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Adopted from Andrew Moore’s IBL Tutorial & Tan et Al., ‘Introduction to Data Mining’



Instance-Based Classifiers
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• Build a database of previous observations
• To make a prediction for a new item x’, find the most similar database item x and 

use its output f(x) for f(x’)
• Provides a local approximation to target function or concept

You need:
1. A distance metric (to determine similarity)
2. Number of neighbors to consult
3. Method for combining neighbors’ outputs



Instance-Based Classifiers
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• Store the training 
records 

• Use training records to 
predict the class label of 
unseen cases

Atr1 ……... AtrN Class

A

B

B

C

A

C

B

Set of Stored Cases

Atr1 ……... AtrN

Unseen Case



Examples
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• Rote-learner
• Memorizes entire training data and performs classification only if attributes 

of record match one of the training examples exactly

• Nearest neighbor
• Uses k “closest” points (nearest neighbors) for performing classification



Basic Idea
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Basic idea:
If it walks like a duck, quacks like a duck, then it’s probably a duck

Training 
Records

Test Record
Compute 
Distance

Choose k of the 
“nearest” records



Classifiers
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Requires three things

– The set of stored records

– Distance Metric to compute distance between 
records

– The value of k, the number of nearest 
neighbors to retrieve

To classify an unknown record:

– Compute distance to other training records

– Identify k nearest neighbors 

– Use class labels of nearest neighbors to 
determine the class label of unknown record 
(e.g., by taking majority vote)

Unknown record



Definition

7

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

K-nearest neighbors of a record x are data points that have 
the k smallest distance to x



Classification
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• Compute distance between two points:
• Euclidean distance 

• Determine the class from nearest neighbor list
• take the majority vote of class labels among the k-nearest neighbors
• Weigh the vote according to distance

• weight factor, w = 1/d2



Example
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Outlook Temperature Humidity Windy Play

sunny hot high FALSE no

sunny hot high TRUE no

overcast hot high FALSE yes

rainy mild high FALSE yes

rainy cool normal FALSE yes

rainy cool normal TRUE no

overcast cool normal TRUE ?

sunny mild high FALSE ?

sunny cool normal FALSE ?

rainy mild normal FALSE ?

sunny mild normal TRUE ?

overcast mild high TRUE ?

overcast hot normal FALSE ?

rainy mild high TRUE ?

testing



1-Nearest Neighbor
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1. A distance metric: Euclidean

2. Number of neighbors to consult: 1

3. Combining neighbors’ outputs: N/A

Equivalent to memorizing everything you’ve ever seen and reporting the most similar 
result



1-Nearest Neighbor
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We can draw the 1-nearest-neighbor region for each item: a Voronoi diagram



Algorithm
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• Given training data (x1, y1) … (xn, yn), determine ynew for xnew

• Find x’ most similar to xnew using Euclidean distance

• Assign ynew = y’

• Works for classification or regression



1-Nearest Neighbor Drawbacks
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• 1-NN fits the data exactly, including any noise

• May not generalize well to new data



k-Nearest Neighbors
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• Distance metric: Euclidean
• Number of neighbors to consult: k
• Combining neighbors’ outputs: 

• Classification
• Majority vote
• Weighted majority vote: 

nearer have more influence
• Regression

• Average (real-valued)
• Weighted average: 

nearer have more influence
• Result: Smoother, more generalizable result



k-Nearest Neighbors
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• k is a parameter of the k-NN algorithm
• This does not make it “parametric”.  Confusing!

• Recall: set parameters using validation data set
• Not the training set (overfitting)



k-Nearest Neighbors
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• Choosing the value of k:
• If k is too small, sensitive to noise points
• If k is too large, neighborhood may include points from other classes

X



k-Nearest Neighbors

17

• Scaling issues
• Attributes may have to be scaled to prevent distance measures from being 

dominated by one of the attributes

• Example of an attribute dominating distance computation:
• height of a person may vary from 1.5m to 1.8m
• weight of a person may vary from 90lb to 300lb
• income of a person may vary from $10K to $1M



k-Nearest Neighbors
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• k-NN classifiers are lazy learners 
• It does not build models explicitly

• Unlike eager learners such as decision tree induction and rule-based systems

• Classifying unknown records are relatively expensive
• For each test, need to scan all training data



k-Nearest Neighbors
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• How expensive is it to perform k-NN on a new instance?
• O(n) to find the nearest neighbor

• The more you know, the longer it takes to make a decision!

• Can be reduced to O(log n) using kd-trees



k-Nearest Neighbors
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• k neighbors in training data to the 
input data x: break ties arbitrarily

• All k neighbors will vote: majority 
wins

• Extension:
• Weighted k-NN

• “k” is a variable: 
• Often we experiment with different 

values of k=1, 3, 5, to find out the optimal 
one

• Why is KNN important?
• Often a baseline 
• Must beat this one to claim innovation

• Applications of k-NN
• Document similarity



Pros & Cons 
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• Pros
• k-NN is simple! (to understand, implement)
• Often used as a baseline for other algorithms
• “Training” is fast: just add new item to database

• Cons
• Most work done at query time: may be expensive
• Must store O(n) data for later queries
• Performance is sensitive to choice of distance metric

• And normalization of feature values



Examples
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https://people.revoledu.com/kardi/tutorial/KNN/KNN_Numerical-example.html

[3,3] [3,7] [3,3] [3,7]
x1 x2 Class Distance Distance Distance Distance
2 3 Yes 1,00 4,12 1,00 4,12
1 8 No 5,39 2,24 5,39 2,24
6 5 No 3,61 3,61 3,61 3,61
3 8 Yes 5,00 1,00 5,00 1,00
1 1 No 2,83 6,32 2,83 6,32
2 9 Yes 6,08 2,24 6,08 2,24
1 0 Yes 3,61 7,28 3,61 7,28
2 2 Yes 1,41 5,10 1,41 5,10
2 1 No 2,24 6,08 2,24 6,08
2 4 No 1,41 3,16 1,41 3,16

Classify k=3 k=5
3 3 Yes No
3 7 Yes No



Support Vector Machines
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Adopted from Gomes, C. & Hinton, G. Slides



Introduction
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• Suppose that we pick n datapoints and assign labels of + or – to them at random

• If our model class (e.g. a neural net with a certain number of hidden units) is 
powerful enough to learn any association of labels with the data, its too powerful!

• Maybe we can characterize the power of a model class by asking how many 
datapoints it can “shatter” i.e. learn perfectly for all possible assignments of labels

• This number of datapoints is called the Vapnik-Chervonenkis dimension

• The model does not need to shatter all sets of datapoints of size h. One set is 
sufficient.

• For planes in 3-D, h=4 even though 4 co-planar points cannot be shattered.



Example
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• Suppose our model class is a hyperplane

• In 2-D, we can find a plane (i.e. a line) to deal with any labeling of three points

• A 2-D hyperplane shatters 3 points

• But we cannot deal with some of the possible labelings of four points



Support Vector Machines
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• Supervised learning methods for classification and regression 
• relatively new class of successful learning methods 

• They can represent non-linear functions and they have an efficient training algorithm

• SVM got into mainstream because of their exceptional performance in Handwritten 
Digit Recognition

• 1.1% error rate which was comparable to a very carefully constructed (and 
complex) Artificial Neural Network



Support Vector Machines
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• The line that maximizes the minimum margin is a good bet
• This maximum-margin separator is determined by a subset of the datapoints.

• Datapoints in this subset  are called “support vectors”
• It will be useful computationally if only a small fraction of the datapoints are 

support vectors, because we use the support vectors to decide which side of the 
separator a test case is on

The support vectors are 
indicated by the circles 
around them.



Two Class Problem
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Class 1

Class 2
Many decision boundaries can 

separate these two classes

Which one should we choose?



Example of Bad Decision Boundaries
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Class 1

Class 2

Class 1

Class 2



Decision
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• One Possible Solution

B1



Decision
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• Another possible solution

B
2



Decision
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• Other possible solutions

B
2



Decision
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• Which one is better? B1 or B2?

• How do you define better?

B
1

B
2



Decision
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• Find hyperplane maximizes the margin => B1 is better than B2

B
1

B
2

b
11

b
12

b
21

b
22

margin



Good Decision Boundary
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The decision boundary should be as far away from the data of 
both classes as possible

We should maximize the margin, m

Class 1

Class 2

m

Support vectors
datapoints that the margin
pushes up against

→ Weights for each 
feature to predict 
the output



The Optimization Problem
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Let {x1, ..., xn} be our data set and let yi  {1,-1} be the class 
label of xi

The decision boundary should classify all points correctly 

A constrained optimization problem

◼||w||2 = wTw



Training
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• To find the maximum margin separator, we have to solve the following optimization 
problem:

• This is tricky but it’s a convex problem
• There is only one optimum and we can find it without fiddling with learning rates or 

weight decay or early stopping
• Don’t worry about the optimization problem. It has been solved. Its called 

quadratic programming.
• It takes time proportional to N2 which is really bad for very big datasets

• so for big datasets we end up doing approximate optimization!
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The separator is defined as the set of points for which:

casenegativeaitssaybifand
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Nonlinear Cases
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What if decision boundary is not linear?



Nonlinear Cases
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What if the problem is not linearly separable?

Introduce slack variables

Need to minimize:

Subject to: 
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𝑤 ∙ 𝑥𝑖 + 𝑏 ≥ 1 − 𝜉𝑖 if 𝑦𝑖 = 1
𝑤 ∙ 𝑥𝑖 + 𝑏 ≤ −1 + 𝜉𝑖 if 𝑦𝑖 = −1



Clustering
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Adopted from ‘Data Mining Concepts and Techniques’ & Debasis, S.
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• Cluster: A collection of data objects
• similar (or related) to one another within the same group
• dissimilar (or unrelated) to the objects in other groups

• Cluster analysis (or clustering, data segmentation, …)
• Finding similarities between data according to the characteristics found in the 

data and grouping similar data objects into clusters
• Unsupervised learning: no predefined classes (i.e., learning by observations vs. 

learning by examples: supervised)
• Typical applications

• As a stand-alone tool to get insight into data distribution 
• As a preprocessing step for other algorithms



Introduction
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• Biology: taxonomy of living things: kingdom, phylum, class, order, family, genus and 
species

• Information retrieval: document clustering
• Land use: Identification of areas of similar land use in an earth observation database
• Marketing: Help marketers discover distinct groups in their customer bases, and 

then use this knowledge to develop targeted marketing programs
• City-planning: Identifying groups of houses according to their house type, value, and 

geographical location
• Earth-quake studies: Observed earth quake epicenters should be clustered along 

continent faults
• Climate: understanding earth climate, find patterns of atmospheric and ocean
• Economic Science: market research



Introduction
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• Summarization: 

• Preprocessing for regression, PCA, classification, and association analysis

• Compression:

• Image processing: vector quantization

• Finding K-nearest Neighbors

• Localizing search to one or a small number of clusters

• Outlier detection

• Outliers are often viewed as those “far away” from any cluster



Quality of Clustering
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• A good clustering method will produce high quality clusters

• high intra-class similarity: cohesive within clusters

• low inter-class similarity: distinctive between clusters

• The quality of a clustering method depends on

• the similarity measure used by the method 

• its implementation, and

• Its ability to discover some or all of the hidden patterns



Quality of Clustering
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• Dissimilarity/Similarity metric
• Similarity is expressed in terms of a distance function, typically metric: d(i, j)
• The definitions of distance functions are usually rather different for interval-

scaled, boolean, categorical, ordinal ratio, and vector variables
• Weights should be associated with different variables based on applications and 

data semantics
• Quality of clustering:

• There is usually a separate “quality” function that measures the “goodness” of a 
cluster.

• It is hard to define “similar enough” or “good enough” 
• The answer is typically highly subjective



Important Points
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• Partitioning criteria

• Single level vs. hierarchical partitioning (often, multi-level hierarchical 
partitioning is desirable)

• Separation of clusters

• Exclusive (e.g., one customer belongs to only one region) vs. non-exclusive (e.g., 
one document may belong to more than one class)

• Similarity measure

• Distance-based (e.g., Euclidean, road network, vector)  vs. connectivity-based 
(e.g., density or contiguity)

• Clustering space

• Full space (often when low dimensional) vs. subspaces (often in high-
dimensional clustering)



Important Points
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• Scalability
• Clustering all the data instead of only on samples

• Ability to deal with different types of attributes
• Numerical, binary, categorical, ordinal, linked, and mixture of these 

• Constraint-based clustering
• User may give inputs on constraints
• Use domain knowledge to determine input parameters

• Interpretability and usability
• Others 

• Discovery of clusters with arbitrary shape
• Ability to deal with noisy data
• Incremental clustering and insensitivity to input order
• High dimensionality



Categories
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• Partitioning approach: 
• Construct various partitions and then evaluate them by some criterion, e.g., 

minimizing the sum of square errors
• Typical methods: k-means, k-medoids, CLARANS

• Hierarchical approach: 
• Create a hierarchical decomposition of the set of data (or objects) using some 

criterion
• Typical methods: Diana, Agnes, BIRCH, CHAMELEON

• Density-based approach: 
• Based on connectivity and density functions
• Typical methods: DBSCAN, OPTICS, DenClue

• Grid-based approach: 
• based on a multiple-level granularity structure
• Typical methods: STING, WaveCluster, CLIQUE



Categories
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• Model-based: 
• A model is hypothesized for each of the clusters and tries to find the best fit of 

that model to each other
• Typical methods: EM, SOM, COBWEB

• Frequent pattern-based:
• Based on the analysis of frequent patterns
• Typical methods: p-Cluster

• User-guided or constraint-based: 
• Clustering by considering user-specified or application-specific constraints
• Typical methods: COD (obstacles), constrained clustering

• Link-based clustering:
• Objects are often linked together in various ways
• Massive links can be used to cluster objects: SimRank, LinkClus



All Together
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Clustering 
Techniques

Partitioning 
methods

Hierarchical 
methods

Density-based 
methods

Graph based 
methods

Model based 
clustering

• k-Means algorithm [1957, 1967]
• k-Medoids algorithm
• k-Modes [1998]
• Fuzzy c-means algorithm [1999]

Divisive

Agglomerative 
methods

• STING [1997]
• DBSCAN [1996]
• CLIQUE [1998]

• DENCLUE [1998]
• OPTICS [1999]
• Wave Cluster [1998]

• MST Clustering  [1999]
• OPOSSUM [2000]
• SNN Similarity Clustering [2001, 2003]

• EM Algorithm [1977]
• Auto class [1996]
• COBWEB [1987]
• ANN Clustering [1982, 1989]

• AGNES [1990]
• BIRCH [1996]
• CURE [1998]
• ROCK [1999]
• Chameleon [1999]

• DIANA [1990]

• PAM [1990]
• CLARA [1990]
• CLARANS [1994]
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• Partitioning method: Partitioning a database D of n objects into a set of k clusters, 

such that the sum of squared distances is minimized (where ci is the centroid or 

medoid of cluster Ci)

• Given k, find a partition of k clusters that optimizes the chosen partitioning criterion

• Global optimal: exhaustively enumerate all partitions

• Heuristic methods: k-means and k-medoids algorithms

• k-means (MacQueen’67, Lloyd’57/’82): Each cluster is represented by the center 

of the cluster

• k-medoids or PAM (Partition around medoids) (Kaufman & Rousseeuw’87): Each 

cluster is represented by one of the objects in the cluster  

2

1 )( iCp

k

i cpE
i
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k-Means
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• Given a set of n distinct objects, the k-Means clustering algorithm partitions the 

objects into k number of clusters such that intracluster similarity is high but the 

intercluster similarity is low

• User has to specify k, the number of clusters and consider the objects are defined 

with numeric attributes and thus using any one of the distance metric to demarcate 

the clusters



k-Means

55

• Given k, the k-means algorithm is implemented in four steps:

• Partition objects into k nonempty subsets

• Compute seed points as the centroids of the clusters of the current partitioning 

(the centroid is the center, i.e., mean point, of the cluster)

• Assign each object to the cluster with the nearest seed point  

• Go back to Step 2, stop when the assignment does not change



k-Means
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Algorithm k-Means clustering

Input:   D is a dataset containing n objects,  k is the number of cluster
Output:  A set of k clusters
Steps:
1. Randomly choose k objects from D as the initial cluster centroids.

2. For each of the objects in D do
• Compute distance between the current objects and k cluster centroids 
• Assign the current object to that cluster to which it is closest.

3. Compute the “cluster centers” of each cluster. These become the new cluster centroids.

4. Repeat step 2-3 until the convergence criterion is satisfied

5. Stop



k-Means
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Note:
1) Objects are defined in terms of set of attributes. 𝐴 = {𝐴1, 𝐴2, … . . , 𝐴𝑚} where each 𝐴𝑖 is continuous

data type.

2) Distance computation: Any distance such as 𝐿1, 𝐿2, 𝐿3 or cosine similarity.

3) Minimum distance is the measure of closeness between an object and centroid.

4) Mean Calculation: It is the mean value of each attribute values of all objects.

5) Convergence criteria: Any one of the following are termination condition of the algorithm.
• Number of maximum iteration permissible.
• No change of centroid values in any cluster.
• Zero (or no significant) movement(s) of object from one cluster to another.
• Cluster quality reaches to a certain level of acceptance.
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K=2

Arbitrarily 
partition 
objects into 
k groups

Update the 
cluster 
centroids

Update the 
cluster 
centroids

Reassign  objectsLoop if 
needed

The initial data set

◼ Partition objects into k nonempty 

subsets

◼ Repeat

◼ Compute centroid (i.e., mean 

point) for each partition 

◼ Assign each object to the cluster 

of its nearest centroid  

◼ Until no change
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Table : objects with two attributes  𝑨𝟏
and 𝑨𝟐.

A1 A2

6.8 12.6

0.8 9.8

1.2 11.6

2.8 9.6

3.8 9.9

4.4 6.5

4.8 1.1

6.0 19.9

6.2 18.5

7.6 17.4

7.8 12.2

6.6 7.7

8.2 4.5

8.4 6.9

9.0 3.4

9.6 11.1

0

5

10

15

20

25

0 2 4 6 8 10 12

A
2

A1

Fig: Plotting data of Table
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• Suppose, k=3. Three objects are chosen at random shown as circled (see previous
Fig). These three centroids are shown below.

Initial Centroids chosen randomly

• Let us consider the Euclidean distance measure (L2 Norm) as the distance
measurement in our illustration.

• Let d1, d2 and d3 denote the distance from an object to c1, c2 and c3 respectively. The
distance calculations are shown in the Table.

• Assignment of each object to the respective centroid is shown in the right-most
column and the clustering so obtained is shown in the upcoming Fig.

Centroid Objects

A1 A2

c1 3.8 9.9

c2 7.8 12.2

c3 6.2 18.5
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Table: Distance calculation

A1 A2 d1 d2 d3 cluster

6.8 12.6 4.0 1.1 5.9 2

0.8 9.8 3.0 7.4 10.2 1

1.2 11.6 3.1 6.6 8.5 1

2.8 9.6 1.0 5.6 9.5 1

3.8 9.9 0.0 4.6 8.9 1

4.4 6.5 3.5 6.6 12.1 1

4.8 1.1 8.9 11.5 17.5 1

6.0 19.9 10.2 7.9 1.4 3

6.2 18.5 8.9 6.5 0.0 3

7.6 17.4 8.4 5.2 1.8 3

7.8 12.2 4.6 0.0 6.5 2

6.6 7.7 3.6 4.7 10.8 1

8.2 4.5 7.0 7.7 14.1 1

8.4 6.9 5.5 5.3 11.8 2

9.0 3.4 8.3 8.9 15.4 1

9.6 11.1 5.9 2.1 8.1 2

Fig: Initial cluster with respect to Table
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The calculation new centroids of the three cluster using the mean of attribute values of
A1 and A2 is shown in the Table below. The cluster with new centroids are shown in Fig.

New 
Centroid

Objects

A1 A2

c1 4.6 7.1

c2 8.2 10.7

c3 6.6 18.6

Calculation of new centroids

Fig: Initial cluster with new centroids
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We next reassign the 16 objects to three clusters by determining which centroid is
closest to each one. This gives the revised set of clusters shown in Fig.

Note that point p moves from cluster C2 to cluster C1.

Fig : Cluster after first iteration



k-Means

64

• The newly obtained centroids after second iteration are given in the table below. Note that the
centroid c3 remains unchanged, where c2 and c1 changed a little.

• With respect to newly obtained cluster centres, 16 points are reassigned again. These are the same
clusters as before. Hence, their centroids also remain unchanged.

• Considering this as the termination criteria, the k-means algorithm stops here. Hence, the final
cluster in the current Fig is same as in the previous Fig.

Centroid Revised  Centroids

A1 A2

c1 5.0 7.1

c2 8.1 12.0

c3 6.6 18.6

Cluster centres after second iteration

Fig : Cluster after Second iteration
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• Visualization

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
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• Let us analyse the k-Means algorithm and discuss the pros and cons of the
algorithm.

• We shall refer to the following notations in our discussion.
• Notations:

• 𝑥 : an object under clustering
• 𝑛 : number of objects under clustering
• 𝑪𝑖 : the i-th cluster
• 𝑐𝑖 : the centroid of cluster 𝑪𝑖
• 𝑛𝑖 : number of objects in the cluster 𝑪𝑖
• 𝑐 : denotes the centroid of all objects
• 𝑘 : number of clusters
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1. Value of k:
• The k-means algorithm produces only one set of clusters, for which, user must specify the

desired number, k of clusters.
• In fact, k should be the best guess on the number of clusters present in the given data. Choosing

the best value of k for a given dataset is, therefore, an issue.
• We may not have an idea about the possible number of clusters for high dimensional data, and

for data that are not scatter-plotted.
• Further, possible number of clusters is hidden or ambiguous in image, audio, video and

multimedia clustering applications etc.
• There is no principled way to know what the value of k ought to be. We may try with successive

value of k starting with 2.
• The process is stopped when two consecutive k values produce more-or-less identical results

(with respect to some cluster quality estimation).
• Normally 𝑘 ≪ 𝑛 and there is heuristic to follow 𝑘 ≈ 𝑛.
• Elbow method
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Example: k versus cluster quality

• Usually, there is some objective function to be met as a goal of clustering.
• One such objective function is sum-square-error denoted by SSE and defined as

𝑆𝑆𝐸 =෍

𝑖=1

𝑘

෍

𝑥∈𝑪𝑖

𝑥 − 𝑐𝑖
2

• Here, 𝑥 − 𝑐𝑖 denotes the error, if x is in cluster 𝑪𝑖 with cluster centroid 𝑐𝑖.

• Usually, this error is measured as distance norms like L1, L2, L3 or Cosine similarity, 
etc.



k-Means

69

Example k versus cluster quality

• With reference to an arbitrary experiment, suppose the following results
are obtained.

k SSE

1 62.8

2 12.3

3 9.4

4 9.3

5 9.2

6 9.1

7 9.05

8 9.0

• With respect to this observation, we
can choose the value of 𝑘 ≈ 3, as with
this smallest value of k it gives
reasonably good result.

• Note: If 𝑘 = 𝑛, then SSE=0; However,
the cluster is useless! This is another
example of overfitting.
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2. Choosing initial centroids:
• Another requirement in the k-Means algorithm to choose initial cluster centroid for each k

would be clusters.

• It is observed that the k-Means algorithm terminate whatever be the initial choice of the cluster
centroids.

• It is also observed that initial choice influences the ultimate cluster quality. In other words, the
result may be trapped into local optima, if initial centroids are chosen properly.

• One technique that is usually followed to avoid the above problem is to choose initial centroids
in multiple runs, each with a different set of randomly chosen initial centroids, and then select
the best cluster (with respect to some quality measurement criterion, e.g. SSE).

• However, this strategy suffers from the combinational explosion problem due to the number of
all possible solutions.
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2. Choosing initial centroids:
• A detail calculation reveals that there are 𝑐 𝑛, 𝑘 possible combinations to examine the search of

global optima.

𝑐 𝑛, 𝑘 =
1

𝑘!
෍

𝑖=1

𝑘

−1 𝑘−𝑖 𝑘
𝑖

𝑖 𝑛

• For example, there are 𝑜(1010) different ways to cluster 20 items into 4 clusters!

• Thus, the strategy having its own limitation is practical only if
1) The sample is negatively small (~100-1000), and
2) k is relatively small compared to n (i.e.. 𝑘 ≪ 𝑛).
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Distance Measurement:
• To assign a point to the closest centroid, we need a proximity measure that should

quantify the notion of “closest” for the objects under clustering.

• Usually Euclidean distance (L2 norm) is the best measure when object points are
defined in n-dimensional Euclidean space.

• Other measure namely cosine similarity is more appropriate when objects are of
document type.

• Further, there may be other type of proximity measures that appropriate in the
context of applications.

• For example, Manhattan distance (L1 norm), Jaccard measure, etc.
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Distance Measurement:

• Thus, in the context of different measures, the sum-of-squared error (i.e., objective
function/convergence criteria) of a clustering can be stated as under.

• Data in Euclidean space (L2 norm):

𝑆𝑆𝐸 =෍

𝑖=1

𝑘

෍

𝑥∈𝑪𝑖

𝑐𝑖 − 𝑥 2

• Data in Euclidean space (L1 norm):

• The Manhattan distance (L1 norm) is used as a proximity measure, where the
objective is to minimize the sum-of-absolute error denoted as SAE and defined as

𝑆𝐴𝐸 =෍

𝑖=1

𝑘

෍

𝑥∈𝑪𝑖

𝑐𝑖 − 𝑥
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• Strength: Efficient: O(tkn), where n is # objects, k is # clusters, and t  is # iterations. 

Normally, k, t << n.

• Comparing: PAM: O(k(n-k)2 ), CLARA: O(ks2 + k(n-k))

• Comment: Often terminates at a local optimal. 

• Weakness

• Applicable only to objects in a continuous n-dimensional space 

• Using the k-modes method for categorical data

• In comparison, k-medoids can be applied to a wide range of data

• Need to specify k, the number of clusters, in advance (there are ways to 

automatically determine the best k (see Hastie et al., 2009)

• Sensitive to noisy data and outliers

• Not suitable to discover clusters with non-convex shapes
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• Most of the variants of the k-means which differ in

• Selection of the initial k means

• Dissimilarity calculations

• Strategies to calculate cluster means

• Handling categorical data: k-modes

• Replacing means of clusters with modes

• Using new dissimilarity measures to deal with categorical objects

• Using a frequency-based method to update modes of clusters

• A mixture of categorical and numerical data: k-prototype method
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• The k-means algorithm is sensitive to outliers !

• Since an object with an extremely large value may substantially distort the 

distribution of the data

• K-Medoids:  Instead of taking the mean value of the object in a cluster as a reference 

point, medoids can be used, which is the most centrally located object in a cluster
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• K-Medoids Clustering: Find representative objects (medoids) in clusters

• PAM (Partitioning Around Medoids, Kaufmann & Rousseeuw 1987)

• Starts from an initial set of medoids and iteratively replaces one of the 

medoids by one of the non-medoids if it improves the total distance of the 

resulting clustering

• PAM works effectively for small data sets, but does not scale well for large 

data sets (due to the computational complexity)

• Efficiency improvement on PAM

• CLARA (Kaufmann & Rousseeuw, 1990): PAM on samples

• CLARANS (Ng & Han, 1994): Randomized re-sampling


