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Abstract

Here, we show in particular that Alfred Brauer’s ovals of Cassini, for determining
inclusion regions in the complex plane for the eigenvalues of an arbitrary matrix in
C"*™, n > 2, are in a certain sense optimal. We also include comparisons with
Brualdi sets.
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1 Introduction

In 1947, Alfred Brauer [1] introduced ovals of Cassini as a means of determining inclusion
regions, in the complex plane, for the eigenvalues of an arbitrary matrix A= [a;;] €C™",
for n > 2. Let

Rj(A) =) lai;] (1<i<n) (L.1)
j=1
j#l

denote the deleted row sums of the matrix A, and let

Ki;(A) = {z eC:|z—ayl |z—aj;| <R R;}, i#j(1 <4, <n); (1.2)
denote the (i, 7)-th row oval of Cassini for the matrix A. Further, set

K" (A) = CJ K7 ;(4), (1.3)

1,7=1
i
and let o(A) denote the eigenvalues of A, ie.,
o(A) = {\ €C: det(A\ — A) = 0}. (1.4)
Then in (1], Alfred Brauer established his well-known result of
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Theorem 1.1 Let A = [a;;] € C**", n > 2. Then,
o(A) C K™(A). (1.5)

Related to the inclusion result of Alfred Brauer’s Theorem 1.1 is the classical theorem
of Gerschgorin [4] from 1931. If we define the associated Gerschgorin row disks by

GI(A) :={z€C: |z —ais| <R}, (1.6)

for all 1 <14 < n, and if we set

G'(A) = QG;(A), (1.7)

then Gerschgorin’s Theorem is

Theorem 1.2 Let A = [a;;] € C"*". Then,
a(A) C G"(A). (1.8)

We remark, as is well known, that Theorems 1.1 and 1.2 are equally valid for the
n
deleted column sums Cj(A) ==Y |a;4l.
j=1
j#1
For n > 2, it is the case that it is generally easier to apply Gerschgorin’s Theorem
1.2, since this involves n disks, whereas A. Brauer’s Theorem 1.1 however involves (2) =
n(n —1)/2 sets in the complex plane which, from their definition in (1.2), are in general
more complicated than are the disks of Gerschgorin, and their number, (”2, exceeds n

2
for all n > 3. Perhaps for the above reasons, this author has often heard the comment,

“T have never used the ovals of Cassini for estimating the eigenvalues of a matrix, since
Gerschgorin works just fine for me!” Still, though it seems not well known, it is the case
that the Alfred Brauer’s ovals of Cassini K"(A) are always at least as good as G™(A) in
estimating o(A), in that

K"(A) C G"(A) for any A e €™ (1.9)
These inclusions were mentioned by Alfred Brauer in [2]. The proof of the inclusion in
(1.9) simply requires showing, for example, that
Ki,(A) CGi(A) U G7(A), foralli#j (1<4,5 < n). (1.10)
The case of equality in (1.10) is covered in
K7;(A) = Gi(A)UG5(A) for i # j only if Ri(A) = Rj(A) =0,

(1.11)
or if R/(A) = R;.(A) > 0 and a;; = a; ;.

Perhaps another deterrent, to the popularity of Alfred Brauer’s ovals of Cassini, could
stem from the fact that the proof of the inclusion in (1.5) depends on carefully examining
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two distinct rows of the matrix A, while Gerschgorin’s inclusion in (1.6) examines just
one particular row of A. Obviously, this was an invitation for mathematicians to consider
three or more distinct rows of A, in their quest for obtaining other new inclusion regions
for the spectrum of A. But alas, such a generalization does not work in general! That
is, for any A = [a;;] € C™" with n > m, assume that 7,,1s,- - -, iy are distinct positive
integers in [1,n]. Then define

)= et [l ol < 1 R.(4). (112
k=1 k=1
and set
Hio(A) = U  Hi_., (A (ida- iy distinct).  (1.13)

1<iy iz, im<n

The cases m = 1 and m = 2 of (1.12) thus correspond, respectively, to the Gerschgorin
disks of (1.6) and the Cassini ovals of (1.2). We note that HJ,,(A) now consists of (T’:L)
sets H, .., (A).

But, for m > 3, the set H, Tm)(A) does not always cover the spectrum of A, as the
following counter example in Horn and Johnson [5, p. 382] shows. (This counter example
has been attributed to Morris Newman in Marcus and Minc [6].) Consider the matrix

Ri(A) = 1 = Ry(A),

A= RY(A) = Ry(A) = 0.

S -

1 0
1 0
01 , Where (1.14)

— O O O

0 0 O

Then, o(A) = {0,1,1,2}. But in the case m = 3, any choice of three distinct integers
from (1,2,3,4) gives at least one deleted row sum with Rj(A) = 0, so that the union
of the sets in (1.13) reduces to a single point z = 1, which clearly does not include all
eigenvalues of A. The case m = 4 similarly fails for the matrix A of (1.14), and this
counter example can be extended to all m > 3.

It is important to remark now that newer results of Brualdi [3] give sufficient condi-
tions, based on graph theory, for these Brauer-like extensions to produce valid eigenvalue
inclusion sets in the complex plane. We will treat this more in detail in Section 3.

2 Ovals of Cassini—a Vindication

First, observe that the inclusion regions, for the eigenvalues of A = [a;;] in C"*", n > 2,
in Theorems 1.1 and 1.2, depend solely on the 2n numbers:

{ai:i}?;l a'nd {R;(A)}?zl’ (2'1)
as do the sets H{,,(A) in (1.13). If
Q(A) = {B = [bi,j] E(ann, n __>__ 2: bi,i = am- and

(2.2)
Ri(B) = Rj(A),1<i<n},
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it is evident that the eigenvalue inclusions of (1.5) and (1.8) apply to any B in Q(A).
Thus, with

o) = | olB), (23
BeQ(A)
we have from Theorems 1.1 and 1.2 and (1.9) that

o0(Q2(A)) € K7(4) € G"(4), (2:4)

for any A = [a; ;] € C**". What (2.4) asserts is that K"(A) is always a “tighter” estimate
of o(Q2(A)), than is G"(A), for any A € €™, i.e., the union of the ovals of Cassini of
Brauer are always as good as the union of the Gerschgorin disks for any A € C™*".

This brings us to the following reformulation of the above. Let

Ap = {ai}i, U{ri}is,, n > 2, with

o; €Candr; >0 (1<i<n), (2.5)

be n complex numbers and n nonnegative real numbers. Then, associated with A, is the
following set of n x n matrices:

QD) = {B = [b'i,j] e bi; = oy and
Slbigl=m (1<i<n)}, (2.6)

J
i#l

and denote the set of all eigenvalues of all B € Q(A,) by
o(UA) = |J a(B). (2.7)
Next, for n > 2, let

P, = {set of all partitions (i1, s, - -,p), with distinct elements

of the integers in {j}7_,}, 28

where the cardinality of P, is known to be 2* — 1. Now, fix any nonempty subset p of
P.., and consider the set

(11,32, 1s)Ep

F(Ay;p) = U {z GC:ﬁ1z—aijl§ﬁnj}, (2.9)

which is dependent on A, and on u C P,. This set is a compact set in the complex plane
@. Note that, for a fixed positive integer m (where 1 < m < n), the subset up, of Py,
defined by

piam:=union of all sets (41,12, - -, im) of distinct integers in {j}7_;, (2.10)

is such that F'(An; i) is exactly the set HY, , of (1.13) for the matrices of Q(Ay), so that
m = 1 and m = 2 give, respectively, the common Gerschgorin disks and the common
ovals of Cassini for the matrices of Q(A,).
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We are, of course, interested here in general eigenvalue inclusion sets in the complex
plane €, for arbitrary matrices in C**", n > 2, and we ask if, for some nonempty 1 C Py,
there holds

a(QUAy)) C F(Ay, u), for any choice of A, (2.11)

where A, is defined in (2.5). As we know, (2.11) is valid, for any A, for the subsets y;
and pg of (2.10), but not for p,, of (2.10) for m > 3. We say that a subset p of P, is an
eigenvalue inclusion subset of (2.11) is valid for any choice of A,. Note that if 4 is such
an eigenvalue inclusion subset of P,, then so is

wUgq, foranyqeP,, (2.12)

since adding q to  gives, from (2.9), that F(An; pUq) 2 F(An; p), thereby still covering
o(Q(A,)). Tt is then of interest to find such eigenvalue inclusion subsets u of P, which
give the tightest inclusion in (2.11). One such subset is given in

Theorem 2.1 With n > 2 and with the definition of us in (2.10),

o(Q(Ag)) = OF (As; pa) for all Ay, forn =2, (2.13)

and
a(QUAR)) = F(An; pa) for all Ay, for alln > 2. (2.14)

Thus, there can be no eigenvalue inclusion subset pi of P, which can give tighter eigenvalue
inclusions, in (2.13) and (2.14), than the ovals of Cassini.

Proof. The inequalities of (2.13) and (2.14) are a direct consequence of Theorem 1.2
of Varga and Krautstengl [7]. n
From Theorem 2.1, we thus have our vindication of Alfred Brauer’s ovals of Cassini!

3 Further Remarks

It is of interest to connect the sets of (2.9) with results of Brualdi [3]. To do this, we need
the following definitions. Given A = [a;;] € C**", n > 2, then ['(A) is the directed graph,
on n vertices {v;}7;, for the matrix A = [a;;], consisting of an arc vjﬁj from vertex v;

to vertex v; only if ¢ # j and a;; # 0. (This directed graph omits the usual use of loops

when a;; # 0.) A path 7 from vertex v; to vertex v; is a sequence i = 1o, %1, "+, = J
. . ’ . . e — — .
of distinct vertices for which v v;,, Vi Viy, - - +, Vi, _, Vs, are abutting arcs, and the length

of 7 is said to be k. A directed graph is strongly connected if, for each ordered pair of
distinct vertices v; and v;, there is a path from v; to v;. A circuit 7y of ['(A) is a sequence
i1,y ipyGpr1 = i1, where p > 2,4y,--,1, are distinct, and v;?iz,---,v;-} are arcs of
['(A). If we write v = (i1,%2,"--,%p) to identify this circuit v, then, noting that these
{1, ?:1 are distinct, each circuit v = (i1,42,---,4,) defines a partition in P,. Thus, if
C(A) denotes the set of all circuits in I'(A), we thus have

C(A) € Pn (3.1)
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(where C(A) could be the null set). Continuing, a matrix A = [a; ;] € C™*", n > 2, is said
to be weakly irreducible if each vertex v; of I'(A) belongs to some circuit in C(A). (Note
that the matrix A of (1.14) is not weakly irreducible.)

With his definition of weak irreducibility, Brualdi [3, Corollary 2.4] showed how the
counterexamples of (1.14) can be avoided. His result is

Theorem 3.1 Assume that A = [a;;] € C",n > 2, is weakly irreducible. If C(A)
denotes the circuits v of the directed graph T'(A) for A, then

o4 c U {z €C: [[lz—ail < HR;(A)} : (3.2)

YEC(A) i€y i€y

It seems fitting and proper to call the set, on the right of (3.2), the Brualdi set for A
when A is weakly irreducible, i.e.,

B(A) = | {z eC:[[lz—aisl < HR;(A)} . (3.3)

v€C(A) 1€y €y

It is evident from (3.3) that the Brualdi set B"(A), a closed set in the complex plane,
is unchanged if A is replaced by any matrix in the set

Q(A) == {B € Q(A): the circuits v(B) from I'(B)
are identical with those of T'(A)},

where Q(A) is defined in (2.2). Thus, if A is weakly irreducible, it follows from (3.2)-(3.4)
that

(3.4)

o(2(A)) C B'(A). (3.5)
On the other hand, as Q(A) is a subset of Q(A), then for n > 2,

a(Q(A)) € o(QA)) = K"(4), (3.6)

the last equality coming from Theorem 2.1. Because of the first inclusion of (3.6), one
would expect that

B'(A) C KT(A). (3.7)

To investigate this, we extend the definition of the Brualdi set B7(A) of (3.3) to any
matrix A = [a;;] € C"", n > 2, where if there are no circuits 7 in the directed graph
['(A), we use the convention that

B'(A) = C) {a;:} (3.8)

Theorem 3.2 For any A = [a;;] € €Y7, n > 2, let the sets K"(A) and B'(A) in the
complez plane, be defined by (1.3), (3.3) and (3.8). Then, the inclusion of (3.7) is valid.
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Proof. 1f A = [a;;] € """ has no cycles v in I'(A), then B"(A) is defined by (3.8).
In this case, as each Cassini oval K7 ;(A) of (1.2), for i # j, contains the points z = a;;
and z = a;;, then B"(A) C K"(A). Then, consider, any cycle v = (41,4, - -, ip) of C(A4),
whose associated term in,B"(A), from (3.3), defines the associated closed set in C:

BI(A) := {z eC: ﬁ|z—a,.j,ij| < ﬁR;j(A)}. (3.9)
j=1

Jj=1

Then, consider the pairs (i1,12), (i2,43), ", (ip,21). As 7y is a cycle of C(A), each of these
pairs defines a nontrivial Cassini oval K7 ;  (A) with R; (A) > 0, forall 1 <j < p.
Assume that z is any point in the set Bl (A) of (3.9), so that

ﬁ (————lz _ ai””‘) <1
j:l R;J (A) -

and squaring the above expression gives

ﬁ ({z—'aij,ijlr <1
j:l R;J(A) -

The above product can also be expressed as

('Z - ah,ill ) lZ - aiz,iz]) . (lz - a‘iz,‘iz‘ i Iz - aisﬂa‘) .
R, (A) - R, (A) R;,(A) - Ry, (4)
. (]Z - a”ipvipl : lZ - a’il:ili) <1
R (A) R, (4) )~

Hence, as not all of the above factors can exceed unity, there exists an £, with 1 < ¢ < p,
such that

lz - aieﬁ'ei ) ‘Z - aie+1»ie+1i
( R (A) . (A) ) =h (310

1e+1

where, if ¢ = p, then i1 = 4;. But (3.10) implies that z € KJ,;,, (A) C K"(A). As
this holds for any z € v and for any v € C(A), we have that B"(A) € K"(A), the desired
result of (3.7). =

Note that the inclusion of (3.7) does not require that A be weakly irreducible, so that
B"(A) need not, as in example of (1.14), cover the spectrum of A. The result of Theorem
3.2, however, gives us that if A is indeed weakly irreducible, then the Brualdi set B"(A)
covers the spectrum of A, and is a subset of the Cassini ovals K"(A).

We remark that the actual computation of the Brualdi set B"(A) can be quite lengthy.
Take any A = [a;;] € C", n > 2, in which each off-diagonal entry of A is nonzero.
Then, there are exactly 2" —n — 1 distinct circuits v of I'(A). For n = 10, the number of
distinct circuits is 1,013, as opposed to 45 ovals of Cassini!
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