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We derive an inclusion region for the eigenvalues of a matrix that can be
considered an alternative to the Brauer set. It is accompanied by non-singularity
conditions.
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1. Introduction

A well-known way to obtain inclusion regions for eigenvalues of matrices is the use of

Geršgorin disks. It is stated in the following theorem, for which we first define the deleted
absolute row and column sums R0i(A) and C0i(A), respectively, of a matrix A2C

n�n with
elements aij as:

R0iðAÞ ¼
Xn
j¼1
j 6¼i

jaijj and C0iðAÞ ¼
Xn

j6¼i
j¼1

jajij:

The dependence on the matrix A will be left out of our notation whenever there can be no
confusion about what matrix is being considered. The theorem is then given as follows:

THEOREM 1.1 [6] All the eigenvalues of the n� n complex matrix A are located in the union
of the n disks

�R ¼
[n
i¼1

�R
i ,

where

�R
i ¼ z 2 C : jz� aiij � R0i

� �

and also in the union of the n disks

�C ¼
[n
j¼1

�C
j ,
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where

�C
j ¼ z 2 C : jz� ajjj � C0j

n o
:

The theorem has a row and column version because the spectra of A and AT are

identical. We refer to, for example [7, Chap. 6] for related results.
In addition to the Geršgorin set, there exists another well-known inclusion set for the

eigenvalues, namely the Brauer set, as stated in the following theorem:

THEOREM 1.2 [1] All the eigenvalues of the n� n complex matrix A are located in the union

of the ðn2Þ ovals of Cassini

�R ¼
[n

i 6¼j
i, j¼1

z 2 C : jz� aiijjz� ajjj � R0iR
0
j

n o
,

and also in the union of the ðn2Þ ovals of Cassini

�C ¼
[n

i6¼j
i, j¼1

z 2 C : jz� aiijjz� ajjj � C0iC
0
j

n o
:

It is an easily established and well-known fact that �R
��R and �C

��C.
More complicated sets can be derived (see, e.g. [2–5,8–11], and references therein),

although some of these involve the union of a very large number of sets.
As is the case for the Geršgorin and Brauer sets, our results can be improved by using

a suitable similar matrix S�1AS instead of A, which has the same eigenvalues (see, e.g.

[7, Chap. 6]).
We need a few more definitions, in addition to the definition of R0i and C0i. They all

relate to a matrix A2C
n�n and they are listed below:

R0i ¼
Xn

k 6¼i
k¼1

jaikj ¼
Xn
k¼1

jaikj � jaiij

R0ij ¼
Xn

k 6¼j
k¼1

jaikj ¼
Xn
k¼1

jaikj � jaijj

R00ij ¼
Xn

k 6¼i, j
k¼1

jaikj ¼
Xn
k¼1

jaikj � jaiij � jaijj ¼ R0i � jaijj

C0i ¼
Xn

k 6¼i
k¼1

jakij ¼
Xn
k¼1

jakij � jaiij

C0ji ¼
Xn

k 6¼j
k¼1

jakij ¼
Xn
k¼1

jakij � jajij

C00ji ¼
Xn

k 6¼i, j
k¼1

jakij ¼
Xn
k¼1

jakij � jaiij � jajij ¼ C0i � jajij:
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We derive our spectral inclusion region in Section 2, along with accompanying

non-singularity conditions. Some examples are presented in Section 3.

2. An alternative to the Brauer set

The next theorem contains our main result, namely a spectral inclusion set which, like the

Brauer set, is composed of ðn2Þ oval-like sets.

THEOREM 2.1 All the eigenvalues of the n� n complex matrix A are located in the union of

the following ðn2Þ sets:

�R ¼
[n

i 6¼j
i, j¼1

�R
ij \�R

ji

� �
,

where

�R
ij ¼ z 2 C : ðz� aiiÞðz� ajjÞ � aijaji

�� �� � jz� ajjjR
00
ij þ jaijjR

00
jt

n o
,

and also in the union of the following ðn2Þ sets:

�C ¼
[n

i 6¼j
i, j¼1

�C
ij \�C

ji

� �
,

where

�C
ij ¼ z 2 C : ðz� aiiÞðz� ajjÞ � aijaji

�� �� � jz� ajjjC
00
ji þ jajijC

00
ij

n o
:

Proof We only prove the row version because the column version’s proof is entirely

analogous. Let � be an eigenvalue of A with corresponding eigenvector x, i.e. Ax¼ �x.
Since x is an eigenvector, it has at least one non-zero component. Define x� as the

component of x with the largest absolute value, so that jx�j � jxij for all i¼ 1, 2, . . . , n

and x� 6¼ 0.
If x� is the only non-zero component of x, then we have

A

0

..

.

0

x�

0

0

..

.

0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

¼ �

0

..

.

0

x�

0

0

..

.

0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

,

which implies that ai�¼ 0 for all i 6¼�, and �¼ a��. In this case, and for i 6¼�, we have that

�R
i� ¼ z 2 C : ðz� aiiÞðz� a��Þ

�� �� � jz� a��jR
00
i�

n o
,
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and

�R
�i ¼ z 2 C : ðz� aiiÞðz� a��Þ

�� �� � jz� aiijR
00
�i þ ja�ijR

00
i�

n o
,

so that � ¼ a�� 2 �R
i� \�R

�i � �R:
Assume now that there is at least one other non-zero component of x. Define x� as

the component of x with the second largest absolute value, i.e. jx�j � jx�j � jxij for all

i¼ 1, 2, . . . , n, i 6¼�, � 6¼ �, and x�, x� 6¼ 0. We then have

�x� ¼
Xn

j 6¼�,�
j¼1

a�jxj þ a��x� þ a��x�

�x� ¼
Xn

j 6¼�,�
j¼1

a�jxj þ a��x� þ a��x�,

which is equivalent to

ð�� a��Þx� � a��x� ¼
Xn

j6¼�,�
j¼1

a�jxj

�a��x� þ ð�� a��Þx� ¼
Xn

j6¼�,�
j¼1

a�jxj:

Solving for x� and x�, we obtain

ðð�� a��Þð�� a��Þ � a��a��Þx� ¼ ð�� a��Þ
Xn

j6¼�,�
j¼1

a�jxj þ a��
Xn

j6¼�,�
j¼1

a�jxj ð1Þ

ðð�� a��Þð�� a��Þ � a��a��Þx� ¼ ð�� a��Þ
Xn

j6¼�,�
j¼1

a�jxj þ a��
Xn

j6¼�,�
j¼1

a�jxj: ð2Þ

Taking absolute values of (1) and (2) and using the triangle inequality yields

ð�� a��Þð�� a��Þ � a��a��
�� ��x�j � j�� a��j

Xn

j6¼�,�
j¼1

ja�jjjxjj þ ja��j
Xn

j6¼�,�
j¼1

ja�jjjxjj

jð�� a��Þð�� a��Þ � a��a��jjx�j � j�� a��j
Xn

j6¼�,�
j¼1

ja�jjjxjj þ ja��j
Xn

j 6¼�,�
j¼1

ja�jjjxjj:

Since x� 6¼ 0 and x� 6¼ 0 are, in absolute value, the largest and second largest components of

x, respectively, and since these components do not appear in the right-hand side of these

inequalities, we can divide through by their absolute values to obtain

jð�� a��Þð�� a��Þ � a��a��j � j�� a��jR
00
�� þ ja��jR

00
��
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and

jð�� a��Þð�� a��Þ � a��a��j � j�� a��jR
00
�� þ ja��jR

00
��:

The eigenvalue � satisfies both these inequalities, but we do not know which � and �
correspond to a given eigenvalue. We can, therefore, only say that any eigenvalue must lie

in the union of all possible sets described by the above inequalities. g

The sets �R
ij and �C

ij have properties similar to the Cassinian ovals of the Brauer sets,

as can be seen in a few typical examples of these sets in Figure 1.
In the next theorem, we show that the �ij sets are contained in Geršgorin disks.

THEOREM 2.2 The sets �R
ij and �C

ij satisfy, for all i 6¼ j, that

�R
ij � �R

i [ �R
j and �C

ij � �C
i [ �C

j ,

so that the sets �R and �C satisfy

�R � �R and �C � �C:

Proof We prove the row version of the theorem. The column version follows

analogously.
Assume that z 2 �R

ij for some i, j2 {1, . . . , n} and i 6¼ j. Then z 2 �R
i or z =2�R

i . If z 2 �R
i ,

there is nothing to prove. If z =2�R
i , then

jz� ajjjR
00
ij þ jaijjR

00
ji � ðz� aiiÞðz� ajjÞ � aijajij � jz� aiijjz� ajjj � jaijjjajij:

�� ð3Þ

Since R00ij¼R0i� jaijj and R00ij¼R0j� jajij, and because jz� aiij4R0i, we have from (3) that

jz� ajjjðR
0
i � jaijjÞ þ jaijjðR

0
j � jajijÞ � R0ijz� ajjj � jaijjjajij,

which implies that

jaijjR
0
j � jaijkz� ajjj:

If aij 6¼ 0, then this inequality means that z 2 �R
j . In other words, if z is not in �R

i ,

then it must be in �R
j . If aij¼ 0, then it is easy to see that �R

ij ¼ �R
i [ fajjg � �R

i [ �R
j .

As an immediate consequence of the above, we have that �R
��R. This completes the

proof. g

The following theorem shows that not only do our new sets lie in the Geršgorin sets,

but they are contained in the Brauer sets as well.

Figure 1. Examples of the �ij sets.
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THEOREM 2.3 The sets �R
ij and �C

ij satisfy for all i 6¼ j that

�R
ij \�R

ji � �R
ij and �C

ij \�C
ji � �C

ij ,

so that �R
��R and �C

��C.

Proof Once again, we prove the row version of the theorem while the column version

follows analogously. Pick any z 2 �R
ij \�R

ji ; then we know from Theorem 2.2 that z 2 �R
i

or that z 2 �R
j . Assume that z 2 �R

j . Because z 2 �R
ij , we have that

ðz� aiiÞðz� ajjÞ � aijaji
�� �� � jz� ajjjR

00
ij þ jaijjR

00
ji:

Since

jz� aiijjz� ajjj � jaijjjajij � jðz� aiiÞðz� ajjÞ � aijajij,

z must satisfy

jz� aiijjz� ajjj � jaijjjajij � jz� ajjjR
00
ij þ jaijjR

00
ji,

or

jz� aiijjz� ajjj � jz� ajjjR
00
ij þ jaijj R

00
ji þ jajij

� �
: ð4Þ

Because z 2 �R
j , it satisfies jz� ajjj �R0j, and since R00ji ¼ R0j� jajij and R00ji ¼ R0i� jaijj, we

obtain from (4) that

jz� aiijjz� ajjj � R0jR
00
ij þ jaijj R

00
ji þ jajij

� �
¼ R0jR

00
ij þ jaijjR

0
j ¼ R0iR

0
j:

This means that z 2 �R
ij . If z lies in �R

i instead of �R
j , then we repeat the above

argument with �R
ji instead of �R

ij to reach the same conclusion, i.e. we have shown that

�R
ij \�R

ji � �R
ij .

As an immediate consequence, we obtain that �R
��R. This concludes the proof. g

Remarks

(1) The proof of Theorem 2.3 relies on the first part of Theorem 2.2 but, once

Theorem 2.3 is proved, the second part of Theorem 2.2, namely �R
��R and

�C
��C, also follows because �R

��R and �C
��C.

(2) Whereas the diagonal elements of the matrix are always contained in the Brauer

sets, the same is not true for the new sets: consider, for example, aii, which trivially

lies in �R
ij . For aii to be contained in �R

ij \�R
ji , we must have

jaijjjajij � jaii � ajjjR
00
ij þ jaijjR

00
ji and jaijjjajij � jajijR

00
ij,

but these inequalities are not necessarily satisfied. To take a simple case, assume that aij,

aji 6¼ 0 and that aii¼ ajj. The resulting inequalities become

jajij � R00ji and jaijj � R00ij,

which are clearly not satisfied in general. On the other hand, aij¼ 0 or aji¼ 0 is obviously

a sufficient condition for both aii and ajj to be contained in �R
ij \�R

ji .
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An eigenvalue inclusion set for a matrix naturally leads to non-singularity conditions
for that matrix by requiring that z¼ 0 not be included in the set. The following two
theorems present such conditions, the second one requiring slightly more work than the
first.

THEOREM 2.4 Let A2C
n�n, then A is invertible if 8i, j¼ 1, 2, . . . , n and i 6¼ j:

jaiiajj � aijajij4 min jajjjR
00
ij þ jaijjR

00
ji, jaiijR

00
ji þ jajijR

00
ij

n o
:

Proof A sufficient condition for the invertibility of the matrix A is 0 =2�R. By
Theorem 2.1, this condition will be fulfilled if for any i, j2 {1, 2, . . . , n } and i 6¼ j:

jaiiajj � aijajij4 jajjjR00ij þ jaijjR
00
ji

or

jaiiajj � aijajij4 jaiijR00ji þ jajijR
00
ij:

Since the left-hand side is the same in both these inequalities, the proof follows. g

THEOREM 2.5 Let A2C
n�n, then A is invertible if 8i, j¼ 1, 2, . . . , n and i 6¼ j:

jaiiajj � aijajij4 min
Xn
k¼1
k 6¼i;j

ajjaik � aijajk
�� ��,

Xn
k¼1
k 6¼i;j

aiiajk � ajiaik
�� ��

8<
:

9=
;:

The proof follows from Equations (1) and (2) in the proof of Theorem 2.1, which we
can rewrite as

ð�� a��Þð�� a��Þ � a��a��
� �

x� ¼
Xn
k¼1
k 6¼�;�

ð�� a��Þa�k þ a��a�k
� �

xk

ð�� a��Þð�� a��Þ � a��a��
� �

x� ¼
Xn
k¼1
k 6¼�;�

ð�� a��Þa�k þ a��a�k
� �

xk:

Analogously as in the proof of Theorem 2.1, we then obtain

ð�� a��Þð�� a��Þ � a��a��
�� �� �

Xn
k¼1
k 6¼�;�

ð�� a��Þa�k þ a��a�k
�� ��

ð5Þ

ð�� a��Þð�� a��Þ � a��a��
�� �� �

Xn
k¼1
k 6¼�;�

ð�� a��Þa�k þ a��a�k
�� ��: ð6Þ

If the matrix is to be non-singular, then it is sufficient for �¼ 0 not to be in the intersection
of the two regions determined by inequalities (5) and (6) for any pair (�, �) with � 6¼ �.
This means that

a��a�� � a��a��
�� ��4

Xn
k¼1
k 6¼�;�

a��a�k � a��a�k
�� ��
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or

a��a�� � a��a��
�� ��4

Xn
k¼1
k 6¼�;�

a��a�k � a��a�k
�� ��,

for any given pair (�, �) with � 6¼ �. Since the left-hand side is the same in both these

inequalities, the proof follows with �¼ i and �¼ j. g

We note that the triangle inequality for the absolute value implies that the conditions

in Theorem 2.5 are weaker than those in Theorem 2.4.

3. Examples

To conclude, we present a few small examples, in which we have graphed �R, the Brauer

set, and �R, our alternative to it, for a few matrices. The Brauer sets �R are shaded in light

grey, the sets �R are shaded in dark grey, and the eigenvalues appear as white dots

(Figures 2 and 3). As one can see, �R can be quite similar to �R, as for A1, but it can also be

significantly smaller, as is the case for the other matrices. The matrix A4 is taken from [4].

A1 ¼

5� 4i �2� 3i 4� 2i 2� i

3� 3i �4i 2� 2i �1� 3i

�4i 4i 3� i �4þ 3i

1þ 4i 5þ 4i �2� 2i i

0
BBB@

1
CCCA;

A2 ¼

�4� i �4þ 3i 4þ 5i 12

4þ 3i 2� i 4þ 3i 2þ 4i

�4i 1� i 4i 3þ 5i

�10 1þ 4i �2þ 5i �3� 2i

0
BBB@

1
CCCA:

Figure 3. The sets �R and �R for the matrices A3 (left) and A4 (right).

Figure 2. The sets �R and �R for the matrices A1 (left) and A2 (right).
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A3 ¼

1þ 2i i i 20

1 2i i 1� i

1� i 1þ i i �i

�10 �i 0 1þ i

0
BBB@

1
CCCA; A4 ¼

10 0 3 5

0 �10 2 4

1 5 20 0

4 4 0 �20

0
BBB@

1
CCCA:
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[3] L. Cvetković, V. Kostić, and R.S. Varga, A new Geršgorin-type eigenvalue inclusion set, Electron.

Trans. Numer. Anal. 18 (2004), pp. 73–80 (electronic).
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