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Symmetric vs Skewed Data

Median, mean and mode of symmetric, positively and
negatively skewed data




Dispersion
Quartiles, outliers and boxplots L
Quartiles: Q, (25 percentile), Q, (75™ percentile) | | m‘.,,i

Inter-quartile range: IQR = Q;— Q4

Five number summary: min, Q,, median, Q;, max A/\

Boxplot: ends of the box are the quartiles; median is marked; add

whiskers, and plot outliers individually /\\\

Outlier: usually, a value higher/lower than 1.5 x IQR

Variance and standard deviation (sample: s, population: o)
Variance: (algebraic, scalable computation)

Standard deviation s (or o) is the square root of variance s?(or g%

1 n 1 n 1 n 1 n 1 n
52 :ﬁZ(Xi —)_()2 :n—[ZXiz —H(in)z] 0-2 = W;(Xi _/u)z — W;Xiz _1u2
=l 4=l i=1 i= i=




Boxplot

Five-number summary of a distribution
Minimum, Q1, Median, Q3, Maximum

Boxplot
Data are represented with a box

The ends of the box are at the first and third
quartiles, i.e., the height of the box is IQR

The median is marked by a line within the box
Whiskers: two lines outside the box extended

to Minimum and Maximum
Outliers: points beyond a specified outlier
threshold, plotted individually
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Example: Normal Distribution

The normal (distribution) curve
* From p—o to p+o: contains about 68% of the measurements (u:
mean, o: standard deviation)
* From p—20 to pu+20: contains about 95% of it
e From p—30 to u+30: contains about 99.7% of it

/&\ /\ 99.7%
3 2 4 0 4+ +2 43 3 2 -1 0 + 42 +3 3 2 -1 0 +1 42 43
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e
Visualization

- Boxplot: graphic display of five-number summary

- Histogram: x-axis are values, y-axis repres. frequencies

+ Quantile plot: each value x; is paired with f; indicating that approximately
100 f.% of data are < x;

- Quantile-quantile (g-q) plot: graphs the quantiles of one univariant
distribution against the corresponding quantiles of another

- Scatter plot: each pair of values is a pair of coordinates and plotted as

points in the plane




Histograms

Histogram: Graph display of tabulated
frequencies, shown as bars

It shows what proportion of cases fall into
each of several categories

Differs from a bar chart in that it is the area
of the bar that denotes the value, not the
height as in bar charts, a crucial distinction
when the categories are not of uniform
width

The categories are usually specified as non-
overlapping intervals of some variable. The
categories (bars) must be adjacent
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Quantile

* Displays all the data (allowing the user to assess both the overall
behavior and unusual occurrences)

* Plots quantile information

* For adata x; data sorted in increasing order, f; indicates that
approximately 100Xf% of the data are below or equal to the value x;
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Quantile-Quantile (Q-Q) Plot

 Graphs the quantiles of one univariate distribution against the

corresponding quantiles of another
* View: Is there a shift in going from one distribution to another?
 Example shows unit price of items sold at Branch 1 vs. Branch 2 for
each quantile. Unit prices of items sold at Branch 1 tend to be lower

than those at Branch 2.
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Scatter

* Provides a first look at bivariate data to see clusters of points, outliers,

etc

* Each pair of values is treated as a pair of coordinates and plotted as

points in the plane
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Correlation

The left half fragment is positively correlated

The right half is negative correlated
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Uncorrelated Data
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Similarity and Dissimilarity

Similarity

 Numerical measure of how alike two data objects are

* Value is higher when objects are more alike

e Often fallsin the range [0,1]
Dissimilarity (e.g., distance)

 Numerical measure of how different two data objects are

 Lower when objects are more alike

* Minimum dissimilarity is often O

* Upper limit varies
Proximity refers to a similarity or dissimilarity




Matrices
Data matrix X1 Xqf e X
* ndata points with p dimensions
Xil Xif Xip
* Two modes
_an an an_
Dissimilarity matrix
* ndata points, but registers onlythe [ 0 |
d2,1) 0

distance
. . d3,1) d(32) 0
e Atriangular matrix . . .

* Single mode _d(r.1,1) d(r.1,2) 0




Proximity for Nominal Attributes
Can take 2 or more states, e.g., red, yellow, blue, green
(generalization of a binary attribute)
Method 1: Simple matching

m: # of matches, p: total # of variables

d(i, =P
Method 2: Use a large number of binary attributes creating a new

binary attribute for each of the M nominal states




Proximity for Nominal Attributes

e Example

Object test-| test-2 test-3

Identifier (nominal) (ordinal) (numeric)

1 code A excellent 45

2 code B fair 22

3 code C good 64

4 code A excellent 28 d (i j) L p — M
’ - T

e Dissimilarity Matrix (p=1)

0 0
d(2,1) 0 I 0
d(3,1) d(3,2) 0 9 I 1 0
_d[-i, 1) d(4,2) d(4,3) 0] 01 1 0

* sim(i,j) = 1-d(i,j) =m/p




Proximity for Binary Attributes

* A contingency table for binary data 1 ObJ'eCtOJ'
sum
e Distance measure for symmetric binary Object / q r g+r
0 8 t §+1
variables: sum q+s r-{ p

e Distance measure for asymmetric binary el e

variables: a(t, j) = APt
* Jaccard coefficient (similarity measure AL, e — S
L : ’ g8
for asymmetric binary variables): .

SimJaccard(ia .7) —

g+r-+8




Dissimilarity between Binary Variables

Example
Name | Gender | Fever [Cough |Test-1 |Test-2 | Test-3 | Test-4
Jack |M Y N P N N N
Mary |F Y N P N P N
Jm |M Y P N N N N
_ _ _ 1 0 sum
Gender is a symmetric attribute 1 q 7 g7
The remaining attributes are asymmetric binary 0 $ t s+t
Let the values Y and P be 1, and the value N be 0 HEn S Pt P
r+s
. O+1 d i) ) —
d(Jack,mary)=2+O+1=O.33 ( -7) q+r+s+t
] . _1+1 L T+ S
d(jack, jim) = ————=0.67 d(z, 7) = e
.. 1+ 2
d(jim,mary) = 12122 0.75
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Distance of Numeric Data

Minkowski distance: A popular distance measure

d(i, j) = </|37z1 = 33j1|h + i — 33j2‘h bl & Ifl?z'p i $jp|h
where = (X, X, ..., Xi,) and j = (X1, X;5, ..., X;,) are two p-dimensional data
objects, and h is the order (the distance so defined is also called L-h norm)

Properties
d(i,j) >0ifi#j,and d(i, i) = 0 (Positive definiteness)
d(i, j) = d(j, i) (Symmetry)

d(i, j) < d(i, k) + d(k, j) (Triangle Inequality)

A distance that satisfies these properties is a metric




Special Cases

h =1: Manhattan (city block, L, norm) distance

E.g., the Hamming distance: the number of bits that are different between two
binary vectors

d(, j)—|X —x |+|x —x |+ +|x —xJp|

h=2: (L, norm) Euchdean dlstance

AN . 2 . 2 . 2
d(l,j)—\/(|xi1 G 4, = Pty = 1)

h — 0. “supremum” (L__ norm, L_norm) distance.
This is the maximum difference between any component (attribute) of the vectors

1
T
. . P
d(i, j) = llm (E iy — %ﬂh) :m?"‘hfo:f — Tz

d(?,, .7) - {l/lx’tl o xj1|h i |'Tz'2 - sz‘h ik ¢ ixip o xjplh 20



Examples

d(, j):|xi1—xj1|+|xi2—xj2|+...+|xip—x-

Jpl

HE . . 2 . 2 . 2
d(|,j)_\/(|xi1 =, Pt =X )

point |attribute 1 |attribute 2
X1 1 2
X2 3 3)
X3 2 0
x4 4 5
A
X2 X4
4
2

=

h

P
= m?X|$if — x5l

P
d(i, j) = lim (Z iy — xjf")
f=1

Manhattan (L,)
L x1 X2 X3 x4
x1 0
X2 5 0
X3 3 6 0
x4 6 1 7 0
Euclidean (L,)
L2 x1 X2 X3 x4
x1 0
X2 3.61 0
X3 2.24 51 0
x4 4.24 1 5.39
Supremum
Ly x1 X2 X3 X4
X1 0
X2 3 0
X3 2 5 0
x4 3 1 5




Cosine Similarity

A document can be represented by thousands of attributes, each recording the
frequency of a particular word (such as keywords) or phrase in the document.
Document ~ teamcoach hockey baseball soccer penalty score win loss season

Document1 5 0 3 0 2 0 0 2 0 0
Document2 3 0 2 0 1 1 0 1 0 1
Document3 0 7 0 2 1 0 0 3 0 0
Document4 0 1 0 0 1 2 2 0 3 0

Other vector objects: gene features in micro-arrays, ...
Applications: information retrieval, biologic taxonomy, gene feature mapping, ...
Cosine measure: If d, and d, are two vectors (e.g., term-frequency vectors), then
cos(d,, d,) = (dyed) /11,11 1,11,
where e indicates vector dot product, | |d| |: the length of vector d

V(d1) - V(d2)
|V (d1)||V(da))|

sim(dy, da) = E;Ml Xilfi JE;‘HI V2(d)

22



Example
cos(d, d,) = (d;ed,) /| 1d,[| |1d,]],
where o indicates vector dot product, | |d|: the length of vector d

Ex: Find the similarity between documents 1 and 2.

d,=(5073020,0,2,0,0)
d,=(3,0201101,0,1)
d,ed,=5%*3+0*0+3*2+0*0+2*1+0*1+0*1+2*1+0*0+0*1 = 25
||d,||=(5*5+0*0+3*3+0*0+2*2+0*0+0*0+2*2+0*0+0*0)%>=(42)%> = 6.481
||d,||= (3*3+0*0+2*2+0*0+1*1+1*1+0*0+1*1+0*0+1%1)05=(17)%5  =4.12
cos(d,, d,)=0.94

Document ~ teamcoach hockey baseball soccer penalty score win loss season

Document] 5 0 g 0 2 0 0 2 0 0
Document2

3 0 2 0 1 1 0 1 0 1
Document3 0 T 0 2 1 0 0 a 0 0
0 1 0 0 1 2 2 0 3 0

Document4

23




Probability Distributions




Random Variable

e Arandom variable x takes on a defined set of values with

different probabilities.
* For example, if you roll a die, the outcome is random (not fixed)

and there are 6 possible outcomes, each of which occur with

probability one-sixth.
* For example, if you poll people about their voting preferences,

the percentage of the sample that responds “Yes on Proposition
100” is a also a random variable (the percentage will be slightly
differently every time you poll).

* Roughly, probability is how frequently we expect different
outcomes to occur if we repeat the experiment over and over

(“frequentist” view)

25



Random Variables

Discrete random variables have a countable number of outcomes
Examples: Dead/alive, treatment/placebo, dice, counts, etc.
Continuous random variables have an infinite continuum of
possible values.
Examples: blood pressure, weight, the speed of a car, the real

numbers from 1 to 6.




Probability Functions

* A probability function maps the possible values of x against
their respective probabilities of occurrence, p(x)

* p(x)isanumber from O to 1.0.

 The area under a probability function is always 1.




Example: roll a die

p(X)

1 2 3 4 5 6




Cumulative Distribution Function

X P(x<A)
P(x<1)=1/6
2 P(x<2)=2/6

Fx() = 3 Px(ox) (=2)

TR 3 P(x<3)=3/6
4 P(x<4)=4/6
5 P(x<5)=5/6
6 P(x<6)=6/6




Important Discrete Distributions

Binomial
n draws of a Bernoulli distribution
Random variable X stands for the number of times that
experiments are successful.

| N o« n—x _
Pr(X =Xx) = py(X) =<(Xj p"A-p) " x=12..,n

E[X] = np, Var(X) = np(1-p) L 0 otherwise




Important Discrete Distributions

Poisson
Coming from Binomial distribution
Fix the expectation A=np
Let the number of trials n—o0
A Binomial distribution will become a Poisson distribution
lX
Pr(X =x) = p,(X) =4 1 - © x20
0 otherwise

E[X] = A, Var(X) = A




Continuous Variables

e The probability function that accompanies a continuous
random variable is a continuous mathematical function that
Integrates to 1.

 The probabilities associated with continuous functions are just
areas under the curve (integrals!).
 Probabilities are given for a range of values, rather than a

particular value (e.g., the probability of getting a math SAT
score between 700 and 800 is 2%).




Example

" For example, recall the negative exponential function (in
probability, this is called an “exponential distribution”):

f(x)=e*

=This function integrates to 1:




Probability Density Function

The probability that x is any exact particular value (such as
1.9976) is O; we can only assign probabilities to possible ranges
of X.

p(x)=e"

o

X




Example

p(x)=e™

2
P(1<x<2) :J-e‘X =—e"
1

2

1

e ?-——e1=-135+.368=.23




Cumulative Distribution Function

As in the discrete case, we can specify the “cumulative
distribution function” (CDF):

The CDF here = P(x<A)=




Uniform Distribution
The uniform distribution: all values are equally likely

The uniform distribution:
f(x)=1, for 1= x>0 p(x)

X

1

We can see it’s a probability distribution because it integrates to
1 (the area under the curve is 1):




Normal Distribution
X~N(p, o)

1 (x=p)°
Py (X) = — exp{— = }

Pr@a< X <b) = _[; Py (X)dx = j: 1 exp{— (X_’Lzl)z }dx

\ 270° 20

E[X]=p, Var(X)= c?




Expected Value and Variance

All probability distributions are characterized by an expected
value and a variance (standard deviation squared).




Example: Normal Distribution

One standard
deviation from the
mean (o)

Mean (p)




-
Expected Value

f we understand the underlying probability function of a certain
bhenomenon, then we can make informed decisions based on
now we expect x to behave on-average over the long-run...(so
called “frequentist” theory of probability).

Expected value is just the weighted average or mean (u) of
random variable x. Imagine placing the masses p(x) at the points
X on a beam; the balance point of the beam is the expected

value of x.

k
E[X] = Zmi pi = x1p1 + Tapy + -+ + TpPr E(X] = f zf(x)da
i—1 R
41



Example

X 10 11 12 13 14
PX) 4 2 2 1 1

/\

25: X; p(x) =10(.4) +11(.2) +12(.2) +13(.1) +14(.1) =11.3

=1




Operators

If c= a constant number (i.e., not a variable) and X and Y are any
random variables...

E(c) =c

E(cX)=cE(X)

(c
E(c + X)=c + E(X)
(X+Y)= E(X) + E(Y)

E




Variance/Deviation

“The average (expected) squared distance (or deviation) from
the mean”

o =Var(x) = E[(x— #)*]= Y (x — )’ p(x;)

all x




Variance

Discrete case:

Continuous case:

45



Sample Variance

The variance of a sample: s? =

Z(Xi_)_()z . 1
~ T =iZ:1:(Xi—X) (r)




If A and B are events with Pr(A) > 0O, the conditional probability of

B given A is

Conditional Probability

pr(B | A) = LIAB)
Pr(A)
Example: Drug test
Women Men
Success 200 1800
Failure 1800 200

Women Men
Drug | Drug Il | Drug | Drug I
Success 200 10 19 1000
Failure 1800 190 1 1000




Bayes’ Rule
Given two events A and B and suppose that Pr(A) > 0. Then

Pr(AB) _ Pr(A|B)Pr(B)

Pr(B| A) =
Pr(A) Pr(A)
Example:
PriR) = 0.8 R: Itis a rainy day
Pr(W|R) |R R
W 0.7 04 W: The grass is wet

W 0.3 0.6 Pr(R|W) = ?




	Slide 1: Computational Intelligence  &  Machine Learning
	Slide 2: Symmetric vs Skewed Data
	Slide 3: Dispersion
	Slide 4: Boxplot
	Slide 5: Example: Normal Distribution
	Slide 6: Visualization
	Slide 7: Histograms
	Slide 8: Quantile
	Slide 9: Quantile-Quantile (Q-Q) Plot
	Slide 10: Scatter
	Slide 11: Correlation
	Slide 12: Uncorrelated Data
	Slide 13: Similarity and Dissimilarity
	Slide 14: Matrices
	Slide 15: Proximity for Nominal Attributes
	Slide 16: Proximity for Nominal Attributes
	Slide 17: Proximity for Binary Attributes
	Slide 18: Dissimilarity between Binary Variables
	Slide 19: Distance of Numeric Data
	Slide 20: Special Cases
	Slide 21: Examples
	Slide 22: Cosine Similarity
	Slide 23: Example
	Slide 24: Probability Distributions
	Slide 25: Random Variable
	Slide 26: Random Variables
	Slide 27: Probability Functions
	Slide 28: Example: roll a die
	Slide 29: Cumulative Distribution Function
	Slide 30: Important Discrete Distributions
	Slide 31: Important Discrete Distributions
	Slide 32: Continuous Variables
	Slide 33: Example
	Slide 34: Probability Density Function
	Slide 35: Example
	Slide 36: Cumulative Distribution Function
	Slide 37: Uniform Distribution
	Slide 38: Normal Distribution
	Slide 39: Expected Value and Variance
	Slide 40: Example: Normal Distribution
	Slide 41: Expected Value
	Slide 42: Example
	Slide 43: Operators
	Slide 44: Variance/Deviation
	Slide 45: Variance
	Slide 46: Sample Variance
	Slide 47: Conditional Probability
	Slide 48: Bayes’ Rule

