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1. Introduction

Let Mn(C) denote the algebra of n × n complex matrices. The classical numerical 
range (also known as field of values) of a matrix A ∈ Mn(C) is defined as the compact
and convex set

F (A) = {x∗Ax ∈ C : x ∈ C
n, x∗x = 1} ,

whose basic properties are presented in [7, Chapter 1]. Among them is the well-known 
spectral containment property σ(A) ⊆ F (A), where σ(A) denotes the spectrum of A. 
Apparently, the numerical range contains the convex hull of the spectrum, co{σ(A)}, 
which reduces to equality in the case of a normal matrix A.

For a matrix A ∈ Mn(C), denote by H(A) = A+A∗

2 the hermitian part of A and by 
S(A) = A−A∗

2 the skew-hermitian part of A. Then A = H(A) + S(A), and the matrices 
H(A) and i S(A) are hermitian. Let also

δ1(A) ≥ δ2(A) ≥ · · · ≥ δn(A)

be the eigenvalues of H(A) in a nonincreasing order, and y1 ∈ C
n be a unit eigenvector 

associated with the largest eigenvalue δ1(A) of H(A). The eigenvalues of A that are 
vertices of co{σ(A)} are called extremal [11].

By [8] (see also [7, Chapter 1]), for any θ ∈ [0, 2π), the line Lθ =
{
z ∈ C : Re z =

δ1(eiθA)
}

is a right vertical supporting line of the convex set F (eiθA) = eiθF (A). 
Moreover, if y1(θ) is a unit eigenvector of H(eiθA) associated with its largest eigen-
value δ1(eiθA), then Lθ is tangential to F (eiθA) at the point y∗1(θ)(eiθA)y1(θ), which 
lies on the boundary, denoted by ∂F (eiθA). By the convexity of the numerical range, 
y∗1(θ)(eiθA)y1(θ) ∈ ∂F (eiθA) is a right-most point of F (eiθA), and F (eiθA) lies in the 
closed half-plane Hθ =

{
z ∈ C : Re z ≤ δ1(eiθA)

}
. As a consequence,

F (A) =
⋂

θ∈[0,2π)

e−iθHθ.

In other words, F (A) is an infinite intersection of half-planes, providing the most com-
monly used method to draw the numerical range; see [7,8].

Consider now the real quantities

u(A) = Im(y∗1S(A)y1) and v(A) = ‖S(A)y1‖2
2 ,

where ‖·‖2 denotes the 2-norm and |u(A)| ≤ |y∗1S(A)y1| ≤
√

v(A). In [1], Adam and 
Tsatsomeros introduced and studied the cubic curve

Γ(A) =
{
z ∈ C : [(δ1(A) − Re z)2 + (u(A) − Im z)2](δ2(A) − Re z)

+ (δ1(A) − Re z)(v(A) − u2(A)) = 0
}
, (1.1)



62 Aik. Aretaki et al. / Linear Algebra and its Applications 532 (2017) 60–85
showing that all the eigenvalues of A lie to its left; namely, σ(A) lies in the unbounded 
closed region

Γin(A) =
{
z ∈ C : [(δ1(A) − Re z)2 + (u(A) − Im z)2](δ2(A) − Re z)

+ (δ1(A) − Re z)(v(A) − u2(A)) ≥ 0
}
,

which is a subset of the half-plane H0 = {z ∈ C : Re z ≤ δ1(A)}. A description of the 
cubic curve Γ(A) is given in the appendix at the end of the paper.

Motivated by the above, a finer spectrum localization area that is contained in the 
numerical range is introduced and studied in [10,11], called the envelope of A ∈ Mn(C)
and defined as

E(A) =
⋂

θ∈[0,2π)

e−iθΓin(eiθA).

One may immediately observe that E(A) is generated analogously to the numerical range 
F (A), by replacing the closed half-planes Hθ with the regions Γin(eiθA), θ ∈ [0, 2π). 
Since, for any θ ∈ [0, 2π), eiθσ(A) = σ(eiθA) ⊆ Γin(eiθA) ⊆ Hθ, it follows that

σ(A) ⊆ E(A) =
⋂

θ∈[0,2π)

e−iθΓin(eiθA) ⊆
⋂

θ∈[0,2π)

e−iθHθ = F (A).

The envelope E(A) is a compact subset of the complex plane (since it is a closed subset 
of the compact numerical range F (A)), but it is not necessarily convex or connected. It 
has, however, a rich structure and it satisfies some of the basic properties of F (A) and 
σ(A) listed next (see [10,11]):

(P1) Γ(AT ) = Γ(A), Γ(A∗) = Γ(A) = Γ(A), E(AT ) = E(A) and E(A∗) = E(A) = E(A). 
In particular, if A is real, then the curve Γ(A) and the envelope E(A) are symmetric 
with respect to the real axis.

(P2) For any unitary matrix U ∈ Mn(C), Γ(U∗AU) = Γ(A) and E(U∗AU) = E(A).
(P3) For any b ∈ C, Γ(A + bIn) = Γ(A) + b and E(A + bIn) = E(A) + b, where In denotes 

the n × n identity matrix and adding a scalar to a set means adding this scalar to 
every element of the set.

(P4) For any r > 0 and any a ∈ C, Γ(rA) = r Γ(A) and E(aA) = a E(A).
(P5) If A is normal and λ̂1, ̂λ2, . . . , ̂λk are its simple extremal eigenvalues, then

E(A) =

⎛
⎝ ⋂

θ∈[0,2π)

e−iθ {z ∈ C : Re z ≤ δ2(eiθA)
}⎞⎠ ∪

{
λ̂1, λ̂2, . . . , λ̂k

}
.

(P6) If λ1, λ2, . . . , λn are the eigenvalues of A, then
⋂{

Γin(R−1AR) : R ∈ Mn(C), det(R) �= 0
}

⊆ Γin(diag{λ1, λ2, . . . , λn})
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and
⋂{

E(R−1AR) : R ∈ Mn(C), det(R) �= 0
}

⊆ E(diag{λ1, λ2, . . . , λn}).

In this article, we study additional features of the envelope by turning our attention 
to special types of matrices that have also been studied in the context of the numerical 
range. In Section 2, we obtain the symmetries of the envelope of a tridiagonal Toeplitz 
matrix. In Section 3, we construct explicitly the envelopes of block-shift matrices and 
Jordan blocks. In Section 4, we prove that the envelope of any 2 ×2 matrix coincides with 
the spectrum of the matrix. Finally, in Appendix A, we provide an alternative analysis 
of the cubic curve Γ(A) that complements the one provided in [1] and assists in the 
developments of some of the new results herein.

2. The envelope of a tridiagonal Toeplitz matrix

In this section, we investigate the envelopes of tridiagonal Toeplitz matrices that arise 
e.g., in the numerical solution of differential equations; they have constant entries along 
the diagonal, the superdiagonal and the subdiagonal, that is,

Tn(c, a, b) =

⎡
⎢⎢⎢⎣
a b · · · 0

c a
. . .

...
...

. . . . . . b
0 · · · c a

⎤
⎥⎥⎥⎦ ∈ Mn(C), bc �= 0.

As shown in [5, Corollary 4], the numerical range of Tn(c, a, b) coincides with the elliptical 
disc

{bz + cz : z ∈ F (Jn(0))} + {a} ,

where Jn(0) is the n × n Jordan block with zero eigenvalue and its numerical range, 
F (Jn(0)), coincides with the circular disc D

(
0, cos

(
π

n+1

))
centered at the origin and 

having radius cos
(

π
n+1

)
; see [14, Theorem 1]. Moreover, the eigenvalues of Tn(c, a, b)

(see [3, Theorem 2.4] and also [6,9]) are

λj = λj(Tn(c, a, b)) = a + 2(bc)1/2 cos
(

jπ

n + 1

)
, j = 1, 2, . . . , n, (2.1)

and the corresponding eigenvectors xj = [ xj,1 xj,2 · · · xj,n ]T can be chosen to have 
entries

xj,k =
( c )k/2 sin

(
kjπ

)
, k = 1, 2, . . . , n. (2.2)
b n + 1
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Clearly, λ1, λ2, . . . , λn are simple eigenvalues of Tn(c, a, b) lying on the (complex) line 
segment

{
a + γei arg(b)+arg(c)

2 : −2
√
|bc| cos

(
π

n + 1

)
≤ γ ≤ 2

√
|bc| cos

(
π

n + 1

)}
,

and they are located symmetrically with respect to point a.
The above fundamental results motivate us to consider in what follows the envelope 

of a tridiagonal Toeplitz matrix.

Theorem 2.1. The envelope of a tridiagonal Toeplitz matrix Tn(c, a, b) ∈ Mn(C), bc �= 0, 
is symmetric with respect to point a.

Proof. Due to the translation property (P3) of the envelope, we have E(Tn(c, a, b)) =
E(Tn(c, 0, b)) + {a}. Hence, without loss of generality, we may consider the matrix 
Tn(c, 0, b) with bc �= 0, which we denote by Tn for brevity. Then it suffices to prove that 
E(Tn) is symmetric with respect to the origin, which is true when Γ(eiθTn) = Γ(−eiθTn)
for every θ ∈ [0, 2π).

Keeping in mind equation (1.1), it is enough to prove that for any θ ∈ [0, 2π),

δ1(−eiθTn) = δ1(eiθTn), δ2(−eiθTn) = δ2(eiθTn),

v(−eiθTn) = v(eiθTn), and u(−eiθTn) = u(eiθTn).

Denote β(θ) = beiθ + ce−iθ, θ ∈ [0, 2π). By (2.1), the eigenvalues of the hermitian 
tridiagonal Toeplitz matrix H(eiθTn) = 1

2Tn(β(θ), 0, β(θ)) are

δj(eiθTn) = |β(θ)| cos
(

jπ

n + 1

)
, j = 1, 2, . . . , n. (2.3)

Since β(θ + π) = −β(θ) for all θ ∈ [0, 2π), (2.3) yields the first pair of desired equalities 
for the eigenvalues.

By (2.2) and the formula 
∑n

j=1 sin2
(

jπ
n+1

)
= n+1

2 , a unit eigenvector of H(eiθTn)
associated with the largest eigenvalue δ1(eiθTn) is

y1(θ) =
√

2
n + 1 D(θ)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sin
(

π
n+1

)
sin
(

2π
n+1

)
...

sin
(

nπ
n+1

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (2.4)

and a unit eigenvector of H(eiθTn) associated with the smallest eigenvalue δn(eiθTn) is
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yn(θ) =
√

2
n + 1 D(θ)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sin
(

nπ
n+1

)
sin
(

2nπ
n+1

)
...

sin
(

n2π
n+1

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
√

2
n + 1 D(θ)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sin
(

π
n+1

)
− sin

(
2π
n+1

)
...

(−1)n+1 sin
(

nπ
n+1

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

where

D(θ) = diag

⎧⎨
⎩
(

β(θ)
β(θ)

)1/2

,

(
β(θ)
β(θ)

)2/2

, . . . ,

(
β(θ)
β(θ)

)n/2
⎫⎬
⎭ .

Observe now that y1(θ + π) = yn(θ) is a unit eigenvector of

H(ei(θ+π)Tn) = H(−eiθTn) = −H(eiθTn) = −1
2Tn(β(θ), 0, β(θ))

associated with its largest eigenvalue

δ1(ei(θ+π)Tn) = δ1(−eiθTn) = −δn(eiθTn).

One can also see that each entry of the vector S(eiθTn)y1(θ+π) = S(eiθTn)yn(θ) is either 
equal to the corresponding entry of S(eiθTn)y1(θ) (at the even positions) or equal to the 
corresponding entry of S(eiθTn)y1(θ) negated (at odd positions). As a consequence,

v(−eiθTn) =
∥∥S(−eiθTn)y1(θ + π)

∥∥2
2 =

∥∥−S(eiθTn)yn(θ)
∥∥2

2

= (S(eiθTn)yn(θ))∗(S(eiθTn)yn(θ)) = (S(eiθTn)y1(θ))∗(S(eiθTn)y1(θ))

= v(eiθTn).

Moreover, it is straightforward to verify that

y∗1(θ + π)S(eiθTn)y1(θ + π) = y∗n(θ)S(eiθTn)yn(θ) = −y∗1(θ)S(eiθTn)y1(θ),

which yields

u(−eiθTn) = Im(y∗1(θ+π)S(−eiθTn)y1(θ+π)) = Im[−(−y∗1(θ)S(eiθTn)y1(θ))] = u(eiθTn),

completing the proof. �
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Theorem 2.2. The envelope of a tridiagonal Toeplitz matrix Tn(c, a, b) ∈ Mn(C), bc �= 0, 
is symmetric with respect to the line

L(Tn(c, a, b)) =
{
a + γei arg(b)+arg(c)

2 : γ ∈ R

}
.

Proof. Without loss of generality, and for the sake of simplicity, we consider again the 
matrix Tn = Tn(c, 0, b). We also denote θ0 = arg(b)+arg(c)

2 . Then, the envelope E(Tn) is 
symmetric with respect to the line L(Tn(c, 0, b)) if and only if E(e−iθ0Tn) is symmetric 
with respect to the real axis. By properties (P1) and (P4) of the envelope, we observe 
that

E(e−iθ0Tn) = E(e−iθ0Tn) ⇔ E(eiθ0T ∗
n) = E(e−iθ0Tn) ⇔ E(ei2θ0T ∗

n) = E(Tn),

which equivalences hold when

Γ(ei(θ+2θ0)T ∗
n) = Γ(eiθTn) ⇔ Γ(e−i(θ+2θ0)Tn) = Γ(eiθTn), ∀ θ ∈ [0, 2π).

In order to verify the later equality on the cubic curves, it is sufficient to obtain that

δ1(e−i(θ+2θ0)Tn) = δ1(eiθTn), δ2(e−i(θ+2θ0)Tn) = δ2(eiθTn),

v(e−i(θ+2θ0)Tn) = v(eiθTn), and u(e−i(θ+2θ0)Tn) = −u(eiθTn)

for any θ ∈ [0, 2π). As in the proof of Theorem 2.1, consider the ellipse β(θ) = beiθ +
ce−iθ, θ ∈ [0, 2π). Then, according to expression (2.3), the two largest eigenvalues of the 
hermitian tridiagonal Toeplitz matrix H(e−i(θ+2θ0)Tn) = 1

2Tn(β(−θ − 2θ0), 0, β(−θ −
2θ0)) are given by

δj(e−i(θ+2θ0)Tn) = |β(−θ − 2θ0)| cos
(

jπ

n + 1

)

= (|b|2 + |c|2 + 2 Re((bc)ei2(−θ−2θ0)))1/2 cos
(

jπ

n + 1

)

= (|b|2 + |c|2 + 2 Re(|bc|ei2(−θ−θ0)))1/2 cos
(

jπ

n + 1

)

= (|b|2 + |c|2 + 2 Re(|bc|ei2(θ+θ0)))1/2 cos
(

jπ

n + 1

)

= (|b|2 + |c|2 + 2 Re((bc)ei2θ))1/2 cos
(

jπ

n + 1

)

= |β(θ)| cos
(

jπ

n + 1

)

= δj(eiθTn), j = 1, 2.
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Moreover, by (2.4), a unit eigenvector of H(e−i(θ+2θ0)Tn) corresponding to the largest 
eigenvalue δ1(e−i(θ+2θ0)Tn) is given by

y1(−θ − 2θ0) =
√

2
n + 1 D(−θ − 2θ0)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sin
(

π
n+1

)
sin
(

2π
n+1

)
...

sin
(

nπ
n+1

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

where D(θ) is as in the proof of Theorem 2.1. To further simplify the exposition of our 
calculations, we denote

γ(θ) = beiθ − ce−iθ, θ ∈ [0, 2π)

and

w1 =
√

2
n + 1

[
sin
(

π
n+1

)
sin
(

2π
n+1

)
· · · sin

(
nπ
n+1

)]T
∈ R

n.

Then, the following computations ensue:

|γ(−θ − 2θ0)| = [(be−i(θ+2θ0) − cei(θ+2θ0))(bei(θ+2θ0) − ce−i(θ+2θ0))]1/2

= (|b|2 − (bc)e−i2(θ+2θ0) − (bc)ei2(θ+2θ0) + |c|2)1/2

= (|b|2 − |bc|ei2θ0e−i2(θ+2θ0) − |bc|e−i2θ0ei2(θ+2θ0) + |c|2)1/2

= (|b|2 − 2 Re(|bc|ei2(θ+θ0)) + |c|2)1/2,

|γ(θ)| = [(beiθ − ce−iθ)(be−iθ − ceiθ)]1/2

= (|b|2 − (bc)ei2θ − (bc)e−i2θ + |c|2)1/2

= (|b|2 − |bc|ei2θ0ei2θ − |bc|e−i2θ0e−i2θ + |c|2)1/2

= (|b|2 − 2 Re(|bc|ei2(θ+θ0)) + |c|2)1/2,

γ(−θ − 2θ0)β(−θ − 2θ0) = (be−i(θ+2θ0) − cei(θ+2θ0))(bei(θ+2θ0) + ce−i(θ+2θ0))

= |b|2 + (bc)e−i2(θ+2θ0) − (bc)ei2(θ+2θ0) − |c|2

= |b|2 + |bc|ei2θ0e−i2(θ+2θ0) − |bc|e−i2θ0ei2(θ+2θ0) − |c|2

= |b|2 − i2 Im(|bc|ei2(θ+θ0)) − |c|2,

γ(θ)β(θ) = (be−iθ − ceiθ)(beiθ + ce−iθ)

= |b|2 + (bc)e−i2θ − (bc)ei2θ − |c|2

= |b|2 + |bc|e−i2θ0e−i2θ − |bc|ei2θ0ei2θ − |c|2

= |b|2 − i2 Im(|bc|ei2(θ+θ0)) − |c|2,
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γ(−θ − 2θ0)β(θ) = (be−i(θ+2θ0) − cei(θ+2θ0))(be−iθ + ceiθ)

= |b|2e−i2(θ+θ0) + (bc)e−i2θ0 − (bc)ei2θ0 − |c|2ei2(θ+θ0)

= |b|2e−i2(θ+θ0) − |c|2ei2(θ+θ0),

and

γ(θ)β(−θ − 2θ0) = (be−iθ − ceiθ)(be−i(θ+2θ0) + cei(θ+2θ0))

= |b|2e−i2(θ+θ0) + (bc)ei2θ0 − (bc)e−i2θ0 − |c|2ei2(θ+θ0)

= |b|2e−i2(θ+θ0) − |c|2ei2(θ+θ0).

Thus,

|γ(−θ − 2θ0)| = |γ(θ)|, γ(−θ − 2θ0)β(−θ − 2θ0) = γ(θ)β(θ),

γ(−θ − 2θ0)β(θ) = γ(θ)β(−θ − 2θ0), and γ(−θ − 2θ0)2β(−θ − 2θ0)
β(−θ − 2θ0)

= γ(θ)
2
β(θ)

β(θ)
.

The above relations yield

v(e−i(θ+2θ0)Tn)

=
∥∥∥S(e−i(θ+2θ0)Tn)y1(−θ − 2θ0)

∥∥∥2
2

= −wT
1 D(−θ − 2θ0)−1S(e−i(θ+2θ0)Tn)2D(−θ − 2θ0)w1

= wT
1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

|γ(θ)|2
4 0 −γ(θ)2β(θ)

4β(θ) 0 0

0 |γ(θ)|2
2 0

. . .

−γ(θ)2β(θ)
4β(θ) 0

. . . . . . . . .

0
. . . . . . . . . . . . −γ(θ)2β(θ)

4β(θ)

. . . |γ(θ)|2
2 0

0 −γ(θ)2β(θ)
4β(θ) 0 |γ(θ)|2

4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

w1

= −wT
1 D(θ)−1S(eiθTn)2D(θ)w1

=
∥∥∥S(eiθTn)D(θ)w1

∥∥∥2
2

=
∥∥S(eiθTn)y1(θ)

∥∥2
2

= v(eiθTn)
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Fig. 1. The envelopes E(T5(2 + 3i, 0,−1 − i)) (left) and E(T5(2 + 3i, 0, 0.8 − i)) (right).

and

u(e−i(θ+2θ0)Tn) = Im(y∗1(−θ − 2θ0)S(e−i(θ+2θ0)Tn)y1(−θ − 2θ0))

= Im
(
wT

1 D(−θ − 2θ0)−1S(e−i(θ+2θ0)Tn)D(−θ − 2θ0)w1

)

= Im

⎛
⎝1

2 wT
1 Tn

⎛
⎝−γ(θ)

(
β(θ)
β(θ)

)−1/2

, 0, γ(θ)
(

β(θ)
β(θ)

)1/2
⎞
⎠w1

⎞
⎠

= Im
(
wT

1 D(θ)−1S(eiθTn)D(θ)w1

)
= − Im

(
wT

1 D(θ)−1S(eiθTn)D(θ)w1
)

= −u(eiθTn),

completing the proof. �
Example 2.3. Consider the 5 × 5 tridiagonal Toeplitz matrices T5(2 + 3i, 0, −1 − i) and 
T5(2 + 3i, 0, 0.8 − i). Their envelopes are illustrated by the unshaded areas in the left 
and right parts of Fig. 1, respectively. The envelope of T5(2 + 3i, 0, −1 − i) consists of 
three connected components, the envelope of T5(2 + 3i, 0, 0.8 − i) is connected, and the 
eigenvalues of the matrices are marked with +’s. The symmetry results in Theorems 2.1
and 2.2 (with respect to the origin and the straight line determined by the eigenvalues) 
are confirmed. It is worth noting that the numerical range appears, as a by-product of 
our drawing technique, in all of our plots of an envelope; indeed, the numerical range is 
depicted as the outer outlined elliptical region.
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3. The envelope of a block-shift matrix

A square matrix of the block form

A =

⎡
⎢⎢⎢⎢⎢⎣

0 A1 0 · · · 0
0 0 A2 · · · 0
...

...
. . . . . .

...
0 0 · · · 0 Am

0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦ , (3.1)

with m > 1 and the zero blocks along the main diagonal being square, is called a 
block-shift matrix. The next lemma can be found in [13] (see Theorem 1 and Remarks 2 
and 4), and it is stated here for the sake of completeness.

Lemma 3.1. Let A ∈ Mn(C). The following conditions are equivalent:

(i) A is permutationally similar to a block-shift matrix.
(ii) For every nonzero a ∈ C, A is diagonally similar to aA.
(iii) There is a nonzero a ∈ C, which is not a root of unity, such that A is diagonally 

similar to aA,
(iv) For every θ ∈ [0, 2π), A is unitarily diagonally similar to eiθA.

Lemma 3.2. Let A ∈ Mn(C). Then A is permutationally similar to a block-shift matrix 
if and only if for every θ ∈ [0, 2π), there exists a unitary diagonal matrix Uθ ∈ Mn(C)
such that H(A) = U∗

θH(eiθA)Uθ and S(A) = U∗
θ S(eiθA)Uθ.

Proof. By Lemma 3.1, A is permutationally similar to a block-shift matrix if and only 
if for every θ ∈ [0, 2π), there is a unitary diagonal matrix Uθ such that A = U∗

θ e
iθAUθ, 

or equivalently, H(A) = U∗
θH(eiθA)Uθ and S(A) = U∗

θ S(eiθA)Uθ. �
Using the above lemmas, we are now able to show that the envelope of a block-shift 

matrix is a circular disc centered at the origin.

Theorem 3.3. Let A ∈ Mn(C) (n ≥ 3) be a block-shift matrix. Then E(A) coincides with 
the circular disc D(0, R) centered at the origin, with radius

R =
(
δ2
1(A) −

(√
2δ1(A)(δ1(A) − δ2(A)) −

√
v(A)

)2
)1/2

.

Proof. Suppose A ∈ Mn(C) is a block-shift matrix as in (3.1). Lemma 3.2 asserts that 
for any θ ∈ [0, 2π), H(eiθA) = UθH(A)U∗

θ and S(eiθA) = UθS(A)U∗
θ for some unitary 

Uθ ∈ Mn(C). Thus, the eigenvalues of H(eiθA) remain constant (independently of the 
angle θ ∈ [0, 2π)) and equal to δ1(A) ≥ δ2(A) ≥ · · · ≥ δn(A).



Aik. Aretaki et al. / Linear Algebra and its Applications 532 (2017) 60–85 71
Consider a unit eigenvector y1 of H(A) associated with the largest eigenvalue δ1(A). 
Then Uθ y1 is a unit eigenvector of H(eiθA) associated with δ1(A), and hence,

v(eiθA) =
∥∥S(eiθA)Uθy1

∥∥2
2 =

∥∥U∗
θ S(eiθA)Uθy1

∥∥2
2 = ‖S(A)y1‖2

2 = v(A)

and

u(eiθA) = Im(y∗1U∗
θ S(eiθA)Uθy1) = Im(y∗1S(A)y1) = u(A).

It follows that all rotations of A have the same cubic curve; that is, Γ(eiθA) = Γ(A) for 
all θ ∈ [0, 2π).

We are now interested in the type of the cubic curve Γ(A). It is known by [12, 
Theorem 1] that F (A) = D(0, r(A)), where r(A) is the numerical radius of A. As a 
consequence, δ1(A) + iu(A) = r(A) > 0 (the right-most point of F (A)), u(A) = 0, and 
(1.1) takes the form

Γ(A) =
{
z ∈ C : (δ2(A) − Re z)[(δ1(A) − Re z)2 + (Im z)2] + (δ1(A) − Re z)v(A) = 0

}
.

(3.2)

Recall that Γ(A) is symmetric with respect to the real axis (see [10] or the appendix 
below), and every eigenvalue of A lies to the left of the curve. Since A has only the zero 
eigenvalue of multiplicity n ≥ 3, Theorem 3.2 in [10] ensures that Γ(A) is connected 
with no closed branch. These observations lead us to the conclusion that, carrying out 
the rotation of Γ(A) about the origin, the envelope E(A) coincides with a circular disc 
centered at the origin.

The radius of the disc can be determined by calculating the shortest distance from 
the origin to the curve Γ(A). To achieve this, we have to minimize d =

√
s2 + t2, or 

equivalently, d2, subject to s + i t ∈ Γ(A) (s, t ∈ R). Since the curve Γ(A) lies in the 
vertical zone {s + i t ∈ C : s, t ∈ R, δ2(A) < s ≤ δ1(A)}, (3.2) can be written as

Γ(A) = {s + i t ∈ C : s, t ∈ R, f(s, t) = 0} ,

where

f(s, t) = (δ1(A) − s)2 + t2 + (δ1(A) − s)v(A)
δ2(A) − s

.

Solving f(s, t) = 0 for d2 = s2 + t2, we obtain

d2 = d2(s) = δ1(A)(2s− δ1(A)) − (δ1(A) − s)v(A)
δ2(A) − s

.

Hence, minimizing d2 subject to f(s, t) = 0 is equivalent to minimizing d2 with respect 
to s, with δ2(A) < s ≤ δ1(A). Therefore,



72 Aik. Aretaki et al. / Linear Algebra and its Applications 532 (2017) 60–85
(d2(s))′ = 2δ1(A) − v(A)(δ1(A) − δ2(A))
(δ2(A) − s)2 = 0

results into

(δ2(A) − s)2 = v(A)(δ1(A) − δ2(A))
2δ1(A) (> 0),

and due to δ2(A) < s ≤ δ1(A), we have

s = δ2(A) +

√
v(A)(δ1(A) − δ2(A))

2δ1(A) .

Hence, the minimum distance is

R =
(
2δ1(A)δ2(A) − δ1(A)2 − v(A) + 2

√
2v(A)δ1(A)(δ1(A) − δ2(A))

)1/2

=
(
δ2
1(A) −

(√
2δ1(A)(δ1(A) − δ2(A)) −

√
v(A)

)2
)1/2

,

and the proof is complete. �
Remark 3.4. As mentioned in the above proof, the numerical range of a block-shift matrix 
is also a circular disc centered at the origin [4,12,13]. The numerical radius of a block-shift 
matrix A is r(A) = δ1(A). Hence, it is straightforward to verify that

r(A)2 −R2 =
(√

2r(A)(r(A) − δ2(A)) −
√

v(A)
)2

.

Example 3.5. Consider a 6 × 6 block-shift matrix as in (3.1) with m = 3:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −1 0 0
0 0 2 i 0 0
0 0 0 0 −2 0
0 0 0 0 3i 0
0 0 0 0 0 5
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

The envelope E(A) is illustrated in Fig. 2 by the unshaded area, exhibiting the circular 
shape proven in Theorem 3.3. Its radius is R = 2.7416 since δ1 = r(A) = 3.1495, 
δ2 = 0.9522 and v(A) = 4.7094. The zero eigenvalue of A is marked with a + and 
coincides with the center of the circle.

We next apply Theorem 3.3 to determine the envelope of a Jordan block with zero 
eigenvalue.
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Fig. 2. The envelope of a block-shift matrix.

Theorem 3.6. Let n ≥ 3 and consider the n × n Jordan block

Jn(λ) =

⎡
⎢⎢⎢⎣
λ 1 0

λ
. . .
. . . 1

0 λ

⎤
⎥⎥⎥⎦ , λ ∈ C.

The envelope E(Jn(λ)) is the circular disc D(λ, R) with radius

R =
(
−4δ4

1 + 2δ2
1 + 2(n + 1)δ1δ2 + δ2

2 − n

n + 1

+ 2

√
2δ1(δ1 − δ2)

4δ4
1 − (n + 3)δ2

1 − δ2
2 + n

n + 1

) 1
2

,

where δj = cos
(

jπ
n+1

)
, j = 1, 2. Moreover, for n = 2, E(J2(λ)) = {λ}.

Proof. Denote by Jn the basic n × n Jordan block Jn(0). By the translation property 
(P3) of the envelope, we have

E(Jn(λ)) = E(Jn + λIn) = E(Jn) + λ.

By Theorem 3.3, E(Jn) = D(0, Rn), where

Rn =
(
2δ1(Jn)δ2(Jn) − δ2

1(Jn) − v(Jn) + 2
√

2v(Jn)δ1(Jn)(δ1(Jn) − δ2(Jn))
)1/2

.

(3.3)
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In the sequel, we will compute the quantities δ1(Jn), δ2(Jn) and v(Jn) = ‖S(Jn)y1‖2
2, 

with y1 a unit eigenvector of H(Jn) corresponding to δ1(Jn).
Following the notation given in the previous section for tridiagonal Toeplitz matrices, 

we notice that H(Jn) = Tn

( 1
2 , 0,

1
2
)

and its eigenvalues are given explicitly by (2.1); 
that is, δj(Jn) = cos

(
jπ
n+1

)
, j = 1, 2, . . . , n. Moreover, a unit eigenvector y1 of H(Jn)

associated to δ1(Jn) can be readily calculated by (2.2), that is,

y1 =
√

2
n + 1

[
sin
(

π
n+1

)
sin
(

2π
n+1

)
· · · sin

(
nπ
n+1

) ]T
.

As a consequence,

v(Jn) = ‖S(Jn)y1‖2
2 =

∥∥∥∥Tn

(
−1

2 , 0,
1
2

)
y1

∥∥∥∥
2

2

= 2
n + 1

[
sin
(

π
n+1

)
· · · sin

(
nπ
n+1

)]

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4 0 −1

4 0 · · · 0

0 1
2 0 −1

4
...

−1
4 0 1

2 0 −1
4

. . . . . . . . .
−1

4 0 1
2 0 −1

4
... −1

4 0 1
2 0

0 · · · 0 −1
4 0 1

4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

sin
(

π
n+1

)
...

sin
(

nπ
n+1

)
⎤
⎥⎥⎥⎦

= 2
n + 1

[
sin
(

π
n+1

)
· · · sin

(
nπ
n+1

)]

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4 sin

(
π

n+1

)
− 1

4 sin
(

3π
n+1

)
1
2 sin

(
2π
n+1

)
− 1

4 sin
(

4π
n+1

)
−1

4 sin
(

π
n+1

)
+ 1

2 sin
(

3π
n+1

)
− 1

4 sin
(

5π
n+1

)
...

−1
4 sin

(
(n−4)π
n+1

)
+ 1

2 sin
(

(n−2)π
n+1

)
− 1

4 sin
(

nπ
n+1

)
−1

4 sin
(

(n−3)π
n+1

)
+ 1

2 sin
(

(n−1)π
n+1

)
−1

4 sin
(

(n−2)π
n+1

)
+ 1

4 sin
(

nπ
n+1

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 2
n + 1

[
sin
(

π

n + 1

)(
1
4 sin

(
π

n + 1

)
− 1

4 sin
(

3π
n + 1

))

+ sin
(

2π
)(

1 sin
(

2π
)
− 1 sin

(
4π

))

n + 1 2 n + 1 4 n + 1
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+ sin
(

3π
n + 1

)(
−1

4 sin
(

π

n + 1

)
+ 1

2 sin
(

3π
n + 1

)
− 1

4 sin
(

5π
n + 1

))
+ · · ·

+ sin
(

(n− 2)π
n + 1

)(
−1

4 sin
(

(n− 4)π
n + 1

)
+ 1

2 sin
(

(n− 2)π
n + 1

)
− 1

4 sin
(

nπ

n + 1

))

+ sin
(

(n− 1)π
n + 1

)(
−1

4 sin
(

(n− 3)π
n + 1

)
+ 1

2 sin
(

(n− 1)π
n + 1

))

+ sin
(

nπ

n + 1

)(
−1

4 sin
(

(n− 2)π
n + 1

)
+ 1

4 sin
(

nπ

n + 1

))]

= 2
n + 1

[
1
4 sin2

(
π

n + 1

)
− 1

4 sin
(

π

n + 1

)
sin
(

3π
n + 1

)

+ 1
2 sin2

(
2π

n + 1

)
− 1

4 sin
(

2π
n + 1

)
sin
(

4π
n + 1

)

− 1
4 sin

(
3π

n + 1

)
sin
(

π

n + 1

)
+ 1

2 sin2
(

3π
n + 1

)
− 1

4 sin
(

3π
n + 1

)
sin
(

5π
n + 1

)
− · · ·

− 1
4 sin

(
(n− 2)π
n + 1

)
sin
(

(n− 4)π
n + 1

)
+ 1

2 sin2
(

(n− 2)π
n + 1

)

− 1
4 sin

(
(n− 2)π
n + 1

)
sin
(

nπ

n + 1

)

− 1
4 sin

(
(n− 1)π
n + 1

)
sin
(

(n− 3)π
n + 1

)
+ 1

2 sin2
(

(n− 1)π
n + 1

)

−1
4 sin

(
nπ

n + 1

)
sin
(

(n− 2)π
n + 1

)
+ 1

4 sin2
(

nπ

n + 1

)]

= 1
2(n + 1)

[
sin2

(
π

n + 1

)
+ 2

n−1∑
j=2

sin2
(

jπ

n + 1

)
+ sin2

(
nπ

n + 1

)

− 2
n−2∑
j=1

sin
(

jπ

n + 1

)
sin
(

(j + 2)π
n + 1

)]

= 1
2(n + 1)

[
n−2∑
j=1

(
sin
(

jπ

n + 1

)
− sin

(
(j + 2)π
n + 1

))2

+ sin2
(

2π
n + 1

)
+ sin2

(
(n− 1)π
n + 1

)]
.

Applying now the sum-to-product trigonometric identity, and keeping in mind the 
relation
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n∑
j=1

cos2
(

jπ

n + 1

)
= n−

n∑
j=1

sin2
(

jπ

n + 1

)
= n− n + 1

2 = n− 1
2 ,

we get

v(Jn) =

= 1
2(n + 1)

[
n−2∑
j=1

4
(

sin2
(

π

n + 1

)
cos2

(
(j + 1)π
n + 1

))
+ 2 − cos2

(
2π

n + 1

)

− cos2
(

(n− 1)π
n + 1

)]

= 1
2(n + 1)

⎡
⎣4 sin2

(
π

n + 1

) n−2∑
j=1

cos2
(

(j + 1)π
n + 1

)
+ 2 − 2 cos2

(
2π

n + 1

)⎤⎦

= 1
2(n + 1)

⎡
⎣4
(

1 − cos2
(

π

n + 1

)) n−2∑
j=1

cos2
(

(j + 1)π
n + 1

)
+ 2 − 2 cos2

(
2π

n + 1

)⎤⎦

= 1
2(n + 1)

[
4
(

1 − cos2
(

π

n + 1

))( n∑
j=1

cos2
(

jπ

n + 1

)
− cos2

(
π

n + 1

)

− cos2
(

nπ

n + 1

))
+ 2 − 2 cos2

(
2π

n + 1

)]

= 1
2(n + 1)

[
4
(

1 − cos2
(

π

n + 1

))(
n− 1

2 − 2 cos2
(

π

n + 1

))
+ 2

− 2 cos2
(

2π
n + 1

)]
.

Substituting δj = δj(Jn) = cos
(

jπ
n+1

)
, j = 1, 2, into the above, we obtain

v(Jn) = 1
2(n + 1)

[
4(1 − δ2

1)
(
n− 1

2 − 2δ2
1

)
+ 2 − 2δ2

2

]

= 1
n + 1

[
2(1 − δ2

1)
(
n− 1

2 − 2δ2
1

)
+ 1 − δ2

2

]

= 1
n + 1

[
(1 − δ2

1)(n− 1 − 4δ2
1) + 1 − δ2

2
]

= 1
n + 1

[
4δ4

1 − (n + 3)δ2
1 − δ2

2 + n
]
.

In turn, we substitute the above expression for v(Jn) into (3.3) to derive
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R2
n = 2δ1δ2 − δ2

1 − 4δ4
1 − (n + 3)δ2

1 − δ2
2 + n

n + 1 + 2

√
2δ1(δ1 − δ2)

4δ4
1 − (n + 3)δ2

1 − δ2
2 + n

n + 1

= −4δ4
1 + 2δ2

1 + 2(n + 1)δ1δ2 + δ2
2 − n

n + 1 + 2

√
2δ1(δ1 − δ2)

4δ4
1 − (n + 3)δ2

1 − δ2
2 + n

n + 1 .

For the 2 × 2 Jordan block J2 =
[
0 1
0 0

]
, we have

δ1(J2) = −δ2(J2) = 1/2, u(J2) = 0 and v(J2) =

∥∥∥∥∥
[ 0 1/2
−1/2 0

] [√
2/2√
2/2

]∥∥∥∥∥
2

2

= 1/4.

According to the discussion in the proof of Theorem 3.3, the curve Γ(eiθJ2) remains 
unchanged during all rotations θ ∈ [0, 2π), with equation

(
Re z + 1

2

)[(
Re z − 1

2

)2

+ (Im z)2
]

+ 1
4

(
Re z − 1

2

)
= 0 (3.4)

and discriminant Δ = (δ1 − δ2)2 − 4(v(J2) − u2(J2)) = 0. Taking into account the 
case (b) of the classification mentioned in the appendix, the curve is singular with a 
node at the origin (0, 0) =

(
δ1+δ2

2 , u
)
. Hence, the rotation of the curve about the origin 

yields E(J2) = {0}. �
4. The envelope of a 2 × 2 matrix

In this section, we derive that the envelope of every 2 × 2 complex matrix coincides 
with the point set of the spectrum of the matrix.

Theorem 4.1. Let A be a 2 × 2 complex matrix. Then E(A) = σ(A).

Proof. According to Schur’s triangularization theorem, A ∈ M2(C) is unitarily similar 

to an upper triangular matrix T =
[
λ α
0 μ

]
, where λ and μ are the eigenvalues of A, and 

α ∈ C.
If α = 0, then by [11, Corollary 4.2], E(A) = E(T ) = σ(A).
If α �= 0 and λ = μ, then properties (P2), (P3) and (P4) of the envelope yield

E(A) = E(T ) = E(λI2 + αJ2(0)) = λ + αE(J2(0)) = {λ} = σ(A).

Suppose now that α �= 0 and λ �= μ. By Lemma 1.3.1 in [7], there exists a unitary 
matrix U ∈ M2(C) such that

U∗
(
T − tr(T )

2 I2

)
U =

[0 c

d 0

]
=
[ 0 |c|eiθ1

iθ2

]
,

|d|e 0
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for some c, d ∈ C and θ1, θ2 ∈ [0, 2π). Consider the unitary matrix V =
[1 0
0 ei θ2−θ1

2

]
for 

which

V ∗U∗
(
T − tr(T )

2 I2

)
UV = ei θ1+θ2

2

[ 0 |c|
|d| 0

]
.

Due to the unitary invariance property (P2) and the translation property (P3) of the 
envelope, it follows that

E(A) = ei θ1+θ2
2 E

([ 0 |c|
|d| 0

])
+ tr(T )

2 .

If cd = 0, then we get one of the trivial cases discussed above. Thus, it suffices to 

describe the envelope of the matrix B =
[

0 |c|
|d| 0

]
, with cd �= 0. Notice that ±

√
|cd| are 

the eigenvalues of B. Moreover, using for brevity the notation δj,θ = δj(eiθB) (j = 1, 2), 
uθ = u(eiθB) and vθ = v(eiθB), we have

E(B) =
⋂

θ∈[0,2π)

e−iθΓin(eiθB), (4.1)

where

Γin(eiθB) =
{
s + i t ∈ C : s, t ∈ R,

(δ2,θ − s)[(δ1,θ − s)2 + (uθ − t)2] + (δ1,θ − s)(vθ − u2
θ) ≥ 0

}
.

Next, observe that

H(eiθB) =
[

0 eiθ|c|+e−iθ|d|
2

e−iθ|c|+eiθ|d|
2 0

]
, S(eiθB) =

[
0 eiθ|c|−e−iθ|d|

2
−e−iθ|c|+eiθ|d|

2 0

]

and

δ1,θ = −δ2,θ =
∣∣eiθ|c| + e−iθ|d|

∣∣
2 =

√
|c|2 + |d|2 + 2|cd| cos(2θ)

2 , (4.2)

as well as that a unit eigenvector of H(eiθB) corresponding to the eigenvalue δ1,θ is

y1,θ =
√

2
2

[ 1
e−iθ|c|+eiθ|d|

2δ1,θ

]
.

Hence,

vθ =
∥∥S(eiθB)y1,θ

∥∥2 = 1 ∣∣eiθ|c| − e−iθ|d|
∣∣2 = |c|2 + |d|2 − 2|cd| cos(2θ) (4.3)
2 4 4
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and

i uθ = y∗1,θS(eiθB)y1,θ

= 1
2

[
1 eiθ|c|+e−iθ|d|

2δ1,θ

] [ 0 eiθ|c|−e−iθ|d|
2

−e−iθ|c|+eiθ|d|
2 0

][ 1
e−iθ|c|+eiθ|d|

2δ1,θ

]

= 1
8δ1,θ

[(eiθ|c| − e−iθ|d|)(e−iθ|c| + eiθ|d|) − (e−iθ|c| − eiθ|d|)(eiθ|c| + e−iθ|d|)]

= i |cd| sin(2θ)
2δ1,θ

. (4.4)

It is apparent from (4.1) that

E(B) ⊆ Γin(B) ∩ e−
iπ
2 Γin(e iπ

2 B) ∩ e
iπ
2 Γin(e− iπ

2 B).

To prove that the above intersection coincides with the spectrum of A, we need to 
calculate the quantities (4.2), (4.3) and (4.4) for the angles θ1 = 0, θ2 = π

2 and θ3 = −π
2 , 

that is,

δ1,0 = |c| + |d|
2 , v0 =

(
|c| − |d|

2

)2

, u0 = 0,

and

δ1,π2 = δ1,−π
2

= ||c| − |d||
2 , vπ

2
= v−π

2
=
(
|c| + |d|

2

)2

, uπ
2

= u−π
2

= 0.

For θ1 = 0, the discriminant of the cubic curve Γ(B) is Δ0 = (δ1,0− δ2,0)2−4(v0−u2
0) =

4|cd| > 0. From the case (a) described in the appendix, it follows that the region

Γin(B) =
{
s + i t ∈ C : s, t ∈ R, (s + δ1,0)t2 ≤ (δ1,0 − s)(s2 − |cd|)

}
comprises two branches; a closed bounded branch lying in the vertical zone

{
s + i t ∈ C :

√
|cd| ≤ s ≤ δ1,0, t ∈ R

}

and an unbounded branch lying in the closed half-plane 
{
s + i t ∈ C : s ≤ −

√
|cd|,

t ∈ R
}
.

For θ2 = π
2 and θ3 = −π

2 , the cubic curves Γ(e iπ
2 B) and Γ(e− iπ

2 B) are identical, and 

their common discriminant is Δπ
2

= Δ−π
2

=
(
δ1,π2 − δ2,π2

)2−4 
(
vπ

2
− u2

π
2

)
= −4|cd| < 0. 

The case (e) in the appendix reveals that Γin(e iπ
2 B) = Γin(e− iπ

2 B) is an unbounded 
region lying in the closed half-plane 

{
s + i t ∈ C : s ≤ δ1,π2 , t ∈ R

}
. As a consequence, 

we have the rotations
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e−
iπ
2 Γin(e iπ

2 B) = e−
iπ
2
{
s + i t ∈ C : s, t ∈ R,

(
s + δ1,π2

)
t2 ≤

(
δ1,π2 − s

)
(s2 + |cd|)

}
=
{
s + i t ∈ C : s, t ∈ R,

(
δ1,π2 − t

)
s2 ≤

(
δ1,π2 + t

)
(t2 + |cd|)

}
(4.5)

⊆
{
s + i t ∈ C : s ∈ R, t ≥ −δ1,π2

}
and

e
iπ
2 Γin(e− iπ

2 B) = e
iπ
2
{
s + i t ∈ C : s, t ∈ R,

(
s + δ1,π2

)
t2 ≤

(
δ1,π2 − s

)
(s2 + |cd|)

}
=
{
s + i t ∈ C : s, t ∈ R,

(
δ1,π2 + t

)
s2 ≤

(
δ1,π2 − t

)
(t2 + |cd|)

}
(4.6)

⊆
{
s + i t ∈ C : s ∈ R, t ≤ δ1,π2

}
.

By (4.5) and (4.6), it is now clear that both regions e− iπ
2 Γin(e iπ

2 B) and e
iπ
2 Γin(e− iπ

2 B)
are symmetric with respect to the imaginary axis. Moreover, e− iπ

2 Γin(e iπ
2 B) is a reflection 

of e iπ
2 Γin(e− iπ

2 B) with about the real axis and the origin.
It is straightforward to identify the points at which the curves e− iπ

2 Γ(e iπ
2 B) and 

e
iπ
2 Γ(e− iπ

2 B) meet. Indeed, the equations

(δ1,π2 − t)s2 = (δ1,π2 + t)(t2 + |cd|) and (δ1,π2 + t)s2 = (δ1,π2 − t)(t2 + |cd|) (4.7)

yield readily that

s2 = t2 + |cd|. (4.8)

Substituting (4.8) into any of the two equations in (4.7) implies that t = 0. 
As a consequence, the curves e− iπ

2 Γ(e iπ
2 B) and e

iπ
2 Γ(e− iπ

2 B) intersect at ±
√
|cd|, 

and thus, the intersection e−
iπ
2 Γin(e iπ

2 B) ∩ e
iπ
2 Γin(e− iπ

2 B) lies in the vertical zone {
s + i t ∈ C : −

√
|cd| ≤ s ≤

√
|cd|, t ∈ R

}
. Hence,

Γin(B) ∩ e−
iπ
2 Γin(e iπ

2 B) ∩ e
iπ
2 Γin(e− iπ

2 B) = {±
√
|cd|} = σ(B),

and the proof is complete. �
Our last example illustrates the observations in the above result and the concepts in 

its proof.

Example 4.2. Consider the 2 × 2 matrix B =
[
0 2
8 0

]
, with spectrum σ(B) = {−4, 4}. 

The curves Γ(B), e− iπ
2 Γ(e iπ

2 B) and e
iπ
2 Γ(e− iπ

2 B) are illustrated in Fig. 3 by the solid, 
dashed and dotted curves, respectively. As one may observe, they all meet at only two 
points, the eigenvalues of B, which are marked by ∗’s.
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Fig. 3. The curves Γ(B) (solid curve), e− iπ
2 Γ(e

iπ
2 B) (dashed curve) and e iπ

2 Γ(e−
iπ
2 B) (dotted curve) intersect 

at the eigenvalues of B.

Appendix A. An alternative analysis of Γ(A)

The cubic curve Γ(A) defined in (1.1) is introduced and studied in [1] and subsequently 
led to the consideration of the envelope in [10,11]. In this appendix, we present an 
alternative analysis and classification of Γ(A), used in the main part of the paper.

By definition, Γ(A) is the locus of the points z = s + i t, with coordinates s ∈
[δ2(A), δ1(A)] and t ∈ R, such that fA(s, t) = 0, where

fA(s, t) = [(δ1(A) − s)2 + (u(A) − t)2](δ2(A) − s) + (δ1(A) − s)(v(A) − u2(A)) (A.1)

is a real polynomial in two variables of total degree 3. Changing variables s �→ x + δ2(A)
and t �→ y + u(A) in (A.1), converts fA(s, t) = 0 into a more amenable equation. In 
particular, consider

FA(x, y) = −x3 + 2(δ1(A) − δ2(A))x2 − [(δ1(A) − δ2(A))2 + v(A) − u2(A)]x

+ (δ1(A) − δ2(A))(v(A) − u2(A)) − xy2,

and let us denote α(A) = δ1(A) − δ2(A) ≥ 0 and β(A) = v(A) − u2(A) ≥ 0. Then (A.1)
is transformed into its canonical form with respect to the new coordinates x ∈ [0, α(A)]
and y ∈ R, that is,

FA(x, y) = 0,

or equivalently,

xy2 = −x3 + 2α(A)x2 − [α2(A) + β(A)]x + α(A)β(A),

or equivalently,

xy2 = −(x− α(A))(x2 − α(A)x + β(A)). (A.2)
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Fig. 4. Different types of cubic curves (A.2), corresponding to the cases (a) Δ > 0, (b) Δ = 0 and (e) Δ < 0.

According to Newton’s classification of cubic curves [2], (A.2) belongs to the class of 
defective hyperbolas. The curve has only one real asymptote, the vertical axis x = 0 (or 
s = δ2(A)) and it is symmetric with respect to the horizontal axis y = 0 (or t = u(A)). 
The cubic polynomial P (x) = −(x − α(A))(x2 − α(A)x + β(A)) has at most three 
real nonnegative roots, the nature of which classifies (A.2) into five different categories. 
Specifically, we consider the discriminant Δ = α(A)2 − 4β(A) of the quadratic factor of 
P (x), and we distinguish the following cases:

(a) Suppose that P (x) has three distinct positive roots

x1 = α(A), x2 = α(A) +
√

Δ
2 and x3 = α(A) −

√
Δ

2 .

In this case, Δ > 0, δ1(A) > δ2(A) and v(A) > u2(A), and Γ(A) is a conchoidal 
hyperbola with an oval at its convexity. The oval forms a bounded region lying in 
the zone oriented by the vertical lines determined by the roots x1 > x2, while the 
hyperbola forms an unbounded region lying in the left half-plane determined by the 
root x3; see Fig. 4(a).

(b) Suppose that P (x) has two equal positive roots

x1 = α(A) > α(A)
2 = x2 = x3.

In this case, Δ = 0, δ1(A) > δ2(A) and v(A) > u2(A), and Γ(A) is a curve where the 
conchoidal hyperbola and the oval coalesce (folium of Descartes), intersecting each 

other at the node (x2, y(x2)) =
(

α(A)
2 , 0

)
; see Fig. 4(b).

(c) Suppose that P (x) has only the zero root

x1 = x2 = x3 = 0.
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In this case, Δ = 0, δ1(A) = δ2(A) and v(A) = u2(A), and Γ(A) coincides with the 
vertical axis x = 0.

(d) Suppose that P (x) has two equal positive roots

x1 = x2 = α(A) > α(A)
2 = x3.

In this case, Δ > 0, δ1(A) > δ2(A) and v(A) = u2(A), and Γ(A) degenerates to the 
vertical axis x = 0 with an isolated point-acnode (x1, y(x1)) = (α(A), 0).

(e) Suppose that P (x) has only one real root

x1 = α(A).

In this case, Δ < 0, δ1(A) ≥ δ2(A) and v(A) > u2(A), and Γ(A) is a pure conchoidal 
curve (degenerating to the line x = 0 whether δ1(A) = δ2(A)) with no oval, node or 
isolated point; see Fig. 4(e).

The aforementioned description verifies that Γ(A) is a nonsingular curve in cases 
(a), (c) and (e). An essential attribute of a nonsingular cubic curve is the measure of 
how much it deviates from a straight line, namely, its curvature. Affine transformations 
preserve the curvature, and therefore, we shall use the curvature formula for FA(x, y) = 0
in (A.2). The symmetry of the curve with respect to the horizontal axis y = 0 permits 
us to restrict to the positive quadrant and specialize to the curve

y = y(x) =

√(
α(A)
x

− 1
)

(x2 − α(A)x + β(A)) > 0, (A.3)

at which we apply the curvature formula

κ(x) = |y′′(x)|
((y′(x))2 + 1)3/2

.

Now we want to find out how large κ(x) can get. Our search for maxima starts studying 
the critical points of κ(x), which occur at points x ∈ [0, α(A)] where the first derivative

κ′(x) = y′′′(x)(1 + (y′(x))2) − 3y′(x)(y′′(x))2

((y′(x))2 + 1)5/2

vanishes. Thus,

y′′′(x)(1 + (y′(x))2) − 3y′(x)(y′′(x))2 = 0. (A.4)

Using ordinary differential calculus in (A.3), we calculate (for x, y �= 0)
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y′(x) = −2x3 + 2α(A)x2 − α(A)β(A)
2x2y

,

y′′(x) =
β(A)

[
4x4 − 12α(A)x3 + 12α2(A)x2 − 4α(A)(α2(A) + β(A))x + 3α2(A)β(A)

]
4x4y3 ,

y′′′(x) = 3α(A)β2(A)

−20x4 + 50α(A)x3 − (42α2(A) + 8β(A))x2 + 12α(A)(α2(A) + β(A))x− 5α2(A)β(A)
8x6y5

+ 3β(A) (x− α(A))5

x4y5 .

If we substitute these derivatives into (A.4), we derive

(−2x + α(A))(4x4 − 8α(A)x3 + 6α2(A)x2 − 2α3(A)x + α2(A)β(A)) = 0.

So the critical points of κ(x) are x = α(A)
2 , or the real roots of the quartic polynomial

Q(x) = 4x4 − 8α(A)x3 + 6α2(A)x2 − 2α3(A)x + α2(A)β(A).

Using Sturm’s theorem, we can count the number of distinct real roots of Q(x) in [0, α(A)]
in terms of the number of variations in sign of the values of the Sturm’s sequence at the 
endpoints of the interval. Hence, we firstly compute the Sturm sequence for Q(x):

Q0(x) = 4x4 − 8α(A)x3 + 6α2(A)x2 − 2α3(A)x + α2(A)β(A),

Q1(x) = 16x3 − 24α(A)x2 + 12α2(A)x− 2α3(A),

Q2(x) = α4(A)
4 − α2(A)β(A) = α2(A)Δ

4 .

Then we evaluate {Q0(x), Q1(x), Q2(x)} at x = 0 and x = α(A), and we obtain 

S(0) =
{
α2(A)β(A),−α3(A), α2(A)Δ

4

}
and S(α(A)) =

{
α2(A)β(A), α3(A), α2(A)Δ

4

}
, 

respectively. The curve y = y(x) in (A.3) is nonsingular whenever Δ > 0 or Δ < 0. 
Therefore, we have:

1. If Δ > 0, we can see by case (a) that (A.3) is the upper half of a conchoidal hyperbola 

and an oval with x ∈
(
0, α(A)−

√
Δ

2

]
∪
[
α(A)+

√
Δ

2 , α(A)
]
. Evidently, the point at 

which the curve attains its maximum curvature lies on the oval and occurs at one 
of the two distinct real roots of the polynomial Q(x). This is due to the fact that 
S(0) = {+,−,+} contains 2 sign changes whereas S(α(A)) = {+,+,+} has no sign 
change. Also, the value x = α(A)

2 does not verify y = y(x) in (A.3).
By the fundamental theorem of algebra and the fact that the non-real roots of any 
polynomial equation come in complex conjugate pairs, we expect exactly two real 
roots 0 < x1 < x2 ≤ α(A) of Q(x) = 0.
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2. If Δ < 0, then (A.3) is the upper half of a pure conchoidal curve with no singu-
larities in the interval [0, α(A)] (see case (e)). Apparently, Q(x) has no real roots, 
since S(0) = {+,−,−} contains 1 sign change, as well as S(α(A)) = {+,+,−}. 
This implies that the maximum curvature of the curve occurs at the point (x, y) =(

α(A)
2 ,

√
−Δ
2

)
.

Likewise, we also consider the symmetric points with respect to the axis y = 0 and sum 
up the aforementioned approach in the next proposition.

Proposition A.1. Let A ∈ Mn(C). Suppose that the cubic curve Γ(A) defined in (1.1) is 
nonsingular and δ1(A) > δ2(A). If Δ < 0, then the maximum curvature of Γ(A) occurs 
at the points δ1(A)+δ2(A)

2 + i 
(
u(A) ±

√
−Δ
2

)
. If Δ > 0, then the maximum curvature of 

Γ(A) occurs at the points z ∈ Γ(A) such that Re z is the largest real root of the polynomial

Q(s) = (s− δ1(A))(s− δ2(A))[(2s− δ1(A) − δ2(A))2 + (δ1(A) − δ2(A))2]

+ 1
4(δ1(A) − δ2(A))2[(δ1(A) − δ2(A))2 − Δ].
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