Swarm Intelligence

Adopted from Thiemo Krink




The need for new Computing Techniques

The computer revolution changed human societies:

B communication

m transportation

B 1ndustrial production

®m administration, writing, and bookkeeping
m technological advances / science

B entertainment

However, some problems cannot be tackled with
traditional hardware and software!




The need for new Computing Techniques

Computing tasks have to be

m well-defined

m fairly predictable

m computable i reasonable time with serial computers




Hard Problems

Well-defined, but computational hard problems

m NP hard problems (Travelling Salesman Problem)

m Action-response planning (Chess playing)
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Hard Problems

Fuzzy problems

m intelligent human-machine interaction

m natural language understanding

Example: Fuzziness in sound processing
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Hard Problems

Hardly predictable and dynamic problems

®m real-world autonomous robots

® management and business planning
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Japanese piano robot Trade at the stock exchange




Alternatives

® DNA based computing (chemical computation)

B Quantum computing (quantum-physical computation)

B Bio-computing (simulation of biological mechanisms)




Artificial Networks
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Evolutionary Computation

Problem
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Evolutionary Computation
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Evolutionary Computation

The task: Design a bent tube with a maximum flow

Goal: water flow f(X[.X,.....Xg) = f ..
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Bio-Computing
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Applications

B Robotics / Artificial Intelligence
B Process optimisation / Staff scheduling
B Telecommunication companies

B Entertainment
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Limitations

B biology makes compromises between different goals
m biology sometimes fails

B some natural mechanisms are not well understood

m well-defined problems can be solved by better means




Swarm Intelligence

“The emergent collective intelligence of groups of simple agents.”
(Bonabeau et al, 1999)

Examples

m group foraging of social imsects
B cooperative transportation
m division of labour

m nest-building of social insects

m collective sorting and clustering




Swarm Intelligence

Analogies in I'T and social insects

m distributed system of interacting autonomus agents
goals: performance optimization and robustness

self-organized control and cooperation (decentralized)

m 1ndirect imnteractions

division of labour and distributed task allocation




Swarm Intelligence

The 3 step process

B identification of analogies: 1n swarm biology and IT systems

m understanding: computer modelling of realistic swarm biology

m engineering: model stmplification and tuning for IT applications




Model Examples




Model Examples




Ants

Why are ants interesting?
m ants solve complex tasks by simple local means
m ant productivity 1s better than the sum of their single activities

W ants are ‘grand masters’ in search and exploitation

Which mechanisms are important?
m cooperation and division of labour
m adaptive task allocation
® work stimulation by cultivation

B pheromones




Self-Organization

‘Self-organization is a set of dynamical mechanisms
whereby structures appear at the global levd of a
system from interactions of its lower-lewvel components.’

(Bonabeau et al, in Swarm Intelligence, 1999)




Self-Organization

positive feedback (amplification)
negative feedback (for counter-balance and stabilization)

O
O
m amplification of fluctuations (randomness, errors, random walks)
O

multiple mteractions




Self-Organization
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Ant Foraging

Cooperative search by pheromone trails
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Ant Foraging

Cooperative search by pheromone trails
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Ant Foraging

Cooperative search by pheromone trails
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Ant Foraging

Cooperative search by pheromone trails




Ant Foraging

Cooperative search by pheromone trails

| Nest | 'Food




Ant Foraging

Cooperative search by pheromone trails




Characteristics of Self-Organization

® structure emerging from a homogeneous startup state

m multistability - coexistence of many stable states

B state transitions with a dramatical change of the system behaviour




Termites Simulation

Pick-up chip
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(Mitchel Resnick. 1994




Termites Simulation
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Honey Bees Nest Building




Honey Bees Nest Building

the queen moves randomly over the combs

eggs are more likely to be layed 1n the neighbourhood of brood

honey and pollen are deposited randomly 1n empty cells

four times more honey 1s brought to the hive than pollen

removal ratios for honey: 0.95: pollen: 0.6

removal of honey and pollen 1s proportional to the number of

surrounding cells containing brood




Honey Bees Nest Buildin
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Honey Bees Nest Building
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Honey Bees Nest Building
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Honey Bees Nest Building




Honey Bees Nest Building




Honey Bees Nest Building
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Stigmergy

Stigmergy: stigma (sting) + ergon (work)

= ‘stimulation by work’

Characteristics of stigmergy

® indirect agent interaction modification of the environment
B environmental modification serves as external memory
B work can be continued by any individual

m the same. simple, behavioural rules can create different designs

according to the environmental state




Stigmergy in Spiders
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Stigmergy
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Motivation

Motivation and methods n biologicall inspired IT

m there are analogies in distributed computing and social insects
® biology has found solution to hard computational problems
m biologically inspired computing requires:

m identification of analogies

m computer modelling of biological mechanisms

m adaptation of biological mechanisms for I'T applications




Principles

Two principles in swarm intelligence

m self-organization 1s based on:
m activity amplification by positive feedback
m activity balancing by negative feedback
m amplification of random fluctuations
m multiple interactions
m stigmergy - stimulation by work - 1s based on:
m work as behavioural response to the environmental state

m an environment that serves as a work state memory

m work that does not depend on specific agents




Particle Swarm Optimization
(PSO)

Adopted from Mohammed Al-Alaw & Qiangfu Zhao
46



-l
Introduction

 Inspired by the flocking and schooling patterns of birds and fish.

« Imagine a flock of birds circling over an area where they can smell a hidden source of
food.

« The one who is closest to the food chirps the loudest and the other birds swing around in
his direction.

« [If any of the other circling birds comes closer to the target than the first, it chirps louder
and the others veer over toward him.

« This tightening pattern continues until one of the birds happens upon the food.




Introduction




-l
Introduction

e Particle Swarm Optimization (PSO) was invented by Russell Eberhart and James
Kennedy in 1995.

« Originally, these two started out developing computer software simulations of birds
flocking around food sources

* They realized how well their algorithms worked on optimization problems.

« Over a number of iterations, a group of variables have their values adjusted closer
to the member whose value is closest to the target at any given moment.

« [t's an algorithm that's simple and easy to implement.




Introduction

* In computer science, Particle Swarm Optimization (PSO) is a computational method
that optimizes a problem by iteratively trying to improve a candidate solution with
regard to a given measure of quality (This is the stopping Condition).

« PSO optimizes a problem by having a population of candidate solutions, (known as
particles), and moving these particles around in the search-space

It moves according to simple mathematical formulae over the particle's position

(Current DATA ex: X,y,z, etc... ) and velocity (indicating how much the Data can be
changed).




Introduction

« The algorithm was simplified and it was observed to be performing optimization
(first it was not intended to be used in this manner).

* PSO is a metaheuristic as it makes few or no assumptions about the problem
being optimized and can search very large spaces of candidate solutions.

« However, metaheuristics such as PSO do not guarantee an optimal solution is ever
found.




-l
Introduction

 Each particle's movement is influenced by its local best known position but, is also
guided toward the best known positions in the search-space

« The best positions are updated as better positions when they are found by other
particles

* This iIs expected to move the swarm toward the best solutions.




Introduction
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A few common population topologies (neighborhoods).
(A) Single-sighted. (B) Ring topology. (C) Fully connected topology. (D)
Isolated,
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Introduction

« PSO does not use the gradient of the problem being optimized, which means PSO
does not require that the optimization problem be differentiable as is required by
classic optimization methods

« To find a local minimum of a function using gradient descent, one takes steps
proportional to the negative of the gradient (or of the approximate gradient) of the
function at the current point and quasi-newton methods.

« PSO can therefore also be used on optimization problems that are partially irregular,
noisy, change over time, etc., i.e. ,they are used for real time & data analysis &
applications.




The Algorithm

« The algorithm keeps track of three global variables:

 Target value or condition
« Global best (gBest) value indicating which particle's data is currently closest to

the Target

 Stopping value indicating when the algorithm should stop if the Target isn't found

 Each particle consists of:

 Data representing a possible solution
« A \Velocity value indicating how much the data can be changed

» A personal best (pBest) value indicating the closest the particle's Data has ever
come to the Target




The Algorithm

« The particles' data could be anything. In the flocking birds example above, the data
would be the X, Y, Z coordinates of each bird.

« The individual coordinates of each bird would try to move closer to the coordinates
of the bird which is closer to the food's coordinates (gBest).

 |f the data is a pattern or sequence, then individual pieces of the data would be
manipulated until the pattern matches the target pattern.




The Algorithm

* The velocity value is calculated according to how far an individual's data is from the
target. The further it is, the larger the velocity value.

* In the birds example, the individuals furthest from the food would make an effort to
keep up with the others by flying faster toward the gBest bird.

 |If the data is a pattern or sequence, the velocity would describe how different the
pattern is from the target, and thus, how much it needs to be changed to match the

target (making it similar to Neural Networks).




The Algorithm

« Each particle's pBest value only indicates the closest the data has ever come to the
target since the algorithm started.

« The gBest value only changes when any particle's pBest value comes closer to the
target than gBest.

« Through each iteration of the algorithm, gBest gradually moves closer and closer to
the target until one of the particles reaches the target.

« |t's also common to see PSO algorithms using population topologies, or
"neighborhoods", which can be smaller, localized subsets of the global best value.




The Algorithm

* Neighborhoods can involve two or more particles which are predetermined to act
together, or subsets of the search space that particles happen into during testing.

« The use of neighborhoods often help the algorithm to avoid getting stuck in local
minima.

* Neighborhood definitions and how they're used have different effects on the
behavior of the algorithm.




The Algorithm

« Stopping Conditions:
« Terminate when a maximum number of iterations, or FEs, has been exceeded
« Terminate when an acceptable solution has been found

« Terminate when no improvement is observed over a number of iterations

« Terminate when the normalized swarm radius Is close to zero




The Algorithm

Initizlize particles
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The Algorithm

« Step 1: Randomly initialize the swarm.
« Step 2: Evaluate all particles.
+ Step 3: For each particle

— Update its velocity;

— Update its position;

— Evaluate the particle.

« Step 4: Update if necessary the leader of the swarm and
the best position obtained by each particle.

« Step 5: Stop if terminating condition satisfied; return to
Step 3 otherwise.




The Algorithm

* The velocity of a particle is updated as follows:

new

Id Id
v =av™ +bw, x(x x’

ld
my _best ) + cw, X (Xbest o XO )

where a 1s the mertia weight, b and c are the learning factors

called personal factor and social factor, respectively,

and w, and w, are random numbers taken from[0,1].




The Algorithm

Based on the new velocity, the new position is obtained
as follows:

new old new

X = X +V
Pu(k)

x(k+1)

v(k)




The Algorithm

x(t+1)

new velocity social velocity
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The Algorithm
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The Algorithm

M

(a) Local Best Illustrated — Initial Swarm (b) Local Best — Second Swarm




The Algorithm

» Approaches to update the inertia weight
« Random adjustments, where a different inertia weight is randomly selected at
each iteration, e.g., ~ N(0.72, o) where o Is small enough to ensure that w
(inertia weight) is not predominantly greater than one

« Linear decreasing where an initially large inertia weight (usually 0.9) is
linearly decreased to a small value (usually 0.4)

(e — 1)

w(t) = (w(0) —w(ng)) o + w(ny)
[#
* Nonlinear decreasing, where an initially large value decreases nonlinearly to a
small value
w(t) —0.4)(ng —t
w(t +1) = (w(?) )(ny )

ng + 0.4

« Fuzzy adaptive inertia, where the inertia weight is dynamically adjusted on the
basis of fuzzy sets and rules

68



Visualization and Examples

https://pypi.org/project/swarmlib/

https://nathanrooy.github.io/posts/2016-08-17/simple-particle-
swarm-optimization-with-python/




Ant Colony Optimization
(ACO)

Adopted from Michael Herrmann
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-l
Introduction

Biological inspiration: ants find the shortest path between their nest and a food
source using pheromone trails.

N el S S —

Ant Colony Optimisation is a population-based search technique for the solution
of combinatorial optimisation problems which is inspired by this behaviour.




-l
Introduction

e Real ants find shortest routes between food and nest
e They hardly use vision (almost blind)

e They lay pheromone trails, chemicals left on the ground, which act as a signal

to other ants = STIGMERGY

e If an ant decides, with some probability, to follow the pheromone trail, it itself
lays more pheromone, thus reinforcing the trail.

e The more ants follow the trail, the stronger the pheromone, the more likely
ants are to follow it.

e Pheromone strength decays over time (half-life: a few minutes)

e Pheromone builds up on shorter path faster (it doesn’t have so much time to
decay), so ants start to follow it.
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Introduction

stigma (mark, sign) +
ergon (work, action)

Pierre-Paul Grassé

(1959)

73



Artificial Ant Systems

e Do have some memory (data structures)

e Use discrete time

So can we apply them to an optimisation problem: Travelling Salesperson Problem

Are able to sense “environment” if necessary (not just pheromone)

Are optimisation algorithms




Example in TSP
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Find the tour that minimises the distance travelled in visiting all towns.




Example in TSP

e Each ant builds its own tour from a starting city

A 100 _f-.. B Numbers are
N distance from
e Each ant chooses a town to go to with a probability: this is a function of the s one town to
town's distance and the amount of pheromone on the connecting edge RT N
75
e Legal tours: transitions to already visited towns disallowed till tour complete PR
(keep a tabu list) B | |
AN e
R
e When tour completed, lay pheromone on each edge visited o

e Next city j after city ¢ chosen according to Probability Rule




Example in TSP

e While building tour, apply an improvement heuristic at each step to each ant’s
partial tour.

e For example: use 3-opt: cut the tour in three places (remove three links) and
attempt to connect up the cities in alternative ways that shorten the path.

e Reduces time, almost always finds optimal path.




Probability Rule

17 (i, 7)) (. 7)] 3

geallowed [T{I -";‘I)] : [”(i ."-rf)]'ﬁ

e Strength of pheromone 7(7. j) is favourability of j following i
Emphasises "global goodness: the pheromone matrix

e Visibility n(i,j) = 1/d(i.j) is a simple heuristic guiding construction of the
tour. In this case it's greedy — the nearest town is the most desirable (seen
from a local point of view)

e /3 is a constant, e.g. 2

. EGEaHDWHd: normalise over all the towns ¢ that are still permitted to be added
to the tour, i.e. not on the tour already

e So 7 and 7 trade off global and local factors in construction of tour

78



e
Pheromone

e Pheromone trail evaporates a small amount after every iteration
T(i.j) =p7(i.j) + ATy
where () < p < 1 is an evaporation constant

e The density of pheromone laid on edge (i, j} by the m ants at that timestep is

T

ﬁ.’]".,;j: E ﬁ’]":}
k=1

. .&Tf} = /Ly, if kth ant uses edge (i.7) in its tour, else 0. @ is a constant
and Ly, is the length of I's tour. Pheromone density for k's tour.




Pheromone

e [nitialise: set pheromone strength to a small value

e Transitions chosen to trade off visibility (choose close towns with high
probability — greedy) and trail intensity (if there's been a lot of traffic the trail
must be desirable).

e In one iteration all the ants build up their own individual tours (so an iteration
consists of lots of moves/town choices/timesteps — until the tour is complete)
and pheromone is laid down once all the tours are complete

e Remember: we're aiming for the shortest tour — and expect pheromone to
build up on the shortest tour faster than on the other tours




Algorithm

e Position ants on different towns, initialise pheromone intensities on edges.
e Set first element of each ant's tabu list to be its starting town.
e Each ant moves from town to town according to the probability p(i. j)

e After n moves all ants have a complete tour, their tabu lists are full; so
compute L;. and ﬁ’i"f'? Save shortest path found and empty tabu lists. Update
pheromone strengths.

e [terate until tour counter reaches maximum or until stagnation — all ants make
same tour.

Can also have different pheromone-laying procedures, e.g. lay a certain quantity
of pheromone () at each timestep, or lay a certain density of pheromone @)/d,;
at each timestep.




The ACO Algorithm

Algorithm 1 The framework of a basic ACO algorithm

input: An instance P of a CO problem model P = (S, f. ).
InitializePheromoneValues(7)

sps <— NULL init best-so-far solution
while termination conditions not met do
Siter — W set of valid solutions
for j=1,...,n,do loop over ants

s «— ConstructSolution(7")
if s 1s a valid solution then

5 «— LocalSearch(s) {optional}
if (f(s) < f(sps)) or (sps = NULL) then sps <5 update best-so-far
Siter < Siter U {5} store valid solutions
end if
end for
ApplyPheromoneUpdate( T, Siter.5hs )
end while

output: The best-so-far solution sps




Applications

* Bus routes, garbage collection, delivery routes

* Machine scheduling: Minimization of transport time for
distant production locations

* Feeding of lacquering machines
* Protein folding
* Telecommunication networks: Online optimization

* Personnel placement in airline companies

* Composition of products




Performance

Problem ACS SA EN [ SOM
(avge) | (avge) | (avge) | (avge)
50-city set 1 5.88 5.88 5.98 6.06
50-city set 2 6.05 6.01 6.03 6.25
50-city set 3 5.58 5.65 5.70 5.83
50-city set 4 .74 .81 5.86 5.87
50-city set 5 6.18 6.33 6.49 6.70

ACS — ant colony system, SA—simulated annealing, EN—elastic net, SOM-self-organising map

From Dorigo and Gambardella: Ant Colony System: A cooperative learning approach to the
TSP. IEEE Trans. Evol. Comp 1 (1) 53-66 1997,

Can do larger problems, e.g. finds optimal in 100-city problem KroA100, close to
optimal on 1577-city problem fl1577.




Bin Packing Problems

e Packing a number of items in bins of a fixed capacity

Bins have capacity C, set of items S with size/weight w,

Pack items into as few bins as possible

e Lower bound on no. bins: Ly = [ w;/C'] ( [x] is smallest integer > )
Slack = LiC' — > w;




Solving the BPP

e Greedy algorithm: first fit decreasing (FFD):

— Order items in order of non-increasing weight /size

— Pick up one by one and place into first bin that is still empty enough to
hold them

— If no bin is left that the item can fit in, start a new bin

e Or apply Ant Colony Optimisation: what is the trail/pheromone? what is the
“visibility” ?

2
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Applying ACO to the BPP

1. How can good packings be reinforced via a pheromone matrix?

2. How can the solutions be constructed stochastically, with influence from the
pheromone matrix and a simple heuristic?

3. How should the pheromone matrix be updated after each iteration?

4. What fitness function should be used to recognised good solutions?

5. What local search technique should be used to improve the solutions generated
by the ants?




-l
Pheromone Matrix

e BPP as an ordering problem? TSP is an ordering problem — put cities into
some order. But in BPP many orderings are possible:

82|73|54(53]
53|73(82(54
— |35(73|28/54

e BPP as a grouping problem? 7(i. j) expresses the favourability of having items
of size i and j in the same bin - possibly

e Pheromone matrix works on item sizes, not items themselves

e [here can be several items of size ¢ or j, but there are fewer item sizes than
there are items, so small pheromone matrix

e Pheromone matrix encodes good packing patterns — combinations of sizes




Building Solutions

e Every ant k starts with an empty bin b

e New items j are added to k's partial solution s stochastically:

()] ()"

gcallowed [TE: (ﬂ')] o, [?3(5‘:)] 3

p-‘s:(‘qrb:j) - Z

e The allowed items are those that are still small enough to fit in bin b.
e 7)(J) is the weight/size of the item, so #(j) = j — prefer largest

e 7,(7) is the sum of pheromone between item of size j and the items already in
bin b divided by the number of items in bin b

e o and /7 are empirical parameters, e.g. 1 and 2, giving the relative weighting
of local and global terms




Pheromone Updating

e Pheromone trail evaporates a small amount after every iteration (i.e. when all
ants have solutions)

T(‘-”f) = p T(‘I"}) T .f('sljest)

e Minimum pheromone level set by parameter 7,,,,, evaporation parameter p

e [he pheromone is increased for every time items of size i and j are combined
in a bin in the best solution (combined m times)

e Only the iteration best ant increases the pheromone trail (quite aggressive, but
allows exploration)

e Occasionally (every « iterations) update with the global best ant instead
(strong exploitation)




Evaluation Function

e Total number of bins in solution? Would give an extremely unfriendly evaluation

landscape — no guidance from N + 1 bins to N bins — there may be many
possible solutions with just one bin more than the optimal

e Need large reward for full or nearly full bins

N E/C 2
f(*‘*ﬁ;): bzleTb/ )

N the number of bins in s, F}, the sum of items in bin b, (' the bin capacity

e Includes how full the bins are and number of bins

e Promotes full bins with the spare capacity in one “big lump"” not spread among
lots of bins
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Local Search

e In every ant's solution, the 1y, least full bins are opened and their contents
are made free

e |tems in the remaining bins are replaced by larger free items

e [ his gives fuller bins with larger items and smaller free items to reinsert
e The free items are reinserted via FFD (first-fit-decreasing)

e The procedure is repeated until no further improvement is possible

e Deterministic and fast local search procedure

o ACO gives coarse-grained search, local search gives finer-grained search




-
Setting the Parameters

e Ducatelle used 10 existing problems for which solutions known to investigate
parameter setting

¢« 3=2 o Nopis = 10

® L = o to be opened in local search

e T,in — 0.001 e p—0.75

e Alternate global and iteration best ant laying pheromone 1/1

® 7jtor = H0000

e Local search: replace 2 current items by 2 free items; then 2 current by 1 free;
then 1 current by 1 free




Applying ACO to Optimization

What we need to set up an ACO

e Problem representation that allows the solution to be built up incrementally
e Desirability heuristic 1) to help in building up the solution
e Constraints that permit only feasible/valid solutions to be constructed

e Pheromone update rule incorporating quality of the solution

e Probability rule that is a function of desirability and pheromone strength




Considerations

@ Best ant laying pheromone (global-best ant or, in some versions
of ACOQ, iteration-best ant) encourage ants to follow the best
tour or to search in the neighbourhood of this tour (make sure
that t__>0).

® [ocal updating (the ants lay pheromone as they go along
without waiting till end of tour). Can set up the evaporation rate
so that local updating “eats away” pheromone, and thus visited
edges are seen as less desirable, encourages exploration.
(Because the pheromone added is quite small compared with
the amount that evaporates.)

e Heuristic improvements like 3-opt — not really “ant™-style

® “Guided parallel stochastic search in region of best tour”
[Dorigo and Gambardella], i.e. assuming a non-deceptive
problem.




Vehicle Routing
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Vehicle Routing

E.g. distribute 52000 pallets to
6800 customers over a period
of 20 days

Dynamic problem:
continuously incoming orders
Strategic planning: Finding
feasible tours is hard
Computing time: 3 min

(3h for human operators)

More tours required for
narrower arrival time window

Implicit knowledge on traffic
learned from human operators

a5

)
o

(=]
th

Total number of tours
2 a3 2

[+,
[+.]

e

50
10 30 B0 80 120 180 240  infinite
Time windows width {min)
Human AR-RegTW AR-Free
planner
Total number of tours 2056 1807 1614
Total kim 147271 143983 126258
Average truck loading T6.91% 87.35% 97 819




The ACO Algorithm

http://thiagodnf.github.io/aco-simulator/#




Artificial Bee Colony
(ABC)

Adopted from Ahmed Fouad Al
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Metaheuristics

[ Meta-heuristics techmiques ]




Introduction

Artificial Bee Colony (ABC) is one of the most recently defined algorithms by Dervis
Karaboga in 2005, motivated by the intelligent behavior of honey bees.

Since 2005, D. Karaboga and his research group have studied on ABC algorithm and
its applications to real world-problems.
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Main ldea

* The ABC algorithm is a swarm based meta-heuristics algorithm.
* |t based on the foraging behavior of honey bee colonies.
* The artificial bee colony contains three groups:

* Scouts

e Onlookers
* Employed bees
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Algorithm

* The ABC generates a randomly distributed initial population of SN solutions (food
source positions), where SN denotes the size of population.

 Eachsolutionxi(i=1, 2, ..., SN) is a D-dimensional vector.
e Afterinitialization, the population of the positions (solutions) is subjected to

repeated cycles, C=1, 2, ..., MCN, of the search processes of the employed bees, the
onlooker bees and scout bees.
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Algorithm

* An employed bee produces a modification on the position (solution) in her memory
depending on the nectar amount (fitness value) of the new source (new solution).

* Provided that the nectar amount of the new one is higher than that of the previous
one, the bee memorizes the new position and forgets the old one.

e After all employed bees complete the search process, they share the nectar
information of the food sources and their position information with the onlooker bees
on the dance area.
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Algorithm

* An onlooker bee evaluates the nectar information taken from all employed bees and
chooses a food source with a probability related to its nectar amount.

* Asin the case of the employed bee, it produces a modification on the position in its
memory and checks the nectar amount of the candidate source.

* Providing that its nectar is higher than that of the previous one, the bee memorizes
the new position and forgets the old one.
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Algorithm

* An artificial onlooker bee chooses a food source depending on the probability value
associated with that food source, p;,

fit;
SN
Y. fitn
=1

Pi —

* fit, is the fitness value of the solution i
* SN is the number of food sources which is equal to the number of employed bees
(BN).
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Algorithm

* |n order to produce a candidate food position from the old one in memory, the ABC
uses the following expression

vij = Tij + Oi (Tij — Tij)
 wherek€({1, 2,..., SN}and j € {1, 2,...,D} are randomly chosen indexes.
* kis determined randomly, it has to be different from i.

. ¢i,j is a random number between [-1, 1].

107




Algorithm

 The food source of which the nectar is abandoned by the bees is replaced with a
new food source by the scouts.

In ABC, providing that a position can not be improved further through a

predetermined number of cycles, which is called “limit” then that food source is
assumed to be abandoned.

:r‘;" =2 . +rand(0,1)(2? .. — 2’ . )

min max min
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Algorithm

Algorithm 1 Artificial Bee Colony algorithm

1: Generate the initial population z, randomly, i = 1,..., NS. > Initialization
2: Ewvaluate the fitness function fit, of all solutions in the population.
3. Keep the best solution Tp..; in the population. = Memorize the best solution
4: Set cycle=1.
5. repeat
6: Generate new solutions v, from old solutions x, where v,; = T.; + ¢u; (:; — T ).
b, €11, ke {1,2,..., NS} je{l,2,...,n},and i # k. > Employed bees
T Evaluate the fitness function fit, of all new solutions in the population.
a2 Keep the best solution between current and candidate solutions. > Greedy
selection
9: Calculate the probability F,, for the solutions x, where P, = fit,/ Z 1 fit;.
10: Generate the new solutions v; from the solutions selecting depending on its F,.
> Onlookers bees
11: Evaluate the fitness function fif, of all new solutions in the population.
12: Keep the best solution between current and candidate solutions. > Greedy
selection
13: Determine the abandoned solution if exist, replace it with a new randomly
solution .. > Scout bee
14: Keep the best solutionry..; found so far in the population.
15: cycle = eycle + 1
16: until cycle < MO N, = MCN is maximum cyvcle number
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Control Parameters

* Swarmsize

 Employed bees (50% of swarm)
 Onlookers (50% of swarm)

e Scouts (1)

* Limit

e Dimension
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Pros and Cons

* Advantages
* Few control parameters
* Fast convergence
* Both exploration & exploitation

e Disadvantages
e Search space limited by initial solution (normal distribution sample should use in
initialize step)
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Example

Consider the optimization problem as follows:
Minimize f (x) =x?; +x%,  -55x1,x2<5

Control Parameters of ABC Algorithm are set as:
Colony size, CS=6

Limit for scout, L = (CS*D)/2 =6

Dimension of the problem, D =2
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-
Example

First, we initialize the positions of 3 food sources (CS/2) of employed bees, randomly
using uniform distribution in the range (-5, 5).

x=1.4112 -2.5644
0.4756 1.4338
-0.1824 -1.0323

f(x) values are: 8.5678
2.2820
1.0990
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L
Example

|
if ;=20
Fitness function: ﬁfl{l rf if f }

l+abs(f;) if ;<0

Initial fitness vector is:
0.1045
0.3047
0.4764
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-
Example

Maximum fitness value is 0.4764, the quality of the best food source.

Cycle=1
Employed bees phase
e I1stemployed bee

Dij=Xij+ (DI—:J,'(.I;J- Igj}

with this formula, produce a new solution.
k=1 kisarandom selected index.
j=0 jisarandom selected index.
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Example

@O =0.8050 @ is randomly produced number in the range [-1, 1].
v0=2.1644 -2.5644

Calculate f(u0) and the fitness of uO0.
f(u0) = 11.2610 and the fitness value is 0.0816.

Apply greedy selection between x0 and v0

0.0816 < 0.1045, the solution O couldn’t be improved, increase its trial counter.
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Example
2nd employed bee

vij= Xij + Dif(xij- Xij)

with this formula produce a new solution.

k=2 kis a random selected solution in the neighborhood of i.
j=1 jisarandom selected dimension of the problem.

O =0.0762 @ is randomly produced number in the range [-1, 1].

v1=0.4/56 1.6217
Calculate f(ul) and the fitness of ul.
f(ul) = 2.8560 and the fitness value is 0.2593.

Apply greedy selection between x1 and ul
0.2593 < 0.3047, the solution 1 couldn’t be improved, increase its trial counter.
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Example
3rd employed bee
0;j= Xij + Qijlxij - X j)
with this formula produce a new solution.

k=0 //k is a random selected solution in the neighborhood of i.
j=0//jis a random selected dimension of the problem.

® =-0.0671// ® is randomly produced number in the range [-1, 1].
v2=-0.0754 -1.0323

Calculate f(u2) and the fitness of u2.
f(u2) = 1.0714 and the fitness value is 0.4828.

Apply greedy selection between x2 and u?2.
0.4828 > 0.4764, the solution 2 was improved, set its trial counter as 0 and replace the

solution x2 with v2. 118
S



X =
1.4112  -2.5644
0.4756  1.4338
-0.0754  -1.0323

f(x) values are:
8.5678
2.2820
1.0714

fitness vector is:
0.1045
0.3047
0.4828

Example

119




Example

Calculate the probability values p for the solutions x by means of their fitness values by
using the formula;
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Example

Onlooker bees phase
Produce new solutions vi for the onlookers from the solutions xi selected
depending on p,and evaluate them.

1st onlooker bee
i=2
v2=-0.0754 -2.2520

Calculate f(u2) and the fitness of u2.
f(u2) =5.0772 and the fitness value is 0.1645.
Apply greedy selection between x2 and v2

0.1645 < 0.4828, the solution 2 couldn’t be improved, increase its trial counter.
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-
Example

2nd onlooker bee
i=1

v1=0.1722 1.4338

Calculate f(ul) and the fitness of ul.
f(u1) = 2.0855 and the fitness value is 0.3241.

Apply greedy selection between x1 and ul
0.3241 > 0.3047, the solution 1 was improved, set its trial counter as 0 and replace the

solution x1 with u1l.
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Example

X =

1.4112 -2.5644
0.1722 1.4338
-0.0754 -1.0323

f(x) values are
8.5678
2.0855
1.0714

fitness vector is:
0.1045
0.3241
0.4828
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-
Example

3rd onlooker bee
i=2
u2=0.0348 -1.0323

Calculate f(u2) and the fitness of u2.
f(u2) = 1.0669 and the fitness value is 0.4838.
Apply greedy selection between x2 and u2

0.4838 > 0.4828, the solution 2 was improved, set its trial counter as 0 and replace the
solution x2 with v2.
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Example

X =
1.4112 -2.5644
0.1722 1.4338
0.0348 -1.0323

f(x) values are
8.5678
2.0855
1.0669

fitness vector is:
0.1045
0.3241
0.4838
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Example

Memorize best

Best =0.0348 -1.0323
Scout bee phase

Trial Counter =

1

0

0

There is no abandoned solution since L=6
If there is an abandoned solution (the solution of which the trial counter value is higher

than L =6);

Generate a new solution randomly to replace with the

abandoned one.

Cycle = Cycle+1

The procedure is continued until the termination criterion is attained.
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Resources

https://abc.erciyes.edu.tr/
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Cuckoo Search Algorithm

Adopted from Ahmed Fouad Al
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Introduction

A method of global optimization based on the behavior of cuckoos was proposed by
Yang & Deb (2009).

* The original “cuckoo search (CS) algorithm” is based on the idea of the following:
* How cuckoos lay their eggs in the host nests.
 How, if not detected and destroyed, the eggs are hatched to chicks by the hosts.

* How a search algorithm based on such a scheme can be used to find the global
optimum of a function.
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Behaviour

 The CS was inspired by the obligate brood parasitism of some cuckoo species by
laying their eggs in the nests of host birds.

 Some cuckoos have evolved in such a way that female parasitic cuckoos can imitate
the colors and patterns of the eggs of a few chosen host species.

 This reduces the probability of the eggs being abandoned and, therefore, increases
their reproductivity .
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Behaviour

* |f host birds discover the eggs are not their own, they will either throw them away
or simply abandon their nests and build new ones.

e Parasitic cuckoos often choose a nest where the host bird just laid its own eggs.

* |n general, the cuckoo eggs hatch slightly earlier than their host eggs.
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Behaviour

 Once the first cuckoo chick is hatched, his first instinct action is to evict the host
eggs by blindly propelling the eggs out of the nest.

e This action results in increasing the cuckoo chick’s share of food provided by its host
bird.

* Moreover, studies show that a cuckoo chick can imitate the call of host chicks to gain
access to more feeding opportunity.
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-l
Characteristics

* Each eggin a nest represents a solution, and a cuckoo egg represents a new solution.

 The aimis to employ the new and potentially better solutions (cuckoos) to replace
not-so-good solutions in the nests.

* Inthe simplest form, each nest has one egg.

* The algorithm can be extended to more complicated cases in which each nest has
multiple eggs representing a set of solutions
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Characteristics

* The CSis based on three idealized rules:
e Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest

* The best nests with high quality of eggs (solutions) will carry over to the next
generations

 The number of available host nests is fixed, and a host can discover an alien egg
with probability p € [0,1] .

* In this case, the host bird can either throw the egg away or abandon the nest to
build a completely new nest in a new location.

134




Levy Flights
In nature, animals search for food in a random or quasi-random manner.

Generally, the foraging path of an animal is effectively a random walk because the
next move is based on both the current location/state and the transition probability

to the next location.

The chosen direction implicitly depends on a probability, which can be modelled
mathematically.
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Levy Flights

 Alévyflightisarandom walk in which the step-lengths are distributed according to
a heavy-tailed probability distribution.

e After alarge number of steps, the distance from the origin of the random walk
tends to a stable distribution.
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Algorithm

Algorithm 1 Cuckoo search algorithm

1: Set the initial value of the host nest size n, probability p, € [0, 1] and maximum
number of iterations M ax,;,..

2: Set t := 0. {Counter initialization}.

3:for(i=1:1<n)do

4:  Generate initial population of n host mf”. {n is the population size}.
5:  Evaluate the fitness function f(z'").

6: end for

7. repeat

8: Generate a new solution (Cuckoo) I'_EH_U randomly by Lévy flight.
9:  Evaluate the fitness function of a solution z!**" f(z!"+1)
10: Choose a nest r; among n solutions randomly.
1 if (f(z"Y) > f(zl")) then
12: Replace the solution x; with the solution IEHU
13: end if
14: Abandon a fraction p, of worse nests.
15: Build new nests at new locations using Lévy flight a fraction p, of worse nests
16: Keep the best solutions (nests with quality solutions)
17: Rank the solutions and find the current best solution
18:  Set t =t + 1. {Iteration counter increasing}.

19: until (f < Maz,, ). { Termination criteria satisfied}.
20: Produce the best solution.

137



Steps

The following steps describe the main concepts of Cuckoo
search algorithm

Stepl. Generate initial population of n host nests.

(ai,ri) : a candidate for optimal parameters
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Steps

Step2. Lay the egg (ak’,bk’') in the k nest.

K nest is randomly selected.
Cuckoo’s egg is very similar to host egg.

Where

ak'=ak+Randomwalk (Levy flight) ak
rk'=rk+Randomwalk (Levy flight) rk
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Steps

Step3. Compare the fitness of cuckoo’s egg with the fitness of the host egg.

 Root Mean Square Error (RMSE)




Steps

Step4. If the fitness of cuckoo’s egg is better than host egg, replace the egg in nest k by
cuckoo’s egg.

fitness(cuckoo's egg)
= fitness(host eg

i

1t generation

fitness(cuckoo’s egg
< fitness(hostegg)
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Steps

Step5. If host bird notice it, the nest is abandoned and new one is built (p <0.25) (to
avoid local optimization)

J 1.1 ..-."v~
'/_:', . '

)4
new nes tk

lterate steps 2 to 5 until termination criterion satisfied
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Applications

* Engineering optimization problems

* NP hard combinatorial optimization problems

e Data fusion in wireless sensor networks

* Nanoelectronic technology based operation-amplifier (OP-AMP)
* Train neural network

* Manufacturing scheduling

* Nurse scheduling problem
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Evolutionary Computation

Adopted from Madhu, Natraj, Bhavish, Sanjay & Antoine CORNUEJOLS - Christine Martin
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Introduction

e Evolution is the change in the inherited traits of a population from one generation to
the next.

* Natural selection leading to better and better species
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Introduction

e Survival of the fittest.
 Change in species is due to change in genes over reproduction or/and due to

mutation.
Population in Environment Surviving population After some time: Repreduction
- D)
\{\’s‘; A o
’ a o a &F
m ° >

* An Example showing the concept of survival of the fittest and reproduction over
generations.
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-l
Introduction

* Mimicking natural evolution to evolve better « solutions »

* Generation of successive populations with survival and reproduction of the fittests
* Using mutation and cross-over as reproduction operators

 Genotype vs. Phenotype

* Akind of generalized optimization method

* A population of “solutions” : size

* Reproduction operators

e Selection of the fittests
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History

e “Evolutionary computing”
* |. Rechenberg in the 60s.
* Optimization on real valued domains
* Genetic algorithms
e John Holland, “Adaptation in Natural and Artificial Systems”, 1975.
* Bit representation / Schema theorem / Problem-Solving method
* Genetic Programming
* John Koza, First book on Genetic Programming, 1992.
* Programs represented as trees
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Evolutionary Computation

* Evolutionary Computation (EC) refers to computer-based problem solving systems
that use computational models of evolutionary process.
e Terminology:

 Chromosome — It is an individual representing a candidate solution of the
optimization problem.

* Population — A set of chromosomes.

e Gene-—ltisthe fundamental building block of the chromosome, each gene in a
chromosome represents each variable to be optimized. It is the smallest unit of
information.

* Obijective: To find a best possible chromosome to a given optimization problem.
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-
Evolutionary Algorithm

Let t = 0 be the generation counter;
create and initialize a population P(0);

repeat
Evaluate the fitness, f(xi), for all xi belonging to P(t);

Perform cross-over to produce offspring;

Perform mutation on offspring;

Select population P(t+1) of new generation;

Advance to the new generation, i.e. t = t+1;
until stopping condition is true;

150




Evolutionary Algorithm

\4

Initialize population

Y

Evaluate Solutions

| o

> Optimum N >
Solution?
Selection
Y

A 4

T=T+1 Crossover

\ 4
Mutation

A

A
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Genetic Algorithms

* GA emulate genetic evolution.
A GA has distinct features:
 Astring representation of chromosomes.
 Aselection procedure for initial population and for off-spring creation.
 Across-over method and a mutation method.
 Afitness function be to minimized.
 Areplacement procedure.
* Parameters that affect GA are initial population, size of the population,
selection process and fitness function.

152




-
Genetic Algorithms

Natural Evolution Evolutionary Computation
Population Pool of solutions
Individual Solution to a problem
Fitness of an individual Quality of a solution
Chromosome Encoding of a solution
Gene Part of the encoding

Reproduction Mutation and/or crossover
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Anatomy

children

modified

t ;
payeils children

evaluated
children

bad population
members
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Representation
Various encoding schemes Chromosome 1 11010110001
: : Chromosome 2 10010111000
Bit strings
Strings of values
Chromosome 1 15360127308
flealvele Chromosome 2 92418326210
tree
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Initialization

* Nindividuals generally randomly generated
* Nisdomain-dependent
e Oftenin [~50 -~1000]
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Fithess Function

* Evaluates the quality of the solution
 E.g. z-value in function optimization
. Length of the circuit in the travelling salesman problem
. Time before falling down in the inverse pole

* Beware of its cost
* Keep values in memory
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Selection

* Selection is a procedure of picking parent chromosome to produce off-spring.
* Types of selection:
 Random Selection — Parents are selected randomly from the population.
* Proportional Selection — probabilities for picking each chromosome is calculated
as:
P(x) = f(x;)/2f(x;) for all j

 Rank Based Selection — This method uses ranks instead of absolute fitness
values.

P(x) = (1/B)(1 — &)
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-l
Wheel Selection

e Leti=1, whereijdenotes chromosome index;
* Calculate P(x;) using proportional selection;
* sum = P(x);
e chooser~ U(0,1);
while sum < rdo
i=i+1;ie.nextchromosome
sum =sum + P(x.);
end
return x, as one of the selected parent;
repeat until all parents are selected
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Wheel Selection

The probability of selecting an individual is proportional to its fitness

.h.: |:'|::a h_] hse hs hs hy hs h:':l hn:l_

o {F i 1 1
il 1
201 | l
11:-11--. I -
EI...l-..-...—....

hy h; hy; he hs hg hs hg he hy

Fitness Probability of selection
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Wheel Selection

The probability of selecting an individual is proportional to its rank

Fitness Probability of selection Probability of selection
according to fitness according to rank

.h_z h_:a h_:u he hs hg h_:l hg h_-:- hm_
o i

kLl

20 | 1
ol l I |
J Allm=EN . ERE

hj hz h] I!u. hE n.& h:l nB h_q h]n
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Tournament

 Selection by fitness or rank implies the evaluation of the fitness of all individuals
* Selection by tournament avoids this
* |f nindividuals must be selected (within a population of size )
* Organize n tournaments, each between m < N randomly chosen individuals
(m controls the selective pressure)
o Select the best individual / or select the best and second best / or ...
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-
Reproduction

* Reproduction is a processes of creating new chromosomes out of chromosomes in
the population.

e Parents are put back into population after reproduction.

* Cross-over and Mutation are two parts in reproduction of an off-spring.

* Cross-over : It is a process of creating one or more new individuals through the
combination of genetic material randomly selected from two or parents.

163




e
Crossover

* Uniform cross-over : where corresponding bit positions are randomly exchanged
between two parents.

* One point : random bit is selected and entire sub-string after the bit is swapped.

 Two point : two bits are selected and the sub-string between the bits is swapped.

Uniform One point Two point

Cross-over Cross-over Cross-over

Parentl 00110110 00110110 00110110
Parent2 11011011 11011011 11011011
Off-springl 01110111 00111011 01011010
Off-spring?2 10011010 11010110 10110111




Mutation

* Mutation procedures depend upon the representation schema of the chromosomes.
* Thisis to prevent falling all solutions in population into a local optimum.
* For a bit-vector representation:
 random mutation : randomly negates bits
* in-order mutation : performs random mutation between two randomly selected bit

position.
Random In-order
Mutation Mutation
Before mutation 1110010011 1110010011

After mutation 1100010111 1110011010
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Operators

e Assure trade-off between

* Exploitation
* Preserve best individuals and explore nearby locations

* Mutation is exploitation oriented

* Small steps but brings new alleles

* Exploration
* Search unexplored regions for possible good candidates

* Crossover is exploration oriented

e Large steps but does not bring new alleles
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Introduction
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Introduction

(}l
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Replacements

= Selection of m parents

* By fitness / rank / tournament/ ...

= Generation of / children

* Mutation / crossover / copy |

e And selection of the best

= Completionto N P40 Pt+1)

* Elimination of the worst individuals and copy of others
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Strategies

1. Completely replace the previous population
(called (m,l) replacement)

* Risk: loosing the good individuals of previous w—
population

2. Draw the N new individuals from the selected m parents
and | children (called (m + ) replacement)

P1) P (t+1)
3. Steady state
* Select a sub-population and make replacement for this
sub-population only (possibility of parallel and
asynchronous process
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Example

* Problem: finding Argmax of x? over {0,...,31}
* GA approach
* Representation: binary code (e.g. 01101 <->13)
* Population size=4
* QOperators
* Single-point crossover
* Mutation

A more complex

Roulette wheel selection according to fitness optimization problem
* Random initialization of the population
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Example
Selection
String Initial |z Value| Fitness |Prob;|Expected|Actual
no population flx) = x° count | count
1 01101 13 169 0.14 0.58 1
2 11000 24 576 0.49 1.97 2
3 01000 8 64 0.06 0.22 0
4 10011 19 361 0.31 1.23 1
Sum 1170 1.00 4.00 4
Average 293 0.25 1.00 1
Max 576 0.49 1.97 2
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Example

Crossover

String Mating |Crossover| Offspring | Value| Fitness
no. pool point |after xover f(x) = 2°
1 0110]1 4 01100 12 144
2 11000 4 11001 25 625
2 11000 2 11011 27 729
4 10/011 2 10000 16 256
Sum 1754
Average 439
Max 729
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Example

Mutation

String | Offspring Offspring |x Value| Fitness
no. after xover|after mutation f(x) =2
1 01100 111100 26 676

2 11001 11001 25 625

2 11011 11011 27 729

4 10000 1 0{L0OO 18 324
Sum 2354 |
Average 588.5
Max 729
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TSP

 The traveling salesman problem is difficult to solve by traditional genetic algorithms
because of the requirement that each node must be visited exactly once.

* One way to solve this problem is by introducing more operators. Example in
simulated annealing.

 Theideais to change the encoding pattern of chromosomes such that GA meta-
heuristic can still be applicable.

 Transfer the TSP from a permutation problem into a priority assignment problem.
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TSP
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TSP

A solution: the “2-opt mutation”

Mutation

987654321 984567321

bt
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Optimizing Sorting
* Normal sorting algorithms do not take into account the characteristics of the
architecture and the nature of the input data

e Different sorting techniques are best suited for different types of input
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Optimizing Sorting

* For example radix sort is the best algorithm to use when the standard deviation of
the input is high as there will be less cache misses (Merge Sort better in other cases

etc)
 The objective is to create a composite sorting algorithm

* The composite sorting algorithm evolves from the use of a Genetic Algorithm (GA)
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Optimizing Sorting

* Sorting Primitives — these are the building blocks of our composite sorting algorithm

* Partitioning
 Divide by Value (DV) (Quicksort)
 Divide by Position (DP) (Merge Sort)
 Divide by Radix (DR) (Radix Sort)
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Optimizing Sorting

e Branch by Size (BS) : this primitive is used to select different sorting paths based on
the size of the partition

* Branch by Entropy (BE): this primitive is used to select different paths based on the
entropy of the input
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Optimizing Sorting

The efficiency of radix sort increases with standard deviation of the input

e A measure of this is calculated as follows.

* We scan the input set and compute the number of keys that have a particular value
for each digit position.

* For each digit the entropy is calculated as 2, =P, * log P, where P, = ¢c/N where c, =
number of keys with value ‘I’ in that digit and N is the total number of keys
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Optimizing Sorting

New offspring are generated using random single point crossovers

Parent trees Offsprings
" e
™

| AT ", LDR DR LDE
Y
LDV
DE
/"___I—‘h‘\
DR Dr"
DR LDV
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Optimizing Sorting

1. Change the values of the parameters of the sorting and selection primitives
2. Exchange two subtrees

3. Add a new subtree. This kind of mutation is useful where more partitioning is
needed along a path of the tree

4. Remove a subtree
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Optimizing Sorting

<=4M =4 M
Subiree A Optimal subtee
Hhtee for 4 M records

Optimal subtee
for 4 M records

+ Exchange subtrees

<=4M

=4M

Add a new
subtree

DP s=4M records

Optimal subtee
for 4 M records

Subtree A

i

(a)

Optimal subtee
for 4 M records

(b)
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Fithess Function

* We are searching for a sorting algorithm that performs well over all possible inputs
hence the average performance of the tree is its base fitness

* Premature convergence is prevented by using ranking of population rather than
absolute performance difference between trees enabling exploring areas outside
the neighbourhood of the highly fit trees
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Results

~ AMD Athlon MP
E 0-4 T T T T T L T T T T
i
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0,

0.35
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O
(i)}
8 0.3 -
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£
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=
-
H
o 0.2
0]
-
I8
=3
(@]
m G.-IS 1 1 1 | 1 1 | 1 1 1 | 1 1 1 | 1 1 1
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GA - Advantages

1. Because only primitive procedures like "cut" and "exchange" of strings are used for

generating new genes from old, it is easy to handle large problems simply by using
long strings.

2. Because only values of the objective function for optimization are used to select
genes, this algorithm can be robustly applied to problems with any kinds of
objective functions, such as nonlinear, indifferentiable, or step functions;

3. Because the genetic operations are performed at random and also include
mutation, it is possible to avoid being trapped by local-optima.
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e
Conclusions

* Evolutionary Algorithms are heavily used in the search of solution spaces in many
NP-Complete problems

* NP-Complete problems like Network Routing, TSP and even problems like Sorting
are optimized by the use of Genetic Algorithms as they can rapidly locate good
solutions, even for difficult search spaces.
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Fuzzy Systems

Adopted from Debasis Samanta
190



Introduction

@ Fuzzy logic is a mathematical language to express something.

This means it has grammar, syntax, semantic like a language for
communication.

@ There are some other mathematical languages also known

o Relational algebra (operations on sets)
e Boolean algebra (operations on Boolean variables)

e Predicate logic (operations on well formed formulae (wff), also
called predicate propositions)

@ Fuzzy logic deals with Fuzzy set.
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Introduction

@ First time introduced by Lotfi Abdelli Zadeh (1965), University of
California, Berkley, USA (1965).

g »
| can sort of pat myself on the back,
and say ‘yes...

@ He is fondly nick-named as LAZ
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Introduction

@ Dictionary meaning of fuzzy is not clear, noisy etc.

Example: Is the picture on this slide is fuzzy?

@ Antonym of fuzzy is crisp

Example: Are the chips crisp?
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Introduction

Crisp answer

True or False

Milk

Water

»  Crisp

Coca 7Y

Spite

Is the liquid
colorless?

194




Introduction

Fuzzy answer

Absolutely
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Ankit
Rajesh
Santosh
Kabita

Salmon

Introduction

Fuzzy

Is the person
honest?

Extremely honest

Extremely dishonest

Honest at times

Score

99

75

55

35
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Phases

-~ C v Z ~

—— | Fuzzy element(s)

l

———»  Fuzzy set(s) T

»  Fuzzy rule(s)

l

>

Fuzzy implication(s)
(Inferences)

Fuzzy system

- CcC w4 CcC O
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System

provided by experts or
extracted from numerical data
AN

— ..... \\ ...................... : I:wuuides :
the linguistic : RULES crisp output
rules value
‘ | FUZZIFICATION | { IDEFUZZIFICATION e
cris
inpfts 1 T output
+* INFERENCE [+
Sfuzzy sets of output fuzzy set
inpu.l vaﬁﬂb]ﬂ 'huu-u;;---u-u-uuu-.u!

/.

« maps fuzzysets into fuzzysets
+ determines how the rules are activated and combin
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System




——————————————————————————————————————————————————————

------------------------------------------------------

defuzzifier

—> . Wy . fuzz
XisA,—=|yisB; J—lﬁg (fuzzy)
aggregator———
L
.
L

ri
(crisp)
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Mapping

In the case of crisp inputs & outputs, a fuzzy
Inference system implements a nonlinear
mapping from its input space to output space.
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Fuzzy Sets

To understand the concept of fuzzy set it is better, if we first clear our
idea of crisp set.

X = The entire population of India.
H = All Hindu population = { hy, ho, hs, ... , h. }
M = All Muslim population = { my, mo, ms, ... , my }

Universe of discourse X

Here, All are the sets of finite numbers of individuals.

Such a set is called crisp set. 202




Fuzzy Sets

Let us discuss about fuzzy set.
X = All students in IT60108.
S = All Good students.

S={(s,9)|se X} andg(s)is a measurement of goodness of the
student s.

Example:
S = { (Rajat, 0.8), (Kabita, 0.7), (Salman, 0.1), (Ankit, 0.9) } etc.
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Fuzzy Sets

Crisp Set

Fuzzy Set

1.S={s[seX!

1.F=(s, 1) | s€ Xand
11(s) is the degree of s.

2. It is a collection of el-
ements.

2. |t is collection of or-
dered pairs.

3. Inclusion of an el-
ement s € X into S is
crisp, that is, has strict
boundary yes or no.

3. Inclusion of an el-
ement s € X into F is
fuzzy, that is, if present,
then with a degree of
membership.
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Fuzzy Sets

Note: A crisp set is a fuzzy set, but, a fuzzy set is not necessarily a

crisp set.

Example:

H = { (h'l'.! 1)1 (hzs 1)5 ey (hf.'.' 1) }
Person ={ (p1, 1), (p2,0), ..., (PN, 1) }

In case of a crisp set, the elements are with extreme values of degree
of membership namely either 1 or 0.

How to decide the degree of memberships of elements in a fuzzy set?

City

Bangalore

Bombay

Hyderabac

| Kharagpur

Madras

Delhi

DoM

0.95

0.90

0.80

0.01

0.65

0.75

How the cities of comfort can be judged?
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Fuzzy Sets

@ EX =Marks > 90

Q@ A=80< Marks < 90
© B=70< Marks < 80
©Q C=60< Marks < 70
@ D =50 < Marks < 60
©Q P =35 < Marks < 50
Q@ F =Marks < 35
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Fuzzy Sets

35 50 60 70 80 90 100
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Fuzzy Sets

F p D
1
ﬂX/
0
3 50 6

C B A EX

0 70 80 90 100
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Examples

@ High Temperature

@ Low Pressure

@ Color of Apple
@ Sweetness of Orange

@ Weight of Mango

Note: Degree of membership values lie in the range [0...1].
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Fuzzy Sets

Definition 1: Membership function (and Fuzzy set)

If X is a universe of discourse and x € X, then a fuzzy set Ain X is
defined as a set of ordered pairs, that is

A= {(x,pna(x))|x € X} where ua(x) is called the membership function
for the fuzzy set A.

Note:
1a(x) map each element of X onto a membership grade (or
membership value) between 0 and 1 (both inclusive).

Question:
How (and who) decides ;1 4(x) for a Fuzzy set A in X7
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-
Fuzzy Sets

Example:
X = All cities in India
A = City of comfort

A={(New Delhi, 0.7), (Bangalore, 0.9), (Chennali, 0.8), (Hyderabad,
0.6), (Kolkata, 0.3), (Kharagpur, 0)}
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Fuzzy Sets

The membership values may be of discrete values.

palx) —=

X

A fuzzy set with discrete values of [/
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-
Fuzzy Sets

Either elements or their membership values (or both) also may be of
discrete values.

A A ={(0,0.1),(1.0.30),(2.0.78).......(10,0.1)}
? 10 T
08+

04 4

02 1
1 T } . I I T T T ¥ How you measure happiness 77

0 2 4 [ 8 10

Note : X = discreie value

Number of children (3{) —

A ="Happy family”

213




-________________________________________________________________________________________________
Fuzzy Sets

A
bl e~
06 - 10
o 1 o2 /
02 T
0 50 100 >
B={(x,un(x))}
Age (X) -

Note : x = real value
— R+

B = “Middle aged”
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Fuzzy Sets

Support: The support of a fuzzy set A is the set of all points x € X
such that pua(x) > 0

Support (A)={x | pa(x) > 0}
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Fuzzy Sets

Core: The core of a fuzzy set A is the set of all points x in X such that
pA(X) =1

A core (A) = x| pa(x) = 15

= 104mm-mmam
n_j-!f-i--l-'l-iﬂ iiiiiiiiiiiiii -
| F
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Fuzzy Sets

Normality : A fuzzy set A is a normal if its core is non-empty. In other
words, we can always find a point x € X such that ji4(x) = 1.

A Normality (A) = FALSE

1 e e e e

—
1
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Fuzzy Sets

Crossover point : A crossover point of a fuzzy set Ais a point x € X
at which pi4(x) = 0.5. That is
Crossover (A) = {x|pa(x) = 0.5}.

/ R

Crossover point

X —»

218




Fuzzy Sets

Fuzzy Singleton : A fuzzy set whose support is a single point in X
with 14(x) = 1 is called a fuzzy singleton. That is
Al = { X | pa(x) = 1}| = 1. Following fuzzy set is not a fuzzy singleton.

singleton
A g

TLI, l111r,

X —»
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Fuzzy Sets

a-cut and strong o-cut :

The a-cut of a fuzzy set A is a crisp set defined by

Aa={x|ﬂﬂ(x)2ﬂ}

Strong «-cut is defined similarly :

A) = {X|palx) > al

Note : Support(A) = Ay’ and Core(A) = Aj.
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Fuzzy Sets

Convexity : A fuzzy set A is convex if and only if for any x; and x, € X
and any A € [0, 1]
i (AXy + (1 -A)x2) > min(ua(x1), pa(xz))

Note :
e Ais convex if all its a- level sets are convex.
e Convexity (A,) =— A, is composed of a single line segment only.

Membership function is Maon-comvex
convex Membership function
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-
Fuzzy Sets

Bandwidth :

For a normal and convex fuzzy set, the bandwidth (or width) is defined
as the distance the two unique crossover points:

Bandwidth(A) = | x4 - X2 |

where jia(Xy) = pa(xz) = 0.5
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Fuzzy Sets

Symmetry :

A fuzzy set A is symmetric if its membership function around a certain
point X = ¢, namely pa(X + ¢) = pa(X - ¢) for all x € X.

A

p ot

p=
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Fuzzy Sets

A fuzzy set Ais

Open left

flimy— o pa(x) =1 and limy_, . o pa(x) =0
Open right:

If limy_ _cpea(X) =0 and limy_ .o pa(X) =1
Closed

If 2 liMy——oo pa(X) = My o0 pa(x) =0

Open left Closed Open right
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Fuzzy vs Probability

Fuzzy : When we say about certainty of a thing

Example: A patient come to the doctor and he has to diagnose so that

medicine can be prescribed.

Doctor prescribed a medicine with certainty 60% that the patient is
suffering from flue. So, the disease will be cured with certainty of 60%
and uncertainty 40%. Here, in stead of flue, other diseases with some

other certainties may be.
Probability: When we say about the chance of an event to occur

Example: India will win the T20 tournament with a chance 60% means
that out of 100 matches, India own 60 matches.
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Prediction vs Forecasting

The Fuzzy vs. Probability is analogical to Prediction vs. Forecasting
Prediction : When you start guessing about things.

Forecasting : When you take the information from the past job and
apply it to new job.

The main difference:

Prediction is based on the best guess from experiences.

Forecasting is based on data you have actually recorded and packed
from previous job.
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-
Membership Functions

A fuzzy set is completely characterized by its membership function
(sometimes abbreviated as MF and denoted as ;. ). So, it would be
important to learn how a membership function can be expressed
(mathematically or otherwise).

Note: A membership function can be on

(a) a discrete universe of discourse and
(b) a continuous universe of discourse.
Example:

A A

bl T
155,,*(”]“111'*.. 133/k~

T
0 2 4 ] 8 10 1] i0 20 30 40 50 &0

MNumber of children () —* Age (X)) —=

A = Fuzzy set of “Happy famuily™ B ="Young age”
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Membership Functions

So, membership function on a discrete universe of course is trivial.
However, a membership function on a continuous universe of
discourse needs a special attention.

Following figures shows a typical examples of membership functions.

A A '
T /\ | T /\
- /—\, _
r — . ey
< friangular = = trapezoidal = < curve =
) A

}

b X

X —»

= pon-umniform = = non-umform =

228




Membership Functions

In the following, we try to parameterize the different MFs on a
continuous universe of discourse.

Triangular MFs : A triangular MF is specified by three parameters
{a, b, c} and can be formulated as follows.

r

0 fx<a
=2 ifa<x<

triangle(x; a. b, c) = { b=2 !f asxsb
—p Iftb<x<c
0 ifc<x

i0
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Membership Functions

A trapezoidal MF is specified by four parameters {a, b, ¢. d} and can
be defined as follows:

(0 if x < a
= ifa<x<b

trapezoid(x;a.b,c.d) =< 1 fb<x<c
=X ife<x<d
0 if d < x
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Membership Functions

A Gaussian MF is specified by two parameters {c. o} and can be
defined as below:

. 1,X—Cw2
gaussian(x;c,o) =e~2(= I .

01 0.1c 0.9¢c
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Membership Functions

It is also called Cauchy MF. A generalized bell MF is specified by three
parameters {a, b.c} and is defined as:

Slope atx= —
2a
Sl t b
opeaty =——
b 2a
- _
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Membership Functions

Example: /(X)= 757 ;

a=b=1andc=0;
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Membership Functions

VAN

Changing a

JR\

AN

Changing a

Changing b

Changing aand b
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Membership Functions

Parameters: {a, c} ;. where ¢ = crossover point and a = slope at c;

Sigmoid(x;a,c)=—1—

14+e ¥
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Membership Functions

Example : Consider the following grading system for a course.

Excellent = Marks < 90

Very good = 75 < Marks < 90
Good = 60 < Marks <75
Average = 50 < Marks < 60
Poor = 35 < Marks < 50
Bad= Marks < 35
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A fuzzy implementation will look like the following.

Membership Functions

Average

l

Good

|

Very Good

l

Excellent

l

o]

20

40

50

marks —

60

70

80

90
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Operations

Union (AU B):

pauB(X) = max{pa(X). pB(X)}

Example:

A= {(xq, 0.5), (X0, 0.1), (X3, 0.4)} and

B ={(x4,0.2), (X2, 0.3), (X3, 0.5)};
C=AuUB-={(x4,0.5), (X2, 0.3), (X3, 0.5)}

Ha Ha

SN I

ap x b q C ap x b q

Haue
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Operations

Intersection (A B):

pAnB(X) = min{ya(Xx), 11B(X)}

Example:

A= {(xq, 0.5), (Xp, 0.1), (X3, 0.4)} and

B = {(Xh 02), (Xz, 03), (XS: 05)},
C=ANB={(x4,0.2), (Xp, 0.1), (X3, 0.4)}

Ha

(RN

ap x b q c ap x b q

Ha~B
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Operations

Complement (A°):

HA . (X) = 1-pa(X)

Example:
A= {(Jﬁ, 0.5), (Xg, 0-1), (X:Ba 04)}

C = A® = {(x4, 0.5), (X2, 0.9), (X3, 0.6)}

Ha o Ha ™
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Operations

Algebric product or Vector product (AeB):

1tAeB(X) = pA(X) @ 11B(X)

Scalar product (o x A):

faA(X) = - p1a(X)
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Operations

Sum (A + B):
pa+B(X) = pa(X) + pp(X) — pa(x) - pp(x)
Difference (A — B = An BY):
1A-B(X) = panpe(X)
Disjunctive sum: A@ B= (A°n B)uU (An BY))
Bounded Sum: | A(x) 4 B(x) |
IAx)@Bx)| = MIn{1, pa(X) + pp(X)}

Bounded Difference: | A(x) & B(X) |

11A(x)eB(x)| = Max{0, pa(x) + pB(Xx) — 1}
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Operations

Equality (A = B):
pHA(X) = pp(X)
Power of a fuzzy set A*:

frae (X) = {pa(X)

e If o < 1, then it is called dilation
o If o« > 1, then it is called concentration
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Operations

Cartesian Product (A x B):

ﬁAxB(X:y) — mj‘n{ﬂﬂ(x):ﬁﬂ(y)

Example 3:
A(x) = {(xq, 0.2), (x2, 0.3), (X3, 0.5), (x4, 0.6)}
B(y) = {(y1, 0.8), (y2, 0.6), (y3, 0.3)}

Y Y2 Y3
xx [ 0.2 0.2 0.2
x» | 0.3 0.3 0.3
x3 | 0.5 0.5 0.3
x, | 0.6 0.6 0.3

A x B =min{ua(x), up(y)} =
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Operations

Commutativity :

AUB = BUA
ANB = BNA

Associativity :

Au(BuC)=(AuB)uC
An(BNnC)=AnB)nC

Distributivity :

AU(BNnC)=(AuB)n(AuC)
ANn(BUuC)=(AnB)U(AnC)
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Operations

ldempotence :

AUA=A

ANA=10

AudD=A

And =10
Transitivity :

fACB BCCthenACC

Involution :

(A% =A
De Morgan’s law :

(AN B)° = AU B°
(AU B)° = A°n B°
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Operations

Given a membership function of a fuzzy set representing a linguistic
hedge, we can derive many more MFs representing several other
linguistic hedges using the concept of Concentration and Dilation.

@ Concentration:
AR = [pa(X)]F sk > 1

@ Dilation:
AR = [a()]F sk < 1
Example : Age = { Young, Middle-aged, Old }

Thus, corresponding to Young, we have : Not young, Very young, Not
very young and so on.

Similarly, with Old we can have : old, very old, very very old, extremely
old etc.
Thus, Extremely old = (((0/d)?)?)? and so on

Or, More or less old = A%° = (old)°-
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Operations

Young Middle-Aged Old

- l P

Yery Old

wl /

Yery young

X = Age

P:}"DUHQ(X) — bE”(X:. 2{}'- 2:~ G) — T(‘I%]_d

1oid(X) = bell(x,30,3,100) = —

X—10018
1+(55)

[ middle—aged = bEH(X, 30, BU, 50)

NGT yt}ung = PL}’CIUHQ(X) — 1 — ‘Lt}fgung()f}
Young but not too young = jtyoung(X) M ftyoung(X)
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Types

- Ebrahim Mamdani Fuzzy Models
- Sugeno Fuzzy Models
- Tsukamoto Fuzzy Models

« The differences between these three FISs lie in
the consequents of their fuzzy rules, and thus
their aggregation and defuzzification procedures
differ accordingly.
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-
Mamdani Fuzzy Model

« The most commonly used fuzzy inference technique is the so-
called Mamdani method.

« In 1975, Professor Ebrahim Mamdani of London University
built one of the first fuzzy systems to control a steam engine
and boiler combination. He applied a set of fuzzy rules
supplied by experienced human operators.

« The Mamdani-style fuzzy inference process is performed in
four steps:

1. Fuzzification of the input variables
2. Rule evaluation (inference)
3. Aggregation of the rule outputs (composition)

4. Defuzzification
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Mamdani Fuzzy Model

Crisp
Crisp

Defuzzilier H-yales
Values

Membership Functions

Fuzzy (IF THEN) Rules
Fuzzy Variables
Linguistic Variables
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Mamdani Fuzzy Model

rule 1. IF xI1S A THEN n IS D: "".5_ muf x)
/ \
x
E ."‘\.__
/Y
mle2 IFyISBTHENnISE: .\""x
/
/ \
Y
FAEY
rule3: IFzISC THENNIS F: ."x
f \

z

DEFUZZIFICATION:

CENTROID DEFUZZIFICATION
USING MAX-MIN INFERENCING

crisp value = n

Mamdani composition of three SISO fuzzy outputs
http://en.wikipedia.org/wiki/Fuzzy _control_system 752




Mamdani Fuzzy Model

The mamdani FIS using min and max for T-norm and S-norm
and subject to two crisp inputs x and y

min
i ﬁ mA B, A ey
U A . ﬁ Ci
X f\ v z
KA A, KA B, KA c,
........................................... ¢
A N——— 0
X Y Z
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Mamdani Fuzzy Model

The mamdani FIS using product and max for T-norm and S-norm
and subject to two crisp inputs x and y

product
1 S B B, " ey
AR R s s SR N Cj
A
X Y z
I Y A S L C5
A A
X Y z
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Mamdani Fuzzy Model

Low High Low

085 __ __ | ___ I A________. -

Rule 1
0.25 \

Average Warm Moderate

Rule2 | 0.55 \
X1
Pressure Temperature Power

Rule 1: If pressure is low and temperature is high then power is low
Rule 2: If pressure is average and temperature is warm
then power is moderate Jee




Mamdani Fuzzy Model

Two-input, one-ouput example:
If xis Ajand yis B then zis C;

v Y
_ B, |B,|B, B, | |L /M /H VH
x| [A,|C, |Co |C. | Ca MIL |M |H |VH
H|M |H |VH|VH
i A3 C‘g Cm C11 C12 -
4 Playing time
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Mamdani Fuzzy Model

* |In many applications we have to use crisp
values as inputs for controlling of machines and
systems.

« S0, we have to use a defuzzifier to convert a
fuzzy set to a crisp value.
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Mamdani Fuzzy Model

« Defuzzification refers to the way a crisp value Is
extracted from a fuzzy set as a representative
value.

» Defuzzification Methods:
= Centroid of Area
- Bisector of Area
= Mean of Max
= Smallest of Max
= Largest of Max
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Mamdani Fuzzy Model

. ~ Jzpa(2)zdz
coA = fz pa(z)dz’

« Where |, Is aggregated output MF.

» This Is the most widely adopted defuzzification
strategy, which is reminiscent of the calculation
of expected values of probability distributions.

259




Mamdani Fuzzy Model

¢ Zpopa Satisfies

*BOA o
] pa(z) dz = / ua(z) dz,
a *BOA

a = min{z|z € Z} B = max{z|z € Z}

« That s, the vertical line z = z5,, partitions the
region betweenz=a,z=0B,y=0and y = H(2)
Into two regions with the same area.
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Mamdani Fuzzy Model

* Zy1om 1S the mean of maximizing z at which the MF
reaches maximum u*. In Symbols,

fz,zdz

"MOM = [ 2

Z' = {z|pa(2) € 1}

« In particular, if g (z) has a single maximum at
z = z*, then the z,,,, = Z2*.
« Moreover, If u,(z) reaches its maximum whenever
ALS [Zieft:zright]
then
Zyiom = (Ziett  Ziignt)/ 2
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Mamdani Fuzzy Model

¢ Zooy IS the minimum (in terms of magnitude) of
the maximizing z.

* Z o IS the maximum (in terms of magnitude) of
the maximizing z.

« Because of their obvious bias, z5,, and z, 5 are
not used as often as the other three
defuzzification methods.
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Mamdani Fuzzy Model

V4

smallest of max J centroid of area
largest of max bisecter of area

mean of max.
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Mamdani Fuzzy Model

Y \ -
! centroid ; '

1L i ! i i —
: hisector :

i IR R O\ -
: S :

L . i . |
sm : luin
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Mamdani Fuzzy Model
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Mamdani Fuzzy Model

We examine a simple two-input one-output problem that

includes three rules:

Rule:1 IF xis A3 OR y is B1 THEN
Rule:2 IF xis A2 AND vyisB2 THEN
Rule: 3 IF xis A1 THEN

Real-life example for these kinds of rules:

Rule: 1
risk is low

Rule: 2 - pr
risk is normal

IF project_funding is inadequate
risk is high

Rule: 3

zis C1
Zis C2
Zis C3

IF project_funding is adequate OR project_staffing is small THEN
IF project_funding is marginal AND project_staffing is large THEN

THEN
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Mamdani Fuzzy Model

« The first step is to take the crisp inputs, x1 and y1 (project funding
and project staffing), and determine the degree to which these
iInputs belong to each of the appropriate fuzzy sets.

Crisp Input Crisp Input
x1 yl
1 Fi) 1
Al A2 A3
0.5 + 0.7
02 +—; 0.1
0 x1 X 0
Pe=41) = 03
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Mamdani Fuzzy Model

« The second step is to take the fuzzified inputs,
Wi=at) = 0.9, Bix=az) = 0.2, ny=g1) = 0.1 and =g = 0.7,
and apply them to the antecedents of the fuzzy rules.
« |f a given fuzzy rule has multiple antecedents, the fuzzy operator

(AND or OR) is used to obtain a single number that represents the
result of the antecedent evaluation.

RECALL: To evaluate the disjunction of the rule antecedents, we use

the OR fuzzy operation. Typically, fuzzy expert systems make use of
the classical fuzzy operation union:

Ha_p(X) = max [ua(X), tg(X)]
Similarly, in order to evaluate the conjunction of the rule antecedents,
we apply the AND fuzzy operation intersection:

Ha~g(X) = min [ua(Xx), pg(X)]
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Mamdani Fuzzy Model

C3

43 51
0.1 OR

0.0 >
. & t (max)
0 x1 X 0 y1 Y

Rule1: TF x is 43 (0.0) OR yisB1 (0.1)  THEN
1 1
/\ 0.7 15,

A2 \ 0.2 B2 AND

(min)

0 x1 X 0 y1 Y
Rule 2: TF x is 42 (0.2) AND yis B2 (0.7) THEN

1
4l 0.5
0 x1 X
Rule 3: TF x 1s A1 (0.5) THEN z1s C3 (0.5)
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Mamdani Fuzzy Model

« Now the result of the antecedent evaluation Degree of
can be applied to the membership function of ﬁdg‘"bmmp
the consequent. ‘

« The most common method is to cut the consequent =
membership function at the level of the antecedent '
truth. This method is called clipping (alpha-cut).

Since the top of the membership function is sliced, 0.2

the clipped fuzzy set loses some information. g

However, clipping is still often preferred because it 0.0 . . -
involves less complex and faster mathematics, and chpplng
generates an aggregated output surface that is easier

to defuzzify. Degree of,

Meémbershi
« While clipping is a frequently used method, scaling gm ership

offers a better approach for preserving the original
shape of the fuzzy set. [

The original membership function of the rule

consequent is adjusted by multiplying all its

membership degrees by the truth value of the rule 0.
antecedent.

This method, which generally loses less information, %0 I
can be very useful in fuzzy expert systems. Scallng

2
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Mamdani Fuzzy Model

« Aggregation is the process of unification of the outputs of all
rules.

« We take the membership functions of all rule consequents
previously clipped or scaled and combine them into a single
fuzzy set.

« The input of the aggregation process is the list of clipped or
scaled consequent membership functions, and the output is one
fuzzy set for each output variable.

1 1 1
C1] C2 C3]
0.5 0.5~
0.1 0.2 0.1 m

0 zZ 0 zZ 0 Z 0 z
-is C1(0.1) [=»| zis €2(0.2) |=»[ - is €3 (0.5) -> [ >
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Mamdani Fuzzy Model

« The last step in the fuzzy inference process is defuzzification.

« Fuzziness helps us to evaluate the rules, but the final output of a
fuzzy system has to be a crisp number.

« The input for the defuzzification process is the aggregate output
fuzzy set and the output is a single number.

« There are several defuzzification methods, but probably the most
popular one is the centroid technique. It finds the point where a
vertical line would slice the aggregate set into two equal masses.
Mathematically this centre of gravity (COG) can be expressed as:
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Mamdani Fuzzy Model

« Centroid defuzzification method finds a point representing the centre
of gravity of the aggregated fuzzy set A, on the interval [a, b ].

« Areasonable estimate can be obtained by calculating it over a

sample of points.

Degree of
Membership

1.0

0.8

0.6

0.4

02

0.0
70 80 90 100

67.4 - r Z

(0+10+20)x0.1+(30+40+50+60)x02+(70+80+90+100)x0.5
0.1+0.14+0.1+402+024+02402+05+05+05+0.5

COG = —67.4
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Sugeno Fuzzy Inference

- Mamdani-style inference, as we have just seen, requires
us to find the centroid of a two-dimensional shape by
iIntegrating across a continuously varying function. In
general, this process is not computationally efficient.

« Michio Sugeno suggested to use a single spike, a
singleton, as the membership function of the rule
consequent.

« A singleton, or more precisely a fuzzy singleton, is a
fuzzy set with a membership function that is unity at a
single particular point on the universe of discourse and
zero everywhere else.
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Sugeno Fuzzy Inference

» Also known as the TSK fuzzy model (proposed
by Takagi, Sugeno, and Kang)
» For developing a systematic approach to

generating fuzzy rules from a given input-output
data set

« Atypical fuzzy rule in a Sugeno fuzzy model:
fxisAandyisBthenz=f(x, )
« Aand B: fuzzy sets
« Z =f(x, y): a crisp function (usually polynomial in
the input variables x and y)
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Sugeno Fuzzy Inference

« Sugeno-style fuzzy inference is very similar to the Mamdani method.

« Sugeno changed only a rule consequent: instead of a fuzzy set, he used a
mathematical function of the input variable.

« The format of the Sugeno-style fuzzy rule is

IF xXisA AND yisB THEN zisf(x,y)
where:
x, y and z are linguistic variables;

A and B are fuzzy sets on universe of discourses X and Y, respectively;
f(x, y) is a mathematical function.

« The most commonly used zero-order Sugeno fuzzy model applies fuzzy
rules in the following form:

IF xisA AND yisB THEN zisk
« where Kk is a constant.

« In this case, the output of each fuzzy rule is constant and all consequent
membership functions are represented by singleton spikes.
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Sugeno Fuzzy Inference

 First-order Sugeno fuzzy model: f(x, y) is a
first-order polynomial

» Zero-order Sugeno fuzzy model: f Is a
constant

> a special case of the Mamdani fuzzy inference
system, in which each rule's consequent is
specified by a fuzzy singleton;

> or a special case of the Tsukamoto fuzzy model
(to be introduced next) in which each rule's
consequent is specified by an MF of a step
function center at the constant

278



-
Sugeno Fuzzy Inference

The output is a weighted average:

Double summation
JC, mii. x? .
z = ZHA"’B’*( V) ( "F")( Y) over all i (x MFs) and

Doy g (x.)) all k (y MFs)
_ Z W, f; (X, ) Summation over all j
- Z W, (fuzzy rules)

where w; Is the firing strength of the /-th output
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Sugeno Fuzzy Inference

min or
product

H A1 g B
f\ --------------------- [’\" Wy Z1 =P X*qy*n
_ = / v
% Y

M A, H B,
/—\ /\ W,  Z2=P, X+ QY+,
/] A
Y ‘ weighted average
X y

WyZ,+Wo2Z;
Wy + W,

z=
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Sugeno Fuzzy Inference

« An example of a single-input Sugeno fuzzy
model:
o |f X 1s small then Y =0.1X + 6.4.
= |f X 1s medium then Y = -0.5X + 4.

- |f X Is large then Y = X - 2.
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Sugeno Fuzzy Inference

o If "small," "medium," and "large" are nonfuzzy
sets with membership functions shown In figure
(a), then the overall input-output curve is
plecewise linear, as shown in figure (b):

& (a) Crisp Antecedent MFs (b) Crisp 1/O Curve

§  [smalmedumlarge]  ° ! -

(D 6 ___,_.-v-"‘\\‘

e N

» 0.5 > 4

3 2 “

£ | A |

%J -10 0 10 -10 0 10
X X
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Sugeno Fuzzy Inference

* |If we have smooth membership functions
figure (c)] instead, the overall input-output curve
figure (d)] becomes a smoother one:

(c) Fuzzy Antecedent MFs (d) Fuzzy I/O Curve
rge. |

1

0.5

Membership Grades

Y
oM A OO @

10

X ot

283




Sugeno Fuzzy Inference

« An example of a two-input single-output Sugeno
fuzzy model with four rules:

- |f X is small and Y is small thenz=-x+y + 1.

- |f X is small and Y is large then z = -y + 3.

- |If X is large and Y is small then z = -x + 3.

= |f X is large and Y is large then z=x + y + 2.
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Sugeno Fuzzy Inference

’ Small ' Large
0.5¢
D 1
-5 0
X
’ Small ' Large
0.5¢
D 1
-5 0
Y

a) MFs of the inputs and output
b) Overall input-output curve

« The surface is composed of four planes, each of which is
specified by the output equation of a fuzzy rule.
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Sugeno Fuzzy Inference

1 7 17 1
A3 ‘Bl
| 01 OR ' 0.1 ‘
' —L {l&_{) ' k- — (max)
0 x1 X 0 y1 g 0 n Z
Rule 1: TF x1s 43 (0.0) OR yis Bl (0.1) THEN :zi1skl(0.1)
0Ty
SN Q2 B2 axp Q2
= - - (min) L
0 x1 X 0 vl Y 0 2 Z
Rule2: IF x1s 42 (0.2) AND vis B2 (0.7) THEN zi1s4k2(0.2)
| Y 1
Al 0.5 0.5
. . B R b
A
0 x1 X 0 k3 Z
Rule 3: TF x 1s A1 (0.5) THEN z1s/43(0.5)
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Sugeno Fuzzy Inference

1 1 1 1
05 05
02
01— 02— 01— ]
0 u\u z 0 v Z 0 B8 Z 0 1 B B Z
zis k1 (0.1) |=»| zisk2(0.2) |=»| zisk3 (0.5) = >

COG becomes Weighted Average (WA)

C 1

0 zl Z

Crisp Output
zl

WA — WAL x kl+w(k2)xk2+u(k3)xk3  0.1x20+0.2x50+0.5x80
(k) +u(k2)+p(k3) 0.1+402+0.5

65
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Sugeno Fuzzy Inference

« Unlike the Mamdani fuzzy model, the Sugeno
fuzzy model cannot follow the compositional rule
of inference strictly in its fuzzy reasoning
mechanism

« Without the time-consuming and mathematically
Intractable defuzzification operation, the Sugeno
fuzzy model is by far the most popular candidate
for sample data-based fuzzy modeling (we will
see an application in ANFIS)
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Sugeno Fuzzy Inference

= Mamdani method is widely accepted for capturing
expert knowledge. It allows us to describe the
expertise in more intuitive, more human-like
manner. However, Mamdani-type fuzzy inference
entails a substantial computational burden.

= On the other hand, Sugeno method is
computationally effective and works well with
optimisation and adaptive techniques, which
makes it very attractive in adaptive problems,
particularly for dynamic nonlinear systems.
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Building a Fuzzy System

= A service centre keeps spare parts and repairs
parts.

= A customer brings a failed item and receives a
spare of the same type.

= Failed parts are repaired by servers, placed on
the shelf, and thus become spares.

= The objective here is to advise a manager of the
service centre on certain decision policies to keep
the customers satisfied.

= Advise on the initial number of spares to keep
delay reasonable

From: hitp://www2.cs.siu.edu/~rahimi o0




Building a Fuzzy System

There are four main linguistic variables:
average waiting time (mean delay) /n, repair
utilisation factor of the service centre p,

number of servers s, and initial number of
spare parts 7.

CustomerArrivalRate

p CustomerDepartureRare

The system must advise management on the number of spares
to keep as well as the number of servers. Increasing either
will increase cost and decrease waiting time in some proportion.
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Building a Fuzzy System

Linguistic Variable: Mean Delay. m

Linguistic Value Notation Numerical Range (normalised)
Very Short VS [0.0.3]
Short S [0.1. 0.5]
Medinm M [0.4.0.7]

Linguistic Variable: Number of Servers. s

Linguistic Value Notation Numerical Range (normalised)
Small S [0, 0.35]
Medinm M [0.30. 0.70]
Large L [0.60. 1]

Linguistic Variable: Repair Utilisation Factor. p

Linguistic Value Notation Numerical Range
Low L [0. 0.6]
Medinm M [0.4. 0.8]
High H [0.6. 1]

Linguistic Variable: Number of Spares. n

Linguistic Value Notation Numerical Range (normalised)
Very Small VS [0.0.30]
Small S [0. 0.40]
Rather Small RS [0.25. 0.45]
Medium M [0.30. 0.70]
Rather Large RL [0.55.0.75]
Large L [0.60. 1]
Very Large VL [0.70. 1]
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Building a Fuzzy System

-Uzzy sets can have a variety of shapes.
However, a triangle or a trapezoid can often
provide an adequate representation of the
expert knowledge, and at the same time,
significantly simplifies the process of
computation.
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Building a Fuzzy System

Degree of
Membership
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|
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0.7 08 09 1
Mean Delay (normalised)
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Building a Fuzzy System

Degree of
Membership

1.0

0.8 S

0.6

0.4 -

0.2
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|
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Building a Fuzzy System

Degree of

Membership
1.0

0.8 L

0.6

0.4 —

0.2

0.0 | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Repair Utilisation Factor
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Building a Fuzzy System

Degree of
Membership
1.0

& A o

0.8 [VS

0.6

0.4 —

| | | |
0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 |

Number of Spares (normalised)
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Create Fuzzy Rules

To accomplish this task, we might ask the
expert to describe how the problem can be
solved using the fuzzy linguistic variables
defined previously.

Required knowledge also can be collected
from other sources such as books, computer
databases, flow diagrams and observed
human behaviour.
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1. If
2. If
3. |If

4.
5.
6.
T.
8.
9.
10.
1.
12.

Create Fuzzy Rules

(utilisation_factor is L) then (number_of _spares is S)
(utilisation_factor is M) then (hnumber_of spares is M)
(utilisation_factor is H) then (number_of sparesis L)

If (mean_delay is VS) and (number_of_servers is S) then (number_of spares is VL)
If (mean_delay is S) and (number_of_servers is S) then (number_of sparesis L)
If (mean_delay is M) and (number_of_servers is S) then (number_of _spares is M)

If (mean_delay is VS) and (number_of servers is M) then (number_of spares is RL)

If (mean_delay is S) and (number_of servers is M) then (number_of spares is RS)
If (mean_delay is M) and (number_of servers is M) then (number_of sparesis S)

If (mean_delay is VS) and (number_of_servers is L) then (number_of_spares is M)
If (mean_delay is S) and (number_of servers is L) then (number_of sparesis S)
If (mean_delay is M) and (number_of serversis L) then (number_of spares is VS)
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Create Fuzzy Rules

Rule| m | s | p| n [Rule| m | s | p| n [Rule| m | s | p | n

1 VS| S L | VS| 10 VS| S M S || 19 VS| S H [ VL
2 S S L | VS| 1l S S | M [Vvs]20 S S H L

3 M | S L | VS| 12 M| S | M]|VS]2I M | S H | M
4 VS| M| L |VS]I3 VS| M [ M| RS |22 VSI M| H| M
5 S M L | vs| 14 S M| M S || 23 S M| H|[M
6 M| M L | VS| I5 M| M| M]|VS|24 M| M| H S

7 VS| L L S | 16 VS| L | M| M[25 VS | L H | RL
8 S L L S || 17 S L [ M |RS|26 S L H | M
9 M| L L | VS| IS M| L | M S || 27 M| L H | RS

If mean_delay is VS
and number_serversis S

and utilization is Low
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Evaluation and Tuning

« The last and the most laborious task is to evaluate and
tune the system. We want to see whether our fuzzy
system meets the requirements specified at the
beginning.

« Several test situations depend on the mean delay, number
of servers and repair utilisation factor.

« The MatLab’s Fuzzy Logic Toolbox can generate surface to
help us analyse the system’s performance.

« However, the expert might not be satisfied with the
system performance.

« To improve the system performance, we may use
additional sets — Rather Small and Rather Large — on the
universe of discourse Number of Servers, and then extend
the rule base.
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-
Evaluation and Tuning

1. Review model input and output variables, and if
required redefine their ranges.

2. Review the fuzzy sets, and if required define
additional sets on the universe of discourse.

3. Provide sufficient overlap between neighbouring
sets. It is suggested that triangle-to-triangle and
trapezoid-to-triangle fuzzy sets should overlap
between 25% to 50% of their bases.
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-
Evaluation and Tuning

4. Review the existing rules, and if required add new
rules to the rule base.

5. Examine the rule-base for opportunities to write
hedge rules to capture the pathological behaviour
of the system.

6. Adjust the rule execution weights. Most fuzzy
logic tools allow control of the importance of rules
by changing a weight multiplier

7. Revise shapes of the fuzzy sets. In most cases,
fuzzy systems are highly tolerant of a shape
approximation.
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Evaluation and Tuning

 certain common issues concerning all these
three fuzzy inference systems
- how to partition an input space

= how to construct a fuzzy inference system for a
particular application

304




	Slide 1: Swarm Intelligence
	Slide 2: The need for new Computing Techniques
	Slide 3: The need for new Computing Techniques
	Slide 4: Hard Problems
	Slide 5: Hard Problems
	Slide 6: Hard Problems
	Slide 7: Alternatives
	Slide 8: Artificial Networks
	Slide 9: Evolutionary Computation
	Slide 10: Evolutionary Computation
	Slide 11: Evolutionary Computation
	Slide 12: Bio-Computing 
	Slide 13: Applications 
	Slide 14: Limitations
	Slide 15: Swarm Intelligence
	Slide 16: Swarm Intelligence
	Slide 17: Swarm Intelligence
	Slide 18: Model Examples
	Slide 19: Model Examples
	Slide 20: Ants
	Slide 21: Self-Organization
	Slide 22: Self-Organization
	Slide 23: Self-Organization
	Slide 24: Ant Foraging
	Slide 25: Ant Foraging
	Slide 26: Ant Foraging
	Slide 27: Ant Foraging
	Slide 28: Ant Foraging
	Slide 29: Ant Foraging
	Slide 30: Characteristics of Self-Organization
	Slide 31: Termites Simulation 
	Slide 32: Termites Simulation 
	Slide 33: Honey Bees Nest Building
	Slide 34: Honey Bees Nest Building
	Slide 35: Honey Bees Nest Building
	Slide 36: Honey Bees Nest Building
	Slide 37: Honey Bees Nest Building
	Slide 38: Honey Bees Nest Building
	Slide 39: Honey Bees Nest Building
	Slide 40: Honey Bees Nest Building
	Slide 41: Stigmergy
	Slide 42: Stigmergy in Spiders
	Slide 43: Stigmergy
	Slide 44: Motivation
	Slide 45: Principles
	Slide 46: Particle Swarm Optimization (PSO)
	Slide 47: Introduction
	Slide 48: Introduction
	Slide 49: Introduction
	Slide 50: Introduction
	Slide 51: Introduction
	Slide 52: Introduction
	Slide 53: Introduction
	Slide 54: Introduction
	Slide 55: The Algorithm
	Slide 56: The Algorithm
	Slide 57: The Algorithm
	Slide 58: The Algorithm
	Slide 59: The Algorithm
	Slide 60: The Algorithm
	Slide 61: The Algorithm
	Slide 62: The Algorithm
	Slide 63: The Algorithm
	Slide 64: The Algorithm
	Slide 65: The Algorithm
	Slide 66: The Algorithm
	Slide 67: The Algorithm
	Slide 68: The Algorithm
	Slide 69: Visualization and Examples
	Slide 70: Ant Colony Optimization (ACO)
	Slide 71: Introduction
	Slide 72: Introduction
	Slide 73: Introduction
	Slide 74: Artificial Ant Systems
	Slide 75: Example in TSP
	Slide 76: Example in TSP
	Slide 77: Example in TSP
	Slide 78: Probability Rule
	Slide 79: Pheromone
	Slide 80: Pheromone
	Slide 81: Algorithm
	Slide 82: The ACO Algorithm
	Slide 83: Applications
	Slide 84: Performance
	Slide 85: Bin Packing Problems
	Slide 86: Solving the BPP
	Slide 87: Applying ACO to the BPP
	Slide 88: Pheromone Matrix
	Slide 89: Building Solutions 
	Slide 90: Pheromone Updating
	Slide 91: Evaluation Function 
	Slide 92: Local Search
	Slide 93: Setting the Parameters
	Slide 94: Applying ACO to Optimization 
	Slide 95: Considerations
	Slide 96: Vehicle Routing 
	Slide 97: Vehicle Routing 
	Slide 98: The ACO Algorithm
	Slide 99: Artificial Bee Colony (ABC)
	Slide 100: Metaheuristics
	Slide 101: Introduction
	Slide 102: Main Idea
	Slide 103: Algorithm
	Slide 104: Algorithm
	Slide 105: Algorithm
	Slide 106: Algorithm
	Slide 107: Algorithm
	Slide 108: Algorithm
	Slide 109: Algorithm
	Slide 110: Control Parameters
	Slide 111: Pros and Cons
	Slide 112: Example
	Slide 113: Example
	Slide 114: Example
	Slide 115: Example
	Slide 116: Example
	Slide 117: Example
	Slide 118: Example
	Slide 119: Example
	Slide 120: Example
	Slide 121: Example
	Slide 122: Example
	Slide 123: Example
	Slide 124: Example
	Slide 125: Example
	Slide 126: Example
	Slide 127: Resources
	Slide 128: Cuckoo Search Algorithm
	Slide 129: Introduction
	Slide 130: Behaviour
	Slide 131: Behaviour
	Slide 132: Behaviour
	Slide 133: Characteristics
	Slide 134: Characteristics
	Slide 135: Lѐvy Flights
	Slide 136: Lѐvy Flights
	Slide 137: Algorithm
	Slide 138: Steps
	Slide 139: Steps
	Slide 140: Steps
	Slide 141: Steps
	Slide 142: Steps
	Slide 143: Applications
	Slide 144: Evolutionary Computation
	Slide 145: Introduction
	Slide 146: Introduction
	Slide 147: Introduction
	Slide 148: History
	Slide 149: Evolutionary Computation 
	Slide 150: Evolutionary Algorithm
	Slide 151: Evolutionary Algorithm
	Slide 152: Genetic Algorithms
	Slide 153: Genetic Algorithms
	Slide 154: Anatomy
	Slide 155: Representation
	Slide 156: Initialization
	Slide 157: Fitness Function
	Slide 158: Selection
	Slide 159: Wheel Selection
	Slide 160: Wheel Selection
	Slide 161: Wheel Selection
	Slide 162: Tournament
	Slide 163: Reproduction
	Slide 164: Crossover
	Slide 165: Mutation
	Slide 166: Operators
	Slide 167: Introduction
	Slide 168: Introduction
	Slide 169: Replacements
	Slide 170: Strategies
	Slide 171: Example
	Slide 172: Example
	Slide 173: Example
	Slide 174: Example
	Slide 175: TSP
	Slide 176: TSP
	Slide 177: TSP
	Slide 178: Optimizing Sorting
	Slide 179: Optimizing Sorting
	Slide 180: Optimizing Sorting
	Slide 181: Optimizing Sorting
	Slide 182: Optimizing Sorting
	Slide 183: Optimizing Sorting
	Slide 184: Optimizing Sorting
	Slide 185: Optimizing Sorting
	Slide 186: Fitness Function
	Slide 187: Results
	Slide 188: GA - Advantages
	Slide 189: Conclusions
	Slide 190: Fuzzy Systems
	Slide 191: Introduction
	Slide 192: Introduction
	Slide 193: Introduction
	Slide 194: Introduction
	Slide 195: Introduction
	Slide 196: Introduction
	Slide 197: Phases
	Slide 198: System
	Slide 199: System
	Slide 200: System
	Slide 201: Mapping
	Slide 202: Fuzzy Sets
	Slide 203: Fuzzy Sets
	Slide 204: Fuzzy Sets
	Slide 205: Fuzzy Sets
	Slide 206: Fuzzy Sets
	Slide 207: Fuzzy Sets
	Slide 208: Fuzzy Sets
	Slide 209: Examples
	Slide 210: Fuzzy Sets
	Slide 211: Fuzzy Sets
	Slide 212: Fuzzy Sets
	Slide 213: Fuzzy Sets
	Slide 214: Fuzzy Sets
	Slide 215: Fuzzy Sets
	Slide 216: Fuzzy Sets
	Slide 217: Fuzzy Sets
	Slide 218: Fuzzy Sets
	Slide 219: Fuzzy Sets
	Slide 220: Fuzzy Sets
	Slide 221: Fuzzy Sets
	Slide 222: Fuzzy Sets
	Slide 223: Fuzzy Sets
	Slide 224: Fuzzy Sets
	Slide 225: Fuzzy vs Probability
	Slide 226: Prediction vs Forecasting
	Slide 227: Membership Functions
	Slide 228: Membership Functions
	Slide 229: Membership Functions
	Slide 230: Membership Functions
	Slide 231: Membership Functions
	Slide 232: Membership Functions
	Slide 233: Membership Functions
	Slide 234: Membership Functions
	Slide 235: Membership Functions
	Slide 236: Membership Functions
	Slide 237: Membership Functions
	Slide 238: Operations
	Slide 239: Operations
	Slide 240: Operations
	Slide 241: Operations
	Slide 242: Operations
	Slide 243: Operations
	Slide 244: Operations
	Slide 245: Operations
	Slide 246: Operations
	Slide 247: Operations
	Slide 248: Operations
	Slide 249: Types
	Slide 250: Mamdani Fuzzy Model
	Slide 251: Mamdani Fuzzy Model
	Slide 252: Mamdani Fuzzy Model
	Slide 253: Mamdani Fuzzy Model
	Slide 254: Mamdani Fuzzy Model
	Slide 255: Mamdani Fuzzy Model
	Slide 256: Mamdani Fuzzy Model
	Slide 257: Mamdani Fuzzy Model
	Slide 258: Mamdani Fuzzy Model
	Slide 259: Mamdani Fuzzy Model
	Slide 260: Mamdani Fuzzy Model
	Slide 261: Mamdani Fuzzy Model
	Slide 262: Mamdani Fuzzy Model
	Slide 263: Mamdani Fuzzy Model
	Slide 264: Mamdani Fuzzy Model
	Slide 265: Mamdani Fuzzy Model
	Slide 266: Mamdani Fuzzy Model
	Slide 267: Mamdani Fuzzy Model
	Slide 268: Mamdani Fuzzy Model
	Slide 269: Mamdani Fuzzy Model
	Slide 270: Mamdani Fuzzy Model
	Slide 271: Mamdani Fuzzy Model
	Slide 272: Mamdani Fuzzy Model
	Slide 273: Mamdani Fuzzy Model
	Slide 274: Mamdani Fuzzy Model
	Slide 275: Sugeno Fuzzy Inference
	Slide 276: Sugeno Fuzzy Inference
	Slide 277: Sugeno Fuzzy Inference
	Slide 278: Sugeno Fuzzy Inference
	Slide 279: Sugeno Fuzzy Inference
	Slide 280: Sugeno Fuzzy Inference
	Slide 281: Sugeno Fuzzy Inference
	Slide 282: Sugeno Fuzzy Inference
	Slide 283: Sugeno Fuzzy Inference
	Slide 284: Sugeno Fuzzy Inference
	Slide 285: Sugeno Fuzzy Inference
	Slide 286: Sugeno Fuzzy Inference
	Slide 287: Sugeno Fuzzy Inference
	Slide 288: Sugeno Fuzzy Inference
	Slide 289: Sugeno Fuzzy Inference
	Slide 290: Building a Fuzzy System
	Slide 291: Building a Fuzzy System
	Slide 292: Building a Fuzzy System
	Slide 293: Building a Fuzzy System
	Slide 294: Building a Fuzzy System
	Slide 295: Building a Fuzzy System
	Slide 296: Building a Fuzzy System
	Slide 297: Building a Fuzzy System
	Slide 298: Create Fuzzy Rules
	Slide 299: Create Fuzzy Rules
	Slide 300: Create Fuzzy Rules
	Slide 301: Evaluation and Tuning
	Slide 302: Evaluation and Tuning
	Slide 303: Evaluation and Tuning
	Slide 304: Evaluation and Tuning

