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1. Introduction

Differential matrix equations arise in many fields like optimal control, model reduction 
of linear time-varying (LTV) systems, damping optimization in mechanical systems, 
control of shear flows and the numerical solution of stochastic differential equations [1–7]. 
We will mainly focus on solving the differential Riccati equation (DRE). However, all our 
methods and techniques naturally restrict to the differential Lyapunov equation (DLE) 
(see comments in Section 2.2). A more detailed explanation and extensive numerical 
experiments for the DLE will be presented elsewhere to keep the presentation within 
usual page limits.

The DRE is one of the most deeply studied nonlinear matrix differential equations
arising in optimal control, optimal filtering, H∞-control of linear-time varying systems, 
differential games, etc. (see, e.g., [8–11]). In the literature there is a large variety of ap-
proaches to compute the solution of small-scale DREs (see, e.g., [12–15]). In this article, 
we consider the numerical solution of large-scale DREs arising in optimal control prob-
lems for partial differential equations. In [16,17] efficient numerical methods capable of 
exploiting the structure based on matrix-valued versions of the backward differentiation 
formula (BDF), Midpoint and Trapezoidal rules and the Rosenbrock (Ros) methods are 
proposed. Moreover, the authors in [18] present an abstract framework based on operator 
splittings. In contrast to their work we will focus on the matrix setting.

The implementation in [16,19] uses a low-rank Alternating Directions Implicit (ADI) 
iteration feasible for solving the algebraic Lyapunov equations (ALE) in the inner it-
eration. Here, we also consider Krylov subspace based methods for the solution of the 
arising ALEs. When methods of order p ≥ 2 are applied, complex arithmetic is required, 
which increases the computational cost. For the Rosenbrock methods an approach has 
been proposed to keep the computations in real arithmetic [16]. This yields a challenging 
implementation already for order 2. The ALE arises in many fields like optimal control 
and model order reduction [20,21]. Many methods for solving large-scale ALEs have been 
proposed [22–28]. However, there have been no attempts to solve large-scale differential
Lyapunov equations, which, e.g., arise in Balanced Truncation model order reduction 
approaches for linear time-varying systems. Discretizing the DLE in time, also an ALE 
with special structure has to be solved in every step.

In this paper we present novel formulations of solution algorithms for differential 
matrix equations based on an LDLT decomposition that keep the computations in real 
arithmetic. First, we describe how the LDLT -type splitting can be applied to the BDF 
schemes and extend these ideas to the Rosenbrock methods. Moreover, the method can, 
in general, be used in combination with any implicit ODE solver which is applied in the 
matrix setting. The paper is organized as follows: in Section 2 we review matrix versions 
of standard methods for stiff problems and their application to DRE and DLE. Further, 
a column compression technique for complex data is provided. In Section 3, we present 
the LDLT based algorithms. Then, in Section 4 we introduce some motivating examples 
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and test our methods. The numerical results show the performance of the new methods. 
Finally, some conclusions close the paper in Section 5.

2. Matrix versions of standard ODE integrators

In applications the DREs/DLEs are usually fairly stiff. This, in turn, demands for 
implicit methods to solve such equations numerically. Therefore, we will focus on matrix 
versions of standard ODE solvers for (vector valued) stiff problems, [12,14,17]. In order 
to efficiently exploit the problem structure, we are interested in methods, which, written 
in matrix form, yield an algebraic Riccati equation (ARE) or an ALE to be solved in 
each time step when they are applied to the DRE, or DLE. It turns out that there is a 
vast variety of methods that can be applied, e.g., the Backward Differentiation formulas, 
the Midpoint, the Trapezoidal rules and the Rosenbrock methods, [19].

2.1. Application to DREs

Let us first consider the time-varying symmetric DREs of the form

Ẋ(t) = −Q(t) −X(t)A(t) −AT (t)X(t) + X(t)S(t)X(t),

X(tf ) = Xtf (1)

arising in the linear quadratic regulator (LQR) framework for time varying dynamical 
systems. Here t ∈ [t0, tf ] and Q(t), A(t), S(t) ∈ R

n×n are assumed to be piecewise 
continuous locally bounded matrix-valued functions, which ensures the existence and 
uniqueness of the solution of (1), see [8]. Note that the DRE, originating from an LQR 
problem replaces the adjoint state from the optimization framework and thus has to be 
solved backwards in time. Defining X̃(tf ; t) := X(tf − t), we can easily reformulate (1)
as an initial value problem of the form

˙̃X(t) = Q(t) + X̃(t)A(t) + AT (t)X̃(t) − X̃(t)S(t)X̃(t),

X̃(t0) = X̃0,

since ˙̃X(tf ; t) = −Ẋ(tf − t). In the remainder, we neglect the explicit use of the time 
dependency in the matrices defining the DRE. Furthermore, considering, e.g., finite ele-
ment semi-discretized partial differential equation constrained optimal control problems 
one usually faces the generalized DRE

ET ẊE = −Q−ETXA−ATXE + ETXSXE,

ET (tf )X(tf )E(tf ) = ET (tf )XtfE(tf ). (2)

In order to simplify the expressions in the following sections we will focus on the standard 
case and only state the algorithms in terms of the generalized DRE. The latter can easily 
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Table 1
Coefficients of the BDF p-step methods up to order p = 6.

p β α1 α2 α3 α4 α5 α6

1 1 −1
2 2

3 − 4
3

1
3

3 6
11 − 18

11
9
11 − 2

11

4 12
25 − 48

25
36
25 − 16

25
3
25

5 60
137 − 300

137
300
137 − 200

137
75
137 − 12

137

6 60
147 − 360

147
450
147 − 400

147
225
147 − 72

147
10
147

be derived by applying the standard theory with Ã := E−1A, B̃ = E−1B and avoiding 
the inversion of E in the resulting algorithms.

Thus, we will consider

Ẋ = R(t,X),

R(t,X) : = Q + XA + ATX −XSX,

X(t0) = X0. (3)

Backward differentiation formulas Applying the fixed-coefficients BDF method to the 
DRE (3), we obtain the matrix valued BDF scheme

Xk+1 =
p∑

j=1
−αjXk+1−j + τkβR(tk+1, Xk+1),

where τk denotes the time step size, tk+1 = tk+τk, Xk+1 ≈ X(tk+1). The expressions αj , 
β denote the determining coefficients for the p-step BDF formula given in Table 1 (see, 
e.g., [29]). This leads to the Riccati-BDF difference equation

−Xk+1 + τkβ(Qk+1 + AT
k+1Xk+1 + Xk+1Ak+1 −Xk+1Sk+1Xk+1)

−
p∑

j=1
αjXk+1−j = 0

with Qk+1 ≡ Q(tk+1), Ak+1 ≡ A(tk+1), Sk+1 ≡ S(tk+1), which can be written as the 
algebraic Riccati equation

(τkβQk+1 −
p∑

j=1
αjXk+1−j) + (τkβAk+1 −

1
2I)

TXk+1 + Xk+1(τkβAk+1 −
1
2I)

−Xk+1(τkβSk+1)Xk+1 = 0, (4)

for Xk+1. For large-scale applications it is necessary to avoid forming the matrices Xk

explicitly, because this in general leads to dense computations. In many applications the 
data is given in a low-rank form
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Qk = CT
k Ck, Ck ∈ R

q×n,

Sk = BkB
T
k , Bk ∈ R

n×m. (5)

Therefore, in practice one often observes the solution also to be of numerically low rank. 
That means, using low-rank representation based algorithms to solve (4), the solution 
can be well approximated by a product of the form Xk ≈ ZkZ

T
k (Zk ∈ R

n×zk , zk � n).
In the remainder of this section we review the classical low-rank approximation based 

formulation. Using the low-rank factors (5), the ARE (4) can be written as

ĈT
k+1Ĉk+1 + ÂT

k+1Zk+1Z
T
k+1 + Zk+1Z

T
k+1Âk+1

− Zk+1Z
T
k+1B̂k+1B̂

T
k+1Zk+1Z

T
k+1 = 0 (6)

with

Âk+1 = τkβAk+1 −
1
2I,

B̂k+1 =
√

τkβBk+1,

ĈT
k+1 = [

√
τkβC

T
k+1,

√
−α1Zk, . . . ,

√
−αpZk+1−p ].

Exploiting the sparsity of Ak+1, together with the low-rank representations of the con-
stant and quadratic terms, Eq. (6) can be solved efficiently in terms of computational 
effort and storage costs, if the rank zk � n for all times. The described formulations 
above can serve as the basis of a DRE solver for large-scale problems. We note, the main 
idea here is to solve an ARE by, e.g., Krylov subspace methods, Newton’s method or 
other methods, see e.g., the recent surveys [26,30], in every time step. Here we restrict 
our selves to these procedures. Applying Newton’s method to the ARE (6) results in the 
solution of the ALE

Ǎ
(�)
k+1

TX
(�)
k+1 + X

(�)
k+1Ǎ

(�)
k+1 = G

(�)
k+1G

(�)
k+1

T (7)

with Ǎ(�)
k+1 = (Âk+1 − τkβBk+1B

T
k+1X

(�−1)
k+1 ) and G(�)

k+1 = [ĈT
k+1, 

√
τkβX

(�−1)
k+1 Bk+1] for 

X
(�)
k+1 in the �-th Newton step. For implementation details see [16] and the references 

therein. Note that for methods of order p ≥ 2 some of the coefficients αj , j = 1, . . . , p
of the p-step BDF method are positive, see Table 1. This leads to algebraic Lyapunov 
equations which have indefinite right hand sides and thus the right hand side factor G
of the ALE (7) becomes complex. The solution via Newton’s method, in particular the 
application of the inner solver to the ALE (7), needs to deal with complex arithmetic 
and this, in turn, makes complex storage unavoidable.

Rosenbrock methods The application of the general p-stage Rosenbrock method, as a 
matrix-valued procedure, to the DRE (3) yields
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(
1

τkγii
I − ∂R

∂X
(tk, Xk)

)
Ki = R

⎛
⎝tk,i, Xk +

i−1∑
j=1

aijKj

⎞
⎠ +

i−1∑
j=1

cij
τk

Kj + γiτkRtk ,

Xk+1 = Xk +
p∑

j=1
mjKj , (8)

where tk,i = tk + αiτk, i = 1, . . . , p, and γii, aij , cij , γi, mj and αi are the method 
coefficients, that are available in text books as, e.g., [31]. We denote by Ki the n × n

matrix representing the solution of the i-th-stage of the method and abbreviate Rtk =
∂R
∂t (tk, X(tk)). Note that for autonomous DREs Rtk = 0. Using the Frechét derivative

∂R
∂X

(tk, Xk) : U → (Ak − SkXk)TU + U(Ak − SkXk), (9)

of R at Xk with Xk ≈ X(tk), Ak ≡ A(tk), Sk ≡ S(tk) and U ∈ R
n×n and following the 

reformulations presented in [17], the general p-stage Rosenbrock scheme reads

ÂT
kKi + KiÂk = −R

⎛
⎝tk,i, Xk +

i−1∑
j=1

aijKj

⎞
⎠

−
i−1∑
j=1

cij
τk

Kj − γiτkRtk ,

Xk+1 = Xk +
p∑

j=1
mjKj , (10)

with Âk := Ak − SkXk − 1
2τkγii

I, i = 1, . . . , p. Hence, in each stage of every time step 
of the integration method one algebraic Lyapunov equation has to be solved. In order 
to avoid explicitly forming the dense solutions Ki of the single stage equations in (10), 
as in the BDF-case, we assume the coefficient matrices to be given in low-rank form. 
The particular low-rank representation directly depends on the order of the Rosenbrock 
method. Therefore, as examples we review the first- and a second-order Rosenbrock 
scheme for an autonomous DRE discussed in [16]. Considering the autonomous case is 
not an inappropriate restriction, since the application of a low-rank factorization to Rtk

is straight forward, see [19, Section 4.4].
The 1-stage Rosenbrock scheme (Ros1) in low-rank representation is given as

ÂT
kXk+1 + Xk+1Âk = −GkG

T
k , (11)

with γ1,1 = 1, Âk = Ak − SkXk − 1
2τk I and the right hand side factor

Gk =
[
CT

k , ZkZ
T
k Bk,

√
1 Zk

]
.

τk
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The specific second-order Rosenbrock scheme (Ros2) proposed in [32] in classical low-
rank representation and a number of reformulation steps following [16,19], reads

Xk+1 = Xk + 3
2τkK1 + 1

2τkK2,

ÃT
kK1 + K1Ãk = −R(Xk),

ÃT
kK21 + K21Ãk = −τ2

kK1BkB
T
k K1 − (2 − 1

γ
)K1

K2 = −K21 + (1 − 1
γ

)K1 (12)

with Ãk := γτk(Ak − SkXk) − 1
2I. Again considering the low-rank splitting given in (5), 

the right hand side of the first stage in (12) becomes

−CT
k Ck −AT

k ZkZ
T
k − ZkZ

T
k Ak + ZkZ

T
k BkB

T
k ZkZ

T
k .

As explained in [16,19], we consider the following two possible splittings of the form 
−GkG

T
k . The partitioning

Gk = [CT
k , AT

k Zk + Zk, iZkZ
T
k Bk, iAT

k Zk, iZk ] (13)

of the right hand side ends up being complex. Avoiding complex data requires a super-
position approach splitting the first stage equation into the two equations

ÃT
k K̂1 + K̂1Ãk = −NkN

T
k , ÃT

k K̃1 + K̃1Ãk = −UkU
T
k (14)

such that K1 := K̂1 − K̃1 and −GkG
T
k := −NkN

T
k + UkU

T
k . Here,

Nk = [CT
k , AT

kZk + Zk ] , Uk = [ZkZ
T
k Bk, AT

k Zk, Zk ] .

Several numerical experiments have shown that the formation of K1 may suffer from 
cancellation problems in finite arithmetic. That is, constructing the solution K1 := K̂1−
K̃1 is affected by numerical inaccuracies and therefore breaks the entire second-order 
low-rank algorithm.

For completeness, the right hand side of the second stage equation of the Rosenbrock 
scheme (12) in standard low-rank representation with K1 = T1T

T
1 , T1 ∈ R

n×tk reads

Gk =
[
τkT1T

T
1 B,

√
2 − 1

γT1

]
.

Other implicit methods As stated in [14] the application of any implicit method to the 
DRE yields an ARE to be solved in every step. For illustration, we will consider the 
Midpoint and Trapezoidal rules.



N. Lang et al. / Linear Algebra and its Applications 480 (2015) 44–71 51
The Midpoint rule applied to the DRE (3) yields

Xk+1 = Xk + τkR
(
tk + τ

2 ,
1
2(Xk+1 + Xk)

)
.

Re-arranging terms, we see that this again leads to an ARE for Xk+1

[
τkQk′ + Xk + τk

2

(
AT

k′Xk + XkAk′ − XkSk′Xk

2

)]

+ (τk2 Ak′ − τk
4 Sk′Xk − 1

2I)
TXk+1 + Xk+1(

τk
2 Ak′ − τk

4 Sk′Xk − 1
2I)

−Xk+1(
τk
4 Sk′)Xk+1 = 0, (15)

where Xk ≈ X(tk), Ak′ ≡ A(tk + τk
2 ), Qk′ ≡ Q(tk + τk

2 ), Sk′ ≡ S(tk + τk
2 ).

Applying the Trapezoidal rule to the DRE (3), we obtain

Xk+1 = Xk + τk
2 (R(tk, Xk) + R(tk+1, Xk+1)).

Collecting terms in the same way as for the previous method, we end up with an ARE 
for Xk+1

[
τk
2 Qk+1 + Xk + τk

2

(
Qk + AT

kXk + XkAk −XkSkXk

)]

+
(
τk
2 Ak+1 −

1
2I

)T

Xk+1 + Xk+1

(
τk
2 Ak+1 −

1
2I

)

−Xk+1

(
τk
2 Sk+1

)
Xk+1 = 0. (16)

In both cases an ARE has to be solved in every time step. Thus, as for the BDF methods, 
for the Midpoint and Trapezoidal rule and in general any implicit (Runge–Kutta) method 
the key ingredient for an efficient algorithm is a fast low-rank ARE solver.

2.2. Application to DLEs

As for the DREs the application of implicit ODE methods in the matrix setting for 
solving DLEs requires complex arithmetic. As an illustration, we will consider the BDF 
methods.

Let us consider the time-varying symmetric DLE of the form

Ẋ(t) = Q(t) + X(t)A(t) + AT (t)X(t) ≡ L(t,X(t)),

X(t0) = X0, (17)
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where t ∈ [t0, tf ] and Q(t), A(t) ∈ R
n×n are piecewise continuous locally bounded matrix-

valued functions. Using the same notation as in the previous subsection the application 
of the BDF methods to the DLE yields an algebraic Lyapunov equation

(τkβQk+1 −
p∑

j=1
αjXk+1−j) + ÂT

k+1Xk+1 + Xk+1Âk+1 = 0, (18)

where β, αj are given in Table 1 and Âk+1 := (τkβAk+1 − 1
2I). The algebraic equation 

(18) can be written in terms of low-rank factors similar to the Riccati case in (6). That 
is, the application of a BDF method of order p ≥ 2 will also require complex arithmetic 
and storage.

The same happens when Rosenbrock methods are applied to the DLE. Using a p-stage 
Rosenbrock method, we also have to solve an ALE at each stage of the scheme, since the 
Frechét derivative of the Lyapunov operator L in (17) is again the Lyapunov operator 
of the form (9). Hence, the same numerical problems as for the DRE arise.

2.3. Classical column compression

For all kinds of time integration methods the solution factors of a certain number of 
previous time steps are a part of the right hand side factor G of the ALEs that have to be 
solved within the current time integration step. That is, the block size of the right hand 
side low-rank factor G will increase drastically over time. Therefore, the elimination of 
redundant information in terms of a column compression based on the numerical rank 
of the factor becomes necessary. As mentioned before, using higher order integration 
methods, the right hand sides become indefinite. Therefore, the right hand side factors in 
the classical low-rank setting become complex. This directly leads to the inadmissibility 
of the classic rank-revealing QR decomposition and SVD based column compression 
approaches. In the following we employ Matlab notation to specify subblocks of a 
matrix. Note that the rank r in practice needs to be decided numerically or memory 
restrictions make a rank truncation necessary. Thus, we usually have GrG

T
r ≈ GGT . 

Still, we present the results for exact computations here.

QR based column compression

i) Compute GT = QRΠT with G ∈ R
n×k, Q ∈ R

k×k, QTQ = Ik, R ∈ R
k×n and a 

permutation matrix Π ∈ R
n×n.

ii) Set Gr = ΠRT
r ∈ R

n×r, where r := rank (R) and Rr := R(1 : r, :) ∈ R
r×n, Qr :=

Q(1 : r, 1 : r) ∈ R
r×r, such that

GrG
T
r = ΠRT

r RrΠT = ΠRT
r Q

T
r QrRrΠT = ΠRTQTQRΠT = GGT .
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SVD based column compression

i) Compute G = UΣV T with G ∈ R
n×k, U ∈ R

n×k, UTU = Ik, Σ ∈ R
k×k and 

V ∈ R
k×k, V TV = Ik.

ii) Set Gr = UrΣr ∈ R
n×r, where r = rank (R), Ur := U(:, 1 : r) ∈ R

n×r, Σr := Σ(1 :
r, 1 : r) ∈ R

r×r, and Vr := V (:, 1 : r) ∈ R
k×r, such that

GrG
T
r = UrΣ2

rU
T
r = UrΣrV

T
r VrΣrU

T
r = UΣV TV ΣUT = GGT .

Column compression for complex data Let G ∈ C
n×k. Therefore, the QR decomposition 

similar to the real case reads

GH = QRΠT with Q ∈ C
k×k, QHQ = Ik, R ∈ C

k×n and Π ∈ R
n×n.

Analogously, setting the compressed factor Gr = ΠRH
r ∈ C

n×r fails, since we have given 
the right hand side product GrG

T
r . This yields

GrG
T
r = ΠRH

r R̄rΠT 	= ΠRH
r QH

r Q̄rR̄rΠT = GGT ,

since the QR decomposition is computed with respect to an unitary matrix Q, i.e., 
QHQ = Ik and not QHQ̄ = Ik.

A similar problem occurs in the case of the SVD based approach. There, we compute

G = UΣV H with U ∈ C
n×k, UHU = Ik, Σ ∈ C

k×k, V ∈ C
k×k, V HV = Ik

and therefore obtain

GrG
T
r = UrΣrV

H V̄ UT
r 	= UrΣrV

HV ΣrU
T
r = UrΣ2

rU
T
r .

Clearly, using the matrix G ∈ C
n×k in the real symmetric and indefinite product 

GGT ∈ R
n×n requires us to properly adjust the compression to the outer product in use. 

We propose the following procedure:

i) Compute G = QRΠT with Q ∈ C
n×k, QHQ = Ik, R ∈ C

k×k, and the permutation 
matrix Π ∈ R

k×k.
ii) Compute a decomposition RΠTΠRT = RRT = V ΛV T with V ∈ C

k×k, V TV = Ik
and a diagonal matrix Λ ∈ C

k×k with diagonal entries |λ1| ≥ |λ2| ≥ · · · ≥ |λk|.
iii) Set the compressed factor Gr := QVrΛ

1
2
r ∈ C

n×r with r ≤ k and |λr+1| ≤ ε.

Following the statements in [33, Theorem 4.4.13], the existence of a matrix V with 
V TV = Ik as in Step ii) is guaranteed, since RRT is complex symmetric and therefore 
diagonalizable.
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Computing the eigendecomposition for the complex symmetric matrix RRT within 
Step ii) in general leads to

RRT = Ṽ ΛṼ −1

with eigenvectors (columns in Ṽ ) ṽi ∈ C
k. In any software tool based on LAPACK [34], 

the ṽi are normalized but not necessarily orthogonal with respect to the complex inner 
product. That is, the ṽi satisfy the properties

ṽ∗i ṽi = 1 ⇒ ṽTi ṽi 	= 1,

ṽ∗i ṽj 	= 0. (19)

From the principle of biorthogonality, see e.g., [33, Theorem 1.4.7 and Proof of Theorem 
4.4.13], we know that the eigenvectors ṽi, ṽj of the symmetric matrix RRT are orthogonal 
with respect to the real inner product, i.e., ṽTi ṽj = 0 for i 	= j. Since, the right hand side 
is constructed to be of the form GGT = QV ΛV TQT , we need to ensure RRT = V ΛV T . 
Using (19) and the orthogonality of ṽi, ṽj , we have

Ṽ T Ṽ =

⎡
⎢⎣
ṽT1 ṽ1 0

. . .
0 ṽTk ṽk

⎤
⎥⎦ .

That is, the eigenvectors ṽi need to be normalized with respect to the real inner product. 

Defining V := Ṽ D̃ with D̃ = diag
(√

ṽT1 ṽ1, . . . ,
√
ṽTk ṽk

)−1
yields,

V TV = D̃Ṽ T Ṽ D̃ = Ik

⇔ D̃Ṽ T = V T = V −1 = D̃−1Ṽ −1,

with D̃−1 = diag
(√

ṽT1 ṽ1, . . . ,
√
ṽTk ṽk

)
. Therefore, we obtain

RRT = Ṽ ΛṼ −1 = Ṽ ΛD̃D̃−1Ṽ −1

= Ṽ D̃ΛD̃−1Ṽ −1 = V ΛV −1 = V ΛV T .

That means, scaling the eigenvectors ṽi with (ṽTi ṽi)−
1
2 , i = 1, . . . , k does not change 

the eigendecomposition of the complex symmetric matrix RRT and we end up with the 
required representation

RRT = V ΛV T .

Again, note that using the BDF and Rosenbrock methods of order p ≥ 2, the Midpoint 
or Trapezoidal rules will lead to indefinite right hand sides for the ALEs that have to be 
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solved in the innermost iteration. The associated complex splittings require complex data 
storage, complex arithmetic and as the above statements show the effort for the necessary 
column compression techniques increases as well. In the case of definite right hand sides 
and the corresponding real splittings the column compression is either performed by 
using the QR or an SVD decomposition. Given complex data the proposed approach 
computes a QR decomposition of the factor to be compressed and an eigendecomposition 
of the small complex symmetric matrix RRT that additionally increases the over-all 
computational effort of the classical low-rank methods for the solution of the DRE.

3. LDLT -type Lyapunov solvers

As we have shown in the previous sections, the main ingredient to determine the 
solution of a DRE (3) is to solve an ALE of the form

FTX + XF = −W. (20)

For higher order methods (p ≥ 2) the matrix W appears to be indefinite in every step 
of either the Rosenbrock method or the Newton method within the BDF schemes, the 
Midpoint or Trapezoidal rule. In this section we present a new approach, which avoids 
the problem of complex arithmetic and storage arising when the right hand side is de-
composed as W = GGT . We propose to split the right hand side W in the form GSGT

with G ∈ R
n×k, k � n and a small, compared to the dimension n, but indefinite matrix 

S = ST ∈ R
k×k.

3.1. LDLT -type ADI

Following [35], the ADI iteration is adapted to the splitting X ≈ LDLT of the solution 
of a Lyapunov equation of the form (20). The solution factor L will be of low rank and 
D is a symmetric and block-diagonal matrix, as we will easily see below. The one step 
iteration [24] at step j = 1, 2, . . . of the ADI method becomes

LjDjL
T
j = −2Re(μj)(FT + μjI)−1GSGT (F + μ̄jI)−1

+ (FT + μjI)−1(FT − μjI)Lj−1Dj−1L
T
j−1(F − μjI)(F + μjI)−1, (21)

with L0, D0 = [ ] and ADI shift parameters μj ∈ C. Using the inherent structure of (21)
the factors Lj , Dj can be computed as follows:

Lj := [ (FT + μjI)−1G, (FT + μjI)−1(FT − μjI)Lj−1 ] ,

Dj :=
[
−2Re(μj)S

Dj−1

]
.

For the sake of easier reading we define Rj := (FT + μjI)−1 and Tj := (FT − μjI). 
Plugging in the factors Lj and Dj recursively yields



56 N. Lang et al. / Linear Algebra and its Applications 480 (2015) 44–71
Lj = [RjG, RjTjRj−1G, . . . , RjTj . . . R2T2R1G ] ,

Dj =

⎡
⎢⎢⎢⎣
−2Re(μj)S

−2Re(μj−1)S
. . .

−2Re(μ1)S

⎤
⎥⎥⎥⎦ . (22)

Since the ordering of the ADI shifts μj does not affect the solutions quality, the indices 
can be reversed. Additionally, using the commutativity of the Rj’s and Tj ’s the reordered 
sequence leads to

Lj = [R1G, R2T1(R1G), . . . , Rj+1Tj(RjTj−1 . . . R2T1R1G) ] ,

Dj =

⎡
⎢⎢⎢⎣
−2Re(μ1)S

−2Re(μ2)S
. . .

−2Re(μj)S

⎤
⎥⎥⎥⎦

= −2diag (Re(μ1), . . . ,Re(μj)) ⊗ S (23)

in complete analogy to the procedure first employed in [23] for the ZZT case. Thus, the 
LDLT -based factorization does not differ to much from the low-rank factored ADI as 
proposed in [36–38].

The introduction of the potentially indefinite matrix S in the decomposition of the 
right hand side immediately avoids the necessity of complex storage and arithmetic. 
Moreover, the introduction of the diagonal block Dj in every step allows to remove the 
multiplication of the shifts μj from the low-rank factor Lj and for the computation of the 
block diagonal matrix Dj one only needs to store the given symmetric matrix S and the 
shift sequence which is done during the ADI anyway. Considering the same right hand 
side factor G, the classical low-rank factor Z and the LDLT factor L are computed by 
the same iteration sequence. Thus, they will be of the same size zk and quality. A sketch 
of the LDLT -type procedure is given in Algorithm 3.1.

Remark Let 
(M) denote the spectral radius of a matrix M . Note that the matri-
ces Wj−1SW

T
j−1 ∈ R

n×n and WT
j−1Wj−1S ∈ R

k×k share the same non-zero spectrum. 
Therefore, to avoid the computation of the norm of the large and usually dense matrix 
products in Step 2 of Algorithm 3.1, we exploit

‖Wj−1SW
T
j−1‖2 = 
(Wj−1SW

T
j−1) = 
(WT

j−1Wj−1S).

3.2. LDLT -type Krylov subspace method

Following the statements in [25,39] the rational Krylov subspace method (RKSM) 
and the extended Krylov subspace method (EKSM, also called KPIK for Krylov plus 
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Algorithm 3.1 LDLT -factorization based ADI method.
INPUT: ADI shifts μ1, . . . , μ� ∈ C, G, S, tolerance ε
OUTPUT: L = LnADI

, D = DnADI

1: W0 = G, j = 1
2: while ‖Wj−1SWT

j−1‖2 ≥ ε‖GSGT ‖2 do
3: Solve (F + μjE)Vj = Wj−1 for Vj .
4: if μj is real then
5: Wj = Wj−1 − 2μjVj , Lj = [Lj−1, Vj ]
6: else
7: ηj =

√
2, δj = Re (μj)/ Im (μj)

8: Wj+1 = Wj−1 − 4 Re (μj)(Re (Vj) + δj Im (Vj))
9: Lj+1 = [Lj−1, ηj(Re (Vj) + δj Im (Vj)), ηj

√
δ2
j + 1 Im (Vj)]

10: j = j + 1
11: end if
12: j = j + 1
13: end while
14: Dj = −2 diag (Re (μ1), . . . ,Re (μj)) ⊗ S

inverted Krylov) compute a solution

Xs = VsYsV
T
s (24)

of the ALE (20) with a given right hand side of the form W := ĜĜT . Here, Vs denotes 
an orthonormal basis of the Krylov subspace

Ks(F, Ĝ, p) = {Ĝ, (FT − μ1I)−1Ĝ, . . . ,

s∏
j=1

(FT − μjI)−1Ĝ} ⊂ R
n×(s+1)k or

K2s(F, F−sĜ) = {F−sĜ, . . . , F−1Ĝ, Ĝ, F Ĝ, . . . , F sĜ} ⊂ R
n×(2s+1)k,

respectively, where k is the number of columns of Ĝ and Ys is the solution of the projected 
small-scale ALE

V T
s FTVsYs + YsV

T
s FVs = −V T

s ĜĜTVs. (25)

That is, the RKSM and EKSM Lyapunov solvers directly compute the solution of (20)
in the required LDLT -type format. Exploiting the inherent structure of the solution 
Xs = VsYsV

T
s given by the Krylov subspace methods, the LDLT based methods avoid 

the additional computation of a ZZT decomposition of the solution Xs as it is done in 
the classical low-rank algorithms. Note that a splitting GSGT of the right hand side W
of (20) does not affect the procedure. Since S is symmetric, and therefore diagonal up to 
an orthogonal similarity transformation, the Krylov subspace spanned by the columns 
of Vs does not change. That is, the only change in the above procedure is the solution of

V T
s FTVsYs + YsV

T
s FVs = −V T

s GSGTVs

instead of (25).
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Algorithm 3.2 LDLT factored BDF method of order p.
Require: E(t), A(t), S(t), Q(t), ∈ R

n×n smooth matrix-valued functions satisfying (5), t ∈ [a, b], and step 
size τ .

Ensure: (Lk+1, Dk+1, tk+1) such that Xk+1 ≈ Lk+1Dk+1L
T
k+1.

1: t0 = a.
2: for k = 0 to 
 b−a

τ � do
3: tk+1 = tk + h.
4: Âk+1 = τβAk+1 − 1

2E.
5: ĈT

k+1 = [CT
k+1, ETLk, . . . , ETLk+1−p ].

6: for � = 1 to �max do
7: G(�) = [ĈT

k+1, K(�−1)].

8: S(�) =

⎡
⎢⎢⎢⎢⎢⎣

τβIq
−α1Dk

. . .
−αpDk+1−p

τβIm

⎤
⎥⎥⎥⎥⎥⎦
.

9: Compute L(�), D(�) by an LDLT -factorization based Algorithm such that X(�) ≈ L(�)D(�)L(�)T

is the solution of

F
(�)T

X
(�)

Ek+1 + E
T
k+1X

(�)
F

(�) = −G
(�)

S
(�)

G
(�)T

.

10: K(�) = ET
k+1(L

(�)(D(�)(L(�)TBk+1))).
11: end for
12: Lk+1 = L(�max), Dk+1 = D(�max).
13: end for

3.3. Application to matrix-valued ODE solvers

Applying the LDLT -type splitting to the arising ALEs within the previously described 
matrix-valued ODE solvers allows us to avoid complex arithmetic arising from the stan-
dard low-rank splitting of the right hand sides of the ALEs which need to be solved in 
the innermost iteration of the BDF, the Midpoint and Trapezoidal rules and Rosenbrock 
methods. In addition, the number of system solves within the ADI iteration can be re-
duced by an a priori elimination of redundant column blocks in the right hand sides. 
Again, for simplicity we restrict ourselves to the autonomous case as in Section 2.1. In 
particular, we will demonstrate the advantages of the LDLT -type splitting in the ex-
ample of the aforementioned general p-step BDF method, as well as for the first- and 
second-order Rosenbrock schemes.

Backward differentiation formulas Using the LDLT -type factorization Xk+1 :=
Lk+1Dk+1L

T
k+1 instead of the standard low-rank representation of the solution of the 

DRE, Algorithm 3.1 in [16] changes to Algorithm 3.2. That is, the application of the 
LDLT factorization and the associated splitting GSGT of the right hand side of (7)
allows us to put the coefficients αj , j = 1, . . . , p into the diagonal blocks of S. This 
avoids taking the square root of the non-positive coefficients (see Table 1) and in turn 
removes complex data and arithmetic.

As mentioned in Section 2 the Midpoint or Trapezoidal rule also leads to the solution 
of an ARE in every time integration step. Having a closer look at the corresponding 
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Eqs. (15) and (16), we note that again the constant terms of the AREs are indefinite. 
Therefore, the application of the above steps also avoids complex computations. Fur-
thermore, the problem of indefinite right hand sides also appears for the application of 
Rosenbrock methods.

First-order Rosenbrock method (linear implicit Euler) As given in Eq. (11) the first-
order Rosenbrock scheme in standard low-rank formulation deals with the right hand 
side

Gk =
[
CT

k , ZkZ
T
k Bk,

√
1
τk
Zk

]
∈ R

n×(q+m+zk)

where Gk is of size n × (q + m + zk). Here, the right hand side is definite and therefore 
can be split into real factors Gk. Still, the application of the LDLT -type factorization 
with the associated right hand side G̃kS̃kG̃

T
k

G̃k = [CT
k , Lk, Lk ] ∈ R

n×(q+2�k)

S̃k =

⎡
⎣ I

DkL
T
kBkBkLkDk

1
τk
Dk

⎤
⎦ ∈ R

(q+2�k)×(q+2�k)

for the solution factorization Xk ≈ LkDkL
T
k can be exploited to improve the numerical 

computations. Re-arranging the blocks in the form

G̃k = [CT
k , Lk ] ∈ R

n×(q+�k),

S̃k =
[
I

DkL
T
kBkBkLkDk + 1

τk
Dk

]
∈ R

(q+�k)×(q+�k) (26)

leads to a factor G̃k of size n × (q + �k) representing the same product. The number of 
columns of Gk, G̃k equals the number of solves within the first step of the Lyapunov solver 
and the number of columns which are added to the right hand side at every subsequent 
iteration step. This at least saves m system solves in every step of the Lyapunov solver 
within every time integration step, since it can be shown that the block sizes �k, zk satisfy 
�k ≤ zk. Both block sizes linearly depend on the size of the right hand side put into the 
ADI or Krylov based Lyapunov solvers. Therefore, �k cannot exceed zk. In total this 
means that assuming a constant number nlyap of Lyapunov solver steps per time step, 
the LDLT -type factorization for the linear implicit Euler integration method requires 
at least m · nlyap · nODE less linear system solves during the solution of the DRE (3)
compared to the standard low-rank factorization. Here, nODE is the number of time 
steps taken in the linear implicit Euler scheme. Note that the products DkL

T
kBk are of 

size �k × m and therefore do not require a significant amount of computation time as 
long as �k, m � n, which is a required assumption for low-rank computations anyway.
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Second-order Rosenbrock method As introduced in Eqs. (13) and (14) for the first stage 
equation of the second order method we either have to deal with the complex right hand 
side

Gk = [CT
k , AT

k Zk + Zk, iZkZ
T
k Bk, iAT

k Zk, iZk ] , ∈ R
n×(q+m+3zk)

or the split Lyapunov equation and the corresponding right hand sides NkN
T
k , UkU

T
k

with

Nk = [CT
k , AT

k Zk + Zk ] , ∈ R
n×(q+zk),

Uk = [ZkZ
T
k Bk, AT

kZk, Zk ] , ∈ R
n×(m+2zk).

In order to avoid the complex blocks, the splitting of the first stage Lyapunov equation 
into two separate ALEs, and the additionally introduced terms using (14), again, we 
consider the LDLT -type splitting. Hence, the right hand side of the first stage equation 
becomes

−CT
k Ck −AT

kLkDkL
T
k − LkDkL

T
kAk + LkDkL

T
kBkB

T
k LkDkL

T
k

and we obtain the splitting −G̃kS̃kG̃
T
k with

G̃k = [CT
k , AT

k L, Lk, Lk ] ,

S̃k =

⎡
⎢⎢⎣
Iq

Dk

Dk

−DkL
T
kBkB

T
k LkDk

⎤
⎥⎥⎦ . (27)

Re-arranging blocks, similar to (26), leads to

G̃k = [CT
k , AT

k Lk, Lk ] ∈ R
n×(q+2�k),

S̃k =

⎡
⎣ Iq

Dk

Dk −DkL
T
kBkB

T
k LkDk

⎤
⎦ ∈ R

(q+2�k)×(q+2�k). (28)

Hence, the number of system solves within the Lyapunov solver for the first stage equa-
tion is reduced from q + m + 3zk for the classical low-rank representation to q + 2�k for 
the LDLT -type factorization. That is, we are able to save at least m + zk linear system 
solves for the solution of stage 1.

As mentioned in Section 2.1, the right hand side of the second stage equation reads

Gk =
[
τkT1T

T
1 B,

√
2 − 1T1

]
∈ R

n×(m+tk).
γ
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Now, using the LDLT -type splitting with K1 = T̃1D1T̃
T
1 we obtain

G̃k = T1 ∈ R
n×t̃k ,

S̃k = +τ2
kD1T

T
1 BBTT1D1 + (2 − 1

γ
)D1 ∈ R

t̃k×t̃k .

Since t̃k ≤ tk, we save at least another m linear system solves for the solution of the 
second stage equation.

In total this leads to savings of a minimum of 2m + zk solves in each step of the 
ALE solver within each time integration step. Again, note that for an increasing order 
of the Rosenbrock scheme the number of ALEs, which have to be solved via the classical 
low-rank or the LDLT based scheme increases. That means the total number of system 
solves within the Lyapunov solvers to be performed will increase as well. Therefore, using 
the LDLT approach with analogous block re-arrangements as above will lead to similar 
savings for each of these stages. That means, the higher the order of the integration 
method one uses, the better the accuracy of the solution will be, while at the same time 
the speedup caused by the LDLT -type factorization will increasingly pay off.

3.4. LDLT column compression

As for the classical low-rank methods the right hand side low-rank factors will increase 
within each time integration step. That is, we also need to perform a column compression 
in order to reduce the number of columns of the LDLT -type right hand sides or DRE 
solutions. Consider the matrix GSGT , where G ∈ R

n×k, S = ST ∈ R
k×k. Following the 

statements in Section 6.3.3 in [40] the factors G, S can be compressed as follows:

i) Compute G = QRΠT with Q ∈ R
n×k, R ∈ R

k×k and Π ∈ R
n×n.

ii) Compute a decomposition RΠTSΠRT = V ΛV T with V ∈ R
k×k and a diagonal 

matrix Λ ∈ R
k×k with diagonal entries |λ1| ≥ |λ2| ≥ · · · ≥ |λk|.

iii) Set the compressed factors Gr := QVr ∈ R
n×r, Sr := Λr with r ≤ k and |λr+1| ≤ ε.

Since RΠTSΠRT ∈ R
k×k is symmetric, a decomposition V ΛV T always exists and can 

e.g., be computed via an eigendecomposition. Comparing the computational cost, the 
above procedure is equal to the classical low-rank column compression for complex data 
if the sizes of the thin rectangular matrices coincide.

4. Numerical results

All the following examples are executed on a 64 bit CentOS 5.5 system with two Intel®
Xeon® X5650@2.67 GHz with a total of 12 cores and 48 GB main memory.

As an illustrating problem in this section we consider the linear quadratic regulator 
(LQR) problem
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min
u

J(t; y, u) =
tf∫

t0

yT (t)Qy(t) + uT (t)Ru(t) dt + y(tf )TMy(tf ),

s.t. Eẋ(t) = Ax(t) + Bu(t),

y = Cx(t) (29)

on the finite time horizon t ∈ [t0, tf ] with symmetric weighting matrices Q, R. The 
state space systems, we consider in the remainder, are all linear time invariant (LTI). 
Considering LTV systems, it is still a crucial question to find an efficient storage strategy 
for the given data E(t), A(t), B(t), C(t) and the resulting solution factors of X(t) of the 
DRE. The optimal solution to (29) is given by the feedback law (see, e.g., [41])

u = −R−1BTX(t)Ex(t) = −K(t)x(t). (30)

This means, in order to compute the optimal solution u of (29), we need to find a matrix 
valued function X(t), which is given as the solution of the generalized DRE

ET ẊE = −Q−ATXE − ETXA + ETXBBTXE,

ETX(tf )E = 0. (31)

Note that the DRE arising from an LQR problem has to be solved backwards in time. 
Therefore, the following results, in particular the convergence behavior of the DRE to 
the ARE, need to be interpreted starting from the end point of the corresponding time 
interval. For the examples below we depict the evolution of one component Ki,j(t) of 
the feedback matrix K(t) in Eq. (30) with i = 1, . . . , m, j = 1, . . . , n. The selected 
components Ki,j are chosen with a relatively large amplitude such that differences are 
well visible. In contrast to the depiction of the convergence behavior, all relative errors 
in the remainder are given in the Frobenius norm ‖.‖F for the full feedback K(t) over the 
entire time interval. That is, the errors of the low-rank schemes compared to a reference 
solution or between both low-rank representations are computed in the form

‖Kref (t) −KLR/LDL(t)‖F
‖Kref (t)‖F

or ‖KLR(t) −KLDL(t)‖F
‖KLR(t)‖F

,

respectively. Further, for all examples machine precision is used as the accuracy toler-
ance for both, the Lyapunov solvers and the column compression techniques inside the 
DRE solvers. These tolerances are chosen in order to compare the most accurate results 
available for the different solution strategies. That is, the problem is avoided that both 
schemes introduce additional and in particular different numerical errors which may lead 
to relatively large errors in the direct comparison of the classical ZZT and the LDLT

computations. Finally, the choice of the error tolerances for, e.g., the compression tech-
niques, the iterative Lyapunov solvers, and Newton’s method is up to the user and of 
course depends on the demands of the application to be considered.
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4.1. ADI based Lyapunov solvers

The examples in the section below present the numerical results achieved for an ADI 
iteration based Lyapunov solver inside the time integration schemes.

4.1.1. Example 1: steel profile
We consider the semi-discretized heat transfer model described in [42]. The model 

is given with m = 7 inputs and q = 6 outputs. The solution is computed on the time 
interval [0, 45] s. Note that the time line for the simulation is scaled by 1e2. That is, we 
consider a model time interval of 4500 seconds. In the remainder we state the real time 
instances as a hundredth of the model time quantities.

In order to be able to compare the results of the different low-rank DRE solvers to a 
classical dense 4th order Rosenbrock scheme (Ros4) [43], we start with the smallest state 
space dimension available, n = 371. Fig. 1a shows component K1,77(t) of the reference 
solution computed via the Ros4 with the fixed time step size τ = 1e-4 compared to 
the LDLT based solutions of the BDF methods of order p = 1, 2, 3, the Midpoint and 
Trapezoidal rules, and the Rosenbrock methods of order one and two performed with a 
fixed time step size τ = 1e-1. In addition, the constant solution of the corresponding ARE 
is depicted in order to show the convergence of the several methods. Fig. 1b presents the 
relative errors of the entire solution K(t) for the different LDLT methods compared to 
the reference solution in the Frobenius norm. Further, the relative errors of the solutions 
of the classical low-rank and the LDLT representation are depicted in Fig. 1c.

Table 2 presents the computation times for the different methods the relative error 
between the classical low-rank methods and the LDLT based algorithms, as well as 
the relative errors of the LDLT procedures compared to the reference solution. We see 
that the LDLT based DRE solvers achieve a speed-up up to a factor of around 2 for 
the majority of the methods. The rather small time savings in the case of the 1-stage 
Rosenbrock scheme is due to the definiteness of the right hand side of the ALE (11). 
Here, the benefits of avoiding complex data and the splitting of the ALE do not come 
into effect. That is, the decrease in time originates solely from saving the m system 
solves within each ADI step at each time integration step. Table 2 further shows that 
the classical low-rank solvers and the LDLT based schemes achieve the same results 
except for acceptable round off errors. Still, there seems to be a problem with the Ros2 
method. This has to be further investigated in the future.

Fig. 2 presents some accuracy results with respect to the chosen time integration 
methods and the time step size. In Fig. 2a the comparison of the computation times 
and the achieved accuracy is given for the BDF methods of order p = 1, 2, 3, the first-
and second-order Rosenbrock methods, the Midpoint and Trapezoidal rules for both, the 
classical low-rank and the LDLT based integration schemes, computed with the time step 
size τ = 1e-1. In accordance with Table 2, we observe the superiority of the LDLT based 
methods with respect to the computation times. Fig. 2b shows the increasing accuracy 
for decreasing time step sizes τ using the LDLT based algorithms. Here, the accuracy 
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Fig. 1. Comparison of the dense 4th order Rosenbrock reference solution computed with step size τ = 1e-4
and the LDLT BDF methods of order p = 1, 2, 3, the Midpoint and Trapezoidal rules and the Rosenbrock 
methods of order p = 1, 2 for Example 4.1.1 computed with a fixed step size τ = 1e-1.

Table 2
Timings, avg. rel. Frobenius errors for Example 4.1.2 with n = 371 on the time interval [0, 45] s, τ = 1e-1.

Time in s Speedup Avg. rel. err.
LR LDL LRvsLDL LDLvsRef

BDF1 2012.55 1243.56 1.62 1.10e-12 2.42e-03
BDF2 2242.24 1105.14 2.03 3.28e-13 1.15e-03
BDF3 2385.34 1170.08 2.04 1.71e-13 1.25e-03
Ros1 705.62 507.12 1.39 1.29e-12 2.41e-03
Ros2 3113.80 2117.19 1.47 3.60e-07 1.15e-03
Midpoint 3037.82 1453.94 2.09 1.06e-13 3.56e-04
Trapezoidal 2463.25 1150.39 2.14 9.02e-14 3.54e-04

of the BDF3 method is slightly worse compared to the BDF2 scheme. This is due to the 
fact that for the time step sizes τ = 1e-1 and τ = 1e-2 the BDF2 method already reaches 
the maximum possible accuracy and the additional summand of the previous time step 
solutions in the constant term of the ARE (4) may introduce additional numerical errors.
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Fig. 2. Efficiency investigations for Example 4.1.1 w.r.t. the low-rank schemes (Fig. 2a) and decreasing time 
steps τ for the LDLT methods (Fig. 2b). (Markers denote different time integration methods as above, see 
Fig. 1.)

Table 3
Timings, avg. rel. Frobenius errors between the low-rank methods for Example 4.1.2
with n = 1357 on the time interval [0, 45] s, τ = 1.

Time in s Speedup Avg. rel. err.
LR LDL LRvsLDL

BDF1 1716.73 1233.68 1.39 3.69e-13
BDF2 2771.89 1224.95 2.26 1.92e-14
BDF3 2833.40 1246.70 2.27 4.02e-14
Ros1 616.93 659.25 0.94 5.46e-13
Ros2 4825.75 2516.20 1.92 1.37e-06
Midpoint 3509.17 1456.12 2.41 2.58e-13
Trapezoidal 3052.79 1290.91 2.37 4.34e-13

The convergence behavior of the Ros2 depicted in Fig. 2b, which seems to be neither 
first- nor second-order results from the fact that the convergence order in general is 
approached asymptotically. That is, the region of second order convergence is not yet 
reached for the rather large timesteps chosen in order to keep the simulation time and 
storage consumption within appropriate limits.

In Table 3 we present the results of the steel profile model with n = 1357 degrees 
of freedom computed with a fixed time step size τ = 1. Given are the timings of the 
standard low-rank codes compared to the LDLT implementations and the average of 
the relative errors between both of them. For the Ros1 we observe that the timings for 
the classical low-rank version and the LDLT method are basically the same with slight 
advantages for the classical low-rank splitting. The savings of the system solves within 
the LDLT based scheme (see Section 3.3) cannot entirely compensate the additional 
effort of the LDLT compression technique for the real definite right hand sides arising 
in the Ros1. Using higher order methods, as e.g., the Midpoint and Trapezoidal rules, 
the LDLT routines benefit from all their advantages, i.e., avoiding complex data and the 
removal of redundant information by re-arranging the S block of the right hand sides. 
Therefore, the LDLT version achieves a significant time saving.



66 N. Lang et al. / Linear Algebra and its Applications 480 (2015) 44–71
Fig. 3. Comparison of the LDLT BDF methods of order p = 1, 2, 3, the Midpoint and Trapezoidal rules and 
the Rosenbrock methods of order p = 1, 2 for Example 4.1.2 computed with a fixed step size τ = 1e-1.

Table 4
Timings, avg. rel. Frobenius errors between the low-rank methods for Example 4.1.2 on 
the time interval [0, 50] s, τ = 1e-1.

Time in s Speedup Avg. rel. err.
LR LDL LRvsLDL

BDF1 12 719.51 5666.01 2.23 1.95e-05
BDF2 12 285.17 5444.87 2.26 1.01e-05
BDF3 12 704.44 5530.13 2.30 1.24e-05
Ros1 3043.56 2926.64 1.04 5.23e-07
Ros2 19 967.16 9667.77 2.07 2.20e-06
Midpoint 15 219.88 6836.42 2.23 7.20e-08
Trapezoidal 13 042.51 5666.42 2.30 1.99e-07

4.1.2. Example 2: diffusion on the unit square
The second example describes a diffusion model acting on the unit square with n =

1089 degrees of freedom. The system matrices E, A, B, C are given from a finite element 
discretization. Here, E ∈ R

n×n is a FEM mass matrix, A ∈ R
n×n denotes the 2D 

Laplacian on the unitsquare, B ∈ R
n×m with m = 1 realizes a single input at the entire 

left boundary and we observe q = 9 degrees of freedom of the FE grid at the remaining 
edges of the unit square via the output matrix C ∈ R

q×n. The output matrix C consists 
of q = 9 unit vectors encoding the output locations with respect to the chosen degrees 
of freedom. Similar to the above example Fig. 3a shows the convergence behavior of 
the solutions of the different time integration methods, computed on the time interval 
[0, 50] s with the time step size τ = 1e-1, to the solution of the ARE. Furthermore, 
Fig. 3b depicts the relative errors of the solutions of the low-rank methods compared to 
the LDLT results.

Table 4 shows the timings of the standard low-rank algorithms and the LDLT based 
schemes, as well as the average relative errors between both. In contrast to the above 
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Fig. 4. Comparison of the standard low-rank and LDLT Rosenbrock method of order 1 for Example 4.2.1
computed with a fixed step size τ = 1e-2.

Table 5
Timings, avg. rel. Frobenius errors between the low-rank methods for Example 4.2.1 on 
the time interval [0, 10] s, τ = 1e-2.

Time in s Speedup Avg. rel. err.
LR LDL LRvsLDL

Ros1 421.98 254.57 1.66 2.04e-12

example, we observe that in the case of the first-order Rosenbrock method the saving 
of m = 1 system solves, related to the single input, within every ADI step at each 
time integration step approximately counterbalances the additional computational effort 
of the column compression for the LDLT factorization with slight advantages for the 
LDLT methods.

4.2. Krylov based Lyapunov solvers

The following example presents the numerical results achieved for an EKSM based 
Lyapunov solver. The basic EKSM code is available at the webpage of V. Simoncini,1
see [25]. Here, we adapted the code in order to apply the EKSM to the closed loop 
operators Ǎ, Â arising in the ALEs (7) and (10).

4.2.1. Example 3: carex model
The third example originates from the CAREX benchmark collection for con-

tinuous-time algebraic Riccati equations [44, Example 4.2]. The model is a single-input-
single-output (SISO) state-space system with E, A ∈ R

n×n, B = CT ∈ R
n and n = 1000. 

Fig. 4 shows component K1,1(t) computed via the classical low-rank Ros1 scheme com-
pared to the LDLT based version. The computation times and the average relative errors 
are presented in Table 5.

1 http :/ /www .dm .unibo .it /�simoncin /software .html.

http://www.dm.unibo.it/~simoncin/software.html
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Fig. 5. Comparison of the standard low-rank and LDLT Rosenbrock method of order 1 for Example 4.2.2
computed with τ = 1e-2.

Table 6
Timings, avg. rel. Frobenius errors between the low-rank methods for Example 4.2.2 on 
the time interval [0, 45] s, τ = 1e-1.

Time in s Speedup Avg. rel. err.
LR LDL LRvsLDL

Ros1 197.73 118.58 1.67 1.32e-10

4.2.2. Example 4: steel profile
Again, we consider the semi-discretized heat transfer model from Example 1 in Sec-

tion 4.1.1 with n = 371, τ = 1e-1 on the time interval [0, 45] s. Similar to Example 4.2.1, 
Fig. 5 presents solution component K1,77 for both, the classical low-rank and LDLT

based EKSM Lyapunov solvers inside the Ros1. Further, the relative error between both 
representations is given and shows the equality of the algorithms except for numerical 
deviations. Table 6, in addition shows the computation times and the average relative 
error between the solution approaches.

5. Conclusion

We have investigated the p-step BDF, the p-stage Rosenbrock methods and the Mid-
point and Trapezoidal rules applied to matrix valued differential equations. In particular 
we have seen the application of those time integration schemes to the Riccati differential 
equation.

A review of an efficient solution strategy in terms of the standard low-rank techniques 
was given. We revealed several problems of the classical methods regarding complex 
data and cancellation effects arising in a superposition approach for the solution of the 
algebraic Lyapunov equations with indefinite right hand sides that need to be solved 
in the innermost loops of the DRE solvers. We have shown that these problems show 
up for higher order integration methods, that are recommended to use due to the high 
stiffness of, e.g., the DRE. Our main contribution is the presentation of an LDLT based 
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decomposition of the solution of the DRE and the right hand side of the arising ALEs. 
This special type of factorization naturally avoids all of the aforementioned problems 
and allows us to a-priori reduce the number of system solves to be performed during the 
ADI iteration based Lyapunov solver. Also the additional computation of an artificial 
low-rank splitting for Krylov subspace Lyapunov solvers can be removed. Further, we 
have presented a column compression technique dealing with complex data later applied 
in a real inner product. In addition, we propose a compression technique for the LDLT

factors.
The theoretically stated advantages have been numerically validated for a number 

of examples. Here, we compared the accuracy, as well as the computation times of the 
classical low-rank and the LDLT based methods for ADI and Krylov subspace based 
solvers for Lyapunov equations. Using an ADI based Lyapunov solver the given examples 
show that the LDLT formulation significantly reduces the computation time for higher 
order methods. In case of, e.g., a first order Rosenbrock method the classical low-rank 
representation will achieve faster results as long as the savings of the linear system solves 
in the LDLT based method cannot compensate the extra cost of the column compression 
for the LDLT decompositions. In Section 3.3 we have shown that this directly depends 
on the number of inputs and outputs, which mainly determine the size of the right 
hand side, which we also observe in the examples in Sections 4.1.1 and 4.1.2. For the 
Krylov subspace based solvers we have shown that the time savings are generated by the 
avoidance of an additional and artificial recreation of a classical low-rank factorization 
of the form ZZT . We also observe that the extended Krylov subspace methods can 
compute the solution of the DRE in less time compared to the ADI solvers. One reason 
for this is the necessary computation of the ADI shift parameter. Another reason is that 
the ADI can be interpreted as a rational Krylov method, where in each step a different 
coefficient matrix is used compared to the repeated use of the same matrix in the case 
of EKSM. Also the shifts are in general complex. Therefore the linear systems in the 
ADI method (but also an RKSM based method) require complex arithmetic and cannot
reuse LU decompositions in contrast to EKSM. Regarding the shift parameters at the 
moment we use the heuristic by Penzl, see e.g., [45], which is expensive with respect to 
the computational cost. In order to avoid the rather large computation times for the 
shift parameter computation, as a next step, we want to incorporate the ideas from [37]. 
A more direct comparison of the ADI and EKSM/RKSM based Lyapunov solvers inside 
the time integration methods is postponed and will be reported somewhere else. It is, 
however, expected that ADI and RKSM based solvers will be computationally slower 
due to the changing coefficient matrices, but can produce faster convergence in terms of 
required iteration numbers. In turn they will produce smaller factors and thus reduce 
the storage requirements in general.
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