Self Organizing Maps
 The purpose of SOM is to map a multidimensional input space onto a topology

preserving map of neurons

* Preserve a topological so that neighboring neurons respond to « similar » input
patterns
* The topological structure is often a 2 or 3 dimensional space
e Each neuron is assigned a weight vector with the same dimensionality of the input
space

* |nput patterns are compared to each weight vector and the closest wins (Euclidean
Distance)




Self Organizing Maps
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Self Organizing Maps

* During training, the “winner” neuron and
its neighborhood adapts to make their
weight vector more similar to the input
pattern that caused the activation

* The neurons are moved closer to the input
pattern

* The magnitude of the adaptation is
controlled via a learning parameter which
decays over time




Dimensionality Reduction

Adopted from Ricardo Gutierrez-Osuna




Introduction

s The “curse of dimensionality”

¢ Refers to the problems associated with multivariate data analysis as the
dimensionality increases

m Consider a 3-class pattern recognition problem
¢ Three types of objects have to be classified based on the value of a

single feature:

X4

¢ A simple procedure would be to
= Divide the feature space into uniform bins
= Compute the ratio of examples for each class at each bin and,
= For a new example, find its bin and choose the predominant class in that bin

¢ \We decide to start with one feature and divide the real line into 3 bins

= Notice that there exists a lot of overlap between classes = to improve
discrimination, we decide to incorporate a second feature




Example
= Moving to two dimensions increases the number of bins from 3
to 32=9
¢ QUESTION: Which should we maintain constant?
m» The density of examples per bin? This increases the number of examples from

9to 27
= The total number of examples? This results in a 2D scatter plot that is very
sparse
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= Moving to three features ... vl v
¢ The number of bins grows to 33=27 o S A /{/
¢ To maintain the initial density of examples, A
the number of required examples grows to 81 n 9 /_"'
¢ For the same number of examples the A /
3D scatter plot is almost empty &




Implications

= Implications of the curse of dimensionality

o EXxponential growth with dimensionality in the number of examples
required to accurately estimate a function

m In practice, the curse of dimensionality means that

e For a given sample size, there is a maximum number of features above
which the performance of our classifier will degrade rather than improve

= |In most cases, the information N
that was lost by discarding some
features is compensated by a
more accurate mapping in lower-
dimensional space

performance

>

dimensionality

= How do we beat the curse of dimensionality?
¢ By incorporating prior knowledge
e By providing increasing smoothness of the target function
¢ By reducing the dimensionality




Solutions

= Two approaches to perform dim. reduction RN—-RM (M<N)
+ Feature selection: choosing a subset of all the features

feature

[x, X,...x, |—==tecten [x1 Xi;"-x'»..]
+ Feature extraction: creatlng new features by combining existing ones
[x, et =t sy oy Ly J=1(x, x,x, )

» |n either case, the goal is to find a low-dimensional representation of the data that
preserves (most of) the information or structure in the data

m Linear feature extraction

« The “optimal” mapping y=f(x) is, in general, a non-linear function whose form is
problem-dependent
= Hence, feature extraction is commonly limited to linear projections y=Wx

X, L A%
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Solutions

m Two criteria can be used to find the “optimal” feature extraction

mapping y=f(x)
« Signal representation: The goal of feature extraction is to represent the samples
accurately in a lower-dimensional space

« Classification: The goal of feature extraction is to enhance the class-
discriminatory information in the lower-dimensional space

o
2
= Within the realm of linear feature £ 23222
extraction, two techniques are & 141 5.2

commonly used
¢ Principal Components (PCA)

= Based on signal representation

e Fisher’s Linear Discriminant (LDA)
» Based on classification




Principal Components Analysis




Applications

e Data Visualization
* Data Compression
* Noise Reduction
e Data Classification
e Trend Analysis

* Factor Analysis




Example

e Given 53 blood and urine samples (features) from 65 people.

e How can we visualize the measurements?




Example
Matrix format (65x53)

HWBC | HRBC | H-Hgb | H-Hct | H-MCV | H-MCH | H-MCHC
- Al 8.0000 | 4.8200| 14.1000| 41.0000| 85.0000| 29.0000| 34.0000
A2 7.3000 | 5.0200| 14.7000 | 43.0000 | 86.0000| 29.0000| 34.0000
4 A3 43000 | 4.4800 | 14.1000| 41.0000| 91.0000| 32.0000| 35.0000
O A4 7.5000 | 4.4700 | 14.9000 | 45.0000 | 101.0000 | 33.0000 | 33.0000
o < A5 7.3000 | 55200 15.4000 | 46.0000 | 84.0000| 28.0000| 33.0000
2 A6 6.9000 | 4.8600| 16.0000 | 47.0000| 97.0000| 33.0000| 34.0000
— A7 7.8000 | 4.6800| 14.7000 | 43.0000 | 92.0000| 31.0000| 34.0000
A8 8.6000 | 4.8200| 15.8000| 42.0000| 88.0000| 33.0000| 37.0000
\ A9 \5 1000 | 4.7100 | 14.0000| 43.0000 | 92.0000| 30.0000| 32.0000

~

Features

Difficult to see the correlations between the features...




Example

Spectral format (65 pictures, one for each person)
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Difficult to compare the different patients...
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Example

Spectral format (53 pictures, one for each feature)
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Difficult to see the correlations between the features...




-l
Solution

* |sthere arepresentation better than the coordinate axes?

* |sitreally necessary to show all the 53 dimensions?
* .. whatifthere are strong correlations between the features?

 How could we find the smallest subspace of the 53-D space that keeps the most
information about the original data?

* A solution: Principal Component Analysis




PCA

* Orthogonal projection of data onto lower-dimension linear space that...
* maximizes variance of projected data (purple line)

* minimizes mean squared distance between
e data point and
e projections (sum of blue lines)




PCA

* Idea:
* Given data points in a d-dimensional space, project into lower dimensional space
while preserving as much information as possible
* Eg, find best planar approximation to 3D data
* Eg, find best 12-D approximation to 10%-D data

* |In particular, choose projection that minimizes squared error in reconstructing
original data




PCA

* \ectors originating from the center of mass

e Principal component #1 points in the direction of the largest variance.

* Each subsequent principal component...
* isorthogonal to the previous ones, and
e pointsin the directions of the largest variance of the residual subspace




Calculations




Calculations




Calculations




Calculations







Calculations

It we project the data onto this line,
we lose as little nformation as
possible = we keep as much
variance as possible.




Calculations




Calculations

Given a sample of n observations on a vector of d variables
d
XX, X, R

define the first principal component of the sample
by the linear transformation

d
zo=a X, =Y a;X;, j=12,---,n.
=1

where the vector a = (y, 8y, 8y;)
X; = (Xij: X500 Xg)

is chosen such that var[z,]  is maximum.

27



Calculations

To find @, first note that

rlz,] = E( - 2)) == 3 (ol -al x]

:%Zn:af(xi —iXxi —Q)Ta1 =a, Sa,
=1

where S EZ”:(Xi _;XXi _;)T

o

is the covariance matrix.

- 1G .
X ==X is the mean.
ns

28



Calculations

To find &, that maximizes var[z,] subject to a, a, =1
Let A be a Lagrange multiplier
L =a, Sa, - A(a a -1)
iszS@—ﬁ@zO

08,
= (S-Al))a =0

therefore @, isan eigenvector of S

corresponding to the largest eigenvalue A =A,.

29



Calculations

We find that @, is also an eigenvector of S

whose eigenvalue A=A, isthesecond largest.

In general

var[z,] = a,Sa, = 4,

e The kth largest eigenvalue of S is the variance of the k" PC.

* The k" PC £, retains the k* greatest fraction of the variation
in the sample.

30



Calculations

First PC is the linear combination )
— T .. —

Vi =a1 X = Z aq;X;

—

l

where a; 1s chosen such that var(y;) is maximum

- T
aja; =1 - | nati
subject to @3 a4 Second PC 1s the linear combination

p
— T, —
Y2 = QX = Z A2iXi
i=1
Generally, k-th PC is the linear combination where a 1s chosen such that var(y,) is maximum
P .
e subject to aba, = 1 and aya, = 0 = cov(ay, a;)
Yie = QX = A Xi
i=1

where aj, 1s chosen such that var(yy) is maximum

subject to aray, = 1 and V1,1 < k: cov(ay,a;) = 0
31



Steps

* Main steps for computing PCs
 Form the covariance matrix S.

d
* Compute its eigenvectors: {ai }i=1
: . P
* The first p eigenvectors {ai }izl form the p PCs.

* The transformation G consists of the p PCs:

G<«[a,a, - a]




Python Example

https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-
component-analysis.html




Ensemble Models

Adopted from Piyush Rai
34



Simple Models

@ Voting or Averaging of predictions of multiple pre-trained models

SVM —— Spam \

X DT — Non-spam ———  Spam

h
KNN — Spam /

@ “'Stacking”: Use predictions of multiple models as “features’ to train a new model and use the new
model to make predictions on test data

Level 1 Models
These predictions can now

- be used as binary “features”
SVM SDEHTI to train a level 2 model

i
|

X DI — . Non-spam ——» Level 2 Model Spam

n . (e.g. DT)
KNN —+ spam T




New Approach

@ Instead of training different models on same data, train same model multiple times on different
data sets, and “combine” these “different’” models

@ We can use some simple/weak model as the base model

@ How do we get multiple training data sets (in practice, we only have one data set at training time)?

bagqging boosting

m sampling with § i random sampling with
replacement replacement
i - over weighted data




Bagging
@ Bagging stands for Bootstrap Aggregation
@ Takes original data set D with N training examples
o Creates M copies {D}M_,

o Each D,, is generated from D by sampling with replacement
o Each data set Dy, has the same number of examples as in data set D

o These data sets are reasonably different from each other (since only about 63% of the original
examples appear in any of these data sets)

o Train models hy, ..., hy using Dy, ..., Dy, respectively

@ Use an averaged model h = % Zﬁzl h,, as the final model

@ Useful for models with high variance and noisy data




Bagging

Top: Original data, Middle: 3 models (from some model class) learned using three data sets chosen via
bootstrapping, Bottom: averaged model




Random Forests

.4%%
%

pl(yIX)[u] i p,(ylx I ps(ylx)[uL
y

y y

@ An ensemble of decision tree (DT) classifiers
@ Uses bagging on features (each DT will use a random set of features)

o Given a total of D features, each DT uses v/D randomly chosen features
e Randomly chosen features make the different trees uncorrelated

@ All DTs usually have the same depth

@ Each DT will split the training data differently at the leaves

@ Prediction for a test example votes on/averages predictions from all the DTs .



Boosting

@ [he basic idea

o Take a weak learning algorithm

@ Only requirement: Should be slightly better than random

e Turn it into an awesome one by making it focus on difficult cases

@ Most boosting algoithms follow these steps:

Q@ Train a weak model on some training data
@ Compute the error of the model on each training example

© Give higher importance to examples on which the model made mistakes

@ Re-train the model using “importance weighted” training examples

©@ Go back to step 2




AdaBoost

e Given: Training data (x1,v1),...,(xn,yn) with v, € {—1,+1}, Vn
@ Initialize weight of each example (x,,y,): Di(n) =1/N, ¥n
@ Forround t=1:T
o Learn a weak h¢(x) — {—1,+1} using training data weighted as per D;

o Compute the weighted fraction of errors -:::f h: on this training data

€t = Z De(n)L[he(xn) # Yl

1 EI

o Set “importance” of hy: ap = % log(=—= )(gets larger as €; gets smaller)

o Update the weight of each example

D¢(n) x exp(—a) if he(x,) = yvp (correct prediction: decrease weight)
D:(n) x exp(az) if ht(xn) # yn (incorrect prediction: increase weight)

Dii1(n) o {

= Dr(n] exp(—ﬂitjfnht(xn))

o Normalize D;,1 so that it sums to 1: D.i(n) = —g2=t?
Z:m=1 Dr+1':m}

@ Output the “boosted” final hypothesis H(x) = sign(zg;l aehe(Xx))

41



AdaBoost Example

Consider binary classification with 10 training examples

Initial weight distribution D; is uniform (each point has equal weight = 1/10)

Each of our weak classifers will be an axis-parallel linear classifier .
s



AdaBoost Example

if] 1)1.

@ Error rate of hy: €1 = 0.3; weight of hy: a1 = %In((l —€1)/€1) = 0.42
@ Each misclassified point upweighted (weight multiplied by exp(a2))
@ Each correctly classified point downweighted (weight multiplied by exp(—ay))

43



AdaBoost Example

A I)%

+ -+ +
+ + —I—_I__ + _|__
+ | = +@© + —

-+ — + — + -
—_— @ —_—

@ Error rate of hy: €5 = 0.21; weight of hy: ap = %In((l — €2)/€2) = 0.65
@ Each misclassified point upweighted (weight multiplied by exp(az3))
@ Each correctly classified point downweighted (weight multiplied by exp(—a»))

44



AdaBoost Example

@ Error rate of h3: €3 = 0.14; weight of h3: a3 = %In((l —€3)/€3) = 0.92
@ Suppose we decide to stop after round 3

@ Our ensemble now consists of 3 classifiers: hy. hy, h3

45



AdaBoost Example

@ Final classifier is a weighted linear combination of all the classifiers

@ Classifier h; gets a weight a;

H =sign | 0.42 + 0.65 + 0.92
final

@ Multiple weak, linear classifiers combined to give a strong, nonlinear classifier
46



Second Example

@ Given: A nonlinearly separable dataset
@ We want to use Perceptron (linear classifier) on this data




Second Example

@ After round 1, our ensemble has 1 linear classifier (Perceptron)
@ Bottom figure: X axis is number of rounds, Y axis is training error

f=1




Second Example

e After round 2, our ensemble has 2 linear classifiers (Perceptrons)
@ Bottom figure: X axis is number of rounds, Y axis is training error

t=123




Second Example

@ After round 3, our ensemble has 3 linear classifiers (Perceptrons)
@ Bottom figure: X axis is number of rounds, Y axis is training error

t=3




Second Example

@ After round 4, our ensemble has 4 linear classifiers (Perceptrons)
@ Bottom figure: X axis is number of rounds, Y axis is training error




Second Example

@ After round 5, our ensemble has 5 linear classifiers (Perceptrons)
@ Bottom figure: X axis is number of rounds, Y axis is training error

t=9




Second Example

@ After round 6, our ensemble has 6 linear classifiers (Perceptrons)
@ Bottom figure: X axis is number of rounds, Y axis is training error

t =06




Second Example

o After round 7, our ensemble has 7 linear classifiers (Perceptrons)
@ Bottom figure: X axis is number of rounds, Y axis is training error




Second Example

@ After round 40, our ensemble has 40 linear classifiers (Perceptrons)
@ Bottom figure: X axis is number of rounds, Y axis is training error

oas}

03
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Comments

@ For AdaBoost, given each model's error € = 1/2 — ¢, the training error consistently gets better

with rounds r ,
train-error( Hspa) < exp(—ZZﬂfr)

t=1
@ Boosting algorithms can be shown to be minimizing a loss function

e E.g., AdaBoost has been shown to be minimizing an exponential loss

L= Z exp{—ynH(x,)}

where H(x) = sign(Z::-:1 athe(x)), given weak base classifiers hy, ..., hrt

@ Boosting in general can perform badly if some examples are outliers




Comparison

@ No clear winner; usually depends on the data

e Bagging is computationally more efficient than boosting (note that bagging can train the M
models in parallel, boosting can’t)

boosting

N
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@ Both reduce variance (and overfitting) by combining different models

e The resulting model has higher stability as compared to the individual ones

@ Bagging usually can't reduce the bias, boosting can (note that in boosting, the training error
steadily decreases)

@ Bagging usually performs better than boosting if we don’t have a high bias and only want to

reduce variance (i.e., if we are overfitting)
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Reinforcement Learning

Adopted from Fei-Fei Li, Justin Johnson, Serena Yeung
58



Introduction

Agent

Problems involving an agent

Interacting with an environment, ¢
which provides numeric reward

signals

Reward 1

Action a,
Next state s,

Environment

Goal: Learn how to take actions
In order to maximize reward




Introduction

Agent

Environment




Introduction

Agent

State S,

Environment




Introduction

Agent

State S,

Action a,

Environment




Introduction

Agent

State s, Reward r,

Action a,

Environment




Introduction

Agent

State s, Reward r,

Next state s, .

Action a,

Environment




Introduction

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity
Action: horizontal force applied on the cart
Reward: 1 at each time step if the pole is upright




Passive vs Active Learning

* Passive learning
 The agent watches the world going
by and tries to learn the utilities of
being in various states
* Active learning
 The agent not simply watches, but
also acts




Passive Learning

function FASSIVE-RL-AGENT(¢) returns an action
static: U, atable of utility estimates
N, atable of frequencies for stales

M, atable oftransition probabihties from state to state
percepts, a poicept sequence (initally empty)

add ¢ 1o percepts

inciement N[ STATE[ ¢] ]

L'+ UIPDATE( L, e, percepts, M, N)

if TERMIMAL"Y[ ] then percepts +— the empty sequence
return ithe action Gbseirve




Markov Decision Process

- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the
world

Defined by: (S, A, R, P, )

- set of possible states

- set of possible actions

- distribution of reward given (state, action) pair

. transition probability i.e. distribution over next state given (state, action) pair
- discount factor

S
A
R
P
Y




e
Markov Decision Process

- At time step t=0, environment samples initial state s ~ p(s)
- Then, for t=0 until done:

- Agent selects action a,

- Environment samples rewardr, ~R( . | s, a,)

- Environment samples next state s, ~P(. |s, a)
- Agent receives reward r, and next state s, .

A policy it is a function from S to A that specifies what action to take in
each state

t
- Objective: find policy * that maximizes cumulative discounted reward: E'Y Tt
>0




e
Markov Decision Process

P, P
Action AR” “AAction A
Markov 1-p, o,
Decision o 3
Process
_I-;I,lB I_IJZB
Action B B, D Action B
I

Mark _
Cf?ari nOV o (M@) LF,




Example
actions = { states
1. right — *
2. left — Set a negative “reward”
3 U ] * for each transition
| P (e.g.r=-1)
4. down I
!

Objective: reach one of terminal states (greyed out) in
least number of actions
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Random Policy

Example

Optimal Policy




Optimal Policy

We want to find optimal policy n* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?
Maximize the expected sum of rewards!

Formally: 7% = argmfx]E Z'y relm| with 8o ~ p(sp),as ~ m(:|8¢), 8¢41 ~ D(+|8¢, A1)
2=




-l
Value Function

Following a policy produces sample trajectories (or paths) s,, a,, r,, s;,a,, I, --.

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy

from state s:
VT(s) =E Z'}ft'rﬂs.a =8,

t>0

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from

taking action a in state s and then following the policy:

Q" (s,a) =E |:Z frﬂsn = 8, ayp = a, ’J‘T]

t=0




Q-function

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

QR (s,a) = mq:;tthE Z'ytrds{; =S5,a0 = G,
>0

Q* satisfies the following Bellman equation:
R*(s,a) =Eg~¢ ['r' + 7y max QR*(s’,a)|s, a]

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

r+vQ*(s',a’)

The optimal policy n* corresponds to taking the best action in any state as specified by Q*




O(s,a) ' § = =

Q-function
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Solution

Value iteration algorithm: Use Bellman equation as an iterative update
!
Qi+1(s,a) =E [f‘ +ymax Qi(s', a’)s, a]

Q, will converge to Q* as i -> infinity

What's the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state
pixels, computationally infeasible to compute for entire state space!

Solution: use a function approximator to estimate Q(s,a). E.g. a neural network!




Policy Iteration Algorithm

Initialize a policy =" arbitrarily
Repeat
T — 7
Compute the values using = by
solving the linear equations
V7T (s) = Elr|s,m(s)] + Zsfes P(s'|s,m(s))VT(s)
Improve the policy at each state
7'(s) «— argmaxq(E|r|s, a] + 7 Es’es P(s'|s,a)V7™(s"))
until = = #«’




-
Exploration - Exploitation

Exploration of unknown states and actions to gather new information

Exploitation of learned states and actions to maximize the cumulative
reward

0 &-greedy search:

Explore — with probability € choose uniformly one action among
all possible actions.

Exploit — with probability 1-¢ choose the best action.

Start with a high € and gradually decrease it in order initiate exploitation
once enough exploration.

79



Probabilistic Search

Choose action a according to probability

expQ(s,a)

2-n€XPQ (S, b)

Move from exploration to exploitation using
exp| Q(s,a)/T |

>h.exp| Q(s,b)/T |

Start with a large T and gradually decrease it.

P(als)=

P(als)=

T large, P(a|s)~1/ A (constant) =exploration

T small, better actions -> exploitation.

80



Deep Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Qe t) Q" (5,0

function parameters (weights)

If the function approximator is a deep neural network => deep g-learning!




Deep Q-learning

Remember: want to find a Q-function that satisfies the Bellman Equation:
Q" (s,a) =Eg~¢ ['r + v max Q*(s',a)|s, a:]
a

Forward Pass
Loss function: L;(6;) = Es anpe) [(’!}z — Q(s, 6; 9?:))2]

lteratively try to make the Q-value
rot
where y; = Ey g ['f‘ T ’}’IILE',-X Q(S y &y 9i—1)|3: a close to the target value (y,) it

should have, if Q-function
corresponds to optimal Q* (and
Backward Pass optimal policy i*)

Gradient update (with respect to Q-function parameters 6):

Vo, Li(6;) = Eg anp();s'~e {T‘ + ’}’H’:Ii}x Q(S‘rs a; 0i—1) — Q(s,a;6;))Vo,Q(s,a; 91)]




-
Training

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. If maximizing
action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Address these problems using experience replay

- Continually update a replay memory table of transitions (s,, a,, r,, s,,,) as game
(experience) episodes are played

- Train Q-network on random minibatches of transitions from the replay memory,

Instead of consecutive samples

Each transition can also contribute
to multiple weight updates
=> greater data efficiency




Deep Q-learning

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort =1,7T do
With probability e select a random action a;
otherwise select a; = max, Q*(¢(s;),a; 0)
Execute action a; in emulator and observe reward r;, and image x;,;
Set 8411 = 84, a4, Ty41 and preprocess ¢yr1 = P(S¢41)
Store transition (¢;, as, 7, ¢141) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
Sety; = Tj for terminal ¢j+1
J r; + ymax, Q(@j+1,a’;6) for non-terminal ;1
Perform a gradient descent step on (y; — Q(¢;, a;;6))”
end for
end for




Deep Q-learning

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N < Initialize replay memory, Q-network
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do
With probability € select a random action a,
otherwise select a; = max, Q*(¢(s;),a; )
Execute action a; in emulator and observe reward r; and image ;. ;
Set 8;.1 = 84, a¢, Ty41 and preprocess ¢¢r1 = P(S¢+1)
Store transition (¢t, i, T, ¢t+l) inD
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
— for terminal ¢; 4,
J T; + Yy maxy Q(¢j+1, a’; 0) for non-terminal ¢j+1

Perform a gradient descent step on (y; — Q(¢;, a;; 0))2
end for
end for




Deep Q-learning

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights

for episode = 1, M do < Play M episodes (full games)
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do

With probability € select a random action a;
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a; in emulator and observe reward r; and image x; .,
Set 54.1 = 8¢, a¢, Ty41 and preprocess ¢yo1 = G(S¢41)
Store transition (¢;, a;, 74, ¢¢+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
Sety; =4 T for terminal ¢;,
J r; + ymaxy Q(¢;+1,a’;6) for non-terminal ;1
Perform a gradient descent step on (y; — Q(¢;, a;;6))”
end for
end for




Deep Q-learning

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do

Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;) = Initialize state
fort=1,Tdo (starting game
With probability e select a random action a; screen pixels) at the
otherwise select a; = max, Q*(¢(s:),a; 6) beginning of each

Execute action a; in emulator and observe reward r; and image x; . ;
Set 841 = 84, @4, T441 and preprocess ¢y.1 = G(Sp41)

Store transition (¢;, a¢, 7y, ¢¢+1) in D

Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
Sty { T for terminal 6,

J i + ymax, Q(@j+1,a’;6) for non-terminal ¢; .,

Perform a gradient descent step on (y; — Q(¢;, a;; 0))2
end for
end for

episode




Deep Q-learning

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
for %v= thl, r l?:b e — " < For each timestep t
ith pro e select a random action a,
otherwise select a; = max, Q*(¢(s;),a; 0) IE HE
Execute action a; in emulator and observe reward r; and image x, . ;
Set 8411 = 84, a4, T441 and preprocess ¢yo1 = P(S¢41)
Store transition (¢g, Ay, Ty, ¢t+1) inD
Sample random minibatch of transitions (¢;,a;,7;, ®;+1) from D
Sety; = Tj for terminal ¢j+1
J Tj + 7y maxXgy Q(¢j+1a a’; 6) for non-terminal ¢j+1

Perform a gradient descent step on (y; — Q(¢;, a;; 9))?
end for
end for




Deep Q-learning

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)

fort =1,7T do
With probability € select a random action a; - With small probability,
otherwise select a; = max, Q*(¢(s;), a;0) select a random
Execute action a; in emulator and observe reward r; and image x; ; action (explore),
Set 8441 = 8¢, @y, Ty and preprocess ¢y = G(8¢41) otherwise select

Store transition (¢;, a4, 7, ¢141) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
S .y for terminal ¢j+1
ety = ’, :
r;i + ymaxy Q(¢j+1,a’;0) for non-terminal ¢; .4
Perform a gradient descent step on (y; — Q(¢;, a;;6))*
end for
end for

greedy action from
current policy
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Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,1Tdo
With probability € select a random action a,
otherwise select a; = max, Q*(¢(s;),a;6)
Execute action a; in emulator and observe reward r; and image x; . ;

Set 5,1 = S4, ¢, T441 and preprocess ¢y1 = A(Si41) < Take the action (a,),
Store transition (¢y, as, 74, @141) in D and observe the
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D reward r, and next
e for terminal ¢, state s
Sct y j  — J 7 . J t+1
J T + ymaxy Q(¢jr1,a’;60) for non-terminal ¢; .1

Perform a gradient descent step on (y; — Q(¢;, a;; 9))2
end for
end for




Deep Q-learning

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do
With probability € select a random action a;,
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a; in emulator and observe reward r; and image x;;
Set 8441 = 84, a4, Ty41 and preprocess ¢y.1 = G(S¢+1)

Store transition (¢, a;, 7y, ¢¢41) in D < Store transition in
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D replay memory
Sety; = { L for terminal ¢,

4 r; + ymaxy Q(@j+1,a’;0)  for non-terminal ¢; 14

Perform a gradient descent step on (y; — Q(¢;, a;; 0))*
end for
end for
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Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z, } and preprocessed sequenced ¢; = ¢(s;)
fort =1,7T do
With probability € select a random action a;,
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a; in emulator and observe reward r; and image x; . ;
Set 8441 = 84, @, T¢41 and preprocess ¢y.1 = G(S¢41)
Store transition (¢t; Ay, Ty, ¢t+1) in D

Sample random minibatch of transitions (¢;,a;,7;,¢;+1) fromD Experience Replay:
Sebarimd T4 for terminal ¢, Sample a random
Yi = r; + ymaxy Q(@j+1,a’;6) for non-terminal ¢; 1, minibatch of transitions
Perform a gradient descent step on (y; — Q(¢;, a;; 6))* from replay memory
end for and perform a gradient

end for descent step
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