
Hierarchical Clustering

1

• Use distance matrix as clustering criteria
• This method does not require the number of clusters k as an input, but needs a 

termination condition 

Step 0 Step 1 Step 2 Step 3 Step 4

b

d

c

e

a
a b

d e

c d e

a b c d e

Step 4 Step 3 Step 2 Step 1 Step 0

agglomerative

(AGNES)

divisive

(DIANA)



BIRCH

2

• Incrementally construct a CF (Clustering Feature) tree, a hierarchical data structure 

for multiphase clustering

• Phase 1: scan DB to build an initial in-memory CF tree (a multi-level compression 

of the data that tries to preserve the inherent clustering structure of the data)  

• Phase 2: use an arbitrary clustering algorithm to cluster the leaf nodes of the CF-

tree 

• Scales linearly: finds a good clustering with a single scan and improves the quality 

with a few additional scans

• Weakness: handles only numeric data, and sensitive to the order of the data record



BIRCH

3

Clustering Feature (CF):  CF = (N, LS, SS)

N: Number of data points

LS: linear sum of N points:

SS: square sum of N points

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

CF = (5, (16,30),(54,190))

(3,4)

(2,6)

(4,5)

(4,7)

(3,8)


=

N

i
iX

1

2

1


=

N

i
iX



BIRCH

4

• Clustering feature: 

• Summary of the statistics for a given subcluster: the 0-th, 1st, and 2nd moments 
of the subcluster from the statistical point of view

• Registers crucial measurements for computing cluster and utilizes storage 
efficiently

• A CF tree is a height-balanced tree that stores the clustering features for a 
hierarchical clustering 

• A nonleaf node in a tree has descendants or “children”

• The nonleaf nodes store sums of the CFs of their children

• A CF tree has two parameters

• Branching factor B: max # of children

• Threshold L: max diameter of sub-clusters stored at the leaf nodes



BIRCH

5

CF1

child1

CF3

child3

CF2

child2

CF6

child6

CF1

child1

CF3

child3

CF2

child2

CF5

child5

CF1 CF2 CF6prev next CF1 CF2 CF4prev next

B = 7

L = 6

Root

Non-leaf node

Leaf node Leaf node



BIRCH

6

• Cluster Diameter

• For each point in the input
• Find closest leaf entry
• Add point to leaf entry and update CF 
• If entry diameter > max_diameter, then split leaf, and possibly parents

• Algorithm is O(n)
• Concerns

• Sensitive to insertion order of data points
• Since we fix the size of leaf nodes, so clusters may not be so natural
• Clusters tend to be spherical given the radius and diameter measures

 −
−

2)(
)1(

1

j
x

i
x

nn



Density Based Algorithms

7

• Clustering based on density (local cluster criterion), such as density-connected 
points

• Major features:
• Discover clusters of arbitrary shape
• Handle noise
• One scan
• Need density parameters as termination condition

• Several interesting studies:
• DBSCAN: Ester, et al. (KDD’96)
• OPTICS: Ankerst, et al (SIGMOD’99).
• DENCLUE: Hinneburg & D. Keim  (KDD’98)
• CLIQUE: Agrawal, et al. (SIGMOD’98) (more grid-based)



Density Based Algorithms

8

• Two parameters:

• Eps: Maximum radius of the neighbourhood

• MinPts: Minimum number of points in an Eps-neighbourhood of that point

• NEps(p): {q belongs to D | dist(p,q) ≤ Eps}

• Directly density-reachable: A point p is directly density-reachable from a point q w.r.t. 
Eps, MinPts if 

• p belongs to NEps(q)

• core point condition:

      |NEps (q)| ≥ MinPts 
MinPts = 5

Eps = 1 cm

p

q



Density Based Algorithms

9

• Density-reachable: 

• A point p is density-reachable from a 
point q w.r.t. Eps, MinPts if there is a 
chain of points p1, …, pn, p1 = q, pn = p 
such that pi+1 is directly density-
reachable from pi 

• Density-connected

• A point p is density-connected to a point 
q w.r.t. Eps, MinPts if there is a point o 
such that both, p and q are density-
reachable from o w.r.t. Eps and MinPts

p

q
p1

p q

o



DBSCAN

10

• Relies on a density-based notion of cluster:  A cluster is defined as a maximal set of 
density-connected points

• Discovers clusters of arbitrary shape in spatial databases with noise

Core

Border

Outlier

Eps = 1cm

MinPts = 5



DBSCAN

11

• Arbitrary select a point p

• Retrieve all points density-reachable from p w.r.t. Eps and MinPts

• If p is a core point, a cluster is formed

• If p is a border point, no points are density-reachable from p and DBSCAN visits the 

next point of the database

• Continue the process until all of the points have been processed



DBSCAN

12



OPTICS

13

• Index-based: 

k = number of dimensions 

N = 20

p = 75%

M = N(1-p) = 5
• Complexity:  O(NlogN)

• Core Distance: 
min eps s.t. point is core

• Reachability Distance

D

p2

MinPts = 5

e  = 3 cm

Max (core-distance (o), d (o, p))

r(p1, o) = 2.8cm.  r(p2,o) = 4cm

o

o

p1



OPTICS

14





Cluster-order

of the objects

undefined

‘

Reachability-
distance



OPTICS

15



Grid Based Algorithms

16

• Using multi-resolution grid data structure
• Several interesting methods

• STING (a STatistical INformation Grid approach) by Wang, Yang and Muntz (1997)

• WaveCluster by Sheikholeslami, Chatterjee, and Zhang (VLDB’98)

• A multi-resolution clustering approach using wavelet method

• CLIQUE: Agrawal, et al. (SIGMOD’98)

• Both grid-based and subspace clustering



STING

17

• Wang, Yang and Muntz (VLDB’97)
• The spatial area is divided into rectangular cells
• There are several levels of cells corresponding to different levels of resolution



STING

18

• Each cell at a high level is partitioned into a number of smaller cells in the next lower 
level

• Statistical info of each cell is calculated and stored beforehand and is used to answer 
queries

• Parameters of higher level cells can be easily calculated from parameters of lower 
level cell
• count, mean, s, min, max 
• type of distribution—normal, uniform, etc.

• Use a top-down approach to answer spatial data queries
• Start from a pre-selected layer—typically with a small number of cells
• For each cell in the current level compute the confidence interval



STING

19

• Remove the irrelevant cells from further consideration

• When finish examining the current layer, proceed to the next lower level 

• Repeat this process until the bottom layer is reached

• Advantages:

• Query-independent, easy to parallelize, incremental update

• O(K), where K is the number of grid cells at the lowest level 

• Disadvantages:

• All the cluster boundaries are either horizontal or vertical, and no diagonal 
boundary is detected



Evaluation of Clustering

20

• Assess if non-random structure exists in the data by measuring the probability that 
the data is generated by a uniform data distribution

• Test spatial randomness by statistic test: Hopkins Statistic
• Given a dataset D regarded as a sample of a random variable o, determine how 

far away o is from being uniformly distributed in the data space
• Sample n points, p1, …, pn, uniformly from D.  For each pi, find its nearest 

neighbor in D:  xi = min{dist (pi, v)} where v in D
• Sample n points, q1, …, qn, uniformly from D.  For each qi, find its nearest 

neighbor in D – {qi}:  yi = min{dist (qi, v)} where v in D and v ≠ qi

• Calculate the Hopkins Statistic:

• If D is uniformly distributed, ∑ xi and ∑ yi will be close to each other and H is 
close to 0.5.  If D is highly skewed, H is close to 0



Evaluation of Clustering

21

• Empirical method
• # of clusters ≈√n/2 for a dataset of n points

• Elbow method
• Use the turning point in the curve of sum of within cluster variance w.r.t  the # of 

clusters
• Cross validation method

• Divide a given data set into m parts
• Use m – 1 parts to obtain a clustering model
• Use the remaining part to test the quality of the clustering

• E.g., For each point in the test set, find the closest centroid, and use the sum 
of squared distance between all points in the test set and the closest 
centroids to measure how well the model fits the test set

• For any k > 0, repeat it m times, compare the overall quality measure w.r.t. 
different k’s, and find # of clusters that fits the data the best



Evaluation of Clustering

22

• Two methods: extrinsic vs. intrinsic  

• Extrinsic: supervised, i.e., the ground truth is available

• Compare a clustering against the ground truth using certain clustering quality 

measure

• Ex. Bcubed, precision and recall metrics

• Intrinsic: unsupervised, i.e., the ground truth is unavailable

• Evaluate the goodness of a clustering by considering how well the clusters are 

separated, and how compact the clusters are

• Ex. Silhouette coefficient



Evaluation of Clustering

23

• Clustering quality measure: Q(C, Cg), for a clustering C given the ground truth Cg. 
• Q is good if it satisfies the following 4 essential criteria

• Cluster homogeneity: the purer, the better
• Cluster completeness: should assign objects belong to the same category in the 

ground truth to the same cluster
• Rag bag: putting a heterogeneous object into a pure cluster should be penalized 

more than putting it into a rag bag (i.e., “miscellaneous” or “other” category)
• Small cluster preservation: splitting a small category into pieces is more harmful 

than splitting a large category into pieces



Silhouette Coefficient

24

• Silhouette Coefficient combines ideas of both cohesion and separation, but for 
individual points, as well as clusters and clusterings

• For an individual point 𝑖
• Calculate 𝒂𝒊 = average distance of 𝑖 to the points in its own cluster
• Calculate 𝒃𝒊 = min (over clusters) of the average distance of 𝑖 to points in other 

clusters
• The silhouette coefficient for a point 𝑖 is then given by 

𝒔𝒊  =  𝟏 – 𝒂𝒊/𝒃𝒊

• Typically between 0 and 1, the closer to 1 the better.
• Can be less than 0 but this is a problematic case

• Can calculate the Average Silhouette coefficient for a cluster, or for a clustering

a

b



Silhouette Coefficient

25

https://www.mathworks.com/help/stats/silhouette.html



Silhouette Coefficient

26

Cluster 1 ={{1,0},{1,1}} 
Cluster 2 ={{1,2},{2,3},{2,2},{1,2}}, 
Cluster 3 ={{3,1},{3,3},{2,1}} 

Take a point {1,0} in cluster 1
Calculate its average distance to all other points in it’s cluster, i.e. cluster 1

So a1 =√( (1-1)^2 + (0-1)^2) =√(0+1)=√1=1 

Now for the object {1,0} in cluster 1 calculate its average distance from all the objects in cluster 2 and 
cluster 3. 
Of these take the minimum average distance.

So for cluster 2
{1,0} ----> {1,2} = distance = √((1-1)^2 + (0-2)^2) =√(0+4)=√4=2 
{1,0} ----> {2,3} = distance = √((1-2)^2 + (0-3)^2) =√(1+9)=√10=3.16 
{1,0} ----> {2,2} = distance = √((1-2)^2 + (0-2)^2) =√(1+4)=√5=2.24 
{1,0} ----> {1,2} = distance = √((1-1)^2 + (0-2)^2) =√(0+4)=√4=2 



Silhouette Coefficient

27

Cluster 1 ={{1,0},{1,1}} 
Cluster 2 ={{1,2},{2,3},{2,2},{1,2}}, 
Cluster 3 ={{3,1},{3,3},{2,1}} 

Therefore, the average distance of point {1,0} in cluster 1 to all the points in cluster 2 =
(2+3.16+2.24+2)/4 = 2.325

Similarly, for cluster 3
{1,0} ----> {3,1} = distance = √((1-3)^2 + (0-1)^2) =√(4+1)=√5=2.24 
{1,0} ----> {3,3} = distance = √((1-3)^2 + (0-3)^2) =√(4+9)=√13=3.61 
{1,0} ----> {2,1} = distance = √((1-2)^2 + (0-1)^2) =√(1+1)=√2=2.24 

Therefore, the average distance of point {1,0} in cluster 1 to all the points in cluster 3 =
(2.24+3.61+2.24)/3 = 2.7

Now, the minimum average distance of the point {1,0} in cluster 1 to the other clusters 2 and 3 is, 
b1 =2.325 (2.325 < 2.7)



Silhouette Coefficient

28

Cluster 1 ={{1,0},{1,1}} 
Cluster 2 ={{1,2},{2,3},{2,2},{1,2}}, 
Cluster 3 ={{3,1},{3,3},{2,1}} 

So the silhouette coefficient of cluster 1
s1= 1-(a1/b1) = 1- (1/2.325)=1-0.4301=0.5699

In a similar fashion you need to calculate the silhouette coefficient for cluster 2 and cluster 3 separately 
by taking any single object point in each of the clusters and repeating the steps above. 

Of these the cluster with the greatest silhouette coefficient is the best as per evaluation.



Artificial Neural Networks

29
Adopted from Garrison Cotrell - Darwish Ashraf - Nielsen Morten – ‘Data Mining: Concepts & Techniques’ 



Introduction

30

• We have billions and billions of neurons that somehow work together to create the 
mind.

• These neurons are connected by 1014 - 1015 synapses, which we think encode the 
“knowledge” in the network - too many for us to explicitly program them in our 
models

• Rather we need some way to indirectly set them via a procedure that will achieve 
some goal by changing the synaptic strengths (which we call weights).

• This is called learning in these systems.



Introduction

31



Introduction

32



Perceptron

33



Multilayer Perceptrons

34



Calculations

35

• A mathematical model to solve engineering problems
• Group of highly connected neurons to realize compositions of non linear 

functions
• Tasks

• Classification
• Discrimination
• Estimation 

• 2 types of networks
• Feed forward Neural Networks
• Recurrent Neural Networks 



Feed Forward Neural Networks

36

• The information is 
propagated from the 
inputs to the outputs

• Computations of No 
non linear functions 
from n input variables 
by compositions of Nc 
algebraic functions

• Time has no role (NO 
cycle between outputs 
and inputs)

x1 x2 xn…..

1st hidden 
layer

2nd hidden
layer

Output layer



Recurrent Neural Networks

37

• Can have arbitrary topologies
• Can model systems with internal states 

(dynamic ones)
• Delays are associated to a specific weight
• Training is more difficult
• Performance may be problematic

• Stable Outputs may be more difficult 
to evaluate

• Unexpected behavior (oscillation, 
chaos, …)

x1 x2

1

0
10

1
0

0
0



Learning

38

• The procedure that consists in estimating the parameters of neurons so that the 
whole network can perform a specific task

• 2 types of learning
• The supervised learning
• The unsupervised learning

• The Learning process (supervised)
• Present the network a number of inputs and their corresponding outputs
• See how closely the actual outputs match the desired ones
• Modify the parameters to better approximate the desired outputs



Supervised Learning

39

• The desired response of the neural network in function of particular inputs is well 
known.

• A “Professor” may provide examples and teach the neural network how to fulfill a 
certain task



Unsupervised Learning

40

• Idea : group typical input data in function of resemblance criteria un-known a priori
• Data clustering
• No need of a professor

•  The network finds itself the correlations between the data
• Examples of such networks :

• Kohonen feature maps



Learning

41

• Backpropagation: A neural network learning algorithm 

• Started by psychologists and neurobiologists to develop and test computational 

analogues of neurons

• A neural network: A set of connected input/output units where each connection has 

a weight associated with it

• During the learning phase, the network learns by adjusting the weights so as to be 

able to predict the correct class label of the input tuples

• Also referred to as connectionist learning due to the connections between units



Pros & Cons

42

• Weakness

• Long training time 

• Require a number of parameters typically best determined empirically, e.g., the 

network topology or “structure.”

• Poor interpretability: Difficult to interpret the symbolic meaning behind the 

learned weights and of “hidden units” in the network

• Strength

• High tolerance to noisy data 

• Ability to classify untrained patterns 

• Well-suited for continuous-valued inputs and outputs

• Successful on an array of real-world data, e.g., hand-written letters

• Algorithms are inherently parallel

• Techniques have recently been developed for the extraction of rules from 

trained neural networks



Architectures

43

• Perceptron
• Multi-Layer Perceptron
• Radial Basis Function (RBF)
• Kohonen Features maps
• Other architectures

• An example : Shared weights neural networks



Perceptron

44

• Rosenblatt (1962) discovered a learning rule for perceptrons called the perceptron 
convergence procedure.

• Guaranteed to learn anything computable (by a two-layer perceptron)

• Unfortunately, not everything was computable (Minsky & Papert, 1969)



Perceptron

45

• Output activation rule: 
• First, compute the net input to the output unit:
 Σi wixi = net
• Then, compute the output as:
    If net ≥θ then output = 1
                 else  output = 0

net input   

output   



Perceptron

46

• Perceptrons only be 100% accurate only on linearly separable problems.  

• Multi-layer networks (often called multi-layer perceptrons, or MLPs) can represent 
any target function.  

• However, in multi-layer networks, there is no guarantee of convergence to minimal 
error weight vector. 



Perceptron

47

• Learning rule:
• If output is 1 and should be 0, then lower weights to active inputs and raise the 

threshold θ
• If output is 0 and should be 1, then raise weights to active inputs and lower the 

threshold θ

(“active input” means xi = 1, not 0)



Perceptron

48

• Each output unit correspond to a particular steering direction.  
• The most highly activated one gives the direction to steer.  

(Note: bias units and
weights not shown)



Perceptron

49

• Before 2009: ANNs typically with 2-3 layers 
• Reason 1: computation times
• Reason 2: problems of the backpropagation algorithm 

• Local optimization only (needs a good initialization, or re-initialization)
• Prone to over-fitting (too many parameters to estimate, too few labeled 

examples)
• => Skepticism: A deep network often performed worse than a shallow one

• After 2009: Deep neural networks
• Fast GPU-based implementations
• Weights can be initialized better (Use of unlabeled data, Restricted Boltzmann 

Machines)
• Large collections of labeled data available
• Reducing the number of parameters by weight sharing
• Improved backpropagation algorithm
• Success in different areas, e.g. traffic sign recognition, handwritten digits problem



Perceptron

50

• Network node in detail

• Network learning process = tuning the synaptic weights
• Initialize randomly
• Repeatedly compute the ANN result for a given task, compare with ground truth, 

update ANN weights by backpropagation algorithm to improve ANN 
performance



Perceptron

51

Output layer

Input layer

Hidden layer

Output vector

Input vector: X

wij

ij

k

ii

k

j

k

j xyyww )ˆ( )()()1( −+=+ 



Perceptron

52

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

-10 -8 -6 -4 -2 0 2 4 6 8 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-10 -8 -6 -4 -2 0 2 4 6 8 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Linear Logistic
Hyperbolic tangent

xy =
)exp(1

1

x
y

−+
=

)exp()exp(

)exp()exp(

xx

xx
y

−+

−−
=

ze
z

−+
=

1

1
 )(



Multi-Layer Perceptrons

53

• One or more hidden layers
• Sigmoid activations functions

1st hidden 
layer

2nd hidden
layer

Output layer

Input data



Network Topology

54

• Decide the network topology: Specify # of units in the input layer, # of hidden layers 

(if > 1), # of units in each hidden layer, and # of units in the output layer

• Normalize the input values for each attribute measured in the training tuples to 

[0.0—1.0]

• One input unit per domain value, each initialized to 0

• Output, if for classification and more than two classes, one output unit per class is 

used

• Once a network has been trained and its accuracy is unacceptable, repeat the 

training process with a different network topology or a different set of initial weights



Backpropagation

55

• Iteratively process a set of training tuples & compare the network's prediction with 

the actual known target value

• For each training tuple, the weights are modified to minimize the mean squared 

error between the network's prediction and the actual target value 

• Modifications are made in the “backwards” direction: from the output layer, through 

each hidden layer down to the first hidden layer, hence “backpropagation”

• Steps

• Initialize weights to small random numbers, associated with biases 

• Propagate the inputs forward (by applying activation function) 

• Backpropagate the error (by updating weights and biases)

• Terminating condition (when error is very small, etc.)



Backpropagation

56

( )

)(')(

)()²(
2

1

)(

0

jjjj

jj

j

jj

j

jj

j

j

j

ij

ji

j

jji

ji

jjj

n

i

ijijj

netfot

ot
o

E
otE

netf
o

E

net

o

o

E

o
w

net

net

E

w

E
w

netfo

owwnet

−=

−−=



=−=





−=








−=

=







−=




−=

=

+= 







If the jth node is an output unit

j

j
net

E




−=

Credit assignment

jijiji www +



Backpropagation (differentiable perceptron)

57

Define total classification error or loss on the training set:

Update weights by gradient descent:

For a single training point, the update is:

( ) ),()(,)()(
1

2

jj

N

j

jj ffyE xwxxw ww =−=
=


te

t
−+

=
1

1
)(

w
ww




−

E


( )

( ) 



=

=

−−−=














−−=





N

j

jjjjj

N

j

jjjj

fy

fy
E

1

1

))(1)(()(2

)()(')(2

xxwxwx

xw
w

xwx
w





( ) xxwxwxww ))(1)(()( −−+  fy



Backpropagation (differentiable perceptron)

58

• For a single training point, the update is:

• Compare with update rule with non-differentiable perceptron:

( ) xxwxwxww ))(1)(()( −−+  fy

( )xxww )(fy −+ 



Example

59

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/



Example

60

1 0 Label: Positive

0 1 Label: Negative

Training set:

x1 x2

h1

1

h2

o1

.1 .1

.1
.1

.1

.1

1

.1

.1

.1



Example

61

Label: Positive

1 0 Label: Positive

0 1 Label: Negative

Training set:

x1 x2

h1

1

h2

o1

.1 .1

.1
.1

.1

.1

1

.1

.1

.1

Target: .9

1 0



Example

62

Label: Positive

1 0 Label: Positive

0 1 Label: Negative

Training set:

1 0

x1 x2

h1

1

h2

o1

.1 .1

.1
.1

.1

.1

1

.1

.1

.1

Target: .9



Example

63

1 0 Label: Positive

1 0 Label: Positive

0 1 Label: Negative

Training set:

x1 x21

o1

.1 .1

.1
.1

.1

.1

1

.1

.1

.1

.55 .55

Target: .9



Example

64

1 0 Label: Positive

1 0 Label: Positive

0 1 Label: Negative

Training set:

x1 x21

o1

.1 .1

.1
.1

.1

.1

1

.1

.1

.1

.55 .55

Target: .9



Example

65

1 0 Label: Positive

1 0 Label: Positive

0 1 Label: Negative

Training set:

x1 x21

o1

.1 .1

.1
.1

.1

.1

1

.1

.1

.1

.55 .55

Target: .9



Example

66

1 0 Label: Positive

1 0 Label: Positive

0 1 Label: Negative

Training set:

x1 x21

.1 .1

.1
.1

.1

.1

1

.1

.1

.1

.55 .55

.552

Target: .9



Example

67

1 0 Label: Positive

1 0 Label: Positive

0 1 Label: Negative

Training set:

x1 x21

.1 .1

.1
.1

.1

.1

1

.1

.1

.1

.55 .55 Here we interpret o1 > .5 as “positive”.  

Classification is correct.

But we still update weights. 

.552

Target: .9



Example

68

1 0 Label: Positive

1 0 Label: Positive

0 1 Label: Negative

Training set:

x1 x21

.1 .1

.1
.1

.1

.1

1

.1

.1

.1

.55 .55

.552

Target: .9 Calculate error terms:



Example

69

1 0

x1 x21

.1 .1

.1
.1

.1

.1

1

.1

.1

.1

.55 .55

.552

Update hidden-to-output weights (learning rate = 0.2; momentum = 0.9):

Label: Positive

1 0 Label: Positive

0 1 Label: Negative

Training set:

Target: .9 Calculate error terms:



Example

70

1 0 Label: Positive

1 0 Label: Positive

0 1 Label: Negative

Training set:

x1 x21

.1 .1

.1
.1

.1

.1

1

.1

.1

.1

.55 .55

.552

Target: .9 Calculate error terms:

Update hidden-to-output weights (learning rate = 0.2; momentum = 0.9):



Example

71

1 0 Label: Positive

1 0 Label: Positive

0 1 Label: Negative

Training set:

x1 x21

.1 .1

.1
.1

.1

.1

1

.1

.1

.1

.55 .55

.552

Target: .9 Calculate error terms:

Update hidden-to-output weights (learning rate = 0.2; momentum = 0.9):

wk=1, j=1

1 = .1+.0095 = .1095

wk=1, j=2

1 = .1+.0095 = .1095

wk=1, j=0

1 = .1+.0172 = .1172



Example

72

1 0

x1 x21

.1 .1

.1
.1

.1095

.1

1

.1172

.1

.1095

.55 .55

.552

Label: Positive

1 0 Label: Positive

0 1 Label: Negative

Training set:

Target: .9 Calculate error terms:

wk=1, j=1

1 = .1+.0095 = .1095

wk=1, j=2

1 = .1+.0095 = .1095

wk=1, j=0

1 = .1+.0172 = .1172



Example

73

Update input-to-hidden weights (learning rate = 0.2; momentum = 0.9):

wj=1,i=0

1 = .1+.0004 = .1004

Dwj=1,i=2

1 = (.2) .002( )(0)+ (.9)(0) = 0

wj=1,i=1

1 = .1+.0004 = .1004

wj=1, i=2

1 = .1

Label: Positive

1 0 Label: Positive

0 1 Label: Negative

Training set:

Target: .9 Calculate error terms:

1 0

x1 x21

.1004
.1004

.1004

.1004

.1095

.1

1

.1172

.1

.1095

.55 .55

.552

wj=2, i=2

1 = .1



Self Organizing Maps

74

• The purpose of SOM is to map a multidimensional input space onto a topology 
preserving map of neurons
• Preserve a topological so that neighboring neurons respond to « similar »input 

patterns
• The topological structure is often a 2 or 3 dimensional space

• Each neuron is assigned a weight vector with the same dimensionality of the input 
space

• Input patterns are compared to each weight vector and the closest wins (Euclidean 
Distance)



Self Organizing Maps

75

• The activation of the neuron is 
spread in its direct neighborhood 
=>neighbors become sensitive to 
the same input patterns

• Block distance
• The size of the neighborhood is 

initially large but reduce over 
time => Specialization of the 
network

First neighborhood

2nd neighborhood



Self Organizing Maps

76

• During training, the “winner” neuron and 
its neighborhood adapts to make their 
weight vector more similar to the input 
pattern that caused the activation

• The neurons are moved closer to the input 
pattern

• The magnitude of the adaptation is 
controlled via a learning parameter which 
decays over time


	Slide 1: Hierarchical Clustering
	Slide 2: BIRCH
	Slide 3: BIRCH
	Slide 4: BIRCH
	Slide 5: BIRCH
	Slide 6: BIRCH
	Slide 7: Density Based Algorithms
	Slide 8: Density Based Algorithms
	Slide 9: Density Based Algorithms
	Slide 10: DBSCAN
	Slide 11: DBSCAN
	Slide 12: DBSCAN
	Slide 13: OPTICS
	Slide 14: OPTICS
	Slide 15: OPTICS
	Slide 16: Grid Based Algorithms
	Slide 17: STING
	Slide 18: STING
	Slide 19: STING
	Slide 20: Evaluation of Clustering
	Slide 21: Evaluation of Clustering
	Slide 22: Evaluation of Clustering
	Slide 23: Evaluation of Clustering
	Slide 24: Silhouette Coefficient
	Slide 25: Silhouette Coefficient
	Slide 26: Silhouette Coefficient
	Slide 27: Silhouette Coefficient
	Slide 28: Silhouette Coefficient
	Slide 29: Artificial Neural Networks
	Slide 30: Introduction
	Slide 31: Introduction
	Slide 32: Introduction
	Slide 33: Perceptron
	Slide 34: Multilayer Perceptrons
	Slide 35: Calculations
	Slide 36: Feed Forward Neural Networks
	Slide 37: Recurrent Neural Networks
	Slide 38: Learning
	Slide 39: Supervised Learning
	Slide 40: Unsupervised Learning
	Slide 41: Learning
	Slide 42: Pros & Cons
	Slide 43: Architectures
	Slide 44: Perceptron
	Slide 45: Perceptron
	Slide 46: Perceptron
	Slide 47: Perceptron
	Slide 48: Perceptron
	Slide 49: Perceptron
	Slide 50: Perceptron
	Slide 51: Perceptron
	Slide 52: Perceptron
	Slide 53: Multi-Layer Perceptrons
	Slide 54: Network Topology
	Slide 55: Backpropagation
	Slide 56: Backpropagation
	Slide 57: Backpropagation (differentiable perceptron)
	Slide 58: Backpropagation (differentiable perceptron)
	Slide 59: Example
	Slide 60: Example
	Slide 61: Example
	Slide 62: Example
	Slide 63: Example
	Slide 64: Example
	Slide 65: Example
	Slide 66: Example
	Slide 67: Example
	Slide 68: Example
	Slide 69: Example
	Slide 70: Example
	Slide 71: Example
	Slide 72: Example
	Slide 73: Example
	Slide 74: Self Organizing Maps
	Slide 75: Self Organizing Maps
	Slide 76: Self Organizing Maps

