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Symmetric vs Skewed Data
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Median, mean and mode of symmetric, positively and
negatively skewed data



Dispersion
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Quartiles, outliers and boxplots

Quartiles: Q1 (25th percentile), Q3 (75th percentile)

Inter-quartile range: IQR = Q3 – Q1 

Five number summary: min, Q1, median, Q3, max

Boxplot: ends of the box are the quartiles; median is marked; add 

whiskers, and plot outliers individually

Outlier: usually, a value higher/lower than 1.5 x IQR

Variance and standard deviation (sample: s, population: σ)

Variance: (algebraic, scalable computation)

Standard deviation s (or σ) is the square root of variance s2 (orσ2)
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Boxplot
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Five-number summary of a distribution

Minimum, Q1, Median, Q3, Maximum

Boxplot

• Data are represented with a box

• The ends of the box are at the first and third 

quartiles, i.e., the height of the box is IQR

• The median is marked by a line within the box

• Whiskers: two lines outside the box extended 

to Minimum and Maximum

• Outliers: points beyond a specified outlier 

threshold, plotted individually



Example: Normal Distribution
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The normal (distribution) curve
• From μ–σ to μ+σ: contains about 68% of the measurements  (μ: 

mean, σ: standard deviation)
• From μ–2σ to μ+2σ: contains about 95% of it
• From μ–3σ to μ+3σ: contains about 99.7% of it



Visualization
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• Boxplot: graphic display of five-number summary

• Histogram: x-axis are values, y-axis repres. frequencies 

• Quantile plot:  each value xi is paired with fi indicating that approximately 

100 fi % of data  are  xi

• Quantile-quantile (q-q) plot: graphs the quantiles of one univariant

distribution against the corresponding quantiles of another

• Scatter plot: each pair of values is a pair of coordinates and plotted as 

points in the plane



Histograms
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• Histogram: Graph display of tabulated 

frequencies, shown as bars

• It shows what proportion of cases fall into 

each of several categories

• Differs from a bar chart in that it is the area

of the bar that denotes the value, not the 

height as in bar charts, a crucial distinction 

when the categories are not of uniform 

width

• The categories are usually specified as non-

overlapping intervals of some variable. The 

categories (bars) must be adjacent
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Quantile
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• Displays all the data (allowing the user to assess both the overall 
behavior and unusual occurrences)

• Plots quantile information
• For a data xi data sorted in increasing order, fi indicates that 

approximately 100Xfi% of the data are below or equal to the value xi



Quantile-Quantile (Q-Q) Plot
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• Graphs the quantiles of one univariate distribution against the 
corresponding quantiles of another

• View: Is there a shift in going from one distribution to another?
• Example shows unit price of items sold at Branch 1 vs. Branch 2 for 

each quantile.  Unit prices of items sold at Branch 1 tend to be lower 
than those at Branch 2.



Scatter
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• Provides a first look at bivariate data to see clusters of points, outliers, 
etc

• Each pair of values is treated as a pair of coordinates and plotted as 
points in the plane



Correlation
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The left half fragment is positively correlated

The right half is negative correlated



Uncorrelated Data
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Similarity and Dissimilarity
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Similarity
• Numerical measure of how alike two data objects are
• Value is higher when objects are more alike
• Often falls in the range [0,1]

Dissimilarity (e.g., distance)
• Numerical measure of how different two data objects are
• Lower when objects are more alike
• Minimum dissimilarity is often 0
• Upper limit varies

Proximity refers to a similarity or dissimilarity



Matrices
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Data matrix
• n data points with p dimensions
• Two modes

Dissimilarity matrix
• n data points, but registers only the 

distance 
• A triangular matrix
• Single mode
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Proximity for Nominal Attributes
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Can take 2 or more states, e.g., red, yellow, blue, green 

(generalization of a binary attribute)

Method 1: Simple matching

m: # of matches, p: total # of variables

Method 2: Use a large number of binary attributes creating a new 

binary attribute for each of the M nominal states
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Proximity for Nominal Attributes
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• Example

• Dissimilarity Matrix (p=1)

                                                                     → 
→

• sim(i,j) = 1-d(i,j) = m/p
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Proximity for Binary Attributes
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• A contingency table for binary data

• Distance measure for symmetric binary 

variables: 

• Distance measure for asymmetric binary 

variables: 

• Jaccard coefficient (similarity measure 

for asymmetric binary variables): 

Object i

Object j



Dissimilarity between Binary Variables
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Example

Gender is a symmetric attribute

The remaining attributes are asymmetric binary

Let the values Y and P be 1, and the value N be 0

Name Gender Fever Cough Test-1 Test-2 Test-3 Test-4

Jack M Y N P N N N

Mary F Y N P N P N

Jim M Y P N N N N
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Distance of Numeric Data

19

Minkowski distance: A popular distance measure

where  i = (xi1, xi2, …, xip) and j = (xj1, xj2, …, xjp) are two p-dimensional data 
objects, and h is the order (the distance so defined is also called L-h norm)

Properties

d(i, j) > 0 if i ≠ j, and d(i, i) = 0 (Positive definiteness)

d(i, j) = d(j, i) (Symmetry)

d(i, j)  d(i, k) + d(k, j) (Triangle Inequality)

A distance that satisfies these properties is a metric



Special Cases
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h = 1:  Manhattan (city block, L1 norm) distance 
E.g., the Hamming distance: the number of bits that are different between two 
binary vectors

h = 2:  (L2 norm) Euclidean distance

h →.  “supremum” (Lmax norm, Lnorm) distance. 
This is the maximum difference between any component (attribute) of the vectors
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Examples
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point attribute 1 attribute 2

x1 1 2

x2 3 5

x3 2 0

x4 4 5

L x1 x2 x3 x4

x1 0

x2 5 0

x3 3 6 0

x4 6 1 7 0

L2 x1 x2 x3 x4

x1 0

x2 3.61 0

x3 2.24 5.1 0

x4 4.24 1 5.39 0

L x1 x2 x3 x4

x1 0

x2 3 0

x3 2 5 0

x4 3 1 5 0

Manhattan (L1)

Euclidean (L2)

Supremum
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Cosine Similarity

22

A document can be represented by thousands of attributes, each recording the 
frequency of a particular word (such as keywords) or phrase in the document.

Other vector objects: gene features in micro-arrays, …
Applications: information retrieval, biologic taxonomy, gene feature mapping, ...
Cosine measure: If d1 and d2 are two vectors (e.g., term-frequency vectors), then

cos(d1, d2) = (d1 • d2) /||d1|| ||d2|| ,
where • indicates vector dot product, ||d||: the length of vector d



Example
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cos(d1, d2) =  (d1 • d2) /||d1|| ||d2|| , 
where • indicates vector dot product, ||d|: the length of vector d

Ex: Find the similarity between documents 1 and 2.

d1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)
d2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)

d1•d2 = 5*3+0*0+3*2+0*0+2*1+0*1+0*1+2*1+0*0+0*1 = 25
||d1||= (5*5+0*0+3*3+0*0+2*2+0*0+0*0+2*2+0*0+0*0)0.5=(42)0.5 = 6.481
||d2||= (3*3+0*0+2*2+0*0+1*1+1*1+0*0+1*1+0*0+1*1)0.5=(17)0.5 = 4.12
cos(d1, d2 ) = 0.94



Probability Distributions
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Random Variable

25

• A random variable x takes on a defined set of values with 
different probabilities.

• For example, if you roll a die, the outcome is random (not fixed) 
and there are 6 possible outcomes, each of which occur with 
probability one-sixth.  

• For example, if you poll people about their voting preferences, 
the percentage of the sample that responds “Yes on Proposition 
100” is a also a random variable (the percentage will be slightly 
differently every time you poll). 

• Roughly, probability is how frequently we expect different 
outcomes to occur if we repeat the experiment over and over 
(“frequentist” view) 



Random Variables
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Discrete random variables have a countable number of outcomes
Examples: Dead/alive, treatment/placebo, dice, counts, etc.

Continuous random variables have an infinite continuum of 
possible values.

Examples: blood pressure, weight, the speed of a car, the real 
numbers from 1 to 6.  



Probability Functions
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• A probability function maps the possible values of x against 
their respective probabilities of occurrence, p(x)

• p(x) is a number from 0 to 1.0.
• The area under a probability function is always 1.



Example: roll a die
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x

p(x)

1/6

1 4 5 62 3

 =
   xall

1 P(x)



Cumulative Distribution Function
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x P(x≤A)

1 P(x≤1)=1/6

2 P(x≤2)=2/6

3 P(x≤3)=3/6

4 P(x≤4)=4/6

5 P(x≤5)=5/6

6 P(x≤6)=6/6



Important Discrete Distributions
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Binomial
n draws of a Bernoulli distribution
Random variable X stands for the number of times that 
experiments are successful.

E[X] = np, Var(X) = np(1-p)

(1 ) 1,2,...,
Pr( ) ( )

0 otherwise
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Important Discrete Distributions
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Poisson
Coming from Binomial distribution

Fix the expectation =np
Let the number of trials n→

A Binomial distribution will become a Poisson distribution

E[X] = , Var(X) = 









===
−

otherwise0

0
!)()Pr(

xe
xxpxX

x








Continuous Variables
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• The probability function that accompanies a continuous
random variable is a continuous mathematical function that
integrates to 1.

• The probabilities associated with continuous functions are just
areas under the curve (integrals!).

• Probabilities are given for a range of values, rather than a
particular value (e.g., the probability of getting a math SAT
score between 700 and 800 is 2%).



Example
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▪ For example, recall the negative exponential function (in 
probability, this is called an “exponential distribution”):  

xexf −=)(

▪This function integrates to 1:
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Probability Density Function
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The probability that x is any exact particular value (such as
1.9976) is 0; we can only assign probabilities to possible ranges
of x.

x

p(x)=e-x

1



Example

35

23.368.135.  2)xP(1 12
2

1

2

1
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Cumulative Distribution Function
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As in the discrete case, we can specify the “cumulative
distribution function” (CDF):

The CDF here = P(x≤A)=

AAA
A

x
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Uniform Distribution
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The uniform distribution: all values are equally likely

The uniform distribution:
f(x)= 1 ,  for 1 x 0

We can see it’s a probability distribution because it integrates to
1 (the area under the curve is 1):
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Normal Distribution
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X~N(,)

E[X]= , Var(X)= 2
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Expected Value and Variance
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All probability distributions are characterized by an expected
value and a variance (standard deviation squared).



Example: Normal Distribution
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One standard 
deviation from the 
mean ()

Mean ()



Expected Value
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If we understand the underlying probability function of a certain
phenomenon, then we can make informed decisions based on
how we expect x to behave on-average over the long-run…(so
called “frequentist” theory of probability).

Expected value is just the weighted average or mean (µ) of
random variable x. Imagine placing the masses p(x) at the points
X on a beam; the balance point of the beam is the expected
value of x.



Example
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x 10 11 12 13 14

P(x) .4 .2 .2 .1 .1


=

=++++=
5

1

3.11)1(.14)1(.13)2(.12)2(.11)4(.10)(
i

i xpx



Operators
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If c= a constant number (i.e., not a variable) and X and Y are any
random variables…
E(c) = c
E(cX)=cE(X)
E(c + X)=c + E(X)
E(X+Y)= E(X) + E(Y)



Variance/Deviation
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“The average (expected) squared distance (or deviation) from
the mean”
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Variance
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Discrete case:

Continuous case:
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Sample Variance

46

The variance of a sample:  s2  =  
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Conditional Probability
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If A and B are events with Pr(A) > 0, the conditional probability of 
B given A is

Example: Drug test

Pr( )
Pr( | )

Pr( )

AB
B A

A
=

Women Men

Success 200 1800

Failure 1800 200



Bayes’ Rule
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Given two events A and B and suppose that Pr(A) > 0. Then

Example:

Pr(W|R) R R

W 0.7 0.4

W 0.3 0.6

R: It is a rainy day

W: The grass is wet

Pr(R|W) = ?

Pr(R) = 0.8

)Pr(

)Pr()|Pr(

)Pr(

)Pr(
)|Pr(

A

BBA

A

AB
AB ==


	Slide 1: Computational Intelligence  &  Machine Learning
	Slide 2: Symmetric vs Skewed Data
	Slide 3: Dispersion
	Slide 4: Boxplot
	Slide 5: Example: Normal Distribution
	Slide 6: Visualization
	Slide 7: Histograms
	Slide 8: Quantile
	Slide 9: Quantile-Quantile (Q-Q) Plot
	Slide 10: Scatter
	Slide 11: Correlation
	Slide 12: Uncorrelated Data
	Slide 13: Similarity and Dissimilarity
	Slide 14: Matrices
	Slide 15: Proximity for Nominal Attributes
	Slide 16: Proximity for Nominal Attributes
	Slide 17: Proximity for Binary Attributes
	Slide 18: Dissimilarity between Binary Variables
	Slide 19: Distance of Numeric Data
	Slide 20: Special Cases
	Slide 21: Examples
	Slide 22: Cosine Similarity
	Slide 23: Example
	Slide 24: Probability Distributions
	Slide 25: Random Variable
	Slide 26: Random Variables
	Slide 27: Probability Functions
	Slide 28: Example: roll a die
	Slide 29: Cumulative Distribution Function
	Slide 30: Important Discrete Distributions
	Slide 31: Important Discrete Distributions
	Slide 32: Continuous Variables
	Slide 33: Example
	Slide 34: Probability Density Function
	Slide 35: Example
	Slide 36: Cumulative Distribution Function
	Slide 37: Uniform Distribution
	Slide 38: Normal Distribution
	Slide 39: Expected Value and Variance
	Slide 40: Example: Normal Distribution
	Slide 41: Expected Value
	Slide 42: Example
	Slide 43: Operators
	Slide 44: Variance/Deviation
	Slide 45: Variance
	Slide 46: Sample Variance
	Slide 47: Conditional Probability
	Slide 48: Bayes’ Rule

