Bayesian Belief Networks

Adopted from 'Data Mining Concepts and Techniques' and Tim Finin

- Bayesian Belief Networks (BBNs) can reason with networks of propositions and associated probabilities
 - Useful for many AI problems
 - Diagnosis
 - Expert systems
 - Planning
 - Learning

- Bayesian belief networks (also known as Bayesian networks, probabilistic networks): allow class conditional independencies between subsets of variables
- A (directed acyclic) graphical model of causal relationships represents dependency among the variables
- Gives a specification of joint probability distribution
- Nodes: random variables
- Links: dependency
- X and Y are the parents of Z, and Y is the parent of P
- No dependency between Z and P
- Has no loops/cycles

Smoking=	no	light	heavy
P(C=none)	0.96	0.88	0.60
P(C=benign)	0.03	0.08	0.25
P(C=malig)	0.01	0.04	0.15

Independence

Age and Gender are independent.

P(A,G) = P(G) P(A)

P(A | G) = P(A)P(G | A) = P(G)

P(A,G) = P(G|A) P(A) = P(G)P(A)P(A,G) = P(A|G) P(G) = P(A)P(G)

Cancer is independent of *Age* and *Gender* given *Smoking*

 $P(C \mid A, G, S) = P(C \mid S)$

Serum Calcium and Lung Tumor are dependent

Serum Calcium is independent of *Lung Tumor*, given *Cancer*

 $P(L \mid SC,C) = P(L|C)$ $P(SC \mid L,C) = P(SC|C)$

Naïve Bayes assumption: evidence (e.g., symptoms) is independent given the disease. This makes it easy to combine evidence

A variable (node) is conditionally independent of its non-descendants given its parents

A variable is conditionally independent of its non-descendants given its parents

Cancer is independent of *Diet* given *Exposure to Toxics* and *Smoking*

Another Example

CPT: **Conditional Probability Table** for variable LungCancer:

		(FH, S)	(FH <i>,</i> ~S)	(~FH, S)	(~FH, ~S)
	LC	0.8	0.5	0.7	0.1
-	~LC	0.2	0.5	0.3	0.9

shows the conditional probability for each possible combination of its parents

Derivation of the probability of a particular combination of values of **X**, from CPT:

Bayesian Belief Network

$$P(x_1,...,x_n) = \prod_{i=1}^{n} P(x_i | Parents(Y_i))$$

Training

- Scenario 1: Given both the network structure and all variables observable: compute only the CPT entries
- Scenario 2: Network structure known, some variables hidden: gradient descent (greedy hill-climbing) method, i.e., search for a solution along the steepest descent of a criterion function
 - Weights are initialized to random probability values
 - At each iteration, it moves towards what appears to be the best solution at the moment, w.o. backtracking
 - Weights are updated at each iteration & converge to local optimum
- Scenario 3: Network structure unknown, all variables observable: search through the model space to reconstruct network topology
- Scenario 4: Unknown structure, all hidden variables: No good algorithms known for this purpose

Construction

- The knowledge acquisition process for a BBN involves three steps
- Choosing appropriate variables
- Deciding on the network structure
- Obtaining data for the conditional probability tables

Construction

Variables should be collectively exhaustive, mutually exclusive values

They should be values, not probabilities

Construction

- Example of good variables
 - Weather {Sunny, Cloudy, Rain, Snow}
 - Gasoline: Cents per gallon
 - Temperature { >=100F , < 100F}
 - User needs help on Excel Charting {Yes, No}
 - User's personality {dominant, submissive}

Structure

Structure

- Second decimal usually doesn't matter
- Relative probabilities are important

🕞 Assess probabilities for: I-TypingSpeed_avg				
I-TypingSpeed				
E-Arousal	Fast	Normal Normal	Slow	
Passive	.20	.28	.52	
Neutral	.33	.33	.33	
Excited	.56	.27	.16	
Cancel				

- Zeros and ones are often enough
- Order of magnitude is typical: 10⁻⁹ vs 10⁻⁶
- Sensitivity analysis can be used to decide accuracy needed

Reasoning

- BBNs support three main kinds of reasoning:
 - Predicting conditions given predispositions
 - Diagnosing conditions given symptoms (and predisposing)
 - Explaining a condition in by one or more predispositions
- To which we can add a fourth:
 - Deciding on an action based on the probabilities of the conditions

Predictive Inference

Prediction and Diagnosis

How likely is an elderly male patient with high Serum Calcium to have malignant cancer?

P(C=malignant | Age>60, Gender= male, Serum Calcium = high)

Explanation

 If we see a lung tumor, the probability of heavy smoking and of exposure to toxics both go up.

 If we then observe heavy smoking, the probability of exposure to toxics goes back down.

Decision Making

• Today's weather forecast might be either sunny, cloudy or rainy

Should you take an umbrella when you leave?

- Your decision depends only on the forecast
- The forecast "depends on" the actual weather
- Your satisfaction depends on your decision and the weather
- Assign a utility to each of four situations: (rain | no rain) x (umbrella, no umbrella)

Decision Making

- Extend the BBN framework to include two new kinds of nodes:
 Decision and Utility
- A Decision node computes the expected utility of a decision given its parent(s), e.g., forecast, an a valuation
- A Utility node computes a utility value given its parents, e.g. a decision and weather
- We can assign a utility to each of four situations: (rain | no rain) x (umbrella, no umbrella)
- The value assigned to each is probably subjective

Association Rules Learning

- It is an important data mining model studied extensively by the database and data mining community.
- Assume all data are categorical.
- No good algorithm for numeric data.
- Initially used for Market Basket Analysis to find how items purchased by customers are related.

Bread
$$\rightarrow$$
 Milk [sup = 5%, conf = 100%]

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
 - What products were often purchased together?— Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- Applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.

- Freq. pattern: An intrinsic and important property of datasets
- Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
 - Classification: discriminative, frequent pattern analysis
 - Cluster analysis: frequent pattern-based clustering
 - Data warehousing: iceberg cube and cube-gradient
 - Semantic data compression: fascicles
 - Broad applications

Data

 $I = \{i_1, i_2, ..., i_m\}$: a set of *items*.

Transaction t: t a set of items, and $t \subseteq I$.

Transaction Database T: a set of transactions $T = \{t_1, t_2, ..., t_n\}$.

• Market basket transactions:

. . .

- t1: {bread, cheese, milk}
- t2: {apple, eggs, salt, yogurt}
- tn: {biscuit, eggs, milk}
- Concepts:
 - An *item*: an item/article in a basket
 - I: the set of all items sold in the store
 - A *transaction*: items purchased in a basket; it may have TID (transaction ID)
 - A transactional dataset: A set of transactions

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

A text document data set. Each document is treated as a "bag" of keywords

doc1: Student, Teach, School doc2: Student, School doc3: Teach, School, City, Game doc4: Baseball, Basketball doc5: Basketball, Player, Spectator doc6: Baseball, Coach, Game, Team doc7: Basketball, Team, City, Game

Rules

- A transaction *t* contains *X*, a set of items (itemset) in *I*, if $X \subseteq t$.
- An association rule is an implication of the form: $X \rightarrow Y$, where $X, Y \subset I$, and $X \cap Y = \emptyset$
- An itemset is a set of items.
 - E.g., X = {milk, bread, cereal} is an itemset.
- A *k*-itemset is an itemset with *k* items.
 - E.g., {milk, bread, cereal} is a 3-itemset

Rule Strength

Support: The rule holds with support *sup* in *T* (the transaction data set) if sup% of transactions contain $X \cup Y$. $sup = \Pr(X \cup Y)$.

Confidence: The rule holds in *T* with confidence *conf* if *conf*% of transactions that contain *X* also contain *Y*. $conf = Pr(Y \mid X)$

An association rule is a pattern that states when X occurs, Y occurs with certain probability.

Support and Confidence

Support count: The support count of an itemset X, denoted by X.count, in a data set T is the number of transactions in T that contain X.

Assume T has n transactions.

Then,

$$support = \frac{(X \cup Y).count}{n}$$

$$confidence = \frac{(X \cup Y).count}{X.count}$$

Support and Confidence

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

Find all the rules $X \rightarrow Y$ with minimum support and confidence

support, s, probability that a transaction contains $X \cup Y$

confidence, c, conditional probability that a transaction having X also contains Y

Let minsup = 50%, minconf = 50%

Freq. Pat.: Beer:3, Nuts:3, Diaper:4, Eggs:3, {Beer, Diaper}:3

- Association rules: (many more!)
 - Beer \rightarrow Diaper (60%, 100%)
 - Diaper \rightarrow Beer (60%, 75%)
 - Beer → Eggs (20%, 1/3=33%)
 - Nuts, Eggs → Milk (2/5=40%, 2/2=100%)
 - Nuts → Eggs (2/5=40%, 2/3=67%)

Target

- **Goal:** Find all rules that satisfy the user-specified *minimum support* (minsup) and *minimum confidence* (minconf).
- Key Features
 - Completeness: find all rules.
 - No target item(s) on the right-hand-side
 - Mining with data on hard disk (not in memory)

Patterns

- A long pattern contains a combinatorial number of sub-patterns, e.g., $\{a_1, ..., a_{100}\}$ contains $\binom{100}{1} + \binom{100}{2} + \dots + \binom{100}{100} = 2^{100} - 1 = 1.27*10^{30}$ sub-patterns!
- Solution: *Mine closed patterns and max-patterns instead*
- An itemset X is closed if X is *frequent* and there exists *no super-pattern* Y > X, with the same support as X (proposed by Pasquier, et al.)
- An itemset X is a max-pattern if X is frequent and there exists no frequent superpattern Y **>** X (proposed by Bayardo)
- Closed pattern is a lossless compression of freq. patterns
 - Reducing the # of patterns and rules

Patterns

Exercise.

 $DB = \{<a_1, ..., a_{100}>, < a_1, ..., a_{50}>\}$ Min_sup = 1. What is the set of closed itemset? $<a_1, ..., a_{100}>: 1$ $<a_1, ..., a_{50}>: 2$ What is the set of max-pattern?

<a₁, ..., a₁₀₀>: 1 What is the set of all patterns?

!!

- The downward closure property of frequent patterns
 - Any subset of a frequent itemset must be frequent
 - If **{beer, diaper, nuts}** is frequent, so is **{beer, diaper}** i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}

- Key idea: The apriori property (downward closure property): any subsets of a frequent itemset are also frequent itemsets
- <u>Apriori pruning principle</u>: If there is any itemset which is infrequent, its superset should not be generated/tested! (Agrawal & Srikant & Mannila, et al.)
- A frequent *itemset* is an itemset whose support is ≥ minsup.
- Method:
 - Initially, scan DB once to get frequent 1-itemset
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Test the candidates against DB
 - Terminate when no frequent or candidate set can be generated

 C_k : Candidate itemset of size k

 L_k : frequent itemset of size k

 $L_{1} = \{ \text{frequent items} \};$ for $(k = 1; L_{k} \mid = \emptyset; k++)$ do begin $C_{k+1} = \text{candidates generated from } L_{k};$ for each transaction t in database do increment the count of all candidates in C_{k+1} that are contained in t $L_{k+1} = \text{candidates in } C_{k+1}$ with min_support end return $\bigcup_{k} L_{k};$

```
Function candidate-gen(F_{k-1})
        C_k \leftarrow \emptyset;
        forall f_1, f_2 \in F_{k-1}
                   with f_1 = \{i_1, \dots, i_{k-2}, i_{k-1}\}
                   and f_2 = \{i_1, \dots, i_{k-2}, i'_{k-1}\}
                   and i_{k-1} < i'_{k-1} do
           c \leftarrow \{i_1, ..., i_{k-1}, i'_{k-1}\}; // join f_1 and f_2
           C_k \leftarrow C_k \cup \{c\};
           for each (k-1)-subset s of c do
                   if (s \notin F_{k-1}) then
                      delete c from C_k;
                                                                // prune
           end
        end
        return C_k;
```

 $π.\chi. {A,B,Γ} & {A,B,Δ} → {A,B,Γ,Δ}$

- How to generate candidates?
 - Step 1: self-joining *L*_k
 - Step 2: pruning
- Example of Candidate-generation
 - L_3 ={abc, abd, acd, ace, bcd}
 - Self-joining: $L_3 * L_3$
 - *abcd* from *abc* and *abd*
 - *acde* from *acd* and *ace*
 - Pruning:
 - *acde* is removed because *ade* is not in L_3
 - $C_4 = \{abcd\}$

 $F_3 = \{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{1, 3, 5\}, \{2, 3, 4\}\}$

After join $C_4 = \{\{1, 2, 3, 4\}, \{1, 3, 4, 5\}\}$ After pruning: $C_4 = \{\{1, 2, 3, 4\}\}$ because $\{1, 4, 5\}$ is not in F_3 ($\{1, 3, 4, 5\}$ is removed)

- Frequent itemsets ≠ association rules
- One more step is needed to generate association rules
- For each frequent itemset *X*,
- For each proper nonempty subset A of X,
 - Let B = X A
 - $A \rightarrow B$ is an association rule if
 - Confidence(A \rightarrow B) \geq minconf,
 - support(A \rightarrow B) = support(A \cup B) = support(X)
 - confidence(A \rightarrow B) = support(A \cup B) / support(A)

- Suppose {2,3,4} is frequent, with sup=50%
 - Proper nonempty subsets: {2,3}, {2,4}, {3,4}, {2}, {3}, {4}, with sup=50%, 50%, 75%, 75%, 75%, 75% respectively
 - These generate these association rules:
 - 2,3 \rightarrow 4, confidence=100%
 - 2,4 \rightarrow 3, confidence=100%
 - $3,4 \rightarrow 2$, confidence=67%
 - $2 \rightarrow 3,4$, confidence=67%
 - $3 \rightarrow 2,4$, confidence=67%
 - $4 \rightarrow 2,3$, confidence=67%
 - All rules have support = 50%

min_sup=3

Transaction	ltems
T1	1, 2, 3, 4, 5, 6
Т2	17, 12, 13, 14, 15, 16
Т3	1, 8, 4, 5
Τ4	1, 9, 0, 4, 6
Т5	10, 12, 14, 15

Transaction	ltems
T1	1, 2, 3, 4, 5, 6
Т2	17, 12, 13, 14, 15, 16
Т3	1, 8, 4, 5
Т4	1, 9, 0, 4, 6
Т5	10, 12, 14, 15

Items	Support
Ю	2
11	3
12	3
13	2
14	5
15	4
16	3
17	1
18	1
19	1

Transaction	ltems
T1	1, 2, 3, 4, 5, 6
Т2	17, 12, 13, 14, 15, 16
Т3	1, 8, 4, 5
Т4	1, 9, 0, 4, 6
T5	10, 12, 14, 15

ltem	Support
11	3
12	3
14	5
15	4
16	3

Transaction	ltems	ltem	Support
T1	1, 2, 3, 4, 5, 6	11	3
Т2	17, 12, 13, 14, 15, 16	12	3
Т3	1. 8. 4. 5	14	5
T4	11 19 10 14 16	15	4
		16	3
15	10, 12, 14, 15		

ltems	Support
11 12	1
11 14	3
I1 I5	2
I1 I6	2
12 14	3
12 15	3
12 16	2
14 15	4
14 16	3
15 16	2

Transaction	Items	ltems	Support
T1	11, 12, 13, 14, 15, 16	11 14	3
Т2	17 12 13 14 15 16	12 14	3
		12 15	3
13	11, 18, 14, 15	14 15	4
Т4	11, 19, 10, 14, 16	14 16	3
Т5	10, 12, 14, 15		

Items	Support
12 14 15	3
14 15 16	2

ltem	Support
11	3
12	3
4	5
15	4
16	3

ltems	Support
1114	3
12 14	3
12 15	3
14 15	4
14 16	3

Items	Support	
12 14 15	3	

 $12 \rightarrow 14 15 \text{ Conf: } 3/3=100\%$ $14 \rightarrow 12 15 \text{ Conf: } 3/5=60\%$ $15 \rightarrow 12 14 \text{ Conf: } 3/4=75\%$ $12 14 \rightarrow 15 \text{ Conf: } 3/3=100\%$ $12 15 \rightarrow 14 \text{ Conf: } 3/3=100\%$ $14 15 \rightarrow 12 \text{ Conf: } 3/4=75\%$

min_sup=2

Transaction	Items
Τ1	M1, M2, M5
Т2	M2, M4
Т3	M2, M3
Τ4	M1, M2, M4
Т5	M1, M3
Т6	M2, M3
Т7	M1, M3
Т8	M1, M2, M3, M5
Т9	M1, M2, M3

Transaction	Items	ltems	Support	ltems	Support	Itoms	Support
Tranbaotion		пств	Support		Λ	ILEIIIS	Support
T1	M1, M2, M5	M1	6		Т	M1 M2 M3	2
T2	M2, M4	M2	7	M1 M3	4	M1 M2 M5	2
Т3	M2, M3	M3	6	M1 M4	1	M1 M3 M5	1
Т4	M1 M2 M4	N//	2	M1 M5	2		0
	1011, 1012, 1011	1014	2		Λ	1012 1013 1014	U
T5	M1, M3	M5	2		4	M2 M3 M5	1
Т6	M2, M3			M2 M4	2	M2 M4 M5	0
Т7	M1 M3			M2 M5	2		J
17	1011, 1015				0	ltems	Support
Т8	M1, M2, M3, M5			1013 1014	0		
Т9	M1 M2 M3			M3 M5	1	M1 M2 M3 M5	1
	1012, 1012, 1013			M4 M5	0		

Items	Support
M1 M2 M3	2
M1 M2 M5	2
Items	Support
M1 M2	4
M1 M3	4
M1 M5	2
M2 M3	4
M2 M4	2
M2 M5	2

	Confidence
$M1 \land M2 \Longrightarrow M3$	2/4=0.5
M2 \land M3 \Longrightarrow M1	2/4=0.5
M1 \land M3 \Longrightarrow M2	2/4=0.5
M1 \land M2 \Longrightarrow M5	2/4=0.5
M1 \land M5 \Longrightarrow M2	2/2=1.0
M2 \land M5 \Longrightarrow M1	2/2=1.0