
Secure Operating Systems

Nikos Tziritas

What is an Operating System?

• A program managing the computer hardware

• Provides a basis for application programs

• Acts as an intermediary between the
computer user and the computer hardware

Operating System Goals

• Execute user programs and make solving user
problems easier.

• Make the computer system convenient to use

• Use the computer hardware in an efficient
way.

Computer System Components

• Hardware ― represents the physical parts of
the computer (hard disk drive, monitor, etc)

• Operating system ― controls the hardware
and coordinates its use among the various
application programs for the various users.

• Application programs ― define the ways in
which the system resources are used to solve
the computing problems of the users.

• Users

Computer System Components

Modern Computer System

Computer System Operation

• I/O devices and the CPU can execute
concurrently.

• Each device controller is in charge of a particular
device type.

• Each device controller has a local buffer
• CPU moves data from/to main memory to/from

local buffers
• I/O is from the device to local buffer of controller
• Device controller informs CPU that it has finished

its operation by causing an interrupt.

Interrupts

• Interrupt transfers control to the interrupt
service routine generally, through the
interrupt vector, which contains the addresses
of all the service routines

• Interrupt architecture must save the address
of the interrupted instruction.

• Incoming interrupts are disabled while
another interrupt is being processed to
prevent a lost interrupt

Interrupt handling

• The operating system preserves the state of
the CPU by storing registers and the program
counter

• Separate segments of code determine what
action should be taken for each type of
interrupt

How a modern computer system
works

Computer-System Architecture

• Single processor systems

• Multiprocessor systems

• Clustered systems

Multiprocessing Architecture

Clustered System

Multiprogramming

One of the most important aspects of operating
systems is the ability of multi-programming.

– A single program cannot, in general, keep either
the CPU or the I/O devices busy at all times.

– Single users frequently have multiple programs
running.

– Multiprogramming increases CPU utilization by
organizing jobs so that the CPU always has one to
execute

Memory layout for a multi-
programming system

Data regulation

Due to multiple users and concurrent execution
of multiple processes, access to data must be
regulated, e.g.:

• Memory-addressing hardware ensures that a
process can execute only within its own
address space

• Device-control registers are not accessible to
users, so the integrity of the various
peripheral devices is protected.

Protection

• Protection is any mechanism for controlling
the access of processes or users to the
resources defined by a computer system

• Protection can improve reliability by detecting
latent errors at the interfaces between
component subsystems

Security

• It is the job of security to defend a system
from external and internal attacks.
– Viruses and worms

– Denial of service attacks

– Identity theft

• Prevention of some of these attacks is
considered an operating-system function on
some systems, while other systems leave the
prevention to additional software.

Processes

• Process is a program in execution; process
execution must progress in a sequential fashion.

• A process includes:

– Current activity (program counter, contents of
processor’s registers)

– Stack

– Data section

– Text (code)

– Heap

Process in Memory

Process state

During the execution of a process, the process
changes among the following states:

• New: the process is being created

• Running: Instructions are being executed

• Waiting: The process is waiting for some event to
occur

• Ready: The process is waiting to be assigned to a
processor

• Terminated: The process has finished execution

Diagram of Process State

Program Control Block

• Process state

• Program counter

• CPU registers

• Process privileges

• CPU scheduling information

• Memory management information

• Accounting information

• I/O status information

CPU switch from process to process

Process Scheduling Queues

Process migration among the following queues:

• Job queue: set of all processes within the
system

• Ready queue: set of all processes residing in
main memory, ready and waiting to execute

• Device queues: set of processes waiting for an
I/O device

Ready Queue and Various I/O Queues

Queueing Diagram Representation of
Process Scheduling

Interprocess Communication

There are several reasons for providing an
environment that allows process cooperation:
• Information sharing: Several users may be

interested in the same piece of information
• Computation speedup: If we want a particular

task to run faster, we must break it into subtasks.
This usually works with multiple processing
elements, is it possible to work with only one
processing element?

• Convenience: Even an individual user may work
on many tasks at the same time.

Interprocess Communication
Mechanisms

• Shared memory: A region of memory that is
shared by cooperating processes is
established.

• Message passing: Communication takes place
by means of messages exchanged between
the cooperating processes.

Communication models

Message passing Shared memory

Shared Memory

• The piece of shared memory is considered
critical if more than one processes write on it.
Therefore, the protection of that piece of
memory is necessary.

Message Passing

• Two commands (send, receive)

• Direct or indirect communication

• Synchronous or asynchronous communication

Threads

• A thread is a piece of code that must be
executed in a concurrent/parallel way with
other threads

• A thread comprises a thread ID, a program
counter, a register set, and a stack

• It shares with other threads belonging to the
same process its code section, data section,
and other operating-system resources.

Threads (2)

• A traditional (or heavyweight) process has a
single thread of control. Such a process is
called single-threaded.

• If a process has multiple threads of control can
perform more than one task at a time. Such a
process is called multi-threaded.

Single-threaded and multi-threaded
processes

Example for the usefulness of threads

Major Benefits of Threads

• Responsiveness (blocking part of a process)

• Resource sharing (memory)

• Economy (process creation is costly)

• Scalability (multi-processor architectures)

Multi-threading models

Threads split into two categories: (a) user
threads, (b) kernel threads.

• Many-to-One model

• One-to-One model

• Many-to-Many model

Many-to-One Model

One-to-One Model

Many-to-Many Model

Thread pools

Thread pools offer the following benefits:

• Servicing a request with an existing thread is
usually faster than waiting to create a thread

• A thread pool limits the number of threads
that may exist at any point in time. This is
important on systems that cannot support a
large number of concurrent threads.

CPU Scheduler

• Whenever CPU becomes idle, the operating
system must select one of the processes in the
ready queue to be executed

• The selection process is carried out by the CPU
scheduler.

• The ready queue is not necessarily a first-in,
first-out (FIFO) queue.

CPU Scheduling Decisions

• When a process switches from the running
state to the waiting state (I/O request)

• When a process switches from the running
state to the ready state

• When a process a process switches from the
waiting state to the ready state

• When a process terminates

Scheduling Criteria

• CPU utilization

• Throughput

• Turnaround time

• Waiting time

• Response time

Scheduling Algorithms

• First-come, first-served (FCFS)

• Shortest-Job-First (SJF)

• Priority scheduling algorithm

• Round-Robin Scheduling

Process Synchronization

• Concurrent access to shared data may result
in data inconsistency

• There is a need of mechanisms ensuring the
orderly execution of cooperating processes
that share a logical address space, so that data
inconsistency is maintained

Critical Section

• Each process has a segment of code, called a
critical section, in which the process may be:
– Changing common variables

– Updating a table

– Writing a file

• The important feature of the system is that,
when one process is executing in its critical
section, no other process is to be allowed to
execute in its critical section.

Critical Section Problem

• The critical section problem is to design a
protocol that the processes can use to gain
access to their critical sections.

• Each process must request permission to
enter its critical section

• The section of code implementing this request
is the entry section. The critical section may
be followed by an exit section. The remaining
code is the remainder section.

General structure of a typical process

Critical Section Problem (2)

A solution to the critical section problem must
satisfy the following requirements:

• Mutual exclusion

• Progress

• Bounded waiting

Mutual exclusion

If process Pi is executing in its critical section,
then no other processes can be executing in
their critical sections.

Progress

If no process is executing in its critical section
and some processes wish to enter their critical
sections, then only those processes that are not
executing in their remainder sections can
participate in deciding which will enter its
critical section next, and this selection cannot be
postponed indefinitely.

Bounded Waiting

There exists a bound, or limit, on the number of
times that other processes are allowed to enter
their critical sections after a process has made a
request to enter its critical section and before
that request is granted.

	Slide 1: Secure Operating Systems
	Slide 2: What is an Operating System?
	Slide 3: Operating System Goals
	Slide 4: Computer System Components
	Slide 5: Computer System Components
	Slide 6: Modern Computer System
	Slide 7: Computer System Operation
	Slide 8: Interrupts
	Slide 9: Interrupt handling
	Slide 10
	Slide 11: How a modern computer system works
	Slide 12: Computer-System Architecture
	Slide 13: Multiprocessing Architecture
	Slide 14: Clustered System
	Slide 15: Multiprogramming
	Slide 16: Memory layout for a multi-programming system
	Slide 17: Data regulation
	Slide 18: Protection
	Slide 19: Security
	Slide 20: Processes
	Slide 21: Process in Memory
	Slide 22: Process state
	Slide 23: Diagram of Process State
	Slide 24: Program Control Block
	Slide 25: CPU switch from process to process
	Slide 26: Process Scheduling Queues
	Slide 27: Ready Queue and Various I/O Queues
	Slide 28: Queueing Diagram Representation of Process Scheduling
	Slide 29: Interprocess Communication
	Slide 30: Interprocess Communication Mechanisms
	Slide 31: Communication models
	Slide 32: Shared Memory
	Slide 33: Message Passing
	Slide 34: Threads
	Slide 35: Threads (2)
	Slide 36: Single-threaded and multi-threaded processes
	Slide 37: Example for the usefulness of threads
	Slide 38: Major Benefits of Threads
	Slide 39: Multi-threading models
	Slide 40: Many-to-One Model
	Slide 41: One-to-One Model
	Slide 42: Many-to-Many Model
	Slide 43: Thread pools
	Slide 44: CPU Scheduler
	Slide 45: CPU Scheduling Decisions
	Slide 46: Scheduling Criteria
	Slide 47: Scheduling Algorithms
	Slide 48: Process Synchronization
	Slide 49: Critical Section
	Slide 50: Critical Section Problem
	Slide 51: General structure of a typical process
	Slide 52: Critical Section Problem (2)
	Slide 53: Mutual exclusion
	Slide 54: Progress
	Slide 55: Bounded Waiting

