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Efficient numerical algorithms for the solution of large and sparse matrix Riccati and Lya-
punov equations based on the low rank alternating directions implicit (ADI) iteration have
become available around the year 2000. Over the decade that passed since then, additional
methods based on extended and rational Krylov subspace projection have entered the field
and proved to be competitive alternatives. In this survey we sketch both types of methods
and discuss their advantages and drawbacks. We focus on the continuous time case here, but
corresponding results for discrete time problems can for most results be found in the available
literature.
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1 Introduction

Throughout this paper we will consider algebraic matrix equations related to the linear time

invariant dynamical system in generalized state space form

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t).
(1)

We assume E, A ∈ Rn×n sparse, and non singular, as well as B ∈ Rn×m, C ∈ Rp×n,

D ∈ Rp×m. Though we assume real matrices here, most of the algorithms discussed in the

following can be applied in the complex case with minor, if at all, modifications. In order to

allow for low rank approximations of the solutions we further assume p � n and m � n.
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In the case where we are interested in the solutions P and Q of the Lyapunov matrix

equations

APET + EPAT = −BBT , ATQE + ETQA = −CTC, (2)

we additionally assume the system (1) to be asymptotically stable, i.e., Λ(A,E) ⊂ C<0 :=
{s ∈ C | Re (s) < 0 }, such that the equations in (2) have unique solutions. The solutions

of these two equations are the main ingredient in Balanced Truncation based model order

reduction for linear time invariant systems (1).

For the sake of simplicity in the derivations we also consider the formulation

FX +XFT = −GGT , (3)

where, e.g., F is either A or AT and G is B or CT and E = I is the identity matrix to match

(2). Alternatively, for theoretical considerations, we can simply replace A by E−1A and B
by E−1B to retrieve a system of the form (1) with E = I .

For the algebraic Riccati equation

CTC +ATXE + ETXA− ETXBBTXE = 0, (4)

the set of solutions is in general large due to the quadratic nature of the equation. To make

a solution unique it needs to have additional properties. One is usually interested in one

specific solution among all possible solutions. In the context of optimal control this is the

unique maximal positive semidefinite symmetric solution that stabilizes the system (1). The

stabilization is then performed in the sense that

Eẋ(t) = (A−BBTXE)x(t) (5)

is asymptotically stable, i.e. all eigenvalues of the pencil are located in the open left half

plane. The distinguished solution of (4) is then simply called the stabilizing solution. Addi-

tional requirements to allow for a stabilizing solution can be expressed as stabilizability and

detectability of the system (1) (see, e.g., [37]).

The key ingredient towards an efficient handling of the above matrix equations is the ob-

servation that the solution can be represented in forms other than the dense square matrix

form. Throughout this paper, we will focus on the low rank representation of solutions in

the form X ≈ ZZH for a possibly complex factor Z with k � n columns. Several con-

tributions [3, 26, 48, 53, 61] have investigated the singular value decay in X , especially in

the Lyapunov case, in order to derive conditions on when a good approximation by low rank

factors can be achieved. Other approaches use LDLT type representations with thin L and

small square D, data sparse representations based on block low rank factorizations, such as

H-matrices, or even more sophisticated tensor structured forms like, e.g., tensor trains. We

will briefly get back to these in Section 8.

An important question common to all iterative solver approaches is that of stopping the

iteration. Usually the norm of the residual is the property of choice here. Concrete bounds for

the smallness of the residual should be chosen carefully, taking the data in the equation into

account. When the right hand side has moderate size, its norm may be used to normalize the

residual norm. In case it is very small one should better take the norms of F and Zi, or A,E
and Z into account in backward error style instead, in the Lyapunov equation case. The same
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considerations should be undertaken with respect to the constant term in the Riccati equation

case.

The remainder of this paper is structured as follows. We review early approaches to pro-

jection based solution of equations (2) and (3) in Section 3. Section 4 discusses the important

class of extended Arnoldi based Krylov subspace projection methods. In Section 5 we in-

troduce low rank ADI based solvers for both Lyapunov and Riccati equations. Recently,

doubling-type algorithms for algebraic Lyapunov and Riccati equations have received consid-

erable attention. A thorough discussion of these methods is beyond the scope of this paper,

but we provide a brief summary in Section 6. Extensions of the discussed methods to some

generalizations of the algebraic matrix equations considered here are the topic of Section 7.

We dedicate Section 8 to some recent additions to the field and extensions of the methods

discussed here to more general problem settings.

2 Low Rank Approximation of Solutions

The key to the successful solution of large scale Lyapunov and algebraic Riccati equations is

to avoid forming the full solution matrix, as this is a usually dense n × n matrix. Though

symmetric, for n > 1000, it becomes a challenging task to even store such a matrix, and,

even worse, computing all n(n + 1)/2 entries needs at least O(n2) operations even if the

coefficient matrices are sparse. Most current approaches rely on the low rank representation

of solutions in the form X ≈ ZZH for a possibly complex factor Z with k � n columns.

Other possibilities have also been suggested and as already mentioned above, will briefly be

discussed later in the paper.

In several contributions [3, 26, 48, 53, 61], it is shown that under certain assumptions, the

eigenvalues of the solution to Lyapunov equations decay fast. This allows to approximate the

solution by

X ≈ Xk :=

k∑
j=1

λjzjz
H
j ,

where Xzj = λjzj with ordered eigenvalues λ1 ≥ λ2 ≥ . . . λn ≥ 0 and low-rank factor

Z = [
√
λ1z1, . . . ,

√
λkzk ] constructed using the dominant eigenvectors of X , scaled by the

square roots of the corresponding eigenvalues. If k is small compared to n, then this is a very

good low-rank approximation Xk = ZZH satisfying the obvious spectral norm error bound

‖X −Xk‖2 ≤ λk+1,

if the decay is fast enough such that λk+1 ≤ τ for an acceptable error tolerance τ . Then

the desired low-rank approximation with storage requirements of only nk words of memory

is obtained. Of course, this is not a practical alternative as we would need to compute X
first to determine its eigenvectors. Therefore, we will discuss in the next sections methods

that compute low-rank factors Z by iterative processes, avoiding the forming of X . Here, we

want to show one way to understand why good low-rank approximations can be expected.

This yields an intuition more than a quantitative way of determining a practical estimate of a

good low rank, but in contrast to some other approaches discussed in the literature, it extends

without much ado to generalized situations as in Section 7.
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We basically follow the approach discussed in [26]. The starting point, considering for

ease of derivation a standard Lyapunov equation

AX +XAT +BBT = 0,

with A asymptotically stable and B ∈ Rn×m, is the solution formula (see, e.g., [2])

X =

∫ ∞

0

eAtBBT eA
T t dt.

Applying a suitable quadrature formula leads to the approximation

X ≈
k∑

j=1

ωje
AtjBBT eA

T tj ,

with quadrature points tj and weights ωj , where only quadrature formulas with positive

weights should be chosen in order to obtain a real low-rank approximation ZZT . This ap-

proximation is obviously of rank km at most.

It is all but clear that this is in general a good approximation. But in [26] it is shown that

if one chooses k = 2K + 1 sinc quadrature points with appropriate weights [57], one obtains

an approximation satisfying

‖X −X(2K+1)m‖2 � exp(−π
√
K) (6)

with the square root of K replaced by K for symmetric A. We omit the quite technical exact

statement from [26], yielding exact expressions for the involved constants. Here we only note

that under mild assumptions, we can expect a good low-rank approximation if m � n.

3 Projection Methods for Solving Large Scale Matrix Equations

In this section we review the basic ideas of projection based solution of large scale matrix

equations. We base the presentation on a general lower dimensional subspace of Rn and get

into more detail for two special classes of subspaces in the next section.

Let U ∈ R
n×k with UTU = Ik the identity matrix of dimension k × k. Then the columns

of U span a k-dimensional subspace U ⊂ Rn and PU = UUT is the canonical orthogonal

projection onto U . The basic idea of projecting Lyapunov equations to such subspaces to get

an approximation to the solution goes back to Saad [51]. It was picked up by Jaimoukah and

Kasenally to formulate their Krylov subspace methods for solving large Lyapunov equations

[32]. The idea of choosing a Krylov subspace was then further extended by Simoncini and

co-authors to using extended and rational Krylov subspaces. The common approach in all

these contributions is to solve a projected Lyapunov equation

UTFUY + Y UTFTU = −UTGGTU (7)

instead of (3). Then compute Y = CTC via the Cholesky or eigendecomposition of the

projected solution Y and consider Z = UCT as the approximation of the Cholesky factor

of the solution. In case the solution is not accurate enough, e.g., judging from the residual

www.gamm-mitteilungen.org © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



36 P. Benner and J. Saak: Numerical solution of large and sparse matrix equations

computed from inserting ZZT into (3), then an extension and/or update of the subspace U
needs to be found to increase the quality of the approximate solution.

A common limitation to all projection based solvers is the requirement for the projected

matrix UTFU to remain Hurwitz (i.e., all eigenvalues lie in the open left half plane) to guar-

antee solubility of (7). This is usually guaranteed by assuming that the matrix F fulfills

F + FT < 0 which employing Bendixon’s theorem [43] is a sufficient condition for UTFU
being Hurwitz for any U as defined above.

Reminiscent of the analysis of the GMRES method for standard linear systems, Mikkelsen

[46] shows that the projection method resulting from the choice of the Arnoldi subspace for

U may converge arbitrarily bad. In practice these methods have not been competitive with

the low rank ADI or Smith type iterations presented in Section 5 until the investigation of the

extended Arnoldi based approach by Simoncini [54].

The corresponding results for the algebraic Riccati equation have been worked out by

Jbilou and co-authors in a series of papers since 2003 [30, 33, 34], but the basic idea was

also already treated in the paper by Jaimoukah and Kasenally [32]. The projected Riccati

equation corresponding to (4) in complete analogy to (7) can be expressed as

C̃T C̃ + ÃTY Ẽ + ẼTY Ã− ẼTY B̃B̃TY Ẽ = 0, (8)

where the coefficient and data matrices are defined as C̃ = CU , B̃ = UTB, Ã = UTAU , and

Ẽ = UTEU . However, the condition F + FT < 0 relaxes here just as asymptotic stability

is replaced by stabilizability for the solvability conditions in Section 1. That means we do not

require the Hurwitz property for the symmetric part of E−1A itself, but for the corresponding

stabilized closed loop matrices.

4 Extended and Rational Krylov Subspace Methods

Druskin and Knizherman [21] introduced extended Krylov subspaces — a combination of

the Krylov subspaces Km(F,G) and Km(F−1, G) generated with respect to F and F−1 —

as a new class of subspaces for the approximation of matrix functions. The close relation of

the solution X of (3) to the matrix exponential motivates the use of this combined subspace

as the subspace U in the projection methods introduced in the previous section. Around 2006

Simoncini [54] came up with the idea of applying this exact subspace in her method that was

initially known as KpiK (Krylov plus inverse Krylov) observing that the above subspace is

equivalent to the space K2m(F, F−mG). For the case G ∈ Rn , i.e., Lyapunov equations

related to systems with a single input or output, it is summarized in Algorithm 1. In case

Algorithm 1 is fed with a nontrivial symmetric positive definite (spd) E matrix, it performs a

system transformation of (1), employing a Cholesky factor L of E, into the form

˙̃x(t) = Ãx̃(t) + B̃u(t),

y(t) = C̃x̃(t) +Du(t),

where x̃(t) = Lx(t), Ã = L−1AL−T , B̃ = L−1B and C̃ = CL−T . For the corresponding

Lyapunov equations (2) we then find

ÃP̃ + P̃ ÃT = −B̃B̃T , ÃT Q̃+ Q̃Ã = C̃T C̃, (9)
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Algorithm 1 Extended Krylov Subspace Method (EKSM)

Input: E, A, B as in (2) with E−1A+ATE−T < 0
Output: Z ∈ Rn×k with X ≈ ZZT in (2)

1: if E = I then

2: Set F = A, G = B
3: else

4: Compute Cholesky decomposition LLT = E
5: Set F = L−1AL−T , G = L−1B
6: end if

7: V1 = orth([G, F−1G])
8: i = 2, U = V1

9: while (i <maxiter) do

10: Fi = UTFU and Gi = UTG
11: Solve FiYi + YiF

T
i = −GT

i Gi for Yi

12: if (converged) then

13: if (E = I) then

14: Z = U chol(Yi) and STOP

15: else

16: Z = L−TU chol(Yi) and STOP

17: end if

18: end if

19: Vi+1 =
[
F U(:, 2j − 1), F−1 U(:, 2j)

]
20: Orthogonalize Vi+1 with respect to U
21: Orthogonalize Vi+1 internally

22: U = [U, Vi+1]
23: i = i+ 1
24: end while

where

P̃ = LTPL and Q̃ = LTQL. (10)

Algorithm 1 then in fact solves the first equation in (9) and performs the inverse transformation

according to (10). Note that the spd restriction on E is taken only for ease of representation.

For more general non-singular E it is simply replaced by an LU decomposition in the above.

Note further that the transformation of the A matrix should never be performed explicitly

forming Ã, orF , in the algorithm. Instead, the inversions ofR should be performed as forward

or backward solves employing a precomputed (and stored) LU decomposition, whenever the

matrix is applied. As an alternative to the decomposition approach one can try to formulate

the algorithm in terms of E−1A solving with E whenever the inverse would be required. This

way one can avoid the extra memory consumption caused by Cholesky factors at the cost of

loosing the easy residual recurrence.

Today the method is more often referred to as extended Krylov subspace method (EKSM)

reflecting the origin of the spaces in [21]. The same name was also used in the corresponding

article on the projection based solution of matrix Riccati equations (4) employing the same

subspace [30]. That means equation (8) is treated with a matrix U whose columns span a
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subspace generated by an extended (block) Arnoldi process applied to the pair (AT , CT ), i.e.

U = Km(AT , CT ) in the k-th step.

In the area of matrix functions (where [21] belongs), the extended Krylov subspace relates

to a series expansion in frequency domain at frequencies 0 and∞. The natural idea to increase

the accuracy from that point of view is to add or use expansion points at intermediate frequen-

cies. This relates to the projection onto rational Krylov subspaces, which is also investigated

and compared to the ADI based approach in [20].

Stopping Criteria. One key ingredient for the efficiency of the EKSM method is the obser-

vation [54] that the residual norm in the k-th step can be computed via

∣∣∣∣FZZT + ZZTFT +GGT
∣∣∣∣ = ∣∣∣∣GT

k FkYk

∣∣∣∣ , (11)

i.e., based only on small projected data and avoiding the explicit forming of the full residual,

or even the factor Z . Unfortunately this formulation only applies to Lyapunov equations of

the form (3) and can not be extended to those in (2). Thus the Cholesky decomposition of E
in Algorithm 1 together with the additional memory requirements for R can not be avoided.

Note further that R is used in the entire algorithm to avoid explicit forming of F , which

would easily become dense. The treatment of non invertible E matrices can be found in [60].

However, only computable estimates to the residual norm have been proved so far in that case.

5 Low Rank Cholesky Factor ADI and Newton ADI

The second class of solvers we discuss is that of alternating directions implicit (ADI) based

iterative methods. The core ADI iteration for an equation of the form (3) that underlies all

these methods is

X0 = 0

(F + piI)Xi− 1

2

= −GGT −Xi−1(F
T − piI),

(F + piI)X
T
i = −GGT −XT

i− 1

2

(FT − piI).

(12)

The parameters pi here are the so called ADI shifts that have to be determined prior to the

execution to accelerate the convergence. Some details on the choice are given below. The low

rank Cholesky factor ADI (LRCF-ADI) iteration computes a symmetric rectangular factor-

ization of the solution X . It is described briefly in Section 5.1. Algebraic Riccati equations

like (4) are often solved using a Newton like iterative method due to Kleinman [35]. There

in every step of the iteration, a Lyapunov equation is solved. The procedure employing the

LRCF-ADI in these iteration steps and thus computing a low rank approximation of the solu-

tion is abbreviated NM-ADI and presented in Section 5.2. In both cases we discuss stopping

criteria and recent variants of the algorithms trying to accelerate the solution process.

Solving for Xi− 1

2

in the second equation of (12) and inserting it into the third one leads to

the one step update formula

Xi =(F − piI)(F + piI)
−1Xi−1(F − piI)

T (F + piI)
−T

− 2pi(F + piI)
−1GGT (F + piI)

−T .
(13)
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Algorithm 2 Low-rank Cholesky factor ADI iteration (LRCF-ADI)

Input: E, A, B as in (2) and ADI shifts pi, i = 1, . . . , maxiter.

Output: Z ∈ Rn×k with P ≈ ZZT in (2)

1: Z0 = []
2: i = 1
3: while (not converged) and (i <maxiter) do

4: if i = 1 then

5: Solve (A+ p1E)V1 = B for V1.

6: else

7: Solve (A+ piE)Ṽ = EVi−1 for Ṽ .

8: Vi = Vi−1 − (pi + pi−1)Ṽ .

9: end if

10: if pi ∈ R then

11: Vi = Re (Vi).
12: Update LRCF Zi = [Zi−1,

√−2piVi].
13: else

14: α = 2
√
−Re (pi), β = Re (pi)

Im (pi)
.

15: Vi+1 = Vi + 2β Im (Vi).

16: Update LRCF Zi+1 =
[
Zi−1, α (Re (Vi) + β Im (Vi)) , α

√
(β2 + 1) · Im (Vi)

]
17: i = i+ 1
18: end if

19: i = i+ 1
20: end while

Thus, if Xi−1 is real and symmetric so will be Xi. Especially, the symmetry of the update

can be used to derive a low rank update formula [12, 47] by inserting Xi−1 = Zi−1Z
H
i−1 and

Xi = ZiZ
H
i , yielding

Zi =
[
(F − piI)(F + piI)

−1Zi−1,
√
−2pi(F + piI)

−1G
]
. (14)

This update for the factor Zi is the foundation of the algorithm discussed in Section 5.1.

Convergence of the Iteration. The iteration in (12) can be viewed as a double relaxation of

a splitting method applied to the Lyapunov equation. Therefore it is not very surprising that

the convergence result here comes in the form of a fixed point argument as well. The error

reduction here basically takes place with respect to the matrix WJ =
∏J

i=1 Rpi
for a shift

vector p ∈ RJ and

Rpi
= (F − piI)(F + piI)

−1(F + piI)
−T (F − piI)

T .

The acceleration of the worst case convergence of the iteration can thus be expressed in terms

of the spectral radius of WJ and minimized by a clever choice of the elements of p, i.e., the

ADI shifts pi in the rational min-max-problem [63, 64]

min
pi∈C<0,
i=1,...,J

max
λ∈Λ(F )

J∏
i=1

|pi − λ|2
|pi + λ|2 .
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5.1 LRCF-ADI

As mentioned above, we are interested in low rank factored representations of the solution and

we would like to compute the factors successively. After some further manipulation of equa-

tion (14) [38], one finds that in fact only the new columns in the low rank factor update have

to be processed, instead of all columns as in the naive approach. The extension of the result-

ing algorithm to the case of systems (1) with E �= I but regular is then straightforward (see,

e.g., [5,52]) by applying the aforementioned steps to F = E−1A and avoiding the inverses in

the steps of the algorithm. This procedure together with a recent strategy to guarantee real low

rank factors [10] results in Algorithm 2. The case of singular E is discussed in Section 7.1.

Variants. Over the recent years some variants of the above algorithm have been proposed.

Most of them are slight modifications to the above algorithm to exploit special problem struc-

tures or improve performance where necessary. A performance increase can for example be

found in some cases, when a column compression step for the factor Zi is added prior to

the evaluation of the stopping criteria. This is especially helpful in the context of Lyapunov

equations that arise in each time step of Rosenbrock solvers applied to differential Riccati

equations (e.g., [45]), since there already the right hand side factor may contain linearly de-

pendent columns. Note that also the EKSM or RKSM easily allow for such a compression

replacing the Cholesky decomposition of Yi by an SVD or eigendecomposition approach and

truncation by the magnitude of the singular or eigenvalues, respectively. A method that takes

the ADI iteration into the context of those solvers was described in [14]. There the rational

Krylov subspace formed by the columns of the solution factor during the ADI iteration is

used to perform a projection step as in the projection methods to improve the solution. In that

sense this method should be regarded as a projection method employing a very special ratio-

nal Krylov subspace. However, in their performance analysis Simoncini and co-authors [20]

prove that RKSM always performs at least as good as this algorithmic variant of LRCF-ADI.

Stopping Criteria. The two most common stopping criteria for the iteration in Algorithm 2

are based on monitoring either the relative change of the factor Z , i.e.,

pi ∈ R : rci =

∣∣∣∣√−2piVi

∣∣∣∣
F

||Zi||F
,

pi ∈ C\R : rci = α

∣∣∣
∣∣∣[Re (Vi) + β Im (Vi),

√
(β2 + 1) · Im (Vi)]

∣∣∣
∣∣∣
F

||Zi||F
,

or the residual of the current iterate L(Zi) := FZiZ
T
i E

T +EZiZ
T
i A

T +GGT for smallness.

The relative change is advisable to be measured in the Frobenius norm since there ||Zi||F
can be accumulated from the enumerators.

Only recently a low rank representation of the residual has been derived in [11]. Exploiting

the equivalence of the Lyapunov equation to a Stein equation (compare Section 6.1) in the

same way it is done in [31] to prove the definiteness of the residual for all iterates in the

process, it can be observed to be of the following low rank structure:

L(Zi) = (F − piE)ViV
H
i (F − piE) =: V̂iV̂

H
i . (15)
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Here the shifted multiplications are remaining from the reverse transformation from Stein

equation form. It can further be shown that

V̂i = V̂i−1 − 2Re (μi)EVi,

providing an easy update formula which saves the additional shifted matrix vector product.

From this representation for both the spectral and Frobenius norms it immediately follows

||L(Zi)|| =
∣∣∣
∣∣∣V̂iV̂

H
i

∣∣∣
∣∣∣ =

∣∣∣
∣∣∣V̂ H

i V̂i

∣∣∣
∣∣∣ =

∣∣∣
∣∣∣V̂i

∣∣∣
∣∣∣2 .

Note that in case projections are used to accelerate the iteration, the residual formula (15)

is no longer valid. In that case V̂i would have to be projected onto the orthogonal complement

of the space to which the projection was performed. Unfortunately, this is not possible effi-

ciently. A Frobenius norm computation based on QR-factorization updates was proposed in

the LyaPack software package by Penzl [49].

Alternatively one can employ the spectral norm. Due to symmetry and definiteness (see,

e.g., [31]) of the residual it coincides with the largest magnitude eigenvalue and one may use

a Lanczos method to get a good approximation quickly.

5.2 NM-ADI

The Newton iteration applied to solving the algebraic Riccati equation received only minor at-

tention until around the year 2000. Until then it was mainly considered an iterative refinement

technique used to increase the accuracy of a solution acquired by a direct, invariant subspace

based method for solving the equation with dense coefficient matrices. With the ability to

solve large and sparse Lyapunov equations, however, it became the method of choice for the

solution of large scale Riccati equations. The version of the Newton iteration that is used in

the NM-ADI is due to Kleinman [35]. Its main advantage over the classic Newton method is

the greatly simplified right hand side in the Lyapunov equation that has to be solved in each

step.

The following paragraph summarizes the origins of the iteration and derives the structure of

the Lyapunov equations resulting from the Kleinman reformulation. Often, the algebraic Ric-

cati equation is solved in order to compute the optimal feedback in a linear quadratic optimal

control problem. Then the ADI based solution of the Lyapunov equations in the Newton steps

allows for a reformulation that avoids the computation of solution factors and instead only

implicitly uses them to form successively improved approximations of the optimal feedback.

This procedure will be sketched, together with other variants of the basic iteration, thereafter.

The same reformulation trick can be employed to implement an inexact Kleinman-Newton

method following the theory developed in [22,31], which will also be reviewed shortly. In the

final paragraph of this section we get back to the problem of stopping the iteration.

Kleinman-Newton-Formulation. Consider the ARE (4) and define the left hand side as

R(X). Then the �-th basic Newton iteration step can be formulated as

R
′|X(N�) = −R(X�), X�+1 = X� +N�. (16)
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Algorithm 3 Low-rank Kleinman-Newton-ADI iteration (NMADI)

Input: E, A, B, C as in (4) and an initial guess K0 for the feedback.

Output: X∞ solving (4) and the optimal state feedback K∞ (or approximations when

stopped before convergence).

1: for k = 1, 2, . . . do

2: Fk = A−BKT
k−1

3: Gk = [CT , Kk−1]
4: Choose a set of ADI shift parameters with respect to Fk .

5: Determine the solution factor Zk of the solution Xk of

FT
k XkE + ETXkFk = GkG

T
k

by Algorithm 2.

6: Kk = (ETZk)(Z
T
k B).

7: end for

where

R
′|X : N �→ (A−BR−1BTX)TNE + ETN(A−BR−1BTX), (17)

is the Frechét derivative of R at X . Kleinman’s contribution now was the reformulation of

the step such that it does not provide the update N� of the iterate, but the new iterate itself. In

other words he uses R′(N�) = R
′(X�+1 −X�) = R

′(X�+1)−R
′(X�) to derive

(AT −K�−1B
T )X�+1E + ETX�+1(A−BK�

T ) = −CTC −K�K�
T

= −[CT , K�][C
T , K�]

T .
(18)

This obviously has the additional advantage of the simplified right hand side, which especially

can be written in low rank format. The latter observation shows that in fact the step equation is

of the form (3) with a low rank updated sparse matrix as the coefficient F , which we call splr

(for sparse plus low rank following [52, Definition 4.2]). This equation can now be solved by

any of the methods for large and sparse Lyapunov equations described above. Here the ADI

has certain advantages when only the feedback gain matrix and not the actual solution of the

ARE is of interest, as we will see in the next paragraph. The application of Krylov subspace

based solvers is investigated especially for the inexact Kleinman-Newton case recently in [55].

Whenever linear systems with an splr F or a shifted splr F need to be solved, the Sherman-

Morrison-Woodburry (SMW) formula (e.g. [25])

(M + UV T )−1 = M−1 −M−1U(I + V TM−1U)−1V TM−1, (19)

for a sparse matrixM and thin rectangular blocksU andV , is applied to avoid explicit forming

of the dyadic product. In the special case of F = A − BKT
(�−1) this means solving a linear

system with F (or F + piI) requires two solves with A (or A − piI) and an additional small

linear solve with an m×m matrix.

A major difficulty of the Newton procedure for initially unstable systems is the need for

an initial stabilizing feedback K0, such that the matrix pencil A − BKT
0 − λE is Hurwitz,

www.gamm-mitteilungen.org © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



GAMM-Mitt. 36, No. 1 (2013) 43

in order to guarantee solvability of the Lyapunov equation (18). The task of computing this

stabilizing initial feedback K0 is numerically challenging itself. For dense problems (par-

tial) stabilization methods based on pole placement or solving certain Lyapunov equations

have been existing in the literature for years. Their extension to the large and sparse case is

considered, e.g., in [1, 4, 24, 50]. An alternative approach that has been used for distributed

parameter systems is given by the Chandrasekhar iteration [17]. The Bernoulli equation based

partial stabilization technique in [6] is especially attractive when the unstable eigenvalues are

known, or easy to find, together with their eigenspaces and when their number is very small

in comparison to n.

The basic Kleinman-Newton-ADI procedure is summarized in Algorithm 3. In the next

paragraph we will discuss some variants of this iteration that can save some computation time

in certain situations.

Variants. One of the most important observations when using ADI as the inner iteration for

the Kleinman-Newton process is that due to the way the solution factor is formed in the low

rank ADI iteration, the feedback approximation can be accumulated without ever storing the

entire solution factor. Recall that the low rank ADI iteration successively adds new column

blocks to the factor (e.g., Z
(i)
k = [Z

(i−1)
k ,

√−2piVi] as in Step 12 of Algorithm 2). Then for

the feedback update we have

K
(i)
k = ETZ

(i)
k Z

(i)
k

T
B = ET

(
Z

(i−1)
k Z

(i−1)
k

T − 2piViV
T
i

)
B

= ETZ
(i−1)
k Z

(i−1)
k

T
B − 2piE

TViV
T
i B

= K
(i−1)
k − 2piE

TViV
T
i B.

This observation does not only lead to an implicit Kleinman-Newton-ADI iteration directly

iterating on the feedback, but also helps formulating an inexact Kleinman-Newton-ADI itera-

tion controlling the accuracy of the inner iteration to further reduce the execution time.

Since the update of the Frechét derivative is mainly given for free in the context of Kleinman-

Newton, the way of forming a simplified Newton type iteration is achieved by freezing the

ADI shifts for a couple of steps. If the closed loop matrix Fk did not change very much, the

loss in convergence speed for the ADI is easily compensated by the time saved in skipping the

parameter computation. However, this approach should be used with care since it can in the

worst case increase the total execution time when Fk changes a lot from step to step.

An idea that is often used to optimize execution times in Newton type iterations is that

of a line search for determining the best step length. In the large scale Newton-ADI setting

this idea showed to be too expensive to provide any gains in execution time, though. On the

other hand, getting away form a preprocessed optimization with respect to a one dimensional

subspace and instead applying a post processing Galerkin projection step as described in Sec-

tion 3 for the Lyapunov case, one can extend the optimization to an even higher dimensional

subspace. As the projection basis one can use the span of the current solution factor as de-

scribed before. Numerical results in [14] show that this can easily lead to the Newton iteration

being stopped after just one step.
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Inexact Kleinman-Newton. As a consequence of what we have seen before (18), the inex-

act Kleinman-Newton step can be written in the form

R� = R
′|X�

(X�+1)−R
′|X�

(X�) +R(X�) = R
′|X�

(X�+1 −X�) +R(X�), (20)

where R� denotes the inner residual (i.e., the Lyapunov/ADI residual) representing the inex-

actness allowed for the solution of the inner iteration. Exploiting the expansion (see, e.g., [31])

R(Y ) = R(X) +R
′|X(Y −X) +

1

2
R

′′|X(Y −X,Y −X),

and comparing terms with (20) we can derive an expression for the Riccati residual

R(X�+1) = R� +
1

2
R

′′|X�
(X�+1 −X�, X�+1 −X�)

= R� +
1

2
R

′′|X�
(N�, N�) = R� − 1

2
ETN�BBTN�E,

(21)

in terms of the inner residual and the change of the feedback gain matrix

ETN�BBTN�E = ET (X�+1 −X�)BBT (X�+1 −X�)E

= X�+1BBTX�+1 +X�BBTX�

−X�BBTX�+1 −X�+1BBTX�

= KT
�+1K�+1 +KT

� K� −KT
�+1K� −KT

� K�+1

= (K�+1 −K�)
T (K�+1 −K�).

Since the inner residual is monitored in the inner iteration anyway, and the feedback gain

matrix can be successively accumulated, this allows us to steer the accuracy of the inner

iteration. Note that (21) especially shows us that the Riccati residual is of rank at most (m+
p) + m = 2m + p following from the rank of the right hand side in (18) (together with the

result in (15)) and the observation above. Similar results for the Riccati residual have been

derived from the Krylov subspace projection perspective in [55].

Stopping Criteria. The arguments regarding equation (15) for the Lyapunov case together

with the expression in (21) allow us to directly extend the cheap evaluation of residuals to the

Riccati case. Again, this can only be used when Galerkin projection is not applied. Also here,

however, the residual can cheaply be approximated by a few steps of Lanczos algorithm due

to symmetry.

In the case of the inexact Kleinman-Newton approach, equation (21) can be used to guar-

antee the validity of the conditions [22, 31]

0 ≤ R� ≤ CTC and 0 ≤ R� ≤ ETN�BBTN�E,

that ensure convergence towards the stabilizing solution. Here the semi-definiteness of R� is

a direct consequence of the derivation of (15). Alternatively the quadratic convergence can be

enforced via

‖R̃(X�+1)‖2 ≤ γ

(
‖R�‖2 + 1

2
‖[K�+1 −K�]

T [K�+1 −K�]‖2
)

≤ ε� := αR̃(X�)
2

for an α < 1, γ = 1
‖CTC‖2

and R̃(.) = γR(.) the normalized residual.
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6 Doubling Based Approaches

In a sequence of papers Chu and co-workers have introduced doubling based algorithms for all

kinds of large scale matrix equations. Their contributions for the continuous time Lyapunov

and Riccati equations can be found in [41] and [39]. We briefly recall their main ideas here.

6.1 Doubling for Large Scale Lyapunov Equations

Basically the doubling approach for large scale Lyapunov equations boils down to a variant

of the Smith method [56] for solving the equivalent Stein equation generated through Cayley

transformation for a positive, real shift μ,

X = FT
μ XFμ +GμTμG

T
μ , (22)

where Fμ = (F +μI)(F −μI)−1 = I +2μF , Gμ = (F −μI)−TG, and Tμ = −2μI . Note

that due to the assumptions on F , here Fμ is d-stable, i.e., for the spectral radius of Fμ we

have �(Fμ) < 1. Successively inserting the right hand side in (22) into itself and exploiting

that F 2k

μ → 0 quadratically as k → ∞, one finds (see [41] for details) that

X = lim
k→∞

Hk, where Hk =

2k−1∑
i=0

(F i
μ)

TGμTμG
T
μF

i
μ. (23)

The basic recurrence for the iteration then is

Hk+1 = Hk + FT
μ,kHkFμ,k = Gμ,k+1Tk+1G

T
μ,k+1,

Gμ,k+1 = [Gμ,k, F
T
μ,kGμ,k],

Tk+1 = Tk ⊕ Tk =

[
Tk 0
0 Tk

]
,

(24)

with initial values

Fμ,0 = Fμ, Gμ,0 = Gμ, T0 = Tμ, H0 = Gμ,0T0G
T
μ,0 = GμTμG

T
μ .

Obviously the number of columns in Gμ,j and thus the size of Tj doubles in every iteration

step. To limit the memory demand and keep the iteration computationally efficient, the authors

introduce an additional rank truncation strategy, which they claim to be the major advantage

as compared to older Smith type iterations, as discussed, e.g. in [47]. Note, though, that

column compression techniques were already available in [49] and were also discussed in the

variant of the Smith iteration in [28].

6.2 Doubling for Large Scale Riccati Equations

The general idea in the case of continuous time algebraic Riccati equations (4) is essentially

the same. First a transformation into a discrete time algebraic Riccati equation

X = ATXA−ATXB(I +BTXB)−1BTXA+H (25)
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or equivalently (employing the SMW formula (19) with G = BBT )

X = ATX(I +GH)−1A+H (26)

is performed via Cayley transformation, as in the Lyapunov case. Then the actual doubling

algorithm is performed on the resulting discrete time matrix equation as above. We refer to

the original papers [39, 40] for the details, since their derivation is to involved to include a

compact version in the presentation at hand.

7 Generalized Linear Matrix Equations

In this section we discuss two important generalizations of the linear matrix equations above

that can be found in the literature. On the one hand we treat systems (1) with rank deficiency in

the E matrix, i.e., differential algebraic equation (DAE) systems, on the other hand, we touch

the case of linear stochastic and bilinear systems which both lead to the same generalization

of (3).

7.1 Projected Lyapunov Equations Related to DAE systems

The main contributions to this area are due to Stykel. They can be found, e.g., in [44] and

references therein. Following the presentation there, we allow E to be singular, but assume

regularity of the pencil λE−A, i.e., we can always find a λ ∈ C such that det(λE−A) �= 0.

Then (see, e.g. [58]), the pencil can be written in Weierstrass canonical form

E = U

[
Inf

0
0 N

]
V, and A = U

[
J 0
0 In∞

]
V, (27)

where J is in Jordan canonical form and N is nilpotent. The nilpotency index of N can be

used to define the nilpotency index of the DAE. In the case of linear systems with constant

coefficients this concept coincides with the differentiation index describing the number of

times the system, or parts of it, need to be differentiated to result in an ordinary differential

equation system. The numbers n∞ and nf describe the dimensions of the deflating subspaces

corresponding to the infinite or finite eigenvalues of the pencil. The transformation matrices

in (27) can now be used to define the left and right spectral projection matrices

Πl = U−1

[
Inf

0
0 0

]
U and Πr = V

[
Inf

0
0 0

]
V −1 (28)

mapping onto the left and right deflating subspaces corresponding to the finite eigenvalues.

The two Lyapunov equations of interest when extending Balanced Truncation model order

reduction to the DAE system, together with the appropriate invariance conditions for their

solutions, can then be expressed as

APpE
T + EPpA

T = −ΠlBBTΠT
l , Pp = ΠrPpΠ

T
r ,

ATQpE + ETQpA = −ΠT
r C

TCΠr , Qp = ΠT
l QpΠl.

(29)
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Spectral Projection Based Low Rank ADI for Projected Lyapunov Equations. For the

types of equations introduced above, Stykel [59], roughly speaking, formulates Algorithm 2

for F = A−1E with shifts μi = 1
pi

assuming that A is non-singular when E is not. The

positive observation for the resulting algorithm is that it automatically fulfills the additional

invariance conditions for each iterate (and thus the final factor) during the process once the

initial right hand sides have been projected properly. The major drawback is the necessity for

the spectral projectors to the finite spectrum of the pencil. These are in general not easy to

obtain. Therefore, other authors have developed variants of the LRCF-ADI that avoid these

projections. These are discussed below. An extension of the NM-ADI from Subsection 5.2

for projected algebraic Riccati equations is derived in [15].

Alternative Approaches Avoiding the Spectral Projections. For simple index-1 systems

the authors of [23] show that the index reduction can be performed implicitly. The key ingre-

dient in their idea is that the index-1 system can always be written in the form

[
E11 0
0 0

]
ẋ(t) =

[
A11 A12

A21 A22

]
x(t) +

[
B1

B2

]
u(t),

with an invertible A22 matrix. Then they formulate the ADI iteration with respect to the Schur

complement in A and show that the inversion of A22 can in fact be avoided when solving the

shifted linear systems by undoing the Schur complement. This way the whole algorithm can

be formulated in terms of the original matrices and the index reduction performed by the

Schur complement is never executed explicitly. A similar approach, implicitly projecting to

the hidden manifold describing the solution set of the DAE system, is pursued for index-2

systems of Stokes-like block structure

[
E11 0
0 0

]
ẋ(t) =

[
A11 A12

AT
12 0

]
x(t) +

[
B1

B2

]
u(t)

in [29]. Although technically more involved, the basic structure of the approach is very sim-

ilar. First the special structure of the Stokes-like equation is exploited to form the oblique

projection matrix

ΠT = I − E−1
11 A12(A

T
12E

−1
11 A12)

−1AT
12,

onto the aforementioned hidden manifold, which in the Stokes case coincides with the discrete

Leray projection onto the space of divergence-free functions, and the corresponding projected

system. Note that Π is in fact symmetric in the E11-inner product.

Then the algorithm is formulated based on the projected, index reduced (ordinary differ-

ential equation) system and finally the equivalence of the projected shifted linear systems that

need to be solved in the ADI step to certain saddle point systems involving the original prob-

lem structure is shown. Exploiting this equivalence to avoid forming of the projected systems

and projectors in the final algorithm enables the implicit index reduction here as well.

EKSM for the Projected Lyapunov Equations. In the case of the EKSM for projected

Lyapunov equations [60], the most critical question is which construction is replacing the

matrix F in Algorithm 1. Due to non-invertibility of E neither E−1, nor the inverses of its
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Cholesky factor can be formed. Also the approach employing F = A−1E used by Stykel

in the ADI case is not straight forward. In the EKSM one needs to invert F which is still

not possible. Fortunately the inverse can be replaced by a proper pseudo inverse to make the

algorithm work again. The pseudo inverse of choice here is the Drazin inverse [18] FD =
E−A employing the reflexive generalized inverse

E− = V −1

[
Inf

0
0 0

]
U−1,

with U , V , and Inf
from (27). For the stopping criteria the method exploits the equivalence

of the first equation in (29) to

E−APp + Pp(E
−A)T = −E−BBT (E−)T , Pp = ΠrPpΠ

T
r ,

terminating when the normalized equivalent residual satisfies

‖E−Rk(E
−)T ‖F

‖E−BBT (E−)T ‖F ≤ tol.

HereRk represents the original residual inserting the current iterate in (29). The equivalence is

exploited since ‖E−Rk(E
−)T ‖F can be represented in a similar way as (11) and thus Rk can

be estimated by the same cheaply computable expression with ‖E‖2F as the proportionality

factor.

7.2 Lyapunov-plus-positive Equations

A different generalization of the Lyapunov equation (3) consists in adding one or more posi-

tive terms
∑�

k=1 NkXNT
k (with Nk ∈ Rn×n) so that one obtains

FX +XFT +

�∑
k=1

NkXNT
k = −GGT . (30)

This linear matrix equation is called Lyapunov-plus-positive equation for obvious reasons.

Positivity here means that the operator X → NkXNT
k preserves positive semidefiniteness.

This equation arises in control and model reduction of bilinear systems of the form

ẋ(t) = Fx(t) +

m∑
k=1

Nkx(t)uk(t) +Bu(t),

y(t) = Cx(t),

(31)

with F ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and u(t) = [u1(t), . . . , um(t)]T ∈ Rm, as well

as in linear stochastic Itô-type systems driven by Wiener processes, see [9] and references

therein. In the bilinear case (31), where G ≡ B, the number of terms in the sum in (30)

obviously equals the number of inputs and therefore � = m, while in the stochastic setting, �
denotes the number of independent Wiener processes driving the system. In both cases, under

certain assumptions, the reachability and observability Gramians of the systems are given as

the solutions of equations of the form (30). It is therefore natural to ask how these equations

can be solved in a large-scale setting as considered here.
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Direct and iterative procedures to solve (30) for the full X are discussed in [19], while

in [8] it is shown that for many applications, one can expect good low-rank approximations to

X by adapting the bound (6) to the situation considered here. Though the assumptions made

for proving the existence of low-rank approximations to X (low-rank structure of all Nk or

commutativity of the Nk and F ) are restrictive, solutions to (30) often exhibit numerical

low-rank properties even if these assumptions are violated. The latter fact requires further

investigation. Based on the assumed low-rank property, several strategies how such low-

rank approximations can be computed are discussed in [8]. This includes variants of the

ADI method discussed in Section 5 as well as the extended and rational Krylov subspace

methods reviewed in Section 4. For (30), it appears to be more effective, though, to use

adapted variants of the preconditioned Krylov subspace solvers with truncation discussed in

[36]. The experiments reported in [8] indicate that a promising preconditioner is derived

based on using a low, fixed number of ADI steps (using the ADI variant adapted to (30)).

Certainly, other methods like the ones discussed below can be applied to Lyapunov-plus-

positive equations as well.

The generalization of the available approaches for solving (30) to cases including a non-

singular mass matrix, resulting in a generalized Lyapunov part AXET + EXAT instead of

FX +XFT , is straightforward and can be treated similarly as in the generalized Lyapunov

case. The treatment of such an equation with singular E remains an open problem, though.

8 Other Recent Approaches and Extensions

In this final section of the paper we want to point out some related methods that have appeared

over the recent years. In their SIAM Outstanding Paper Prize awarded contribution [62], Van-

dereycken and Vandewalle propose an optimization on manifolds based approach to finding a

low rank solution of (3). Although their method is often outperformed by the projection and

ADI based methods it opens an interesting new perspective. This in turn enabled the authors

in [7] to prove the optimality of the final IRKA poles as ADI shifts in view of the optimization

on manifolds. In fact it was shown that applying the final IRKA poles (also called H2-shifts)

the ADI iteration, the RKSM and the optimization on manifolds approach are equivalent in

the sense that they are computing the same solution factor Z .

Eppler and Bollhöfer in a series of conference papers derived a flexible generalized mini-

mal residual (FGMRES) type iteration with ADI preconditioning [16]. The main feature that

motivates the usage of FGMRES is its flexibility with respect to the preconditioner that is

allowed to change in every step. The method replaces the standard matrix-vector and vector-

update operations as well as inner products by their equivalents for LDLT type low rank

factorizations. A rank truncation framework completes the picture. In this view it is clear that

their approach has to be seen as close relative of the Krylov subspace methods applied to more

generally tensor structured equations as for example treated by Kressner and Tobler [36] that

have shown in [8] to be effective also in the Lyapunov-plus-positive case discussed above. It

is noteworthy that with [36], yet another paper in the area of numerical methods for matrix

equations won a SIAM Outstanding Paper Prize (awarded 2013).

An extension of the ADI framework to tensor structured equations was discussed in [42].

Grasedyck [27] contributed a nonlinear multigrid based approach that computes approxima-

tions to the solution of Riccati equations in either low rank or H-matrix format.
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[61] N. Truhar and K. Veselić, Bounds on the trace of a solution to the Lyapunov equation with a

general stable matrix, Syst. Control Lett. 56(7–8), 493–503 (2007).

[62] B. Vandereycken and S. Vandewalle, A Riemannian optimization approach for computing low-

rank solutions of Lyapunov equations, SIAM J. Matrix Anal. Appl. 31(5), 2553–2579 (2010).

[63] E. Wachspress, The ADI Model Problem, (Springer-Verlag, 2013).

[64] E. Wachspress, ADI iteration parameters for the Sylvester equation, 2000, available from the

author.

www.gamm-mitteilungen.org © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


