Computational Intelligence 8 Machine Learning

Symmetric vs Skewed Data

Median, mean and mode of symmetric, positively and negatively skewed data

Dispersion

Quartiles, outliers and boxplots
Quartiles: Q_{1} (25 ${ }^{\text {th }}$ percentile), Q_{3} ($75^{\text {th }}$ percentile)
Inter-quartile range: $\operatorname{IQR}=\mathrm{Q}_{3}-\mathrm{Q}_{1}$
Five number summary: min, Q_{1}, median, Q_{3}, max

Boxplot: ends of the box are the quartiles; median is marked; add whiskers, and plot outliers individually

Outlier: usually, a value higher/lower than $1.5 \times$ IQR
Variance and standard deviation (sample: s, population: σ)
Variance: (algebraic, scalable computation)
Standard deviation $s(o r \sigma)$ is the square root of variance $s^{2}\left(o r \sigma^{2)}\right.$

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\frac{1}{n-1}\left[\sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)^{2}\right] \quad \sigma^{2}=\frac{1}{N} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}=\frac{1}{N} \sum_{i=1}^{n} x_{i}^{2}-\mu^{2}
$$

Boxplot

Five-number summary of a distribution
Minimum, Q1, Median, Q3, Maximum

Boxplot

- Data are represented with a box

- The ends of the box are at the first and third quartiles, i.e., the height of the box is IQR
- The median is marked by a line within the box
- Whiskers: two lines outside the box extended to Minimum and Maximum
- Outliers: points beyond a specified outlier threshold, plotted individually

Example: Normal Distribution

The normal (distribution) curve

- From $\mu-\sigma$ to $\mu+\sigma$: contains about 68% of the measurements (μ : mean, σ : standard deviation)
- From $\mu-2 \sigma$ to $\mu+2 \sigma$: contains about 95% of it
- From $\mu-3 \sigma$ to $\mu+3 \sigma$: contains about 99.7% of it

Visualization

- Boxplot: graphic display of five-number summary
- Histogram: x-axis are values, y-axis repres. frequencies
- Quantile plot: each value x_{i} is paired with f_{i} indicating that approximately $100 f_{i} \%$ of data are $\leq x_{i}$
- Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution against the corresponding quantiles of another
- Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane

Histograms

- Histogram: Graph display of tabulated frequencies, shown as bars
- It shows what proportion of cases fall into each of several categories
- Differs from a bar chart in that it is the area of the bar that denotes the value, not the height as in bar charts, a crucial distinction when the categories are not of uniform width
- The categories are usually specified as nonoverlapping intervals of some variable. The categories (bars) must be adjacent

Quantile

- Displays all the data (allowing the user to assess both the overall behavior and unusual occurrences)
- Plots quantile information
- For a data x_{i} data sorted in increasing order, f_{i} indicates that approximately $100 \times f_{i} \%$ of the data are below or equal to the value x_{i}

Quantile-Quantile (Q-Q) Plot

- Graphs the quantiles of one univariate distribution against the corresponding quantiles of another
- View: Is there a shift in going from one distribution to another?
- Example shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile. Unit prices of items sold at Branch 1 tend to be lower than those at Branch 2.

Scatter

- Provides a first look at bivariate data to see clusters of points, outliers, etc
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane

Correlation

The left half fragment is positively correlated The right half is negative correlated

Uncorrelated Data

Similarity and Dissimilarity

Similarity

- Numerical measure of how alike two data objects are
- Value is higher when objects are more alike
- Often falls in the range $[0,1]$

Dissimilarity (e.g., distance)

- Numerical measure of how different two data objects are
- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies

Proximity refers to a similarity or dissimilarity

Matrices

Data matrix

- n data points with p dimensions
- Two modes

$$
\left[\begin{array}{ccccc}
x_{11} & \ldots & x_{1 f} & \ldots & x_{1 p} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
x_{i 1} & \ldots & x_{i f} & \ldots & x_{i p} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
x_{n 1} & \ldots & x_{n f} & \ldots & x_{n p}
\end{array}\right]
$$

Dissimilarity matrix

- n data points, but registers only the distance
- A triangular matrix
- Single mode

$$
\left[\begin{array}{ccccc}
0 & & & & \\
d(2,1) & 0 & & & \\
d(\mathbf{3 , 1}) & d(\mathbf{3 , 2}) & 0 & & \\
: & : & : & & \\
d(n, 1) & d(n, 2) & \ldots & \ldots & 0
\end{array}\right]
$$

Proximity for Nominal Attributes

Can take 2 or more states, e.g., red, yellow, blue, green (generalization of a binary attribute)
Method 1: Simple matching
m : \# of matches, p : total \# of variables

$$
d(i, j)=\frac{p-m}{p}
$$

Method 2: Use a large number of binary attributes creating a new binary attribute for each of the M nominal states

Proximity for Nominal Attributes

- Example

Object Identifier	test-I (nominal)	test-2 (ordinal)	test-3 (numeric)
1	code A	excellent	45
2	code B	fair	22
3	code C	good	64
4	code A	excellent	28

- Dissimilarity Matrix ($\mathrm{p}=1$)

$$
\left[\begin{array}{cccc}
0 & & & \\
d(2,1) & 0 & & \\
d(3,1) & d(3,2) & 0 & \\
d(4,1) & d(4,2) & d(4,3) & 0
\end{array}\right] \rightarrow\left[\begin{array}{llll}
0 & & & \\
1 & 0 & & \\
1 & 1 & 0 & \\
0 & 1 & 1 & 0
\end{array}\right]
$$

- $\quad \operatorname{sim}(i, j)=1-d(i, j)=m / p$

Proximity for Binary Attributes

- A contingency table for binary data
- Distance measure for symmetric binary variables:

	Object j			
Object i	1	0	sum	
	1	q	r	$q+r$
	s	s	t	$s+t$
sum	$q+s$	$r+t$	p	

- Distance measure for asymmetric binary variables:

$$
\begin{gathered}
d(i, j)=\frac{r+s}{q+r+s+t} \\
d(i, j)=\frac{r+s}{q+r+s} \\
\operatorname{sim}_{\text {Jaccard }}(i, j)=\frac{q}{q+r+s}
\end{gathered}
$$

for asymmetric binary variables):

Dissimilarity between Binary Variables

Example

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

Gender is a symmetric attribute The remaining attributes are asymmetric binary Let the values Y and P be 1, and the value N be 0

	1	0	sum
1	q	r	$q+r$
0	s	t	$s+t$
sum	$q+s$	$r+t$	p

$$
\begin{aligned}
& d(\text { jack }, \text { mary })=\frac{0+1}{2+0+1}=0.33 \\
& d(\text { jack }, \text { jim })=\frac{1+1}{1+1+1}=0.67 \\
& d(\text { jim }, \text { mary })=\frac{1+2}{1+1+2}=0.75
\end{aligned}
$$

$$
\begin{aligned}
d(i, j) & =\frac{r+s}{q+r+s+t} \\
d(i, j) & =\frac{r+s}{q+r+s}
\end{aligned}
$$

Distance of Numeric Data

Minkowski distance: A popular distance measure

$$
d(i, j)=\sqrt[h]{\left|x_{i 1}-x_{j 1}\right|^{h}+\left|x_{i 2}-x_{j 2}\right|^{h}+\cdots+\left|x_{i p}-x_{j p}\right|^{h}}
$$

where $i=\left(x_{\mathrm{i} 1}, x_{\mathrm{i} 2}, \ldots, x_{\mathrm{ip}}\right)$ and $j=\left(x_{\mathrm{j} 1}, x_{\mathrm{j} 2}, \ldots, x_{\mathrm{jp}}\right)$ are two p-dimensional data objects, and h is the order (the distance so defined is also called L-h norm)
Properties

$$
\begin{aligned}
& d(i, j)>0 \text { if } i \neq j, \text { and } d(i, i)=0 \text { (Positive definiteness) } \\
& d(i, j)=d(j, i) \quad \text { Symmetry }) \\
& d(i, j) \leq d(i, k)+d(k, j) \quad \text { Triangle Inequality })
\end{aligned}
$$

A distance that satisfies these properties is a metric

Special Cases

$h=1$: Manhattan (city block, L_{1} norm) distance
E.g., the Hamming distance: the number of bits that are different between two binary vectors

$$
d(i, j)=\left|x_{i_{1}}-x_{j_{1}}\right|+\left|x_{i_{2}}-x_{j_{2}}\right|+\ldots+\left|x_{i_{p}}-x_{j_{p}}\right|
$$

$h=2$: (L_{2} norm) Euclidean distance

$$
d(i, j)=\sqrt{\left(\left|x_{i_{1}}-x_{j_{1}}\right|^{2}+\left|x_{i_{2}}-x_{j_{2}}\right|^{2}+\ldots+\left|x_{i_{p}}-x_{j_{p}}\right|^{2}\right)}
$$

$h \rightarrow \infty$. "supremum" ($\mathrm{L}_{\max }$ norm, L_{∞} norm) distance.
This is the maximum difference between any component (attribute) of the vectors

$$
\begin{aligned}
& d(i, j)=\lim _{h \rightarrow \infty}\left(\sum_{f=1}^{p}\left|x_{i f}-x_{j f}\right|^{h}\right)^{\frac{1}{h}}=\max _{f}^{p}\left|x_{i f}-x_{j f}\right| \\
& d(i, j)=\sqrt[h]{\left|x_{i 1}-x_{j 1}\right|^{h}+\left|x_{i 2}-x_{j 2}\right|^{h}+\cdots+\left|x_{i p}-x_{j p}\right|^{h}}
\end{aligned}
$$

Examples

Manhattan (L_{1})

point	attribute 1	attribute 2	$d(i, j)=\left\|x_{i_{1}}-x_{j_{1}}\right\|+\left\|x_{i_{2}}-x_{j_{2}}\right\|+\ldots+\left\|x_{i_{p}}-x_{j_{p}}\right\|$	L	x1	x 2	x3	x4
x 1	1	2		x1	0			
x2	3	5		x2	5	0		
x3	2	0		x3	3	6	0	
x4	4	5		x4	6	1	7	0

Euclidean (L_{2})

Cosine Similarity

A document can be represented by thousands of attributes, each recording the frequency of a particular word (such as keywords) or phrase in the document.

Document	teamcoach	hockey	baseball	soccer	penalty	score	win	loss	season	
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

Other vector objects: gene features in micro-arrays, ...
Applications: information retrieval, biologic taxonomy, gene feature mapping, ... Cosine measure: If d_{1} and d_{2} are two vectors (e.g., term-frequency vectors), then

$$
\cos \left(d_{1}, d_{2}\right)=\left(d_{1} \bullet d_{2}^{2}\right) /\left\|d_{1}\right\|\left\|d_{2}\right\|,
$$

where \bullet indicates vector dot product, $\|d\| \mid$: the length of vector d

$$
\operatorname{sim}\left(d_{1}, d_{2}\right)=\frac{\vec{V}\left(d_{1}\right) \cdot \vec{V}\left(d_{2}\right)}{\left|\vec{V}\left(d_{1}\right)\right|\left|\vec{V}\left(d_{2}\right)\right|} \quad \sum_{i=1}^{M} x_{i} y_{i} \quad \sqrt{\sum_{i=1}^{M} \vec{v}_{i}^{2}(d)}
$$

Example

$\cos \left(d_{1}, d_{2}\right)=\left(d_{1} \cdot d_{2}\right) /\left|\left|d_{1}\right|\right|| | d_{2}| |$,
where • indicates vector dot product, $||d|$: the length of vector d
Ex: Find the similarity between documents 1 and 2 .

$$
\begin{aligned}
& d_{1}=(5,0,3,0,2,0,0,2,0,0) \\
& d_{2}=(3,0,2,0,1,1,0,1,0,1)
\end{aligned}
$$

$$
d_{1} \cdot d_{2}=5 * 3+0^{*} 0+3^{*} 2+0 * 0+2 * 1+0^{*} 1+0^{*} 1+2 * 1+0 * 0+0^{*} 1=25
$$

$$
\left|\left|d_{1}\right|\right|=\left(5 * 5+0 * 0+3 * 3+0 * 0+2 * 2+0^{*} 0+0 * 0+2 * 2+0^{*} 0+0 * 0\right)^{0.5}=(42)^{0.5}=6.481
$$

$$
\left|\left|d_{2}\right|\right|=(3 * 3+0 * 0+2 * 2+0 * 0+1 * 1+1 * 1+0 * 0+1 * 1+0 * 0+1 * 1)^{0.5}=(17)^{0.5}=4.12
$$

$$
\cos \left(d_{1}, d_{2}\right)=0.94
$$

Document	team coach	hockey	baseball	soccer	penalty	score	win	loss	season	
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

Probability Distributions

Random Variable

- A random variable x takes on a defined set of values with different probabilities.
- For example, if you roll a die, the outcome is random (not fixed) and there are 6 possible outcomes, each of which occur with probability one-sixth.
- For example, if you poll people about their voting preferences, the percentage of the sample that responds "Yes on Proposition 100 " is a also a random variable (the percentage will be slightly differently every time you poll).
- Roughly, probability is how frequently we expect different outcomes to occur if we repeat the experiment over and over ("frequentist" view)

Random Variables

Discrete random variables have a countable number of outcomes
Examples: Dead/alive, treatment/placebo, dice, counts, etc.
Continuous random variables have an infinite continuum of possible values.

Examples: blood pressure, weight, the speed of a car, the real numbers from 1 to 6.

Probability Functions

- A probability function maps the possible values of x against their respective probabilities of occurrence, $p(x)$
- $p(x)$ is a number from 0 to 1.0.
- The area under a probability function is always 1.

Example: roll a die

Cumulative Distribution Function

$$
F_{X}(x)=\sum_{x_{k} \leq x} P_{X}\left(x_{k}\right)
$$

x	$P(x \leq A)$
1	$P(x \leq 1)=1 / 6$
2	$P(x \leq 2)=2 / 6$
3	$P(x \leq 3)=3 / 6$
4	$P(x \leq 4)=4 / 6$
5	$P(x \leq 5)=5 / 6$
6	$P(x \leq 6)=6 / 6$

Important Discrete Distributions

Binomial

n draws of a Bernoulli distribution
Random variable X stands for the number of times that experiments are successful.

$$
\operatorname{Pr}(X=x)=p_{\theta}(x)=\left\{\begin{array}{cc}
\binom{n}{x} p^{x}(1-p)^{n-x} & x=1,2, \ldots, n \\
0 & \text { otherwise }
\end{array}\right.
$$

Important Discrete Distributions

Poisson

Coming from Binomial distribution
Fix the expectation $\lambda=n \mathrm{p}$
Let the number of trials $n \rightarrow \infty$
A Binomial distribution will become a Poisson distribution

$$
\operatorname{Pr}(X=x)=p_{\theta}(x)=\left\{\begin{array}{cc}
\frac{\lambda^{x}}{x!} e^{-\lambda} & x \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

$E[X]=\lambda, \operatorname{Var}(X)=\lambda$

Continuous Variables

- The probability function that accompanies a continuous random variable is a continuous mathematical function that integrates to 1.
- The probabilities associated with continuous functions are just areas under the curve (integrals!).
- Probabilities are given for a range of values, rather than a particular value (e.g., the probability of getting a math SAT score between 700 and 800 is 2%).

Example

- For example, recall the negative exponential function (in probability, this is called an "exponential distribution"):

$$
f(x)=e^{-x}
$$

-This function integrates to 1 :

$$
\int_{0}^{+\infty} e^{-x}=-\left.e^{-x}\right|_{0} ^{+\infty}=0+1=1
$$

Probability Density Function

The probability that x is any exact particular value (such as 1.9976) is 0; we can only assign probabilities to possible ranges of x.

Example

$$
\mathrm{P}(1 \leq \mathrm{x} \leq 2)=\int_{1}^{2} e^{-x}=-\left.e^{-x}\right|_{1} ^{2}=-e^{-2}--e^{-1}=-.135+.368=.23
$$

Cumulative Distribution Function

As in the discrete case, we can specify the "cumulative distribution function" (CDF):

The CDF here $=P(x \leq A)=$

$$
\int_{0}^{A} e^{-x}=-\left.e^{-x}\right|_{0} ^{A}=-e^{-A}--e^{0}=-e^{-A}+1=1-e^{-A}
$$

Uniform Distribution

The uniform distribution: all values are equally likely
The uniform distribution:
$f(x)=1$, for $1 \geq x \geq 0$

We can see it's a probability distribution because it integrates to 1 (the area under the curve is 1):

$$
\int_{0}^{1} 1=\left.x\right|_{0} ^{1}=1-0=1
$$

Normal Distribution

$X \sim N(\mu, \sigma)$

$$
\begin{aligned}
& p_{\theta}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\} \\
& \operatorname{Pr}(a \leq X \leq b)=\int_{a}^{b} p_{\theta}(x) d x=\int_{a}^{b} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\} d x
\end{aligned}
$$

$\mathrm{E}[\mathrm{X}]=\mu, \operatorname{Var}(\mathrm{X})=\sigma^{2}$

Expected Value and Variance

All probability distributions are characterized by an expected value and a variance (standard deviation squared).

Example: Normal Distribution

Expected Value

If we understand the underlying probability function of a certain phenomenon, then we can make informed decisions based on how we expect x to behave on-average over the long-run...(so called "frequentist" theory of probability).

Expected value is just the weighted average or mean (μ) of random variable x. Imagine placing the masses $p(x)$ at the points X on a beam; the balance point of the beam is the expected value of x.

$$
\mathrm{E}[X]=\sum_{i=1}^{k} x_{i} p_{i}=x_{1} p_{1}+x_{2} p_{2}+\cdots+x_{k} p_{k} \quad \mathrm{E}[X]=\int_{\mathbb{R}} x f(x) d x
$$

Example

Operators

If $\mathrm{c}=\mathrm{a}$ constant number (i.e., not a variable) and X and Y are any random variables...
$E(c)=c$
$E(c X)=c E(X)$
$E(c+X)=C+E(X)$
$E(X+Y)=E(X)+E(Y)$

Variance/Deviation

"The average (expected) squared distance (or deviation) from the mean"

$$
\sigma^{2}=\operatorname{Var}(x)=E\left[(x-\mu)^{2}\right]=\sum_{\text {all } \mathrm{x}}\left(x_{i}-\mu\right)^{2} p\left(x_{i}\right)
$$

Variance

Discrete case:

$$
\operatorname{Var}(X)=\sigma^{2}=\sum_{\text {all } \mathrm{x}}\left(x_{i}-\mu\right)^{2} p\left(x_{i}\right)
$$

Continuous case:

$$
\operatorname{Var}(X)=\sigma^{2}=\int_{-\infty}^{\infty}\left(x_{i}-\mu\right)^{2} p\left(x_{i}\right) d x
$$

Sample Variance

The variance of a sample: $s^{2}=$

$$
\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}{n-1}=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}\left(\frac{1}{n-1}\right)
$$

Conditional Probability

If A and B are events with $\operatorname{Pr}(A)>0$, the conditional probability of B given A is

$$
\operatorname{Pr}(B \mid A)=\frac{\operatorname{Pr}(A B)}{\operatorname{Pr}(A)}
$$

Example: Drug test

	Women	Men
Success	200	1800
Failure	1800	200

	Women		Men	
	Drug I	Drug II	Drug I	Drug II
Success	200	10	19	1000
Failure	1800	190	1	1000

Bayes' Rule

Given two events A and B and suppose that $\operatorname{Pr}(A)>0$. Then

$$
\operatorname{Pr}(B \mid A)=\frac{\operatorname{Pr}(A B)}{\operatorname{Pr}(A)}=\frac{\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)}{\operatorname{Pr}(A)}
$$

Example:
$\operatorname{Pr}(\mathrm{R})=0.8$

$\operatorname{Pr}(\mathrm{W} \mid \mathrm{R})$	R	$\neg \mathrm{R}$
W	0.7	0.4
$\neg \mathrm{~W}$	0.3	0.6

R : It is a rainy day
W: The grass is wet
$\operatorname{Pr}(R \mid W)=?$

