2| = min
{
1 + |α1|, |α0|

|α0| − |α1|
}
= 1 +min

{
|α1|, |α1|

|α0| − |α1|
}

·

The minimum value is therefore given by 1 + |α1| when |α0| − |α1| ≤ 1 and by
1 + (|α1|/(|α0| − |α1|) otherwise. This proves the theorem for |α0| > |α1|.

Next, assume that |α0| < |α1|, i.e., |a| < 1. The set Γ2 ∩K2 is nonempty in this
case as well, because the radius of the boundary of K2 is not greater than the sum of
the distance d between the centers of Γ2 and K2 and the radius of Γ2. That this is
true follows from

|a|2
1− |a|2 ≤ d+ 1 + |α1| ⇐⇒ |a|2

1− |a|2 ≤ |a|
1− |a|2 + 1 + |α1|

⇐⇒ (2 + |α1|)|a|2 − |a| − (1 + |α1|) ≤ 0 ,

and this inequality is satisfied for |a| < 1. This scenario corresponds to the top middle
or the bottom left subfigure in Figure 4.2. Because we are intersecting Γ2, which is
centered at the origin, with the closed exterior of a disk, and because the intersection
is nonempty, it follows that some part of the boundary of Γ2 must belong to the
intersection. This means that |Γ2 ∩ K2| = 1 + |α1|. Since |α0| < |α1| implies
|α0| ≤ 1 + |α1|, this proves the theorem for |α0| < |α1|.

Finally, we have the case |α0| = |α1|, or |a| = 1. This means that a ∈ Γ2 and, since
K2 is a closed half-plane also containing a, we have, once again, that Γ2 ∩ K2 �= ∅.
This scenario corresponds to the bottom right subfigure in Figure 4.2. Here, too,
some part of the boundary of Γ2 must belong to the intersection, which means that
|Γ2 ∩ K2| = 1 + |α1|, and that concludes the proof.

Although this theorem indicates that it is not uncommon that |Ω2| = |Γ2|, the
sets themselves can be quite different.

Bounds. Since

|Γ(2)| = max {|Ω1|, |Ω2|, 1 + |α2| , . . . , 1 + |αn−1|} ,

the bound on the moduli of the zeros in the following theorem is an immediate con-
sequence of Theorems 3.2 and 4.3.

Theorem 4.4. Any zero z̃ of the polynomial p(z) = zn+αn−1z
n−1+· · ·+α1z+α0

with complex coefficients and with α0 �= 0 satisfies |z̃| ≤ |Γ(2)|, with

|Γ(2)| = max {γ, δ, 1 + |α2|, . . . , 1 + |αn−1|} ,

where γ was defined in Theorem 3.2 and

δ =



1 +

|α1|
|α0| − |α1| (|α0| > 1 + |α1|),

1 + |α1| (|α0| ≤ 1 + |α1|) .
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Roughly speaking, the effect of the second modification is to allow |α1| to become
large when |α0| is also large, as long as it does not get too close to |α0|. Table 4.1 lists
the values of |Γ(0)|, |Γ(1)|, and |Γ(2)|, along with the modulus of the largest zero |z̃max|,
for five polynomials that are identical except for the coefficient α1. As |α1| increases,
the difference between the bounds becomes more pronounced, until it approaches |α0|
too closely and its advantage disappears. Kojima’s bound is the same as |Γ(0)| for all
polynomials.

Table 4.1 Comparison of |Γ(0)|, |Γ(1)|, and |Γ(2)|.

p |Γ(0)| |Γ(1)| |Γ(2)| |z̃max|
z5 + 2z4 + 3iz3 − 4z2 + 3z + 20 20 5.5826 5.5826 2.5274
z5 + 2z4 + 3iz3 − 4z2 + 6z + 20 20 7 5.5826 2.6618
z5 + 2z4 + 3iz3 − 4z2 + 10z + 20 20 11 5.5826 2.7938
z5 + 2z4 + 3iz3 − 4z2 + 18z + 20 20 19 10 2.9868
z5 + 2z4 + 3iz3 − 4z2 + 19z + 20 20 20 20 3.0070

Summary of Results and Further Discussion. We have used (2.3)–(2.7) to de-
rive two modifications of the Gershgorin set for a polynomial’s companion matrix.
They were obtained by using (2.3) to eliminate xn in (2.7) and in (2.4), respectively.
Although it would be beyond our scope here, there are many ways to continue mod-
ifying the Gershgorin set by further manipulating (2.3)–(2.7). To give just a few
examples, one could use (2.3) to replace xn by −λx1/α0 in the right-hand side of all
the equations except the first two, or one could multiply (2.5) for j = k by λ and then
use the same equation for j = k − 1 to eliminate xk−1 and obtain new bounds on |λ|
when |xk| is maximal. The latter can also be achieved by considering C2(p) instead of
C(p), as it has the same eigenvectors while the eigenvalues are squared. Other powers
of C(p) could also be used.

Appendix A. In this appendix we explain in detail how the different cases in
Figures 3.3 and 3.4 depend explicitly on |α0| and |αn−1|.

Case I: 2
√|α0| ≤ |αn−1|. In this case, the oval has two loops. We distinguish

four subcases.

Case Ia: |α0| > r. The intersection consists of both loops. When 2|α0| > |αn−1|,
this condition can be rewritten as follows:

|α0| > r ⇐⇒ 2|α0| > |αn−1|+
√
|αn−1|2 + 4|α0|

⇐⇒ 2|α0| − |αn−1| >
√
|αn−1|2 + 4|α0|

⇐⇒ (2|α0| − |αn−1|)2 > |αn−1|2 + 4|α0|
⇐⇒ |α0| > |αn−1|+ 1 .(A.1)

Clearly, when 2|α0| ≤ |αn−1|, then |α0| > r is impossible. We also note that inequality
(A.1) implies that 2|α0| > |αn−1|. We can summarize the conditions for this case as
|αn−1| + 1 < |α0| ≤ |αn−1|2/4. This is the first scenario of Figure 3.3: on the left is
the circle (the boundary of the disk) with the oval inside it, and in the middle is the
algebraic description of the conditions, represented graphically by the shaded area on
the right. The intersection with the disk is the part of the oval shaded in dark gray.
The part shaded in light gray lies outside the intersection. In this case, the modulus
of any z ∈ Ω1 must satisfy 0 ≤ |z| ≤ q− or q+ ≤ |z| ≤ r.
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Case Ib: q+ ≤ |α0| ≤ r. The intersection consists of the loop containing the
origin and part (or all) of the loop containing −αn−1. When 2|α0| ≥ |αn−1|, the
condition |α0| ≥ q+ can be rewritten as follows:

|α0| ≥ q+ ⇐⇒ 2|α0| ≥ |αn−1|+
√
|αn−1|2 − 4|α0|

⇐⇒ 2|α0| − |αn−1| ≥
√
|αn−1|2 − 4|α0|

⇐⇒ (2|α0| − |αn−1|)2 ≥ |αn−1|2 − 4|α0|
⇐⇒ |α0| ≥ |αn−1| − 1 .

When 2|α0| < |αn−1|, then |α0| ≥ q+ is obviously impossible. With 2|α0| ≥ |αn−1|,
inequality (A.1) implies that |α0| ≤ r is equivalent to |α0| ≤ |αn−1| + 1. Combining
the two inequalities, we obtain that q+ ≤ |α0| ≤ r is equivalent to { 2|α0| ≥ |αn−1|
and |αn−1| − 1 ≤ |α0| ≤ |αn−1| + 1 }. The conditions for this case are summarized
as

max{|αn−1| − 1, |αn−1|/2} ≤ |α0| ≤ min{|αn−1|+ 1, |αn−1|2/4} .

This situation is the second scenario in Figure 3.3. Here, the modulus of any z ∈ Ω1

satisfies 0 ≤ |z| ≤ q− or q+ ≤ |z| ≤ |α0|.
Case Ic: q− < |α0| < q+. The intersection consists of the loop containing the

origin. Note that 2
√|α0| = |αn−1| cannot occur in this case because that would mean

q− = q+. When 2|α0| < |αn−1|, the condition |α0| > q− can be simplified as follows:

|α0| > q− ⇐⇒ 2|α0| > |αn−1| −
√
|αn−1|2 − 4|α0|

⇐⇒
√
|αn−1|2 − 4|α0| > |αn−1| − 2|α0|

⇐⇒ |αn−1|2 − 4|α0| > (|αn−1| − 2|α0|)2
⇐⇒ |α0| < |αn−1| − 1 .

Obviously this can happen only when |αn−1| > 1. Because 2|α0| < |αn−1|, the
expression for q+ shows that |α0| < q+ is automatically satisfied. When 2|α0| ≥
|αn−1|, then |α0| > q− is automatically satisfied, and

|α0| < q+ ⇐⇒ 2|α0| < |αn−1|+
√
|αn−1|2 − 4|α0|

⇐⇒ 2|α0| − |αn−1| <
√
|αn−1|2 − 4|α0|

⇐⇒ (2|α0| − |αn−1|)2 < |αn−1|2 − 4|α0|
⇐⇒ |α0| < |αn−1| − 1 .

Once again, this can only happen when |αn−1| > 1. Combining the two inequalities,
we obtain that q− < |α0| < q+ is equivalent to 2|α0| < |αn−1| and |α0| < |αn−1| − 1,
or 2|α0| ≥ |αn−1| and |α0| < |αn−1| − 1. This therefore reduces to the condition
|α0| < |αn−1| − 1. Since Case Ic cannot occur when 2

√|α0| = |αn−1| and since
min{|αn−1| − 1, |αn−1|2/4} = |αn−1| − 1, we can summarize the conditions for this
case as |α0| < |αn−1| − 1. This corresponds to the third scenario in Figure 3.3, where
the modulus of any z ∈ Ω1 satisfies 0 ≤ |z| ≤ q−.

Case Id: |α0| ≤ q−. The intersection consists of part (or all) of the loop con-
taining the origin. When 2|α0| ≤ |αn−1|, the condition |α0| ≤ q− can be simplified as

D
ow

nl
oa

de
d 

03
/0

9/
24

 to
 7

8.
11

.1
31

.5
1 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MODIFIED GERSHGORIN DISKS FOR COMPANION MATRICES 371

follows:

|α0| ≤ q− ⇐⇒ 2|α0| ≤ |αn−1| −
√
|αn−1|2 − 4|α0|

⇐⇒
√
|αn−1|2 − 4|α0| ≤ |αn−1| − 2|α0|

⇐⇒ |αn−1|2 − 4|α0| ≤ (|αn−1| − 2|α0|)2
⇐⇒ |α0| ≥ |αn−1| − 1 .

When 2|α0| > |αn−1|, then |α0| ≤ q− is impossible. These conditions can be con-
densed into

|αn−1| − 1 ≤ |α0| ≤ min{|αn−1|/2, |αn−1|2/4} .

This corresponds to the last scenario in Figure 3.3, where the modulus of any z ∈ Ω1

now satisfies 0 ≤ |z| ≤ |α0|.
Case II: 2

√|α0| > |αn−1|. In this case, the oval has only one loop. We distin-
guish two subcases.

Case IIa: |α0| > r. The intersection consists of the entire oval. When 2|α0| >
|αn−1|, we obtain, as in Case Ia, that this condition is equivalent to |α0| > |αn−1|+1.
When 2|α0| ≤ |αn−1|, then |α0| > r is impossible. Summarizing, we obtain |α0| >
max{|αn−1|+ 1, |αn−1|2/4}. This is the first scenario in Figure 3.4. In this case, the
modulus of any z ∈ Ω1 satisfies 0 ≤ |z| ≤ r.

Case IIb: |α0| ≤ r. The intersection consists of part (or all) of the oval. When
2|α0| > |αn−1|, then, as in Case Ib, we obtain from (A.1) that this condition is
equivalent to |α0| ≤ |αn−1|+ 1. When 2|α0| ≤ |αn−1|, the condition is automatically
satisfied. This is summarized as |αn−1|2/4 < |α0| ≤ |αn−1| + 1, and it is the second
scenario of Figure 3.4. Here, the modulus of any z ∈ Ω1 satisfies 0 ≤ |z| ≤ |α0|.

Appendix B. Below is the MATLAB 7 code used to produce a typical figure, in
this case the right-hand side figure in Figure 4.1. It is similar enough to pseudo-code
for it to be understandable with minimal knowledge of MATLAB. The code contains
some redundancy in the interest of clarity. After the figure is created, its colors are
converted to grayscale. Broadly speaking, the code creates a grid and then checks
which grid points lie in the set of interest. These grid points are then plotted. The
areas of the sets can be compared by comparing the number of grid points they contain.
We have rounded throughout this work to the nearest larger integer percentage. All
other figures were generated by very similar code.

MATLAB Code.
% v is the coefficient vector of the polynomial

% absv is the vector of absolute values of the coefficients in v

% m is the resolution of the figure

v=[1 2 i -2 6 8];absv=abs(v);m=2000;

% n is the degree of the polynomial

n=length(v)-1;

% comp_mat is the companion matrix of the polynomial

comp_mat=(fliplr(flipud(compan(v))))’;

% the vector of deleted row sums Rt is computed

Rt=1+absv(n+1:-1:2);

Rt(1)=absv(n+1);

Rt(n)=1;

% the boundaries of the grid are established

dd=diag(comp_mat);
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xmin=min(real(dd))-max(Rt);

xmax=max(real(dd))+max(Rt);

ymin=min(imag(dd))-max(Rt);

ymax=max(imag(dd))+max(Rt);

% the horizontal and vertical distance between grid points is set

del=min((xmax-xmin)/m,(ymax-ymin)/m);

% the real and imaginary parts of the grid points are generated

[xx1,xx2]=meshgrid(xmin:del:xmax,ymin:del:ymax);

% the complex grid points are defined as z

z=xx1+i*xx2;

% the indices of the grid points in the Gershgorin set

% are collected in gset

gset=((abs(z-comp_mat(1,1)) <= Rt(1)));

for jj=2:n

gset=gset | ((abs(z-comp_mat(jj,jj)) <= Rt(jj)));

end

% the Gershgorin set is plotted in magenta

figure;hold on;axis equal;

zz=z(gset);

plot(real(zz),imag(zz),’m.’)

% the indices of the grid points in the first modified Gershgorin set

% are collected in gset1

gset1=(abs(z) <= absv(n+1));

gset1=gset1 & (abs(z).*abs(z+v(2)) <= absv(n+1));

for jj=1:n-2

gset1=gset1 | ((abs(z) <= 1+absv(n+1-jj)));

end

gset1=gset1 | (abs(z+v(2)) <= 1);

% the first modified Gershgorin set is added to the figure in green

zz1=z(gset1);

plot(real(zz1),imag(zz1),’g.’);

% the indices of the grid points in the second modified Gershgorin set

% are collected in gset2

a=v(n+1)/v(n);

gset2=(abs(z) <= absv(n+1));

gset2=gset2 & (abs(z).*abs(z+v(2)) <= absv(n+1));

gset2=gset2 | ((abs(z) <= 1 + absv(n)) & (abs(a)*abs(z) <= abs(a+z)));

for jj=2:n-2

gset2=gset2 | ((abs(z) <= 1+absv(n+1-jj)));

end

gset2=gset2 | (abs(z+v(2)) <= 1);

% the second modified Gershgorin set is added to the figure in blue

zz2=z(gset2);

plot(real(zz2),imag(zz2),’b.’);

% the zeros of the polynomial are added to the figure as white dots

eigv=eig(comp_mat);

plot(real(eigv),imag(eigv),’w.’,’MarkerSize’,20);

hold off;

% computation of the approximate ratio of the area of the modified sets

% as a fraction of that of the Gershgorin set

sz=size(zz);

sz1=size(zz1);

sz2=size(zz2);

area1=sz1(1)/sz(1);

area2=sz2(1)/sz(1);

[area1 area2]
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