
Linear Algebra and its Applications 480 (2015) 44–71
Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

On the benefits of the LDLT factorization

for large-scale differential matrix equation solvers

Norman Lang a,∗, Hermann Mena b, Jens Saak a,c

a Technische Universität Chemnitz, Faculty of Mathematics, D-09126 Chemnitz,
Germany
b University of Innsbruck, Department of Mathematics, A-6020 Innsbruck, Austria
c Max Planck Institute for Dynamics of Complex Technical Systems, D-39106
Magdeburg, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 July 2014
Accepted 6 April 2015
Available online 26 April 2015
Submitted by D.B. Szyld

MSC:
15A23
65L06
93A15

Keywords:
Large-scale
Matrix differential equations
Low-rank
Riccati equations
Lyapunov equations

We propose efficient algorithms for solving large-scale matrix
differential equations. In particular, we deal with the differen-
tial Riccati equations (DRE) and state the applicability to the
differential Lyapunov equations (DLE). We focus on methods,
based on standard versions of ordinary differential equations,
in the matrix setting. The application of these methods yields
algebraic Lyapunov equations (ALEs) with a certain structure
to be solved in every step. The alternating direction implicit
(ADI) algorithm and Krylov subspace based methods allow
to exploit this special structure. However, a direct application
of classic low-rank formulations requires the use of complex
arithmetic. Using an LDLT -type decomposition of both, the
right hand side and the solution of the equation, we avoid
this problem. Thus, the proposed methods are a more practi-
cal alternative for large-scale problems arising in applications.
Also, they make the application of higher order methods fea-
sible. The numerical results show the better performance of
the proposed methods compared to earlier formulations.

© 2015 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail addresses: norman.lang@mathematik.tu-chemnitz.de (N. Lang), hermann.mena@uibk.ac.at

(H. Mena), saak@mpi-magdeburg.mpg.de (J. Saak).
http://dx.doi.org/10.1016/j.laa.2015.04.006
0024-3795/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.laa.2015.04.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
mailto:norman.lang@mathematik.tu-chemnitz.de
mailto:hermann.mena@uibk.ac.at
mailto:saak@mpi-magdeburg.mpg.de
http://dx.doi.org/10.1016/j.laa.2015.04.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2015.04.006&domain=pdf

N. Lang et al. / Linear Algebra and its Applications 480 (2015) 44–71 45
1. Introduction

Differential matrix equations arise in many fields like optimal control, model reduction
of linear time-varying (LTV) systems, damping optimization in mechanical systems,
control of shear flows and the numerical solution of stochastic differential equations [1–7].
We will mainly focus on solving the differential Riccati equation (DRE). However, all our
methods and techniques naturally restrict to the differential Lyapunov equation (DLE)
(see comments in Section 2.2). A more detailed explanation and extensive numerical
experiments for the DLE will be presented elsewhere to keep the presentation within
usual page limits.

The DRE is one of the most deeply studied nonlinear matrix differential equations
arising in optimal control, optimal filtering, H∞-control of linear-time varying systems,
differential games, etc. (see, e.g., [8–11]). In the literature there is a large variety of ap-
proaches to compute the solution of small-scale DREs (see, e.g., [12–15]). In this article,
we consider the numerical solution of large-scale DREs arising in optimal control prob-
lems for partial differential equations. In [16,17] efficient numerical methods capable of
exploiting the structure based on matrix-valued versions of the backward differentiation
formula (BDF), Midpoint and Trapezoidal rules and the Rosenbrock (Ros) methods are
proposed. Moreover, the authors in [18] present an abstract framework based on operator
splittings. In contrast to their work we will focus on the matrix setting.

The implementation in [16,19] uses a low-rank Alternating Directions Implicit (ADI)
iteration feasible for solving the algebraic Lyapunov equations (ALE) in the inner it-
eration. Here, we also consider Krylov subspace based methods for the solution of the
arising ALEs. When methods of order p ≥ 2 are applied, complex arithmetic is required,
which increases the computational cost. For the Rosenbrock methods an approach has
been proposed to keep the computations in real arithmetic [16]. This yields a challenging
implementation already for order 2. The ALE arises in many fields like optimal control
and model order reduction [20,21]. Many methods for solving large-scale ALEs have been
proposed [22–28]. However, there have been no attempts to solve large-scale differential
Lyapunov equations, which, e.g., arise in Balanced Truncation model order reduction
approaches for linear time-varying systems. Discretizing the DLE in time, also an ALE
with special structure has to be solved in every step.

In this paper we present novel formulations of solution algorithms for differential
matrix equations based on an LDLT decomposition that keep the computations in real
arithmetic. First, we describe how the LDLT -type splitting can be applied to the BDF
schemes and extend these ideas to the Rosenbrock methods. Moreover, the method can,
in general, be used in combination with any implicit ODE solver which is applied in the
matrix setting. The paper is organized as follows: in Section 2 we review matrix versions
of standard methods for stiff problems and their application to DRE and DLE. Further,
a column compression technique for complex data is provided. In Section 3, we present
the LDLT based algorithms. Then, in Section 4 we introduce some motivating examples

46 N. Lang et al. / Linear Algebra and its Applications 480 (2015) 44–71
and test our methods. The numerical results show the performance of the new methods.
Finally, some conclusions close the paper in Section 5.

2. Matrix versions of standard ODE integrators

In applications the DREs/DLEs are usually fairly stiff. This, in turn, demands for
implicit methods to solve such equations numerically. Therefore, we will focus on matrix
versions of standard ODE solvers for (vector valued) stiff problems, [12,14,17]. In order
to efficiently exploit the problem structure, we are interested in methods, which, written
in matrix form, yield an algebraic Riccati equation (ARE) or an ALE to be solved in
each time step when they are applied to the DRE, or DLE. It turns out that there is a
vast variety of methods that can be applied, e.g., the Backward Differentiation formulas,
the Midpoint, the Trapezoidal rules and the Rosenbrock methods, [19].

2.1. Application to DREs

Let us first consider the time-varying symmetric DREs of the form

Ẋ(t) = −Q(t) −X(t)A(t) −AT (t)X(t) + X(t)S(t)X(t),

X(tf) = Xtf (1)

arising in the linear quadratic regulator (LQR) framework for time varying dynamical
systems. Here t ∈ [t0, tf] and Q(t), A(t), S(t) ∈ R

n×n are assumed to be piecewise
continuous locally bounded matrix-valued functions, which ensures the existence and
uniqueness of the solution of (1), see [8]. Note that the DRE, originating from an LQR
problem replaces the adjoint state from the optimization framework and thus has to be
solved backwards in time. Defining X̃(tf ; t) := X(tf − t), we can easily reformulate (1)
as an initial value problem of the form

˙̃X(t) = Q(t) + X̃(t)A(t) + AT (t)X̃(t) − X̃(t)S(t)X̃(t),

X̃(t0) = X̃0,

since ˙̃X(tf ; t) = −Ẋ(tf − t). In the remainder, we neglect the explicit use of the time
dependency in the matrices defining the DRE. Furthermore, considering, e.g., finite ele-
ment semi-discretized partial differential equation constrained optimal control problems
one usually faces the generalized DRE

ET ẊE = −Q−ETXA−ATXE + ETXSXE,

ET (tf)X(tf)E(tf) = ET (tf)XtfE(tf). (2)

In order to simplify the expressions in the following sections we will focus on the standard
case and only state the algorithms in terms of the generalized DRE. The latter can easily

N. Lang et al. / Linear Algebra and its Applications 480 (2015) 44–71 47
Table 1
Coefficients of the BDF p-step methods up to order p = 6.

p β α1 α2 α3 α4 α5 α6

1 1 −1
2 2

3 − 4
3

1
3

3 6
11 − 18

11
9
11 − 2

11

4 12
25 − 48

25
36
25 − 16

25
3
25

5 60
137 − 300

137
300
137 − 200

137
75
137 − 12

137

6 60
147 − 360

147
450
147 − 400

147
225
147 − 72

147
10
147

be derived by applying the standard theory with Ã := E−1A, B̃ = E−1B and avoiding
the inversion of E in the resulting algorithms.

Thus, we will consider

Ẋ = R(t,X),

R(t,X) : = Q + XA + ATX −XSX,

X(t0) = X0. (3)

Backward differentiation formulas Applying the fixed-coefficients BDF method to the
DRE (3), we obtain the matrix valued BDF scheme

Xk+1 =
p∑

j=1
−αjXk+1−j + τkβR(tk+1, Xk+1),

where τk denotes the time step size, tk+1 = tk+τk, Xk+1 ≈ X(tk+1). The expressions αj ,
β denote the determining coefficients for the p-step BDF formula given in Table 1 (see,
e.g., [29]). This leads to the Riccati-BDF difference equation

−Xk+1 + τkβ(Qk+1 + AT
k+1Xk+1 + Xk+1Ak+1 −Xk+1Sk+1Xk+1)

−
p∑

j=1
αjXk+1−j = 0

with Qk+1 ≡ Q(tk+1), Ak+1 ≡ A(tk+1), Sk+1 ≡ S(tk+1), which can be written as the
algebraic Riccati equation

(τkβQk+1 −
p∑

j=1
αjXk+1−j) + (τkβAk+1 −

1
2I)

TXk+1 + Xk+1(τkβAk+1 −
1
2I)

−Xk+1(τkβSk+1)Xk+1 = 0, (4)

for Xk+1. For large-scale applications it is necessary to avoid forming the matrices Xk

explicitly, because this in general leads to dense computations. In many applications the
data is given in a low-rank form

48 N. Lang et al. / Linear Algebra and its Applications 480 (2015) 44–71
Qk = CT
k Ck, Ck ∈ R

q×n,

Sk = BkB
T
k , Bk ∈ R

n×m. (5)

Therefore, in practice one often observes the solution also to be of numerically low rank.
That means, using low-rank representation based algorithms to solve (4), the solution
can be well approximated by a product of the form Xk ≈ ZkZ

T
k (Zk ∈ R

n×zk , zk � n).
In the remainder of this section we review the classical low-rank approximation based

formulation. Using the low-rank factors (5), the ARE (4) can be written as

ĈT
k+1Ĉk+1 + ÂT

k+1Zk+1Z
T
k+1 + Zk+1Z

T
k+1Âk+1

− Zk+1Z
T
k+1B̂k+1B̂

T
k+1Zk+1Z

T
k+1 = 0 (6)

with

Âk+1 = τkβAk+1 −
1
2I,

B̂k+1 =
√

τkβBk+1,

ĈT
k+1 = [

√
τkβC

T
k+1,

√
−α1Zk, . . . ,

√
−αpZk+1−p].

Exploiting the sparsity of Ak+1, together with the low-rank representations of the con-
stant and quadratic terms, Eq. (6) can be solved efficiently in terms of computational
effort and storage costs, if the rank zk � n for all times. The described formulations
above can serve as the basis of a DRE solver for large-scale problems. We note, the main
idea here is to solve an ARE by, e.g., Krylov subspace methods, Newton’s method or
other methods, see e.g., the recent surveys [26,30], in every time step. Here we restrict
our selves to these procedures. Applying Newton’s method to the ARE (6) results in the
solution of the ALE

Ǎ
(�)
k+1

TX
(�)
k+1 + X

(�)
k+1Ǎ

(�)
k+1 = G

(�)
k+1G

(�)
k+1

T (7)

with Ǎ(�)
k+1 = (Âk+1 − τkβBk+1B

T
k+1X

(�−1)
k+1) and G(�)

k+1 = [ĈT
k+1,

√
τkβX

(�−1)
k+1 Bk+1] for

X
(�)
k+1 in the �-th Newton step. For implementation details see [16] and the references

therein. Note that for methods of order p ≥ 2 some of the coefficients αj , j = 1, . . . , p
of the p-step BDF method are positive, see Table 1. This leads to algebraic Lyapunov
equations which have indefinite right hand sides and thus the right hand side factor G
of the ALE (7) becomes complex. The solution via Newton’s method, in particular the
application of the inner solver to the ALE (7), needs to deal with complex arithmetic
and this, in turn, makes complex storage unavoidable.

Rosenbrock methods The application of the general p-stage Rosenbrock method, as a
matrix-valued procedure, to the DRE (3) yields

N. Lang et al. / Linear Algebra and its Applications 480 (2015) 44–71 49
(
1

τkγii
I − ∂R

∂X
(tk, Xk)

)
Ki = R

⎛
⎝tk,i, Xk +

i−1∑
j=1

aijKj

⎞
⎠ +

i−1∑
j=1

cij
τk

Kj + γiτkRtk ,

Xk+1 = Xk +
p∑

j=1
mjKj , (8)

where tk,i = tk + αiτk, i = 1, . . . , p, and γii, aij , cij , γi, mj and αi are the method
coefficients, that are available in text books as, e.g., [31]. We denote by Ki the n × n

matrix representing the solution of the i-th-stage of the method and abbreviate Rtk =
∂R
∂t (tk, X(tk)). Note that for autonomous DREs Rtk = 0. Using the Frechét derivative

∂R
∂X

(tk, Xk) : U → (Ak − SkXk)TU + U(Ak − SkXk), (9)

of R at Xk with Xk ≈ X(tk), Ak ≡ A(tk), Sk ≡ S(tk) and U ∈ R
n×n and following the

reformulations presented in [17], the general p-stage Rosenbrock scheme reads

ÂT
kKi + KiÂk = −R

⎛
⎝tk,i, Xk +

i−1∑
j=1

aijKj

⎞
⎠

−
i−1∑
j=1

cij
τk

Kj − γiτkRtk ,

Xk+1 = Xk +
p∑

j=1
mjKj , (10)

with Âk := Ak − SkXk − 1
2τkγii

I, i = 1, . . . , p. Hence, in each stage of every time step
of the integration method one algebraic Lyapunov equation has to be solved. In order
to avoid explicitly forming the dense solutions Ki of the single stage equations in (10),
as in the BDF-case, we assume the coefficient matrices to be given in low-rank form.
The particular low-rank representation directly depends on the order of the Rosenbrock
method. Therefore, as examples we review the first- and a second-order Rosenbrock
scheme for an autonomous DRE discussed in [16]. Considering the autonomous case is
not an inappropriate restriction, since the application of a low-rank factorization to Rtk

is straight forward, see [19, Section 4.4].
The 1-stage Rosenbrock scheme (Ros1) in low-rank representation is given as

ÂT
kXk+1 + Xk+1Âk = −GkG

T
k , (11)

with γ1,1 = 1, Âk = Ak − SkXk − 1
2τk I and the right hand side factor

Gk =
[
CT

k , ZkZ
T
k Bk,

√
1 Zk

]
.

τk

50 N. Lang et al. / Linear Algebra and its Applications 480 (2015) 44–71
The specific second-order Rosenbrock scheme (Ros2) proposed in [32] in classical low-
rank representation and a number of reformulation steps following [16,19], reads

Xk+1 = Xk + 3
2τkK1 + 1

2τkK2,

ÃT
kK1 + K1Ãk = −R(Xk),

ÃT
kK21 + K21Ãk = −τ2

kK1BkB
T
k K1 − (2 − 1

γ
)K1

K2 = −K21 + (1 − 1
γ

)K1 (12)

with Ãk := γτk(Ak − SkXk) − 1
2I. Again considering the low-rank splitting given in (5),

the right hand side of the first stage in (12) becomes

−CT
k Ck −AT

k ZkZ
T
k − ZkZ

T
k Ak + ZkZ

T
k BkB

T
k ZkZ

T
k .

As explained in [16,19], we consider the following two possible splittings of the form
−GkG

T
k . The partitioning

Gk = [CT
k , AT

k Zk + Zk, iZkZ
T
k Bk, iAT

k Zk, iZk] (13)

of the right hand side ends up being complex. Avoiding complex data requires a super-
position approach splitting the first stage equation into the two equations

ÃT
k K̂1 + K̂1Ãk = −NkN

T
k , ÃT

k K̃1 + K̃1Ãk = −UkU
T
k (14)

such that K1 := K̂1 − K̃1 and −GkG
T
k := −NkN

T
k + UkU

T
k . Here,

Nk = [CT
k , AT

kZk + Zk] , Uk = [ZkZ
T
k Bk, AT

k Zk, Zk] .

Several numerical experiments have shown that the formation of K1 may suffer from
cancellation problems in finite arithmetic. That is, constructing the solution K1 := K̂1−
K̃1 is affected by numerical inaccuracies and therefore breaks the entire second-order
low-rank algorithm.

For completeness, the right hand side of the second stage equation of the Rosenbrock
scheme (12) in standard low-rank representation with K1 = T1T

T
1 , T1 ∈ R

n×tk reads

Gk =
[
τkT1T

T
1 B,

√
2 − 1

γT1

]
.

Other implicit methods As stated in [14] the application of any implicit method to the
DRE yields an ARE to be solved in every step. For illustration, we will consider the
Midpoint and Trapezoidal rules.

N. Lang et al. / Linear Algebra and its Applications 480 (2015) 44–71 51
The Midpoint rule applied to the DRE (3) yields

Xk+1 = Xk + τkR
(
tk + τ

2 ,
1
2(Xk+1 + Xk)

)
.

Re-arranging terms, we see that this again leads to an ARE for Xk+1

[
τkQk′ + Xk + τk

2

(
AT

k′Xk + XkAk′ − XkSk′Xk

2

)]

+ (τk2 Ak′ − τk
4 Sk′Xk − 1

2I)
TXk+1 + Xk+1(

τk
2 Ak′ − τk

4 Sk′Xk − 1
2I)

−Xk+1(
τk
4 Sk′)Xk+1 = 0, (15)

where Xk ≈ X(tk), Ak′ ≡ A(tk + τk
2), Qk′ ≡ Q(tk + τk

2), Sk′ ≡ S(tk + τk
2).

Applying the Trapezoidal rule to the DRE (3), we obtain

Xk+1 = Xk + τk
2 (R(tk, Xk) + R(tk+1, Xk+1)).

Collecting terms in the same way as for the previous method, we end up with an ARE
for Xk+1

[
τk
2 Qk+1 + Xk + τk

2

(
Qk + AT

kXk + XkAk −XkSkXk

)]

+
(
τk
2 Ak+1 −

1
2I

)T

Xk+1 + Xk+1

(
τk
2 Ak+1 −

1
2I

)

−Xk+1

(
τk
2 Sk+1

)
Xk+1 = 0. (16)

In both cases an ARE has to be solved in every time step. Thus, as for the BDF methods,
for the Midpoint and Trapezoidal rule and in general any implicit (Runge–Kutta) method
the key ingredient for an efficient algorithm is a fast low-rank ARE solver.

2.2. Application to DLEs

As for the DREs the application of implicit ODE methods in the matrix setting for
solving DLEs requires complex arithmetic. As an illustration, we will consider the BDF
methods.

Let us consider the time-varying symmetric DLE of the form

Ẋ(t) = Q(t) + X(t)A(t) + AT (t)X(t) ≡ L(t,X(t)),

X(t0) = X0, (17)

52 N. Lang et al. / Linear Algebra and its Applications 480 (2015) 44–71
where t ∈ [t0, tf] and Q(t), A(t) ∈ R
n×n are piecewise continuous locally bounded matrix-

valued functions. Using the same notation as in the previous subsection the application
of the BDF methods to the DLE yields an algebraic Lyapunov equation

(τkβQk+1 −
p∑

j=1
αjXk+1−j) + ÂT

k+1Xk+1 + Xk+1Âk+1 = 0, (18)

where β, αj are given in Table 1 and Âk+1 := (τkβAk+1 − 1
2I). The algebraic equation

(18) can be written in terms of low-rank factors similar to the Riccati case in (6). That
is, the application of a BDF method of order p ≥ 2 will also require complex arithmetic
and storage.

The same happens when Rosenbrock methods are applied to the DLE. Using a p-stage
Rosenbrock method, we also have to solve an ALE at each stage of the scheme, since the
Frechét derivative of the Lyapunov operator L in (17) is again the Lyapunov operator
of the form (9). Hence, the same numerical problems as for the DRE arise.

2.3. Classical column compression

For all kinds of time integration methods the solution factors of a certain number of
previous time steps are a part of the right hand side factor G of the ALEs that have to be
solved within the current time integration step. That is, the block size of the right hand
side low-rank factor G will increase drastically over time. Therefore, the elimination of
redundant information in terms of a column compression based on the numerical rank
of the factor becomes necessary. As mentioned before, using higher order integration
methods, the right hand sides become indefinite. Therefore, the right hand side factors in
the classical low-rank setting become complex. This directly leads to the inadmissibility
of the classic rank-revealing QR decomposition and SVD based column compression
approaches. In the following we employ Matlab notation to specify subblocks of a
matrix. Note that the rank r in practice needs to be decided numerically or memory
restrictions make a rank truncation necessary. Thus, we usually have GrG

T
r ≈ GGT .

Still, we present the results for exact computations here.

QR based column compression

i) Compute GT = QRΠT with G ∈ R
n×k, Q ∈ R

k×k, QTQ = Ik, R ∈ R
k×n and a

permutation matrix Π ∈ R
n×n.

ii) Set Gr = ΠRT
r ∈ R

n×r, where r := rank (R) and Rr := R(1 : r, :) ∈ R
r×n, Qr :=

Q(1 : r, 1 : r) ∈ R
r×r, such that

GrG
T
r = ΠRT

r RrΠT = ΠRT
r Q

T
r QrRrΠT = ΠRTQTQRΠT = GGT .

N. Lang et al. / Linear Algebra and its Applications 480 (2015) 44–71 53
SVD based column compression

i) Compute G = UΣV T with G ∈ R
n×k, U ∈ R

n×k, UTU = Ik, Σ ∈ R
k×k and

V ∈ R
k×k, V TV = Ik.

ii) Set Gr = UrΣr ∈ R
n×r, where r = rank (R), Ur := U(:, 1 : r) ∈ R

n×r, Σr := Σ(1 :
r, 1 : r) ∈ R

r×r, and Vr := V (:, 1 : r) ∈ R
k×r, such that

GrG
T
r = UrΣ2

rU
T
r = UrΣrV

T
r VrΣrU

T
r = UΣV TV ΣUT = GGT .

Column compression for complex data Let G ∈ C
n×k. Therefore, the QR decomposition

similar to the real case reads

GH = QRΠT with Q ∈ C
k×k, QHQ = Ik, R ∈ C

k×n and Π ∈ R
n×n.

Analogously, setting the compressed factor Gr = ΠRH
r ∈ C

n×r fails, since we have given
the right hand side product GrG

T
r . This yields

GrG
T
r = ΠRH

r R̄rΠT 	= ΠRH
r QH

r Q̄rR̄rΠT = GGT ,

since the QR decomposition is computed with respect to an unitary matrix Q, i.e.,
QHQ = Ik and not QHQ̄ = Ik.

A similar problem occurs in the case of the SVD based approach. There, we compute

G = UΣV H with U ∈ C
n×k, UHU = Ik, Σ ∈ C

k×k, V ∈ C
k×k, V HV = Ik

and therefore obtain

GrG
T
r = UrΣrV

H V̄ UT
r 	= UrΣrV

HV ΣrU
T
r = UrΣ2

rU
T
r .

Clearly, using the matrix G ∈ C
n×k in the real symmetric and indefinite product

GGT ∈ R
n×n requires us to properly adjust the compression to the outer product in use.

We propose the following procedure:

i) Compute G = QRΠT with Q ∈ C
n×k, QHQ = Ik, R ∈ C

k×k, and the permutation
matrix Π ∈ R

k×k.
ii) Compute a decomposition RΠTΠRT = RRT = V ΛV T with V ∈ C

k×k, V TV = Ik
and a diagonal matrix Λ ∈ C

k×k with diagonal entries |λ1| ≥ |λ2| ≥ · · · ≥ |λk|.
iii) Set the compressed factor Gr := QVrΛ

1
2
r ∈ C

n×r with r ≤ k and |λr+1| ≤ ε.

Following the statements in [33, Theorem 4.4.13], the existence of a matrix V with
V TV = Ik as in Step ii) is guaranteed, since RRT is complex symmetric and therefore
diagonalizable.

54 N. Lang et al. / Linear Algebra and its Applications 480 (2015) 44–71
Computing the eigendecomposition for the complex symmetric matrix RRT within
Step ii) in general leads to

RRT = Ṽ ΛṼ −1

with eigenvectors (columns in Ṽ) ṽi ∈ C
k. In any software tool based on LAPACK [34],

the ṽi are normalized but not necessarily orthogonal with respect to the complex inner
product. That is, the ṽi satisfy the properties

ṽ∗i ṽi = 1 ⇒ ṽTi ṽi 	= 1,

ṽ∗i ṽj 	= 0. (19)

From the principle of biorthogonality, see e.g., [33, Theorem 1.4.7 and Proof of Theorem
4.4.13], we know that the eigenvectors ṽi, ṽj of the symmetric matrix RRT are orthogonal
with respect to the real inner product, i.e., ṽTi ṽj = 0 for i 	= j. Since, the right hand side
is constructed to be of the form GGT = QV ΛV TQT , we need to ensure RRT = V ΛV T .
Using (19) and the orthogonality of ṽi, ṽj , we have

Ṽ T Ṽ =

⎡
⎢⎣
ṽT1 ṽ1 0

. . .
0 ṽTk ṽk

⎤
⎥⎦ .

That is, the eigenvectors ṽi need to be normalized with respect to the real inner product.

Defining V := Ṽ D̃ with D̃ = diag
(√

ṽT1 ṽ1, . . . ,
√
ṽTk ṽk

)−1
yields,

V TV = D̃Ṽ T Ṽ D̃ = Ik

⇔ D̃Ṽ T = V T = V −1 = D̃−1Ṽ −1,

with D̃−1 = diag
(√

ṽT1 ṽ1, . . . ,
√
ṽTk ṽk

)
. Therefore, we obtain

RRT = Ṽ ΛṼ −1 = Ṽ ΛD̃D̃−1Ṽ −1

= Ṽ D̃ΛD̃−1Ṽ −1 = V ΛV −1 = V ΛV T .

That means, scaling the eigenvectors ṽi with (ṽTi ṽi)−
1
2 , i = 1, . . . , k does not change

the eigendecomposition of the complex symmetric matrix RRT and we end up with the
required representation

RRT = V ΛV T .

Again, note that using the BDF and Rosenbrock methods of order p ≥ 2, the Midpoint
or Trapezoidal rules will lead to indefinite right hand sides for the ALEs that have to be

N. Lang et al. / Linear Algebra and its Applications 480 (2015) 44–71 55
solved in the innermost iteration. The associated complex splittings require complex data
storage, complex arithmetic and as the above statements show the effort for the necessary
column compression techniques increases as well. In the case of definite right hand sides
and the corresponding real splittings the column compression is either performed by
using the QR or an SVD decomposition. Given complex data the proposed approach
computes a QR decomposition of the factor to be compressed and an eigendecomposition
of the small complex symmetric matrix RRT that additionally increases the over-all
computational effort of the classical low-rank methods for the solution of the DRE.

3. LDLT -type Lyapunov solvers

As we have shown in the previous sections, the main ingredient to determine the
solution of a DRE (3) is to solve an ALE of the form

FTX + XF = −W. (20)

For higher order methods (p ≥ 2) the matrix W appears to be indefinite in every step
of either the Rosenbrock method or the Newton method within the BDF schemes, the
Midpoint or Trapezoidal rule. In this section we present a new approach, which avoids
the problem of complex arithmetic and storage arising when the right hand side is de-
composed as W = GGT . We propose to split the right hand side W in the form GSGT

with G ∈ R
n×k, k � n and a small, compared to the dimension n, but indefinite matrix

S = ST ∈ R
k×k.

3.1. LDLT -type ADI

Following [35], the ADI iteration is adapted to the splitting X ≈ LDLT of the solution
of a Lyapunov equation of the form (20). The solution factor L will be of low rank and
D is a symmetric and block-diagonal matrix, as we will easily see below. The one step
iteration [24] at step j = 1, 2, . . . of the ADI method becomes

LjDjL
T
j = −2Re(μj)(FT + μjI)−1GSGT (F + μ̄jI)−1

+ (FT + μjI)−1(FT − μjI)Lj−1Dj−1L
T
j−1(F − μjI)(F + μjI)−1, (21)

with L0, D0 = [] and ADI shift parameters μj ∈ C. Using the inherent structure of (21)
the factors Lj , Dj can be computed as follows:

Lj := [(FT + μjI)−1G, (FT + μjI)−1(FT − μjI)Lj−1] ,

Dj :=
[
−2Re(μj)S

Dj−1

]
.

For the sake of easier reading we define Rj := (FT + μjI)−1 and Tj := (FT − μjI).
Plugging in the factors Lj and Dj recursively yields

56 N. Lang et al. / Linear Algebra and its Applications 480 (2015) 44–71
Lj = [RjG, RjTjRj−1G, . . . , RjTj . . . R2T2R1G] ,

Dj =

⎡
⎢⎢⎢⎣
−2Re(μj)S

−2Re(μj−1)S
. . .

−2Re(μ1)S

⎤
⎥⎥⎥⎦ . (22)

Since the ordering of the ADI shifts μj does not affect the solutions quality, the indices
can be reversed. Additionally, using the commutativity of the Rj’s and Tj ’s the reordered
sequence leads to

Lj = [R1G, R2T1(R1G), . . . , Rj+1Tj(RjTj−1 . . . R2T1R1G)] ,

Dj =

⎡
⎢⎢⎢⎣
−2Re(μ1)S

−2Re(μ2)S
. . .

−2Re(μj)S

⎤
⎥⎥⎥⎦

= −2diag (Re(μ1), . . . ,Re(μj)) ⊗ S (23)

in complete analogy to the procedure first employed in [23] for the ZZT case. Thus, the
LDLT -based factorization does not differ to much from the low-rank factored ADI as
proposed in [36–38].

The introduction of the potentially indefinite matrix S in the decomposition of the
right hand side immediately avoids the necessity of complex storage and arithmetic.
Moreover, the introduction of the diagonal block Dj in every step allows to remove the
multiplication of the shifts μj from the low-rank factor Lj and for the computation of the
block diagonal matrix Dj one only needs to store the given symmetric matrix S and the
shift sequence which is done during the ADI anyway. Considering the same right hand
side factor G, the classical low-rank factor Z and the LDLT factor L are computed by
the same iteration sequence. Thus, they will be of the same size zk and quality. A sketch
of the LDLT -type procedure is given in Algorithm 3.1.

Remark Let
(M) denote the spectral radius of a matrix M . Note that the matri-
ces Wj−1SW

T
j−1 ∈ R

n×n and WT
j−1Wj−1S ∈ R

k×k share the same non-zero spectrum.
Therefore, to avoid the computation of the norm of the large and usually dense matrix
products in Step 2 of Algorithm 3.1, we exploit

‖Wj−1SW
T
j−1‖2 =
(Wj−1SW

T
j−1) =
(WT

j−1Wj−1S).

3.2. LDLT -type Krylov subspace method

Following the statements in [25,39] the rational Krylov subspace method (RKSM)
and the extended Krylov subspace method (EKSM, also called KPIK for Krylov plus

N. Lang et al. / Linear Algebra and its Applications 480 (2015) 44–71 57
Algorithm 3.1 LDLT -factorization based ADI method.
INPUT: ADI shifts μ1, . . . , μ� ∈ C, G, S, tolerance ε
OUTPUT: L = LnADI

, D = DnADI

1: W0 = G, j = 1
2: while ‖Wj−1SWT

j−1‖2 ≥ ε‖GSGT ‖2 do
3: Solve (F + μjE)Vj = Wj−1 for Vj .
4: if μj is real then
5: Wj = Wj−1 − 2μjVj , Lj = [Lj−1, Vj]
6: else
7: ηj =

√
2, δj = Re (μj)/ Im (μj)

8: Wj+1 = Wj−1 − 4 Re (μj)(Re (Vj) + δj Im (Vj))
9: Lj+1 = [Lj−1, ηj(Re (Vj) + δj Im (Vj)), ηj

√
δ2
j + 1 Im (Vj)]

10: j = j + 1
11: end if
12: j = j + 1
13: end while
14: Dj = −2 diag (Re (μ1), . . . ,Re (μj)) ⊗ S

inverted Krylov) compute a solution

Xs = VsYsV
T
s (24)

of the ALE (20) with a given right hand side of the form W := ĜĜT . Here, Vs denotes
an orthonormal basis of the Krylov subspace

Ks(F, Ĝ, p) = {Ĝ, (FT − μ1I)−1Ĝ, . . . ,

s∏
j=1

(FT − μjI)−1Ĝ} ⊂ R
n×(s+1)k or

K2s(F, F−sĜ) = {F−sĜ, . . . , F−1Ĝ, Ĝ, F Ĝ, . . . , F sĜ} ⊂ R
n×(2s+1)k,

respectively, where k is the number of columns of Ĝ and Ys is the solution of the projected
small-scale ALE

V T
s FTVsYs + YsV

T
s FVs = −V T

s ĜĜTVs. (25)

That is, the RKSM and EKSM Lyapunov solvers directly compute the solution of (20)
in the required LDLT -type format. Exploiting the inherent structure of the solution
Xs = VsYsV

T
s given by the Krylov subspace methods, the LDLT based methods avoid

the additional computation of a ZZT decomposition of the solution Xs as it is done in
the classical low-rank algorithms. Note that a splitting GSGT of the right hand side W
of (20) does not affect the procedure. Since S is symmetric, and therefore diagonal up to
an orthogonal similarity transformation, the Krylov subspace spanned by the columns
of Vs does not change. That is, the only change in the above procedure is the solution of

V T
s FTVsYs + YsV

T
s FVs = −V T

s GSGTVs

instead of (25).

58 N. Lang et al. / Linear Algebra and its Applications 480 (2015) 44–71
Algorithm 3.2 LDLT factored BDF method of order p.
Require: E(t), A(t), S(t), Q(t), ∈ R

n×n smooth matrix-valued functions satisfying (5), t ∈ [a, b], and step
size τ .

Ensure: (Lk+1, Dk+1, tk+1) such that Xk+1 ≈ Lk+1Dk+1L
T
k+1.

1: t0 = a.
2: for k = 0 to
 b−a

τ � do
3: tk+1 = tk + h.
4: Âk+1 = τβAk+1 − 1

2E.
5: ĈT

k+1 = [CT
k+1, ETLk, . . . , ETLk+1−p].

6: for � = 1 to �max do
7: G(�) = [ĈT

k+1, K(�−1)].

8: S(�) =

⎡
⎢⎢⎢⎢⎢⎣

τβIq
−α1Dk

. . .
−αpDk+1−p

τβIm

⎤
⎥⎥⎥⎥⎥⎦
.

9: Compute L(�), D(�) by an LDLT -factorization based Algorithm such that X(�) ≈ L(�)D(�)L(�)T

is the solution of

F
(�)T

X
(�)

Ek+1 + E
T
k+1X

(�)
F

(�) = −G
(�)

S
(�)

G
(�)T

.

10: K(�) = ET
k+1(L

(�)(D(�)(L(�)TBk+1))).
11: end for
12: Lk+1 = L(�max), Dk+1 = D(�max).
13: end for

3.3. Application to matrix-valued ODE solvers

Applying the LDLT -type splitting to the arising ALEs within the previously described
matrix-valued ODE solvers allows us to avoid complex arithmetic arising from the stan-
dard low-rank splitting of the right hand sides of the ALEs which need to be solved in
the innermost iteration of the BDF, the Midpoint and Trapezoidal rules and Rosenbrock
methods. In addition, the number of system solves within the ADI iteration can be re-
duced by an a priori elimination of redundant column blocks in the right hand sides.
Again, for simplicity we restrict ourselves to the autonomous case as in Section 2.1. In
particular, we will demonstrate the advantages of the LDLT -type splitting in the ex-
ample of the aforementioned general p-step BDF method, as well as for the first- and
second-order Rosenbrock schemes.

Backward differentiation formulas Using the LDLT -type factorization Xk+1 :=
Lk+1Dk+1L

T
k+1 instead of the standard low-rank representation of the solution of the

DRE, Algorithm 3.1 in [16] changes to Algorithm 3.2. That is, the application of the
LDLT factorization and the associated splitting GSGT of the right hand side of (7)
allows us to put the coefficients αj , j = 1, . . . , p into the diagonal blocks of S. This
avoids taking the square root of the non-positive coefficients (see Table 1) and in turn
removes complex data and arithmetic.

As mentioned in Section 2 the Midpoint or Trapezoidal rule also leads to the solution
of an ARE in every time integration step. Having a closer look at the corresponding

N. Lang et al. / Linear Algebra and its Applications 480 (2015) 44–71 59
Eqs. (15) and (16), we note that again the constant terms of the AREs are indefinite.
Therefore, the application of the above steps also avoids complex computations. Fur-
thermore, the problem of indefinite right hand sides also appears for the application of
Rosenbrock methods.

First-order Rosenbrock method (linear implicit Euler) As given in Eq. (11) the first-
order Rosenbrock scheme in standard low-rank formulation deals with the right hand
side

Gk =
[
CT

k , ZkZ
T
k Bk,

√
1
τk
Zk

]
∈ R

n×(q+m+zk)

where Gk is of size n × (q + m + zk). Here, the right hand side is definite and therefore
can be split into real factors Gk. Still, the application of the LDLT -type factorization
with the associated right hand side G̃kS̃kG̃

T
k

G̃k = [CT
k , Lk, Lk] ∈ R

n×(q+2�k)

S̃k =

⎡
⎣ I

DkL
T
kBkBkLkDk

1
τk
Dk

⎤
⎦ ∈ R

(q+2�k)×(q+2�k)

for the solution factorization Xk ≈ LkDkL
T
k can be exploited to improve the numerical

computations. Re-arranging the blocks in the form

G̃k = [CT
k , Lk] ∈ R

n×(q+�k),

S̃k =
[
I

DkL
T
kBkBkLkDk + 1

τk
Dk

]
∈ R

(q+�k)×(q+�k) (26)

leads to a factor G̃k of size n × (q + �k) representing the same product. The number of
columns of Gk, G̃k equals the number of solves within the first step of the Lyapunov solver
and the number of columns which are added to the right hand side at every subsequent
iteration step. This at least saves m system solves in every step of the Lyapunov solver
within every time integration step, since it can be shown that the block sizes �k, zk satisfy
�k ≤ zk. Both block sizes linearly depend on the size of the right hand side put into the
ADI or Krylov based Lyapunov solvers. Therefore, �k cannot exceed zk. In total this
means that assuming a constant number nlyap of Lyapunov solver steps per time step,
the LDLT -type factorization for the linear implicit Euler integration method requires
at least m · nlyap · nODE less linear system solves during the solution of the DRE (3)
compared to the standard low-rank factorization. Here, nODE is the number of time
steps taken in the linear implicit Euler scheme. Note that the products DkL

T
kBk are of

size �k × m and therefore do not require a significant amount of computation time as
long as �k, m � n, which is a required assumption for low-rank computations anyway.

60 N. Lang et al. / Linear Algebra and its Applications 480 (2015) 44–71
Second-order Rosenbrock method As introduced in Eqs. (13) and (14) for the first stage
equation of the second order method we either have to deal with the complex right hand
side

Gk = [CT
k , AT

k Zk + Zk, iZkZ
T
k Bk, iAT

k Zk, iZk] , ∈ R
n×(q+m+3zk)

or the split Lyapunov equation and the corresponding right hand sides NkN
T
k , UkU

T
k

with

Nk = [CT
k , AT

k Zk + Zk] , ∈ R
n×(q+zk),

Uk = [ZkZ
T
k Bk, AT

kZk, Zk] , ∈ R
n×(m+2zk).

In order to avoid the complex blocks, the splitting of the first stage Lyapunov equation
into two separate ALEs, and the additionally introduced terms using (14), again, we
consider the LDLT -type splitting. Hence, the right hand side of the first stage equation
becomes

−CT
k Ck −AT

kLkDkL
T
k − LkDkL

T
kAk + LkDkL

T
kBkB

T
k LkDkL

T
k

and we obtain the splitting −G̃kS̃kG̃
T
k with

G̃k = [CT
k , AT

k L, Lk, Lk] ,

S̃k =

⎡
⎢⎢⎣
Iq

Dk

Dk

−DkL
T
kBkB

T
k LkDk

⎤
⎥⎥⎦ . (27)

Re-arranging blocks, similar to (26), leads to

G̃k = [CT
k , AT

k Lk, Lk] ∈ R
n×(q+2�k),

S̃k =

⎡
⎣ Iq

Dk

Dk −DkL
T
kBkB

T
k LkDk

⎤
⎦ ∈ R

(q+2�k)×(q+2�k). (28)

Hence, the number of system solves within the Lyapunov solver for the first stage equa-
tion is reduced from q + m + 3zk for the classical low-rank representation to q + 2�k for
the LDLT -type factorization. That is, we are able to save at least m + zk linear system
solves for the solution of stage 1.

As mentioned in Section 2.1, the right hand side of the second stage equation reads

Gk =
[
τkT1T

T
1 B,

√
2 − 1T1

]
∈ R

n×(m+tk).
γ

N. Lang et al. / Linear Algebra and its Applications 480 (2015) 44–71 61
Now, using the LDLT -type splitting with K1 = T̃1D1T̃
T
1 we obtain

G̃k = T1 ∈ R
n×t̃k ,

S̃k = +τ2
kD1T

T
1 BBTT1D1 + (2 − 1

γ
)D1 ∈ R

t̃k×t̃k .

Since t̃k ≤ tk, we save at least another m linear system solves for the solution of the
second stage equation.

In total this leads to savings of a minimum of 2m + zk solves in each step of the
ALE solver within each time integration step. Again, note that for an increasing order
of the Rosenbrock scheme the number of ALEs, which have to be solved via the classical
low-rank or the LDLT based scheme increases. That means the total number of system
solves within the Lyapunov solvers to be performed will increase as well. Therefore, using
the LDLT approach with analogous block re-arrangements as above will lead to similar
savings for each of these stages. That means, the higher the order of the integration
method one uses, the better the accuracy of the solution will be, while at the same time
the speedup caused by the LDLT -type factorization will increasingly pay off.

3.4. LDLT column compression

As for the classical low-rank methods the right hand side low-rank factors will increase
within each time integration step. That is, we also need to perform a column compression
in order to reduce the number of columns of the LDLT -type right hand sides or DRE
solutions. Consider the matrix GSGT , where G ∈ R

n×k, S = ST ∈ R
k×k. Following the

statements in Section 6.3.3 in [40] the factors G, S can be compressed as follows:

i) Compute G = QRΠT with Q ∈ R
n×k, R ∈ R

k×k and Π ∈ R
n×n.

ii) Compute a decomposition RΠTSΠRT = V ΛV T with V ∈ R
k×k and a diagonal

matrix Λ ∈ R
k×k with diagonal entries |λ1| ≥ |λ2| ≥ · · · ≥ |λk|.

iii) Set the compressed factors Gr := QVr ∈ R
n×r, Sr := Λr with r ≤ k and |λr+1| ≤ ε.

Since RΠTSΠRT ∈ R
k×k is symmetric, a decomposition V ΛV T always exists and can

e.g., be computed via an eigendecomposition. Comparing the computational cost, the
above procedure is equal to the classical low-rank column compression for complex data
if the sizes of the thin rectangular matrices coincide.

4. Numerical results

All the following examples are executed on a 64 bit CentOS 5.5 system with two Intel®
Xeon® X5650@2.67 GHz with a total of 12 cores and 48 GB main memory.

As an illustrating problem in this section we consider the linear quadratic regulator
(LQR) problem

62 N. Lang et al. / Linear Algebra and its Applications 480 (2015) 44–71
min
u

J(t; y, u) =
tf∫

t0

yT (t)Qy(t) + uT (t)Ru(t) dt + y(tf)TMy(tf),

s.t. Eẋ(t) = Ax(t) + Bu(t),

y = Cx(t) (29)

on the finite time horizon t ∈ [t0, tf] with symmetric weighting matrices Q, R. The
state space systems, we consider in the remainder, are all linear time invariant (LTI).
Considering LTV systems, it is still a crucial question to find an efficient storage strategy
for the given data E(t), A(t), B(t), C(t) and the resulting solution factors of X(t) of the
DRE. The optimal solution to (29) is given by the feedback law (see, e.g., [41])

u = −R−1BTX(t)Ex(t) = −K(t)x(t). (30)

This means, in order to compute the optimal solution u of (29), we need to find a matrix
valued function X(t), which is given as the solution of the generalized DRE

ET ẊE = −Q−ATXE − ETXA + ETXBBTXE,

ETX(tf)E = 0. (31)

Note that the DRE arising from an LQR problem has to be solved backwards in time.
Therefore, the following results, in particular the convergence behavior of the DRE to
the ARE, need to be interpreted starting from the end point of the corresponding time
interval. For the examples below we depict the evolution of one component Ki,j(t) of
the feedback matrix K(t) in Eq. (30) with i = 1, . . . , m, j = 1, . . . , n. The selected
components Ki,j are chosen with a relatively large amplitude such that differences are
well visible. In contrast to the depiction of the convergence behavior, all relative errors
in the remainder are given in the Frobenius norm ‖.‖F for the full feedback K(t) over the
entire time interval. That is, the errors of the low-rank schemes compared to a reference
solution or between both low-rank representations are computed in the form

‖Kref (t) −KLR/LDL(t)‖F
‖Kref (t)‖F

or ‖KLR(t) −KLDL(t)‖F
‖KLR(t)‖F

,

respectively. Further, for all examples machine precision is used as the accuracy toler-
ance for both, the Lyapunov solvers and the column compression techniques inside the
DRE solvers. These tolerances are chosen in order to compare the most accurate results
available for the different solution strategies. That is, the problem is avoided that both
schemes introduce additional and in particular different numerical errors which may lead
to relatively large errors in the direct comparison of the classical ZZT and the LDLT

computations. Finally, the choice of the error tolerances for, e.g., the compression tech-
niques, the iterative Lyapunov solvers, and Newton’s method is up to the user and of
course depends on the demands of the application to be considered.

N. Lang et al. / Linear Algebra and its Applications 480 (2015) 44–71 63
4.1. ADI based Lyapunov solvers

The examples in the section below present the numerical results achieved for an ADI
iteration based Lyapunov solver inside the time integration schemes.

4.1.1. Example 1: steel profile
We consider the semi-discretized heat transfer model described in [42]. The model

is given with m = 7 inputs and q = 6 outputs. The solution is computed on the time
interval [0, 45] s. Note that the time line for the simulation is scaled by 1e2. That is, we
consider a model time interval of 4500 seconds. In the remainder we state the real time
instances as a hundredth of the model time quantities.

In order to be able to compare the results of the different low-rank DRE solvers to a
classical dense 4th order Rosenbrock scheme (Ros4) [43], we start with the smallest state
space dimension available, n = 371. Fig. 1a shows component K1,77(t) of the reference
solution computed via the Ros4 with the fixed time step size τ = 1e-4 compared to
the LDLT based solutions of the BDF methods of order p = 1, 2, 3, the Midpoint and
Trapezoidal rules, and the Rosenbrock methods of order one and two performed with a
fixed time step size τ = 1e-1. In addition, the constant solution of the corresponding ARE
is depicted in order to show the convergence of the several methods. Fig. 1b presents the
relative errors of the entire solution K(t) for the different LDLT methods compared to
the reference solution in the Frobenius norm. Further, the relative errors of the solutions
of the classical low-rank and the LDLT representation are depicted in Fig. 1c.

Table 2 presents the computation times for the different methods the relative error
between the classical low-rank methods and the LDLT based algorithms, as well as
the relative errors of the LDLT procedures compared to the reference solution. We see
that the LDLT based DRE solvers achieve a speed-up up to a factor of around 2 for
the majority of the methods. The rather small time savings in the case of the 1-stage
Rosenbrock scheme is due to the definiteness of the right hand side of the ALE (11).
Here, the benefits of avoiding complex data and the splitting of the ALE do not come
into effect. That is, the decrease in time originates solely from saving the m system
solves within each ADI step at each time integration step. Table 2 further shows that
the classical low-rank solvers and the LDLT based schemes achieve the same results
except for acceptable round off errors. Still, there seems to be a problem with the Ros2
method. This has to be further investigated in the future.

Fig. 2 presents some accuracy results with respect to the chosen time integration
methods and the time step size. In Fig. 2a the comparison of the computation times
and the achieved accuracy is given for the BDF methods of order p = 1, 2, 3, the first-
and second-order Rosenbrock methods, the Midpoint and Trapezoidal rules for both, the
classical low-rank and the LDLT based integration schemes, computed with the time step
size τ = 1e-1. In accordance with Table 2, we observe the superiority of the LDLT based
methods with respect to the computation times. Fig. 2b shows the increasing accuracy
for decreasing time step sizes τ using the LDLT based algorithms. Here, the accuracy

64 N. Lang et al. / Linear Algebra and its Applications 480 (2015) 44–71
Fig. 1. Comparison of the dense 4th order Rosenbrock reference solution computed with step size τ = 1e-4
and the LDLT BDF methods of order p = 1, 2, 3, the Midpoint and Trapezoidal rules and the Rosenbrock
methods of order p = 1, 2 for Example 4.1.1 computed with a fixed step size τ = 1e-1.

Table 2
Timings, avg. rel. Frobenius errors for Example 4.1.2 with n = 371 on the time interval [0, 45] s, τ = 1e-1.

Time in s Speedup Avg. rel. err.
LR LDL LRvsLDL LDLvsRef

BDF1 2012.55 1243.56 1.62 1.10e-12 2.42e-03
BDF2 2242.24 1105.14 2.03 3.28e-13 1.15e-03
BDF3 2385.34 1170.08 2.04 1.71e-13 1.25e-03
Ros1 705.62 507.12 1.39 1.29e-12 2.41e-03
Ros2 3113.80 2117.19 1.47 3.60e-07 1.15e-03
Midpoint 3037.82 1453.94 2.09 1.06e-13 3.56e-04
Trapezoidal 2463.25 1150.39 2.14 9.02e-14 3.54e-04

of the BDF3 method is slightly worse compared to the BDF2 scheme. This is due to the
fact that for the time step sizes τ = 1e-1 and τ = 1e-2 the BDF2 method already reaches
the maximum possible accuracy and the additional summand of the previous time step
solutions in the constant term of the ARE (4) may introduce additional numerical errors.

N. Lang et al. / Linear Algebra and its Applications 480 (2015) 44–71 65
Fig. 2. Efficiency investigations for Example 4.1.1 w.r.t. the low-rank schemes (Fig. 2a) and decreasing time
steps τ for the LDLT methods (Fig. 2b). (Markers denote different time integration methods as above, see
Fig. 1.)

Table 3
Timings, avg. rel. Frobenius errors between the low-rank methods for Example 4.1.2
with n = 1357 on the time interval [0, 45] s, τ = 1.

Time in s Speedup Avg. rel. err.
LR LDL LRvsLDL

BDF1 1716.73 1233.68 1.39 3.69e-13
BDF2 2771.89 1224.95 2.26 1.92e-14
BDF3 2833.40 1246.70 2.27 4.02e-14
Ros1 616.93 659.25 0.94 5.46e-13
Ros2 4825.75 2516.20 1.92 1.37e-06
Midpoint 3509.17 1456.12 2.41 2.58e-13
Trapezoidal 3052.79 1290.91 2.37 4.34e-13

The convergence behavior of the Ros2 depicted in Fig. 2b, which seems to be neither
first- nor second-order results from the fact that the convergence order in general is
approached asymptotically. That is, the region of second order convergence is not yet
reached for the rather large timesteps chosen in order to keep the simulation time and
storage consumption within appropriate limits.

In Table 3 we present the results of the steel profile model with n = 1357 degrees
of freedom computed with a fixed time step size τ = 1. Given are the timings of the
standard low-rank codes compared to the LDLT implementations and the average of
the relative errors between both of them. For the Ros1 we observe that the timings for
the classical low-rank version and the LDLT method are basically the same with slight
advantages for the classical low-rank splitting. The savings of the system solves within
the LDLT based scheme (see Section 3.3) cannot entirely compensate the additional
effort of the LDLT compression technique for the real definite right hand sides arising
in the Ros1. Using higher order methods, as e.g., the Midpoint and Trapezoidal rules,
the LDLT routines benefit from all their advantages, i.e., avoiding complex data and the
removal of redundant information by re-arranging the S block of the right hand sides.
Therefore, the LDLT version achieves a significant time saving.

66 N. Lang et al. / Linear Algebra and its Applications 480 (2015) 44–71
Fig. 3. Comparison of the LDLT BDF methods of order p = 1, 2, 3, the Midpoint and Trapezoidal rules and
the Rosenbrock methods of order p = 1, 2 for Example 4.1.2 computed with a fixed step size τ = 1e-1.

Table 4
Timings, avg. rel. Frobenius errors between the low-rank methods for Example 4.1.2 on
the time interval [0, 50] s, τ = 1e-1.

Time in s Speedup Avg. rel. err.
LR LDL LRvsLDL

BDF1 12 719.51 5666.01 2.23 1.95e-05
BDF2 12 285.17 5444.87 2.26 1.01e-05
BDF3 12 704.44 5530.13 2.30 1.24e-05
Ros1 3043.56 2926.64 1.04 5.23e-07
Ros2 19 967.16 9667.77 2.07 2.20e-06
Midpoint 15 219.88 6836.42 2.23 7.20e-08
Trapezoidal 13 042.51 5666.42 2.30 1.99e-07

4.1.2. Example 2: diffusion on the unit square
The second example describes a diffusion model acting on the unit square with n =

1089 degrees of freedom. The system matrices E, A, B, C are given from a finite element
discretization. Here, E ∈ R

n×n is a FEM mass matrix, A ∈ R
n×n denotes the 2D

Laplacian on the unitsquare, B ∈ R
n×m with m = 1 realizes a single input at the entire

left boundary and we observe q = 9 degrees of freedom of the FE grid at the remaining
edges of the unit square via the output matrix C ∈ R

q×n. The output matrix C consists
of q = 9 unit vectors encoding the output locations with respect to the chosen degrees
of freedom. Similar to the above example Fig. 3a shows the convergence behavior of
the solutions of the different time integration methods, computed on the time interval
[0, 50] s with the time step size τ = 1e-1, to the solution of the ARE. Furthermore,
Fig. 3b depicts the relative errors of the solutions of the low-rank methods compared to
the LDLT results.

Table 4 shows the timings of the standard low-rank algorithms and the LDLT based
schemes, as well as the average relative errors between both. In contrast to the above

N. Lang et al. / Linear Algebra and its Applications 480 (2015) 44–71 67
Fig. 4. Comparison of the standard low-rank and LDLT Rosenbrock method of order 1 for Example 4.2.1
computed with a fixed step size τ = 1e-2.

Table 5
Timings, avg. rel. Frobenius errors between the low-rank methods for Example 4.2.1 on
the time interval [0, 10] s, τ = 1e-2.

Time in s Speedup Avg. rel. err.
LR LDL LRvsLDL

Ros1 421.98 254.57 1.66 2.04e-12

example, we observe that in the case of the first-order Rosenbrock method the saving
of m = 1 system solves, related to the single input, within every ADI step at each
time integration step approximately counterbalances the additional computational effort
of the column compression for the LDLT factorization with slight advantages for the
LDLT methods.

4.2. Krylov based Lyapunov solvers

The following example presents the numerical results achieved for an EKSM based
Lyapunov solver. The basic EKSM code is available at the webpage of V. Simoncini,1
see [25]. Here, we adapted the code in order to apply the EKSM to the closed loop
operators Ǎ, Â arising in the ALEs (7) and (10).

4.2.1. Example 3: carex model
The third example originates from the CAREX benchmark collection for con-

tinuous-time algebraic Riccati equations [44, Example 4.2]. The model is a single-input-
single-output (SISO) state-space system with E, A ∈ R

n×n, B = CT ∈ R
n and n = 1000.

Fig. 4 shows component K1,1(t) computed via the classical low-rank Ros1 scheme com-
pared to the LDLT based version. The computation times and the average relative errors
are presented in Table 5.

1 http :/ /www .dm .unibo .it /�simoncin /software .html.

http://www.dm.unibo.it/~simoncin/software.html

68 N. Lang et al. / Linear Algebra and its Applications 480 (2015) 44–71
Fig. 5. Comparison of the standard low-rank and LDLT Rosenbrock method of order 1 for Example 4.2.2
computed with τ = 1e-2.

Table 6
Timings, avg. rel. Frobenius errors between the low-rank methods for Example 4.2.2 on
the time interval [0, 45] s, τ = 1e-1.

Time in s Speedup Avg. rel. err.
LR LDL LRvsLDL

Ros1 197.73 118.58 1.67 1.32e-10

4.2.2. Example 4: steel profile
Again, we consider the semi-discretized heat transfer model from Example 1 in Sec-

tion 4.1.1 with n = 371, τ = 1e-1 on the time interval [0, 45] s. Similar to Example 4.2.1,
Fig. 5 presents solution component K1,77 for both, the classical low-rank and LDLT

based EKSM Lyapunov solvers inside the Ros1. Further, the relative error between both
representations is given and shows the equality of the algorithms except for numerical
deviations. Table 6, in addition shows the computation times and the average relative
error between the solution approaches.

5. Conclusion

We have investigated the p-step BDF, the p-stage Rosenbrock methods and the Mid-
point and Trapezoidal rules applied to matrix valued differential equations. In particular
we have seen the application of those time integration schemes to the Riccati differential
equation.

A review of an efficient solution strategy in terms of the standard low-rank techniques
was given. We revealed several problems of the classical methods regarding complex
data and cancellation effects arising in a superposition approach for the solution of the
algebraic Lyapunov equations with indefinite right hand sides that need to be solved
in the innermost loops of the DRE solvers. We have shown that these problems show
up for higher order integration methods, that are recommended to use due to the high
stiffness of, e.g., the DRE. Our main contribution is the presentation of an LDLT based

N. Lang et al. / Linear Algebra and its Applications 480 (2015) 44–71 69
decomposition of the solution of the DRE and the right hand side of the arising ALEs.
This special type of factorization naturally avoids all of the aforementioned problems
and allows us to a-priori reduce the number of system solves to be performed during the
ADI iteration based Lyapunov solver. Also the additional computation of an artificial
low-rank splitting for Krylov subspace Lyapunov solvers can be removed. Further, we
have presented a column compression technique dealing with complex data later applied
in a real inner product. In addition, we propose a compression technique for the LDLT

factors.
The theoretically stated advantages have been numerically validated for a number

of examples. Here, we compared the accuracy, as well as the computation times of the
classical low-rank and the LDLT based methods for ADI and Krylov subspace based
solvers for Lyapunov equations. Using an ADI based Lyapunov solver the given examples
show that the LDLT formulation significantly reduces the computation time for higher
order methods. In case of, e.g., a first order Rosenbrock method the classical low-rank
representation will achieve faster results as long as the savings of the linear system solves
in the LDLT based method cannot compensate the extra cost of the column compression
for the LDLT decompositions. In Section 3.3 we have shown that this directly depends
on the number of inputs and outputs, which mainly determine the size of the right
hand side, which we also observe in the examples in Sections 4.1.1 and 4.1.2. For the
Krylov subspace based solvers we have shown that the time savings are generated by the
avoidance of an additional and artificial recreation of a classical low-rank factorization
of the form ZZT . We also observe that the extended Krylov subspace methods can
compute the solution of the DRE in less time compared to the ADI solvers. One reason
for this is the necessary computation of the ADI shift parameter. Another reason is that
the ADI can be interpreted as a rational Krylov method, where in each step a different
coefficient matrix is used compared to the repeated use of the same matrix in the case
of EKSM. Also the shifts are in general complex. Therefore the linear systems in the
ADI method (but also an RKSM based method) require complex arithmetic and cannot
reuse LU decompositions in contrast to EKSM. Regarding the shift parameters at the
moment we use the heuristic by Penzl, see e.g., [45], which is expensive with respect to
the computational cost. In order to avoid the rather large computation times for the
shift parameter computation, as a next step, we want to incorporate the ideas from [37].
A more direct comparison of the ADI and EKSM/RKSM based Lyapunov solvers inside
the time integration methods is postponed and will be reported somewhere else. It is,
however, expected that ADI and RKSM based solvers will be computationally slower
due to the changing coefficient matrices, but can produce faster convergence in terms of
required iteration numbers. In turn they will produce smaller factors and thus reduce
the storage requirements in general.

References

[1] P. Benner, Z. Tomljanović, N. Truhar, Optimal damping of selected eigenfrequencies using dimension
reduction, Numer. Linear Algebra Appl. 20 (2013) 1–17.

http://refhub.elsevier.com/S0024-3795(15)00221-9/bib42656E54543133s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib42656E54543133s1

70 N. Lang et al. / Linear Algebra and its Applications 480 (2015) 44–71
[2] F. Blanchini, D. Casagrende, P. Gardonio, S. Miani, Constant and switching gains in semi-active
damping of vibrating structures, Internat. J. Control 85 (2012) 1886–1897.

[3] J. Hoepffner, Stability and control of shear flows subject to stochastic excitations, Ph.D. thesis,
KTH Royal Institute of Technology, Sweden, 2006.

[4] C. Penland, M. Fluegel, P. Chang, The role of stochastic forcing in modulating ENSO predictability,
J. Climate 17 (2004) 3125–3140.

[5] C. Penland, P.D. Sardeshmukh, The optimal growth of tropical sea surface temperature anomalies,
J. Climate 8 (1995) 1999–2024.

[6] H. Sandberg, Model reduction for linear time-varying systems, Ph.D. thesis, Lund Institute of
Technology, Sweden, 2004.

[7] H. Sandberg, A case study in model reduction of linear time-varying systems, Automatica 43 (3)
(2006) 467–472.

[8] H. Abou-Kandil, G. Freiling, V. Ionescu, G. Jank, Matrix Riccati Equations in Control and Systems
Theory, Birkhäuser, Basel, Switzerland, 2003.

[9] A. Ichikawa, H. Katayama, Remarks on the time-varying H∞ Riccati equations, Systems Control
Lett. 37 (5) (1999) 335–345.

[10] O.L.R. Jacobs, Introduction to Control Theory, 2nd edition, Oxford Science Publication, Oxford,
1993.

[11] I.R. Petersen, V.A. Ugrinovskii, A.V. Savkin, Robust Control Design Using H∞ Methods, Springer-
Verlag, London, UK, 2000.

[12] C. Choi, A.J. Laub, Efficient matrix-valued algorithms for solving stiff Riccati differential equations,
IEEE Trans. Automat. Control 35 (1990) 770–776.

[13] E.J. Davison, M.C. Maki, The numerical solution of the matrix Riccati differential equation, IEEE
Trans. Automat. Control 18 (1973) 71–73.

[14] L. Dieci, Numerical integration of the differential Riccati equation and some related issues, SIAM
J. Numer. Anal. 29 (3) (1992) 781–815.

[15] C. Kenney, R.B. Leipnik, Numerical integration of the differential matrix Riccati equation, IEEE
Trans. Automat. Control 30 (1985) 962–970.

[16] P. Benner, H. Mena, Numerical solution of the infinite-dimensional LQR-problem and the associated
differential Riccati equations, preprint MPIMD/12-13, Max Planck Iinstitute Magdeburg, 2012,
available from http://www.mpi-magdeburg.mpg.de/preprints/.

[17] P. Benner, H. Mena, Rosenbrock methods for solving differential Riccati equations, IEEE Trans.
Automat. Control 58 (11) (2013) 2950–2957.

[18] E. Hansen, T. Stillfjord, Convergence analysis for splitting of the abstract differential Riccati equa-
tion, SIAM J. Numer. Anal. 52 (6) (2014) 3128–3139, http://dx.doi.org/10.1137/130935501.

[19] H. Mena, Numerical solution of differential Riccati equations arising in optimal control problems
for parabolic partial differential equations, Ph.D. thesis, Escuela Politecnica Nacional, 2007.

[20] A. Antoulas, Approximation of Large-Scale Dynamical Systems, Adv. Des. Control, Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2005.

[21] B. Datta, Numerical Methods for Linear Control Systems Design and Analysis, Elsevier Academic
Press, 2003.

[22] C. Kjelgaard-Mikkelsen, Numerical methods for large Lyapunov equations, Ph.D. thesis, Purdue
University, 2009.

[23] J.R. Li, J. White, Low rank solution of Lyapunov equations, SIAM J. Matrix Anal. Appl. 24 (1)
(2002) 260–280.

[24] T. Penzl, A cyclic low rank Smith method for large sparse Lyapunov equations, SIAM J. Sci.
Comput. 21 (4) (2000) 1401–1418.

[25] V. Simoncini, A new iterative method for solving large-scale Lyapunov matrix equations, SIAM J.
Sci. Comput. 29 (3) (2007) 1268–1288.

[26] V. Simoncini, Computational methods for linear matrix equations, Mar. 2013, preprint, Universita
di Bologna.

[27] V. Simoncini, V. Druskin, L. Knizhnerman, Analysis of the rational Krylov subspace and the ADI
methods for solving the Lyapunov equation, SIAM J. Numer. Anal. 49 (5) (2011) 1875–1898.

[28] B. Vandereycken, S. Vandewalle, A Riemannian optimization approach for computing low-rank
solutions of Lyapunov equations, SIAM J. Matrix Anal. Appl. 31 (5) (2010) 2553–2579.

[29] U.M. Ascher, L.R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-
Algebraic Equations, SIAM, Philadelphia, PA, 1998.

[30] P. Benner, J. Saak, Numerical solution of large and sparse continuous time algebraic matrix Riccati
and Lyapunov equations: a state of the art survey, GAMM-Mitt. 36 (1) (2013) 32–52, http://dx.
doi.org/10.1002/gamm.201310003.

http://refhub.elsevier.com/S0024-3795(15)00221-9/bib426C616E43474D3133s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib426C616E43474D3133s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib486F653036s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib486F653036s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib50656E46433034s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib50656E46433034s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib50656E533935s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib50656E533935s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib53616E643034s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib53616E643034s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib53616E643036s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib53616E643036s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib41626F46496574616C3033s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib41626F46496574616C3033s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib4963684B3939s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib4963684B3939s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib4A61633933s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib4A61633933s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib50657455533030s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib50657455533030s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib43686F4C393062s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib43686F4C393062s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib4461764D3733s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib4461764D3733s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib4469653932s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib4469653932s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib4B656E4C3835s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib4B656E4C3835s1
http://www.mpi-magdeburg.mpg.de/preprints/
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib42656E4D3133s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib42656E4D3133s1
http://dx.doi.org/10.1137/130935501
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib4D656E303774s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib4D656E303774s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib416E743035s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib416E743035s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib4461743033s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib4461743033s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib4B6A653039s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib4B6A653039s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib4C69573032s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib4C69573032s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib50656E3939s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib50656E3939s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib53696D3037s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib53696D3037s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib56616C3131s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib56616C3131s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib56616E64563130s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib56616E64563130s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib417363503938s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib417363503938s1
http://dx.doi.org/10.1002/gamm.201310003
http://dx.doi.org/10.1002/gamm.201310003

N. Lang et al. / Linear Algebra and its Applications 480 (2015) 44–71 71
[31] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II-Stiff and Differential Algebraic
Problems, Springer Ser. Comput. Math., Springer-Verlag, New York, 2000.

[32] J.G. Blom, W. Hundsdorfer, E.J. Spee, J.G. Verwer, A second order Rosenbrock method applied to
photochemical dispersion problems, SIAM J. Sci. Comput. 20 (4) (1999) 1456–1480.

[33] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
[34] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-

marling, A. McKenney, D. Sorensen, LAPACK Users’ Guide, 3rd edition, SIAM, Philadelphia, PA,
1999.

[35] P. Benner, R.-C. Li, N. Truhar, On the ADI method for Sylvester equations, J. Comput. Appl.
Math. 233 (4) (2009) 1035–1045.

[36] P. Benner, P. Kürschner, J. Saak, Efficient handling of complex shift parameters in the low-rank
Cholesky factor ADI method, Numer. Algorithms 62 (2) (2013) 225–251, http://dx.doi.org/10.1007/
s11075-012-9569-7.

[37] P. Benner, P. Kürschner, J. Saak, Self-generating and efficient shift parameters in ADI methods for
large Lyapunov and Sylvester equations, Electron. Trans. Numer. Anal. 43 (2014) 142–162.

[38] P. Benner, P. Kürschner, J. Saak, An improved numerical method for balanced truncation for sym-
metric second order systems, Math. Comput. Model. Dyn. Syst. 19 (6) (2013) 593–615, http://dx.
doi.org/10.1080/13873954.2013.794363.

[39] V. Druskin, V. Simoncini, Adaptive rational Krylov subspaces for large-scale dynamical systems,
Systems Control Lett. 60 (8) (2011) 546–560.

[40] M. Bollhöfer, A. Eppler, Low-rank Cholesky factor Krylov subspace methods for generalized pro-
jected Lyapunov equations, in: P. Benner (Ed.), System Reduction for Nanoscale IC Design, in:
Math. Ind., vol. 20, Springer International Publishing, 2016, in press.

[41] A. Locatelli, Optimal Control, Birkhäuser, Basel, Boston, Berlin, 2001.
[42] P. Benner, J. Saak, A semi-discretized heat transfer model for optimal cooling of steel profiles, in:

P. Benner, V. Mehrmann, D. Sorensen (Eds.), Dimension Reduction of Large-Scale Systems, in:
Lect. Notes Comput. Sci. Eng., Springer-Verlag, Berlin/Heidelberg, Germany, 2005, pp. 353–356.

[43] L.F. Shampine, Implementation of Rosenbrock methods, ACM Trans. Math. Software 8 (2) (1982)
93–103.

[44] J. Abels, P. Benner, CAREX – a collection of benchmark examples for continuous-time algebraic
Riccati equations (version 2.0), Working Note 1999-14, SLICOT, available from www.slicot.org,
Nov. 1999.

[45] T. Penzl, Lyapack Users Guide, Tech. Rep. SFB393/00-33, Sonderforschungsbereich 393, Nu-
merische Simulation auf massiv parallelen Rechnern, TU Chemnitz, 09107 Chemnitz, Germany,
2000, available from http://www.tu-chemnitz.de/sfb393/sfb00pr.html.

http://refhub.elsevier.com/S0024-3795(15)00221-9/bib486169573030s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib486169573030s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib426C6F48536574616C3939s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib426C6F48536574616C3939s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib486F724A3835s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib4C415041434Bs1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib4C415041434Bs1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib4C415041434Bs1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib42656E4C543039s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib42656E4C543039s1
http://dx.doi.org/10.1007/s11075-012-9569-7
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib42656E4B53313462s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib42656E4B53313462s1
http://dx.doi.org/10.1080/13873954.2013.794363
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib447275533131s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib447275533131s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib426F6C453134s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib426F6C453134s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib426F6C453134s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib4C6F633031s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib42656E533035s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib42656E533035s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib42656E533035s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib5368613832s1
http://refhub.elsevier.com/S0024-3795(15)00221-9/bib5368613832s1
http://www.slicot.org
http://www.tu-chemnitz.de/sfb393/sfb00pr.html
http://dx.doi.org/10.1007/s11075-012-9569-7
http://dx.doi.org/10.1080/13873954.2013.794363

	On the beneﬁts of the LDLT factorization for large-scale differential matrix equation solvers
	1 Introduction
	2 Matrix versions of standard ODE integrators
	2.1 Application to DREs
	2.2 Application to DLEs
	2.3 Classical column compression

	3 LDLT-type Lyapunov solvers
	3.1 LDLT-type ADI
	3.2 LDLT-type Krylov subspace method
	3.3 Application to matrix-valued ODE solvers
	3.4 LDLT column compression

	4 Numerical results
	4.1 ADI based Lyapunov solvers
	4.1.1 Example 1: steel proﬁle
	4.1.2 Example 2: diffusion on the unit square

	4.2 Krylov based Lyapunov solvers
	4.2.1 Example 3: carex model
	4.2.2 Example 4: steel proﬁle

	5 Conclusion
	References

