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Abstract: Since it is often difficult to identify the noise covariances for a Kalman filter,
they are commonly considered design variables. If so, we can as well try to choose
them so that the corresponding Kalman filter has some nice form. In this paper, we
introduce a one-parameter subfamily of Kalman filters with the property that the
covariance parameters cancel in the expression for the Kalman gain. We provide a
simple criterion which guarantees that the implicitly defined process covariance matrix
is positive definite.
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1. INTRODUCTION

We consider discrete-time linear systems expressed
in the form

xk+1 = Fxk +M wk (1)

yk = H xk + N vk (2)

where {wk} and {vk} are uncorrelated sequences
of white noise with unit intensity. F and H are
known matrices with (F ,H) completely observable,
F non-singular, and yk are measurements. We want
to estimate the n-dimensional hidden state vector
xk≈ x̂k, by introducing a Kalman filter

x̂k+1 = F x̂k + K (yk −H x̂k) (3)

where K is the Kalman gain

K = FP HT(H PHT + R)−1 (4)

and where R = N NT is the measurement noise
covariance, P = E[(x − x̂)2] is the error covariance,

and Q = M MT is the process noise covariance.
P , Q, and R are related through the discrete-time
Riccati equation

P = Q +F PFT (5)

−FPHT (H P HT + R)−1 HT PFT

R might be estimated by making measurements and
calculating the variance, but estimating Q is more
difficult, since the state vector x cannot be mea-
sured directly. Also, Q acts as a “waste basket” for
unknown modelling errors. Many methods for esti-
mating R and Q from the output sequence {yk}
have been proposed. Overviews of such methods
can be found in e.g. [1,5]. Some of the methods

(Bayesian, maximum likelihood, time series, corre-
lation, and subspace methods) require considerable
computing time and memory. For adaptive systems
where covariances need to be estimated on-line,
covariance matching methods [6-8] have become
popular due to their simplicity and speed, despite
being suboptimal.

The origin of this paper is an attempt to intro-
duce Kalman filtering to students on novice level
in the simplest possible way. Although there is an
abundance of material on the Kalman filter, and
a large number of research reports on methods for
estimating noise covariances, the elementary liter-
ature is sparse on the subject. In practice, Q and
R are often considered design variables [2,3,9], and
chosen ad hoc. A common approach to choose the
covariances is Bryson’s rule [9], where Q is chosen
as a diagonal weight matrix.

In this paper. we propose a method based on the
idea of using the discrete Riccati equation back-
wards: If Q is considered a design variable anyway,
we use the equation to estimate Q from P instead
of the other way around. A difficulty when using
this approach is to guarantee the positive-definite-
ness of Q [4], but in our case, a concise criterion
can be derived easily.

We arrive at a simple expression for the filter, which
doesn’t contain any explicit references to R or Q.

1.1 Notation and terminology

We will use instances of singular value decompo-

sition [10]. Any m × n matrix H of rank r can be
uniquely written as

H = U Σ V T (6)
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where U and V are orthonormal matrices and Σ is
an m×n matrix where the first r diagonal elements,
the singular values , di, i = 1� r, are the only non-
zero elements, positive, and in decreasing order. The
largest singular value is di = σ̄H and the smallest

singular value is dr =σ
¯

H. The norm of H is
∥∥∥H

∥∥∥ =

σ̄H (in a generalized sense, since H is not neces-
sarily square). We define the condition number of H

as κH = σ̄H/σ
¯

H. The Moore-Penrose pseudoinverse

H+ of H is defined as

H+ =V Σ+ UT (7)

where the diagonal elements of Σ+ are di
+ = 1/di.

Some useful properties of the pseudoinverse are that
H = H H+ H , H+ = H+ H H+, and H+ H =
(H+ H)T . For any positive definite matrix R,

σ
¯

R |x|2≤ xT R x≤ σ̄R |x|2 (8)

The bounds in this inequality are tight.

2. DERIVATION OF THE FILTER

Vaguely expressed, if we choose too small a Q, the
Kalman filter will converge too slowly, but if we
make Q too large, then P and K will also become
large, and the filter becomes overly sensitive. How
large a Q is acceptable? A very rough idea is to
make Q so large that it just about matches the
effects of the measurement noise R. The Riccati
equation leads us to the guess that this happens
when

H P HT ≈ c R (1)

where c is a scalar positive tuning factor. P and R

are covariance matrices and thus must be symmetric
and positive semidefinite. A choice which makes P

a symmetric, positive semidefinite matrix is

P = c H+ R (HT )+ = c H+ R (H+)T (2)

We are interested in making P small, and an attrac-
tive property of the pseudoinverse is that x = H+ b

is the least squares solution to the equation Hx= b.
When the expression for P is inserted into the Ric-
cati equation (5, section 1) we obtain an expression
for Q. A complication here is that we must also
ensure that Q is positive semidefinite.

We require that H is full column-rank. If not, we
can transform the system in the following way.
Since we required the original system (1-2) in sec-
tion 1 to be completely observable, we can add old
measurements to the list of outputs, extending the
output matrix H to the observability matrix. We
may add more old outputs if we want to improve

on the ill-conditioned problem of directly inverting
the observability matrix. The new system becomes

xk+1 = Fxk +M wk (3)

yk
′ =




H

H F−1

�

H F−p+1


xk + N ′ vk

′ (4)

where

yk
′ =




yk

yk−1

�

yk−p+1


 (5)

which is of the same form as (1-2) in section 1,

except that the noise sequence {vk
′} is now corre-

lated.

We have

K = F PHT(H P HT +R)−1

=
c

1+ c
FH+ (6)

The filter equation can be written

x̂k+1 = F x̂k +K (yk −H x̂k)

= F x̂k +
c

c +1
F H+(yk −H x̂k)

= F
x̂k + c H+ yk

1 + c
(7)

Reconstructing x by forming H+y is equivalent to
finding x from y by least squares. The stability of
the scheme can be seen from the relation

xk − x̂k = (1− θ)F (xk−1− x̂k−1)

+(Mwk−1− (1−θ)FH+Nvk−1) (8)

where θ=1/(c+1), demonstrating the scheme to be
stable when (1− θ)‖F ‖< 1.

3. THE PROCESS NOISE COVARIANCE

We must now ensure that Q is positive definite.

Q = P −FP FT + KH P FT

= P −FP FT +
c

1+ c
F H+H P FT

= P −
1

1 + c
FPF T (1)

Since

xT P x = c (xTH+)R (xT H+)T

≥ c|x|2
σ
¯

R

σ̄H
2

(2)
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and

xT F PFT x≤ c |x|2σ̄F
2 σ̄R

σ
¯ H

2
(3)

we have

xT Q x≥ c |x|2


 σ

¯
R

σ̄H
2
−

σ̄F
2

c + 1

σ̄R

σ
¯ H

2


 (4)

Q is surely positive definite when this expression is
positive, which happens when

1

1+ c
<

1

σ̄F
2 κH

2 κR

(5)

In the same way as above,

xT Q x≤ c |x|2


 σ̄R

σ
¯ H

2
−

σ
¯ F

2

c + 1

σ
¯

R

σ̄H
2


< c |x|2

σ̄R

σ
¯ H

2
(6)

Since xTσ
¯

Qx and xTσ̄Qx are tight bounds for xTQx,

σ
¯

Q σ
¯ H

2

σ̄R

< c≤
σ̄Q σ̄H

2

σ
¯

R

(
1−

σ̄F
2

c +1
κH

2 κR

)
−1

(7)

If the ratio ‖Q‖/‖R‖ is known, this inequality can
be used as a basis for a guess at c,

c≈

∥∥Q
∥∥ ∥∥H

∥∥2

‖R‖
(8)

4. AN EXAMPLE

Consider a case where we measure the position of an
object and want to determine its speed. The system
can be approximated

(
xk+1

vk+1

)
=

(
1 ∆t

0 1

) (
xk

vk

)
+ Mwk (1)

yk =
(

1 0
)( xk

vk

)
+ N vk (2)

Since

(
1 ∆t

0 1

)
−1

=

(
1 −∆t

0 1

)
(3)

Augmenting the system by the three previous mea-
surements,




yk

yk−1

yk−2

yk−3


=




1 0
1 −∆t

1 − 2∆t

1 − 3∆t



(

xk

vk

)
+N ′ vk

′ (4)

we can write

H+ = (HT H)−1 HT (5)

=

(
0.7 0.4 0.1 − 0.2

0.3/∆t 0.1/∆t − 0.1/∆t − 0.3/∆t

)

5. DISCUSSION AND CONCLUSIONS

We conclude that for some Q and R the intuitive
observer

x̂k+1 = F
[
θ x̂k + (1− θ) H+ yk

]
(1)

is a special case of a Kalman filter, provided the
original H is full column-rank. The condition (1 −
θ)‖F ‖ < 1 guarantees stability. The filter can be
described as a weighted average of the old state and
a least squares reconstruction from a set of recent
measurements. Given any positive definite measure-
ment noise covariance matrix R, the choice

θ <
1∥∥F ‖2 κH

2 κR

(2)

where κH and κR are the condition numbers for H

and R, guarantees that an implicitly defined matrix
Q is positive definite.

The filter is usually suboptimal, of course, but can
provide a starting point for further improvement.
The filter becomes better, the closer the covari-
ance matrices are to proportionality. It resembles
an unreduced Luenberger observer, but doesn’t use
pole placement.
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