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Solving Time-Varying Nonsymmetric Algebraic
Riccati Equations With Zeroing Neural Dynamics

Theodore E. Simos, Vasilios N. Katsikis

Abstract—The problem of solving algebraic Riccati equations
(AREs) and certain linear matrix equations which arise from
the ARE frequently occur in applied and pure mathematics,
science, and engineering applications. In this article, by con-
sidering the nonsymmetric ARE (NARE) as a general form of
ARE, the time-varying NARE (TV-NARE) problem is proposed
and investigated. As a particular case of TV-NARE, the time-
invariant NARE (TI-NARE) problem is investigated too. Then,
by employing the zeroing (or Zhang) neural dynamics (ZND)
design, a ZND TV-NARE (ZNDTV-NARE) model and a ZND
TI-NARE (ZNDTI-NARE) model are proposed and investigated.
Also, by combining the ZNDTV-NARE model with the frozen-
time Riccati equation (FTRE) approach to optimal control of
linear time-varying (LTV) systems based on the state-dependent
Riccati equation (SDRE) process, a hybrid ZND FTRE control
(HZND-FTREC) model is developed and investigated. The effec-
tiveness of the proposed dynamical systems is proven in ten
numerical experiments, three of which include applications to
LTV and nonlinear systems.
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I. INTRODUCTION

LGEBRAIC Riccati Equations (AREs) appear commonly

in mathematics, science, and engineering. The ARE
class includes both nonlinear and linear matrix equations
(LMEs) which are specifically of great interest in optimal
control, filtering, and estimation problems. The practice has
revealed that solving a Riccati equation is a principal topic in
optimal control theory (see [1], [2], [3], [4], [5]). The uti-
lization of ARE equations of various types can commonly
be found in solving linear multiagent systems [1], in HO®
controller design for wind generation systems [3], in the anal-
ysis and synthesis of linear quadratic Gaussian (LQG) control
problems [4], [5]. In one or another form, ARE play signifi-
cant roles in optimal control of multivariable and large-scale
systems, estimation, scattering theory, and detection proce-
dures. Moreover, closed-form solutions of Riccati Equations
are used to solve some problems, such as numerical precision
in direct and iterative algorithms and losing controllability. It
is worth noting that other related fields of research are the
matrix Ricatti differential equations (MRDEs) (see [6]).

The zeroing (or Zhang) neural dynamics (ZND) method
is used to approach the time-varying nonsymmetric ARE
(TV-NARE) problem and the time-invariant nonsymmetric
ARE (TI-NARE) problem, which is a particular case of
TV-NARE, by considering the nonsymmetric ARE (NARE)
as a general form of ARE. Because the ZND has already
been suggested in the literature as a useful method for solv-
ing a wide range of time-variant problems, two models are
created by employing the ZND method, namely, the ZND
TV-NARE (ZNDTV-NARE) model and the ZND TI-NARE
(ZNDTI-NARE) model, which can be solved with exponential
convergence performance. Furthermore, the models proposed
in [7], [8], [9], [10], and [11] have exponential convergence
when the ZND design parameter is adjusted using the ZND
method [12], [13], [14], [15] and their speed of convergence
can be handled. Compared to traditional numerical algo-
rithms, the ZND method, which is based on recurrent neural
networks (RNNs), has several advantages in real-time appli-
cations, including high-speed parallel processing, distributed
storage, and adaptive self-learning natures. As a result, such
an approach is widely regarded as a powerful alternative to
online computation and optimization [16], [17], [18], [19].
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Several papers, including [20] and [21], discuss the ability
of such models to handle noise.

A comprehensive overview of ARE-type matrix equations
and solutions to some special TV-NARE equations were
provided in [21], [22], and [23]. The time-varying ARE
problem was approached in [21] through a noise-tolerant
ZND model, by a fixed-time ZND model in [22], and by
an eigendecomposition-based ZND model in [23]. The sym-
metric solutions they always offer to the time-varying ARE
problem are what these papers have in common. It is cru-
cial to note that AREs with symmetric solutions have square
coefficient matrices with certain properties, whereas NAREs
are a generic form of AREs whose coefficient matrices are
not required to be square with particular properties and whose
solutions are not required to be symmetric. Since this study
focuses on solving the general TV-NARE problem rather than
only the problem of time-varying ARE, it differs significantly
from the aforementioned papers.

The tracking control has become one of the most impor-
tant schemes in past studies [24], [25], [26], [27], [28]. These
studies include a position-tracking control strategy using out-
put feedback and an adaptive sliding-mode approach in [24],
a hybrid coordinated control method using a backstepping
scheme and Hamilton control in [25], a control method using
an error-to-actuator-based event-triggered framework [26], and
two controllers that combine a backstepping scheme, fuzzy
logic system, and finite-time Lyapunov stability theory in [27]
and [28]. It is well known that the state-dependent Riccati
equation (SDRE) method [3] can be used as a basis for the
frozen-time Riccati equation (FTRE) approach to optimal con-
trol of linear time-varying (LTV) systems. In this article, by
combining the ZNDTV-NARE model and the FTRE, a Hybrid
ZND FTRE Control (HZND-FTREC) model is developed and
investigated. It is worth noting that the advantages of the
HZND-FTREC and ZNDTV-NARE models are the same.

The following summarizes the key contributions of our
research in this article.

1) The ZND systems dynamics for solving TV-NARE and
TI-NARE problems are proposed. According to our best
knowledge, ZND approach for solving NARE has not
been used so far.

2) An additional explicit dynamical system is proposed for
solving TV-NARE besides the standard ZND.

3) Applying the proposed explicit dynamical system in par-
ticular cases, it is possible to generate corresponding

Diagrammatic representation of the matrix equations explored in this study.

neural dynamics for solving the Sylvester, Lyapunov,
and LMEs.

Simulation examples are run to validate the proposed
model’s applicability and effectiveness.

Besides the numerical simulations, we present two appli-
cations in optimal control of LTV systems and an
application in solving nonlinear systems.

The following structure guides the overall organization
of sections in this article. Section II contains preliminary
information about the ARE and certain LMEs which could
be arising from the NARE, including the Sylvester and
Lyapunov equations. Section III describes the TV-NARE
problem and then defines the corresponding ZNDTV-NARE
model. Section IV comprises prominent particular cases of the
ZNDTV-NARE design, including the ZNDTI-NARE model.
Section V introduces a hybrid TV-NARE model, called
HZND-FTREC, which incorporates the FTRE approach to
optimal control of the LTV system. Section VI contains ten
different examples with different-dimensional input matrices,
three of these include LTV and nonlinear system applications.
The simulation tests validate the efficacy of the suggested
models. Finally, the concluding remarks are presented in
Section VII.

4)

5)

II. MATRIX EQUATIONS OF ARE TYPE

This section will provide a comprehensive overview of the
matrix equations discussed in this article. These equations
are in the form of the pure ARE and certain LMEs derived
from the ARE class. A diagrammatic representation of these
equations is presented in Fig. 1.

A. Algebraic Riccati Equations

In this section, we introduce the definitions of all the AREs
treated in this research.

1) Nonsymmetric Algebraic Riccati Equation: An NARE
is a quadratic matrix equation of the form

DX +XA—XBX+ Q=0 (1)

where A € R™™ B € R™" D e R™" and Q € R™™ are
the block coefficients, X € R"*™ is the unknown matrix to be
obtained and 0 represents a zero n X m matrix. Note that the
term “nonsymmetric” is improperly used to denote that (1) is
in its general form without assumption on the symmetry of
the matrix coefficients.
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2) Continuous-Time Algebraic Riccati
continuous-time ARE (CARE)

Equation: The

ATX+XA—XBX+0=0 )

in which the superscript ()T denotes the transpose operator
and all the coefficient matrices belong to R"*", is a quadratic
matrix equation and plays a central role in the LQR/LQG con-
trol, H, and H® control, Kalman filtering, and spectral or
co-prime factorizations (see [29], [30], [31], [32], [33], [34]).
The phrase “continuous-time” in the notation “CARE” is
taken from control theory problems in continuous-time, where-
from (2) emerges. Note that CARE is an NARE where the
block coefficients are square (i.e., m = n) and D = AT,
B = BT, 0 = QT (see [35]). Moreover, B, Q are symmet-
ric and non-negative definite matrices (i.e., B = BT > 0 and
Q = QT > 0). Solutions X € R of the CARE (2) can be
symmetric or nonsymmetric, with definite or indefinite sign
and the solutions set can be either infinite or finite (see [36]).

B. Linear Matrix Equations of ARE Type

In this section, we restate the definitions of all the LMEs
arising from the ARE.

1) Continuous-Time Lyapunov Equation: The continuous-
time Lyapunov equation (CLE) is a matrix equation given as

ATX+XA+0=0 3)

where A € R™" Q0 € R™" are the matrix coefficients and
X € R™" is the unknown matrix. Lyapunov methods could
be applied successfully in numerous scientific and engineering
fields, such as in the analysis of various kinds of nonlinear and
linear control systems, in control theory, optimization, signal
processing, large space flexible structures, and communica-
tions (see [37], [38], [39]). Note that (3) is an appearance
of NARE where the block coefficients are square and satisfy
D=AT,B=0.

2) Sylvester Equation: The Sylvester equation (SE) is an
LME of the form

DX+XA+0=0 4)

where D € R™" A ¢ R™™ (O e R™" are the block
coefficients and X € R"*™ is the unknown matrix to be gener-
ated. Equation (4) is an NARE where the block coefficient B
satisfies B = 0. SE is closely associated with the analysis and
synthesis of dynamic systems, such as the design of feedback
control systems through pole assignment (see [40], [41]).

C. Linear Matrix Equation
The LME is of the general form

DX+0=0 (5)
or
XA+0=0 (6)

where D € R, A e R™™ Q e R™™ are the block
coefficients and X € R"*" is the unknown matrix to be calcu-
lated. Note that (5) is an NARE where the block coefficients
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satisfy A = 0 and B = 0. Also, (6) is an NARE where D =0
and B = 0. LMEs frequently appear in science and engineer-
ing fields, such as robotic motion tracking and angle-of-arrival
localization [42], [43], [44], [45], [46].

D. Matrix Inversion Equation

The matrix inversion (MI) equation is the LME of the form
DX—-1,=0 @)

in which D € R™" is the block coefficient, I,, denotes the
n x n identity matrix and X € R™" is unknown approxi-
mation of the inverse D~! of D to be obtained. Notice also
that (7) is an NARE where the block coefficients are square
and A =0, B =0and Q = —I,,. The MI problem is commonly
involved in numerous problems of science and engineering, for
example, as former steps in optimization, signal processing,
electromagnetic systems, and robot inverse kinematics [47],
[48], [49].

III. SOLVING TV-NARE viaA ZND METHOD

In this section, both the TI NARE case and the TV NARE
case are approached by the ZND method. Note that, based
on the analysis provided in Section II, we can observe that
it is possible to extract all the remaining equations presented
therein from the NARE general form (1). Since 2001, when
Zhang and Wang [50] proposed the ZND evolution, this
method has been studied and established as a crucial class
of RNNSs. Furthermore, the ZND evolution has been ana-
lyzed theoretically and substantiated comparatively for solving
time-varying problems accurately and efficiently. Following
the ZND design formula (see [7], [8], [9], [10], [11], [12],
[13], [14], [15]) under the linear activation, an appropriately
defined error matrix E(#) can dynamically adjusted as a result
of the evolution

E(f) = —ME(t) ®)

at which () represents the first derivative operator as a function
of time ¢ and A > O represents the ZND design parameter. In
addition, the gain parameter A determines the speed of con-
vergence. It is known that the exponential convergence rate of
the ZND dynamics is equal to A [15]. The larger the value
of A, the higher the convergence speed, and, thus, A should be
set as large as the hardware permits. According to the ZND
design formula, E(¢) is pushed to converge exponentially to
the null matrix.

A. TV-NARE Problem Formulation via ZND Method
Consider the subsequent general type of a TV-NARE

D0X(®) + XA —X(OBOX(H +00) =0 (9)

where A(¢) € R™™ B(t) € R™", D(t) € R™", Q(t) € R™"™,
X(t) € R and 0 € R™™, Moreover, X(¢) is an unknown
matrix of interest.

It is important to mention that the results in [21], [22],
and [23] refer to the particular case D(¢) = AT(#) in (9). Our
goal is to solve the general TV-NARE problem.
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According to (9), the error matrix is equal to

E(t) = DOX(1) + X(DA(@1) — X(BOX(1) + O()  (10)

while its derivative is

E@t) = DOX(1) + D)X (1) + X(OA®) + X(DA(®)
— X(1)B(OX (1) — X(OBOX (1) — X(OBOX(1) + O(1).

Consequently, because of (8), the expanded ZND

evolution is
—AE(t) = D)X (1) + DX (1) + X(DA(t) + X ()A(r)
— X()B(X(1) — X()B®)X ()
— X(OBMOX(®) + 0(1)
or
— AE(1) — DOX(1) = XHA®) + X(OBOX(1) — Q1)
=DOX(®) + X(DA®) — XOBDOX (@) — XOBDOX (). (11)

Note that, to ensure solvability of (11) we cannot include
X (1) inside the mass matrix of (11), and to overcome this dif-
ficulty, the vectorization procedure and the Kronecker product
® are applied on (11). We set as v(r) the result of vectorization
in the left part of (11), so we have

V(1) = vec( —2E(1) — D)X () — X(DA®)
FX(OBOX @) — Q(t)). (12)

We repeat the process (i.e., vectorization) in the right part
of (11), and we have

vec (D(t)X(t) + XA — X(0BOX(1) — X(t)B(t)X(t))

= (In ® DO + AT @ I, — I, ® XOB(®)

— BOXH)T ® In>vec(5((t)). (13)
In addition, by setting
M@t) =1, @ D(1) + A1) @I, — I, ® X(B(1)
- BOXO)' @I (14)

and
(1) = vec(X (1))

the combination of (13) and (11) results in implicit dynamic

behavior shown below
v(t) = M(1)x(r) (15)

in which v() is defined by (12). The consistency of the linear
system (15) is constrained by

MOM®) V() = v(©)
and its general solution in this case is
x() = M@ v + (1 -M' (t)M(t))y (16)

such that y is a vector of proper size. The best approximate
solution to the dynamics (15) is given by

x(H) = M) v(@®) (17)
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where ()7 denotes the pseudoinverse operator. If (15) is solv-
able, (17) is its solution, while in the opposite case, (17) gives
the best approximate solution to (15). Note that {(12), (14),
(17)} consist of the suggested ZNDTV-NARE model which
could be efficiently solved with the use of an ode MATLAB
solver.

According to the previous discussion, we may conclude
that (11) cannot be implemented in MATLAB, whereas (17)
can. We certainly have the cost of calculating the pseudoin-
verse of M(t). Theorem 1 proves the exponential convergence
of the ZNDTV-NARE {(12), (14), (17)} to the theoretical
solution (9).

Theorem 1: Let A(t) € R™™ B(t) € R™", D) €
R™" Q(t) € R™™ be differentiable. The ZNDTV-NARE
model {(12), (14), (17)} has exponential convergence to the
theoretical solution of TV-NARE (9), for any initial value
X(0).

Proof: The error matrix equation E(f) is determined as
in (10), inline with the ZND architecture, to achieve the solu-
tion X(¢) of TV-NARE (9). From [50, Theorem], the solution
of (11) converges to the exact solution X*(¢) of (9) as t — oo.
In addition, from the derivation process, the conclusion is
that (15) is a vectorized form of (11). As a conclusion, x(¥)
defined by the dynamics (15) converges to x*(f) = vec(X*(¢))
as t — o00. Since the convergence x(t) — x*(¢f) = vec(X*(¢))
is valid for arbitrary x(7) in (16), it is also valid for x(¢) in (17).
Thus, the proof is finished. [ |

IV. PARTICULAR CASES OF ZNDTV-NARE DESIGN

The applicability of the defined model is illustrated by
several covered cases.

A. TI-NARE Problem Formulation via ZND Method

Consider the general type of a TI-NARE
DXt +X(HA - X®OBX®H +0=0 (18)

wherein A € R B e R™", D e RV Qe R X(t) €
R™™ and 0 € R™™, In addition, X(¢) € R"*" is an unknown
matrix.

By setting the error function

E(t)=DX(t) + X(H)A — X(t)BX(t) + Q
which fulfills
E() = DX(f) + X(HA — X(1)BX(t) — X(1)BX (1)
the general evolution (8) initiates
— LE(t) = DX(1) + X(HA — X()BX(¢) — X()BX(¢). (19)
An application of the vectorization rules to (19) gives
vec(—AE(?))
- (Im®D+AT &L — (BX(1) @1, — I ®X(t)B> vee(X(1)).
Furthermore, by setting
v(t) = —Avec(E(1)),

(1) = vec(X (1)) (20)
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and

MO =1,D+AT®1I, — BX1)' @1, — 1, ® X(1)B
21

one obtains the system of linear equations of the form (15).
One of the solutions of the implicit system (15) is given by the
explicit dynamics (17). Note that {(17), (20), (21)} represents
the proposed ZNDTI-NARE model which can efficiently be
implemented with the use of an ode MATLAB solver.

B. ZNDTV-NARE Design for Solving Particular Equations

The choice of B(t) = 0 in NARE makes the ZNDTV-NARE
design suitable for solving the TV SE. That is, the TV SE is
defined using the error matrix

E®) =D0OX@) +X0OA® + O@)

where A(t) € R™ ™ D(t) € R™", Q(t) € R™"™, X(1) € R™™,
Then, the ZNDTV-NARE design becomes the ZND for solving
the TV SE

— AE(1) — D(OX(t) — X(DA®) — Q1)

= DOX®) + X(DA®). (22)

In [51], [52], [53], and [54], various finite-time convergent
ZND models of type (22) are used to solve the SE and are
centered on appropriate nonlinear activation.

Finite-time convergent RNN models based on improving the
standard ZND evolution are considered in [55] and [56].

The proposed explicit dynamical system {(12), (14), (17)}
can be applied in solving the TV SE in the particular case

x(1) = vee(X(0)) = (I, ® D(H) + ADO" ®1,) v(t)  (23)
where
V(1) = vec(—AE(1) — DX (1) — X(DA(1) — O(1)).

The choice of B(t) = 0, D(f) = AT in NARE makes
the ZNDTV-NARE design suitable for solving the Lyapunov
equation.

ZND models for solving the Lyapunov equation based on
appropriate nonlinear activation are considered in [57], [58],
[59], and [60]. The finite-time convergent RNN model based
on improving the standard ZND evolution was considered
in [61].

The following particular case of the explicit dynamical
system {(12), (14), (17)} can be applied in solving the TV
Lyapunov equation:

(1) = (In ® A + A @ 1) 'v() (24)

where
V(1) = vec(—AE(1) — AT(OX () — X(OA®) — Q(1)).

It is essential to mention that the evolution (23) [resp., (24)]
has not been used so far in solving the Sylvester (resp.,
Lyapunov) equation. Finally, the LME (5) can be solved using
the dynamics

x(1) = (I, @ D(0)'v(n). (25)
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The dual LME (6) can be solved using the dynamics

(1) = (AT @ I) v, (26)

V. HYBRID TV-NARE MODEL IN FTRE CONTROL

The backward-in-time Riccati equation, which uses
advanced dynamics knowledge to calculate feedback gains
over the control horizon, is used to manage optimal control of
LTV systems (see [62], [63]). The proposed hybrid model has
the ability to stabilize LTV systems. It uses the FTRE approach
presented in [2], which is motivated by the equivalent SDRE
process. The SDRE technique is a systematic and efficient
way to design nonlinear feedback controllers for a wide range
of nonlinear systems. More precisely, SDRE is employed
for nonlinear dynamics z(f) = f(z, u) which can be formu-
lated in the pseudo-linear shape z(t) = A(z, u)z + G(z, u)u,
for which the solution of ARE is generated at each time
instant ¢, as A(z(f), U(r)) and G(z(t), U(t)) being the chosen
dynamics and the input matrices, respectively. The FTRE con-
trol is associated with the SDRE approach and includes the
factorization

2 =f®, V@), z20)=2z 27)

into the state-dependent style, where z € R” represents the
state vector, u € R™ represents the input vector, f : R” — R" is
a function, and G : R" — R, The linear structure provided
by the factorization is as follows:

2 =A®, UD)z(0) + Gz0), UD)U (@)

z(0) = zo. (28)

Furthermore, in controller design, state-dependent weight-
ing matrices provide versatility.

The task is to obtain a state-feedback control law in the pat-
tern U(t) = —K(z(1))z(t), which minimizes the cost function
of infinite-horizon performance [2]

1 o0
Iz, ) = 3 fo [T OR1 c0)z(1) + u" (DR (z()) U (1) ]dt
(29)

where R;(z) € R"™" is positive semidefinite, Ry (z) € R™ ™ is
positive definite. The state-feedback control law is defined as

Ut) = —K(z(1)z(1)
= —R; ' ))G" (z(0), U)X ((1)2(r)

such that X(z) means the solution of the state-dependent ARE

(30)

AT@X(@) + X(@AR) — X@G@R; ()G (2)X(2) + R1(2) = 0.
(€20)

The SDRE approach is heuristic because the control law
may not always be optimal and may not have been stabilized.
As proposed in [2], we adapt the SDRE approach to LTV
systems. In the FTRE process, at each moment, we “freeze”
the state and input matrices and deal with them as time-
invariant matrices. The solution X(¢) to the frozen-time ARE
can be launched as a solution to
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ATOX (1) + X(DA@) — X(OGOR, (G (X (1) + Ri (1) = 0.
(32)

The control law is calculated in the same way as the linear
quadratic regulator problem

U = R, (GT ()X (1)z(1). (33)

In [64] and [65], it has been shown that the FTRE control
inherits the stability properties of the SDRE controller.

By setting D(r) = A(¢), B(r) = G(t)Rz_l(t)GT(t) and
Q(t) = R1(¢) in (9), it is observable that (32) can be solved
via the ZNDTV-NARE model {(12), (14), (17)}. Considering
that the solution X(¢) to (32) is identified, the state-feedback
control law of (33) can also be found and then (28) is solvable.
Thus, (28) is rewritten as

() = ADz() + GO (- Ry (OGT OX(D2(1))
or in the next equivalent form
() = (A(t) —GMOR, 1(t)GT(t)X(t))z(t).

The stability of the SDRE method is demonstrated in
Theorem 2, which considers the general infinite-horizon non-
linear regulator problem of minimizing (29) concerning the
state x and the control w subject to the nonlinear differential
constraint (28). Furthermore, keep in mind that C¥ indicates
the space of continuous functions with continuous first k
derivatives.

Theorem 2: With respect to the state z and the control
U, consider the generic infinite-horizon nonlinear regulator
problem of minimizing (29) under the nonlinear differen-
tial constraint (28). Let us assume, that A(z), G(z), R|(2),
and R,(z) belong to CK and that A(z) is both a stabilizable
and detectable parameterization of the nonlinear system. The
SDRE method then generates a closed-loop solution that is
locally asymptotically stable.

Proof: Tt is important to keep in mind that (34) provides the
closed-loop solution, i.e.,

z= (A — GRR;' )G (DX (2))z
=A.(2)z

and the Riccati equation theory guarantees that the closed-loop
matrix

(34)

Ac(2) = A(2) — GRR, ' QG (X (2)

is stable at every point z. X(z) and A.(z) are both smooth due
to the smoothness assumptions. We expand the matrix A.(z)
into the partial Taylor series expansion about zero

IR A@z+ Y (@) -zl
with ¥ (z) of k order and
lim ¥(z) =0.

llzl—0
The linear term, which involves a constant stable coef-
ficient matrix, prevails the higher-order term in a narrow
neighborhood around the origin, resulting in local asymptotic
stability. |
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Setting D(r) = AT(1), B() = GOR,' (G (1), Q1) =

R1(?), (32) yields (9). Based on this, (34) can be rewrittenas

2(t) = (A() — BOX(1))z(D). (35)

Thus, the HZND-FTREC model is obtained by combin-
ing (15) and (35) as in the following:

v(t) _M@® 0 ||x() (36)
(A —=BOX®)z® |~ | 0 In|z0 [

One explicit form of the dynamics (36) is equal to

0] _[M@) o] V(1) &7
]~ [ 0 L [(A® —BOX®)z0) |
The proposed HZND-FTREC model is (37), which can effi-
ciently be solved with the use of an ode MATLAB solver.

The stability of the HZND-FTREC model (37) is demon-
strated in Theorem 2, which considers the general infinite-
horizon nonlinear regulator problem of minimizing (29) with
respect to the state x and the control w under the nonlinear
differential restriction (28).

Theorem 3: With respect to the state z and the control U,
consider the generic infinite-horizon nonlinear regulator
problem of minimizing (29) under the nonlinear differen-
tial constraint (28). Let us assume, that A(z), G(z), R1(2),
and R>(z) belong to CK and that A(z) is both a stabilizable
and detectable parameterization of the nonlinear system. The
HZND-FTREC method then generates a closed-loop solution
that is locally asymptotically stable.

Proof: Because the HZND-FTREC model (37) is composed
of the ZNDTV-NARE model {(12), (14), (17)} and the SDRE
method, it can be deduced from Theorems 1 and 2 that the
HZND-FTREC model (37) generates a locally asymptotically
stable closed-loop solution. |

VI. NUMERICAL EXAMPLES

This section includes ten examples, four of which are shown
to verify the efficacy and accuracy of the ZNDTV-NARE
{(12), (14), (17)}, and three more are shown to verify the effi-
cacy and accuracy of the ZNDTI-NARE {(20), (21), (17)}.
The examples applied to LTV and nonlinear systems are
intended to validate the efficacy and accuracy of the evolu-
tion (37). As a preliminary to the following examples, it is
necessary to identify the parameters and symbols and provide
additional details.

1) The time interval for the computation is limited to
[0, 10]. That is, #p = O is the initial time and #; = 10 is
the final time.

2) |I-llr denotes the Frobenius norm of a matrix.

3) We have set A = 10 in all numerical examples in this
section, with the exception of the numerical example
Section VI-A, where A = 10, 100, 1000.

4) The solution of {(17), (20), (21)}, the solution of
{(12), (14), (17)}, and the solution of (37) are obtained
by employing the odel15s MATLAB solver.
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Fig. 2. Performance of ZNDTV-NARE for solving examples Sections VI-A-VI-C and VI-G. (a)-(d) Error E(f) produced by ZNDTV-NARE in examples
Sections VI-A-VI-C and VI-G, respectively. (e)—(h) Trajectories of the solution X(¢) produced by ZNDTV-NARE in examples Sections VI-A-VI-C and VI-G,
respectively.

A. Numerical Example 1 values listed as
In this example, consider the initial matrices D(r), A(Z), 0 00 I 1 0
B(t), and Q(f) of dimensions 4 x 4, 2 x 2, 2 x 4, and 4 x 2, X10)=]0 0 0| and XO)=|1 -1 1
respectively, as 0 00 0 1 -2
[sin(r) +1 sin(®) +1 sin@®) +1 sin(2f) + 1 the results of ZNDTV-NARE are depicted in Fig. 2(b) and (f).
D(t) = sin(f) +2 sin(f) +2 sin(®) +2 sin(2t) +2 Note.that Fig. 2(f) also includes the Schur method’s suggested
" |sin()+3 sin()+3 sin(®) +3 sin(2r) + 3 solution from [32].
| sin(r) +4 sin(®) +4 sin(®) +4 sin(2t) +4
. . i . C. Numerical Example 3
sin(f) + 1 sin(®) +4 sin(t) +4  sin(r) +4 . . ) )
B(t) = sin(f) +4 sin()+2 —sin() —5 sin(t) +4 The following input matrices A(f) and Q(#) are considered
- _ in this example:
) sin(r) +7 sin(®) +4 .
A = cos() +3  sin(r) +4 00 = sin(f) +4 sin(t) + 6 Al) = |:—1 - 1/.2 cos(2t) 1/2 sin(2¢) :|
Tlsin+2 —sin=7]2" " |sin)+1 sin@)+6| 1/2sin(21) — 14 1/2cos(21)

sin(t) + 6 sin(®) + 3 | o) = sin(21) cos(2r)
L 0 0 o T | —cos(2t) sin(20) |
Setting the initial value of X(#) as X(0) = 010 ol Additionally, we set B(r) = 0 and D(t) = AT(7), converting
the results of ZNDTV-NARE are depicted in Fig. 2(a) and (e). the NARE to a CLE. By initializing X(z) with X(0) = 0, the
results of ZNDTV-NARE are depicted in Fig. 2(c) and (g).
B. Numerical Example 2 Note that the theoretical solution of this example is

Let A(¢), B(¢), and Q(t) as — sin(2¢)(—2+cos(21)) (1—2cos(2t))(2+cos(21))
X*([) = (1+200$(2t)%(2—cos(2t)) (2+cos(26t)) sin(2f)
6 3

sin(?) + 2 sin(t) + 4 cos(t) — 2

A(t) = | —sin(t) +4 sin(21) +4  3sin(¢) — 20

| —cos(2t) =3  —sin(®) —2 —sin(2r) — 5 D. Numerical Example 4

[3sin(f) +9 —sin(®) +5 cos(3r) +2 The following constant matrices A, B, and Q of dimensions
B(t) = | —sin(®) +5 cos(?) + 1/2 cos(f) + 6 2 x 2 are considered in this example:

| cos(31) +2 cos(t) + 6 sin(27) + 3/2 4 1 7 4 3 —4

[ 2sin(¢) + 10 cos(f) +7  cos(2t) +3/2 A= [—2 8]’B_ [4 6:|’Q_ |:—4 5 ]
Q@) = | cos(r)+7 2 —cos() +5 |. Moreover, we convert the NARE to an ARE by using D(7) =

| cos(2f) +3/2  —cos(t) +5 sin(2t) 4+ 4 AT (7). Setting

Additionally, we set D(¢) = AT@), transforming in that way 12 -2 100 |11
the NARE into an ARE. By initializing X(1) with the two 'O ={_p 4 |20 =g o] and O =1,
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Fig. 3. Performance of ZNDTI-NARE for solving examples Section VI-D—
VI-F. (a)-(c) Error E(r) generated by ZNDTI-NARE in examples

Section VI-D-VI-F, respectively. (d)—(f) Trajectories of the solution X(r)
generated by ZNDTI-NARE in examples Section VI-D-VI-F, respectively.

as three initial values of X(¢), the results of ZNDTI-NARE are
depicted in Fig. 3(a) and (d). Note that Fig. 3(d) also includes
the Schur method’s suggested solution from [32].

E. Numerical Example 5

In this example the following matrices D, A, and Q of
dimensions 4 x 4, 2 x 2, 2 x 4, and 4 x 2, respectively, are
given as input

111 10
1111 0 -1 10
b=10 o 10’A=L 0}’Q= 0 -1
000 1 1

Additionally, we convert the NARE to a SE by setting
B = 0. Setting the initial value of X(#) as X(0) = 0, the results
of ZNDTI-NARE {(17), (20), (21)} are depicted in Fig. 3(b)
and (e). Note that the theoretical solution in this example is

T
wn _[07 —13 05 0
X(”_[—Ql ~01 —05 J

FE. Numerical Example 6

In this example, the input matrices D and Q are given as

1 0 1 -1 0 0
D=1 1 0,0=(0 -1 0
1 11 0 0 -1
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Additionally, we set A = B = 0, so converting the NARE
to an MIE. By setting X(0) = 0, as the initial value of X(¢),
the obtained results of ZNDTI-NARE are depicted in Fig. 3(c)
and (f). Note that the theoretical solution of this example is

1 1
XH=|-1 0
0 -1 1

-1

G. Example on Larger Dimensions

The following n-dimensional input matrices are used in
this example: D(f) = (4 + sin())I,, B(t) = (7 + sin(?))1,,
Q(t) = (5 + sin(?))1,. Furthermore, we use D(t) = AT(1), thus
converting the NARE to an ARE. Starting from the initial state
of X(0) = I,, and for n = 50, the results of ZNDTV-NARE are
depicted in Fig. 2(b) and (f). Note that Fig. 2(f) also includes
the Schur method’s suggested solution from [32].

H. Application to LTV

The Mathieu equation [66] is a linear differential equation
with variable (periodic) coefficients and typically occurs in
two different ways in solving nonlinear vibration problems.
One way is in systems where periodic forcing occurs, and the
other is in stability studies of periodic motions in autonomous
nonlinear systems. By considering the Mathieu equation

4(0) + (¢ + 0 cos(wi))q(1) = gU(1) (38)
and by defining the state vector z(¢) = [38}, the dynam-

ics (38) can be rewritten in state-dependent coefficient form
with

0 1 0
A0 = [(C + 6 cos(wt)) 0} o= [g}.

The parameter values are { = 1,0 =1, w =1, g=1, and
by letting Ry = I, R, = 0.001 and R, = 1, we set the initial
value of X(¢) as X(0) = ones(2) and apply (37). Furthermore,
z(#) has two sets of initial conditions (ICs), denoted as IC1
and IC2. The IC1 corresponds to z(0) = [3,01%, and 1IC2
corresponds to z(0) = [-5, 1]T. Note that the goal should
be to drive the states to the equilibrium [O, 0]T and, hence,
to stabilize (38). By applying (37) and the FTRE and FPRE
controls [2], the results of phase portraits of the closed-loop
responses, for two values of IC, are displayed in Fig. 4(b) for
Ry = 0.001, and in Fig. 4(d) for Ry = 1.

1. Applications to Nonlinear Systems

A nonconservative oscillator with nonlinear damping that
has been successfully applied in several fields, such as biomed-
ical engineering, power system, control, combustion process,
robotics, etc., is the Van der Pol oscillator [67]. As a con-
sequence, Van der Pol oscillator control has considerable
practical significance. In this application, we consider the
FPRE stabilization of the Van der Pol oscillator

i —u(1-0)a0 +a0 =gUuw (39
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Fig. 4. Results of HZND-FTREC (37), FTRE, and FPRE [2] for solving the Mathieu Equation and stabilizing the Van der Pol oscillator and a spring—mass
system. (a) and (b) Mathieu Equation’s closed-loop outputs and associated phase portraits with R, = 0.001. (c) and (d) Mathieu Equation’s closed-loop outputs
and associated phase portraits with Ry = 1. (e) and (f) Van der Pol oscillator’s closed-loop outputs and associated phase portraits. (g) and (h) Closed-loop
outputs and associated phase portraits for the mass joined to a wall through a spring.

where & > 0 and g are real numbers. Defining the state
Zgg], (39) can be written in state-dependent
coefficient form with A(f) = |:O ! 2 ] G = |:Oi|
L u(l—q=(0)] g
In this application, we use the parameter values p = 0.25,
g 1, and let z(0) = [5,3]", Ry = L, and R, = 1.
Furthermore, we consider three options of IC, namely, ICI,
IC2, and IC3, where we have set as initial values of X(7),
X1(0) = zeros(2), X2(0) = 101>, and X3(0) = 100/, respec-
tively. By applying (37) and the FTRE and FPRE controls [2],
the generated results of phase portraits of the closed-loop
responses for three sets of IC are displayed in Fig. 4(f).

vector z(f) =

J. Application to Specific Scenario

This application considers a mass that is connected to a wall
by a spring with variable stiffness k(¢). The open-loop system
is described by

t 0 1 0
=[] o= 1] on-[]

where ¢(f) signifies the position, k() signifies the stiffness,
which varies over time and can be positive or negative, and
q(t) signifies the mass’s velocity. Let k(t) = sin(¢), m = 4,
Ri(t) = I, and Ry(t) = 1, we initialize X(¢) and z(f) with
X(0) =ones(2) and z(0) = [4, —1]T. By applying (37) and
the FTRE and FPRE controls [2], the generated results of
phase portraits of the closed-loop responses are displayed in
Fig. 4(h).

K. Analysis of Experimental Results

In this section, the presented experimental results for
the ZNDTV-NARE, ZNDTI-NARE, and HZND-FTREC

are commented on and analyzed. In numerical examples
Section VI-A-VI-C, we notice that the error |E(?)|f
ID@X(1) + XA — XOBMOX (1) + QD) |, rapidly con-
verges to zero in Fig. 2(a)—(d). That is, ZNDTV-NARE (9)
is convergent. Particularly, Fig. 2(a) includes three errors
produced from three different design parameter values, i.e.,
A =10, 100, 1000. The graphs in this figure demonstrate that
the model produces a lower overall error with a faster con-
vergence as the value of the parameter A increases. Fig. 2(b)
includes two errors produced from two initial values of X(#) in
Example Section VI-B. The graphs in this figure show that the
initial values of X(f) have no impact on the model’s overall
error or speed of the convergence. In Fig. 2(e) and (f) tra-
jectories of the solution X(#) produced by ZNDTV-NARE are
presented, wherefrom it is observable that X(7) rapidly con-
verges to the exact solution. Particularly, Fig. 2(e) includes
three solutions produced from three different design parame-
ter values, i.e., A = 10, 100, 1000. The graphs in this figure
show that as the parameter A increases, the model generates the
same solution but with a faster convergence. Fig. 2(f) includes
trajectories of two solutions produced from two initial values
of X(#) in Example Section VI-B as well as the solution pro-
vided by the Schur method originated in [32]. The graphs in
Fig. 2(f) show the influence of the initial values for X(f) on
the model’s solution. It is clear that the ZND model generates
various solutions X1 (¢) and X»(#) depending on the initial val-
ues of X(¢). Fig. 2(g) and (h) include the theoretical and the
Schur’s method solution, respectively.

In numerical examples Section VI-D-VI-F, we observe that
the error |[E(®)||Fr = [IDX(f) + X()A — X()BX(?) + Ollp, is
rapidly convergent to 0 in Fig. 3(a)—(c). That is, ZNDTI-
NARE (18) is solved. Fig. 3(a) includes three errors produced
from three initial values in Example Section VI-D. The
solution X(r) produced by ZNDTI-NARE is presented in
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Fig. 5. Results of HZND-FTREC (37), FTRE, and FPRE [2] for solving the Mathieu Equation with Ry = 0.001 and stabilizing a spring—mass system

under various settings of odel5s MATLAB solver. (a) and (b) Mathieu Equation’s ARE error under default settings of odel5s MATLAB solver. (c) and
(d) Mathieu Equation’s ARE trajectories under custom settings of ode15s MATLAB solver. (e) and (f) Spring—mass system’s ARE error under default settings
of odel5s MATLAB solver. (g) and (h) Spring—mass system’s ARE trajectories under custom settings of odel5s MATLAB solver.

Fig. 3(d)—(f), where we see that X(#) quickly converges to the
solution. The graphs in Fig. 3(a) and (d) illustrate the behavior
of solutions X (¢), X2(¢), X3(¢) generated by the initial values
of X(#) in example Section VI-D. Fig. 3(a) shows the influence
of the initial values on the error matrix ||E(f)|r generated by
X1(t), X2(t), X3(¢). Graphs in Fig. 3(d) show the trajectories of
elements in X (¢), X2(1), X3(?). It is clear that the ZND model
generates various solutions X (f), X»>(#), X3(¢) depending on
the initial values. Fig. 3(d) includes three solutions produced
for three different initial values of X(¢) as well as the solu-
tion provided by the Schur method from [32]. Furthermore,
Fig. 3(e) and (f) includes graphs of theoretical solutions.

In addition, the following is important to mention about
numerical examples Section VI-A-VI-G.

1) The coefficient matrices in Sections VI-B, VI-D,

and VI-G converted the NARE to an ARE.

2) The input coefficient matrices in Section VI-C converted

the NARE to a CLE.

3) The input coefficient matrices in Section VI-E converted

the NARE to an SE.

4) The input coefficient matrices in Section VI-F converted

the NARE to an MIE.

In applications Section VI-H-VI-J, the asymptotic stability
of the HZND-FTREC (37) is always slightly better than the
stability of the FTRE control [2] and significantly better than
that of the FPRE control [2]. More precisely, in application
to LTV Section VI-H, the Mathieu equation is stabilized for
two different ICs of z(f) under two different values in R».
The closed-loop responses of z(¢) and their phase portraits are
displayed in Fig. 4(a) and (c) and (b) and (d), respectively,
where we observe that HZND-FTREC of (37) provides faster
stabilization than the FTRE and FPRE controls, even for large
values of R». In application to nonlinear systems Section VI-I,
the Van der Pol oscillator is stabilized for three different initial

values of X(f). The closed-loop responses of z(¢) and their
phase portraits are displayed in Fig. 4(e) and (f), where we
observe that HZND-FTREC of (37) provides, slightly, more
stable asymptotic behavior than the FTRE and FPRE controls.
In application to specific scenario Section VI-J, a mass con-
nected to a wall by a spring with variable stiffness k(¢) is
stabilized. In Fig. 4(g) and (h), the closed-loop responses of
z(t) and their phase portraits are displayed, where we observe
that HZND-FTREC of (37) provides, slightly, more stable
asymptotic behavior than the FTRE and FPRE controls.

To further validate the performance of the HZND-
FTREC model (37) and demonstrate the distinction between
the HZND-FTREC, FTRE, and FPRE controls, the ARE
error ||AX(f) + X (1A — X(#)BX(t) + Q|| of the applications
Section VI-H and VI-J is measured under various settings
of odel5s MATLAB solver. It is important to note that all
numerical examples and applications in this section have used
the default settings of odel5s MATLAB solver calculating
with double precision (eps 2.22 - 10716). Therefore, the
minimum value for most error measurements in this section
is of the order 107>. For the custom settings used in the
results of Fig. 5, we set the relative tolerance and the absolute
tolerance of odel5s to 10713, while the design parameter
was set to A 10%. Particularly, Fig. 5(a) and (e) shows
the ARE errors of Mathieu Equation with R, = 0.001 and
spring—mass system, respectively, under the default settings
of odel5s and the design parameter A = 10. In these fig-
ures, we observe that the FTRE that uses the Schur method’s
suggested solution has the best accuracy and the FPRE has
the worst accuracy. When using the custom settings, the ARE
errors of Mathieu Equation with R, = 0.001 and spring—mass
system are presented in Fig. 5(c) and (g). In these figures,
we note that the HZND-FTREC has the best accuracy, while
the performance of FTRE and FPRE is unaffected by the
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changes in the settings of the odel5s. This conclusion is
further supported by a comparison between the ARE trajecto-
ries shown in Fig. 5(b) and (f) and those shown in Fig. 5(d)
and (h), respectively. While the ARE trajectories generated
by FTRE and FPRE are unaffected by the changes in the
odel5s settings, we observe in these figures that the ARE tra-
jectories generated by HZND-FTREC converge faster to the
ARE trajectories generated by FTRE. We also observe that
FPRE generates a different and less accurate ARE solution
than FTRE in both applications. The HZND-FTREC generates
the same ARE solution as the FTRE, and under the odel5s
custom settings, the HZND-FTREC solution is more accurate
than FTRE’s.

Consequently, we can say that the TV-NARE problem (9),
the TI-NARE problem (18), and HZND-FTREC problem (37)
can be successfully solved by the ZNDTV-NARE, ZNDTI-
NARE, and HZND-FTREC, respectively, while the HZND-
FTREC is a more advanced version of the FTRE and is more
effective than both the FTRE and FPRE.

VII. CONCLUSION

This article examines the TV-NARE problem in detail. The
ZND approach, in conjunction with the definition of a conve-
nient error matrix for addressing the TV-NARE problem, led
to the development of the suggested ZNDTV-NARE model.
Several particular cases of ZNDTV-NARE design are derived,
including the ZNDTI-NARE model, and models for solv-
ing Sylvester and Lyapunov equation. Furthermore, a hybrid
TV-NARE model, called HZND-FTREC, is introduced to
incorporate the FTRE approach to optimal control of the
LTV system. Computer simulation further showed that the
proposed models successfully solved ten examples, three of
which included applications to LTV and nonlinear systems.
In that manner, the efficacy of the proposed flows for solv-
ing the TV-NARE, TI-NARE, and optimal control of LTV
systems has thus been demonstrated. The finding reached is
that the ZNDTV-NARE, ZNDTI-NARE, and HZND-FTREC
models are helpful and efficient in solving the TV-NARE, TI-
NARE, and optimal control of LTV systems, respectively. It
is worth mentioning that the ZNDTV-NARE model’s ability
to provide several solutions for various initial values without
allowing the user to specify a particular solution as the target
is a disadvantage.

Some areas of future research can be pointed out.

1) The ZNDTV-NARE and HZND-FTREC streams can
be investigated using a nonlinear activation function.
Nonlinear ZNDTV-NARE and HZND-FTREC flows
with terminal convergence could be studied in this direc-
tion. This approach will be a generalization of finite-time
convergent nonlinearly activated dynamical systems for
calculating the time-varying matrix pseudoinverse [14],
as well as for solving the time-varying SE [42], [43],
[51], [58].

It is helpful to extend recently proposed finite-time
convergent neural flows for solving time-varying linear
complex matrix equations [7] or the time-varying

2)

3)

4)

5)

6)

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

(10]

[11]

[12]

[13]
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Sylvester matrix equation [55] into more general finite-
time convergent ZNDTV-NARE and HZND-FTREC
evolutions.

The open area of research in machine control that is
related to fuzzy logic (see [27], [28], [68]) could be
paired with the ZND design. This research will lead to
the creation of novel ZND designs for tracking control
of nonlinear systems.

Because all types of noise have a significant impact
on the accuracy of the proposed ZND approaches, the
proposed ZNDTV-NARE, ZNDTI-NARE, and HZND-
FTREC models suffer from noise insensitivity. Future
research can be directed at expanding derived mod-
els into integration-enhanced and noise-tolerant ZND
dynamical systems.

As analyzed in the introduction, heterogeneous ARE
variants are involved in solutions to numerous contin-
uous time or discrete time problems. Each of these
applications provides the possibility of applying the
proposed models or their discretization.

Note that convergence occurs faster for greater values of
A. For further noteworthy characteristics and variations
of the ZND’s design parameter A see [15], [69].
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