Fuzzy Systems

- Fuzzy logic is a mathematical language to express something.
 This means it has grammar, syntax, semantic like a language for communication.
- There are some other mathematical languages also known
 - Relational algebra (operations on sets)
 - Boolean algebra (operations on Boolean variables)
 - Predicate logic (operations on well formed formulae (wff), also called predicate propositions)
- Fuzzy logic deals with Fuzzy set.

 First time introduced by Lotfi Abdelli Zadeh (1965), University of California, Berkley, USA (1965).

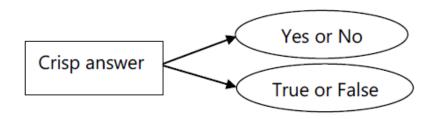
He is fondly nick-named as LAZ

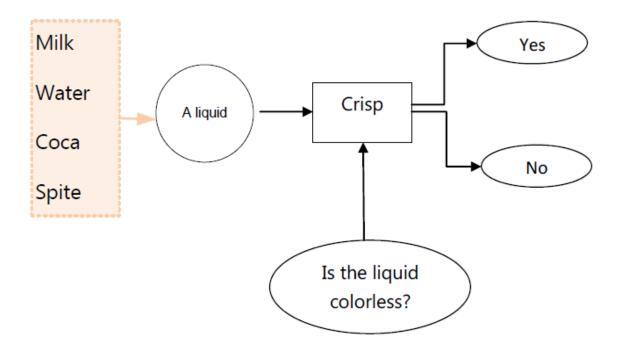
Dictionary meaning of fuzzy is not clear, noisy etc.

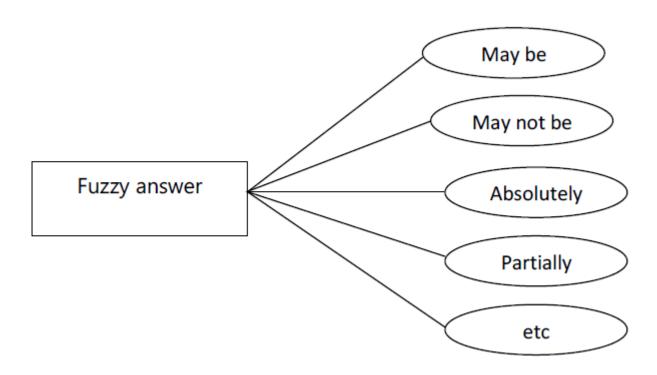
Example: Is the picture on this slide is fuzzy?

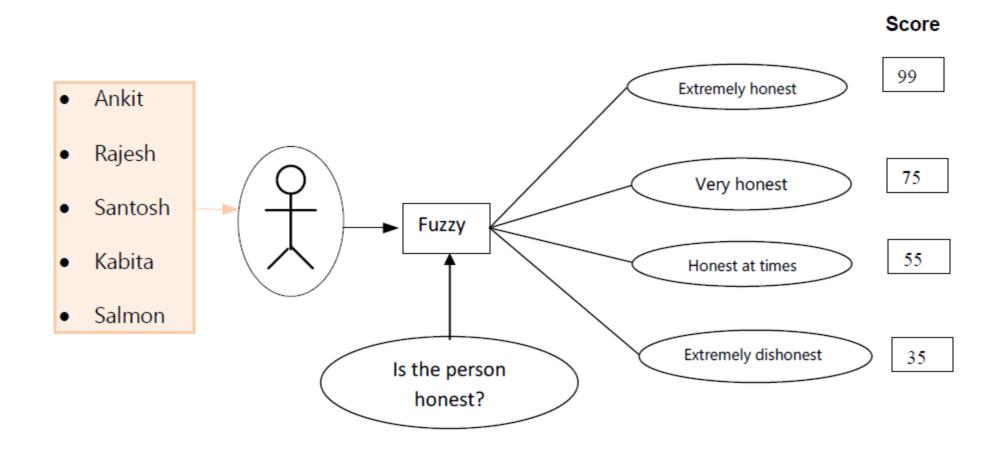
Antonym of fuzzy is crisp

Example: Are the chips crisp?

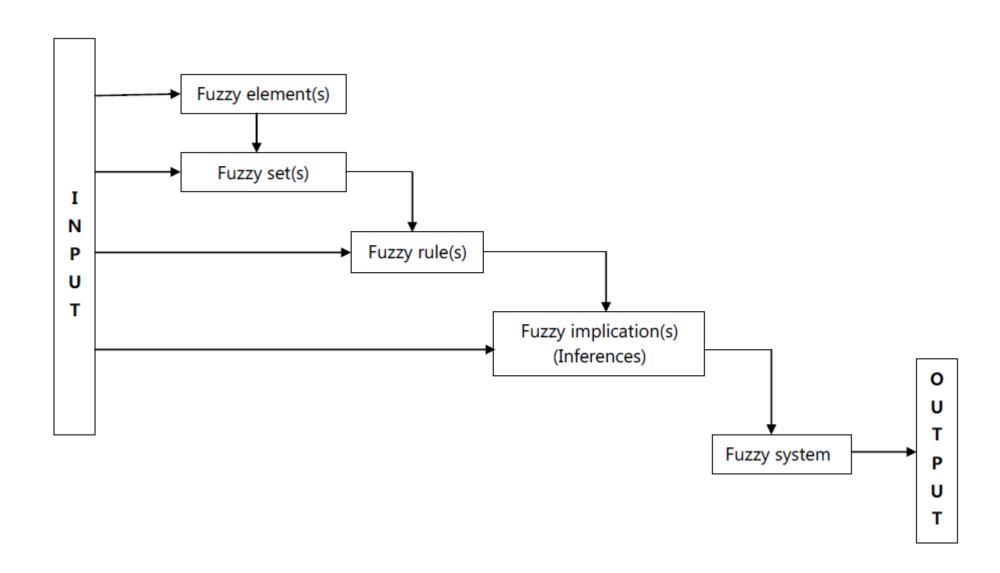




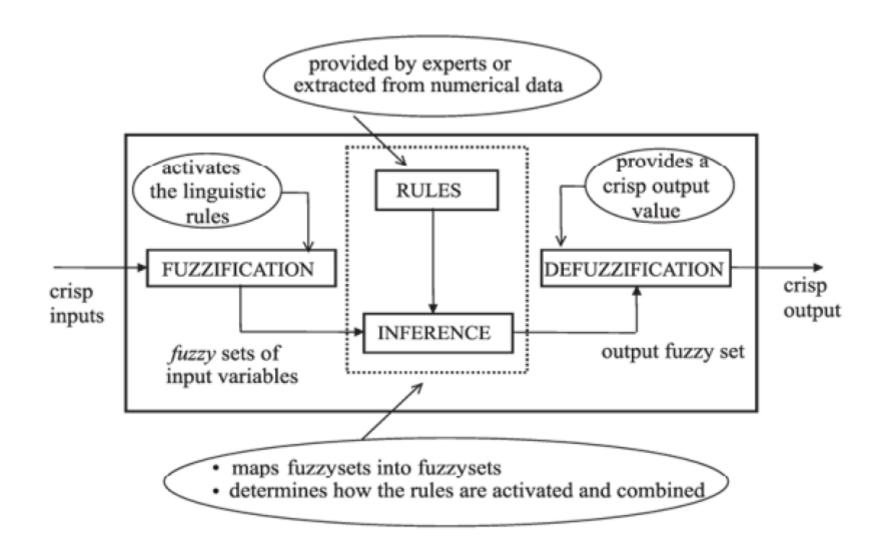




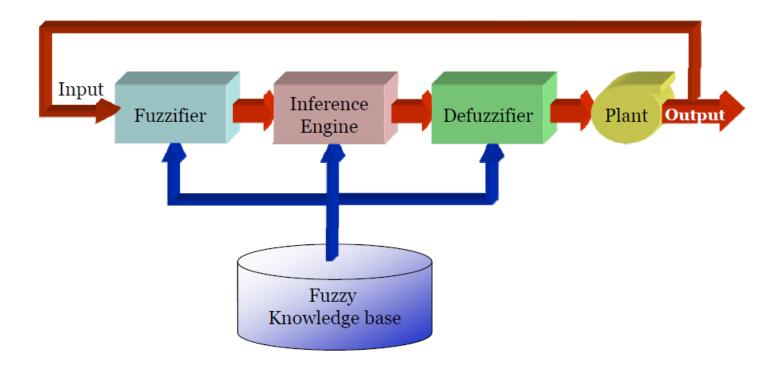
Phases



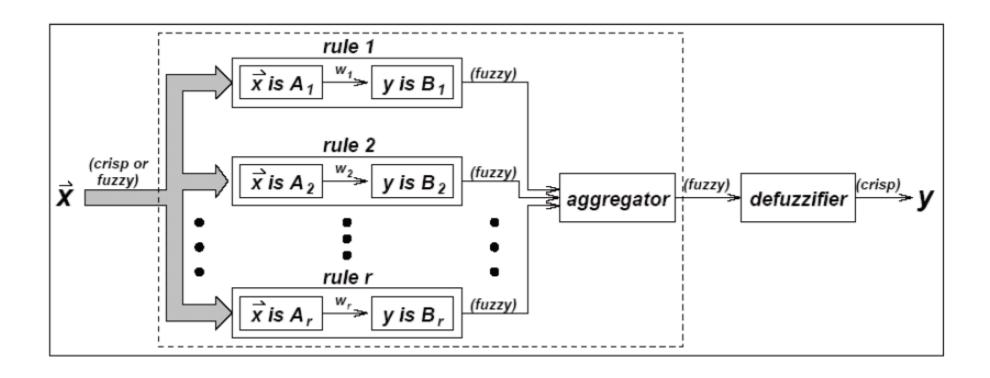
System



System

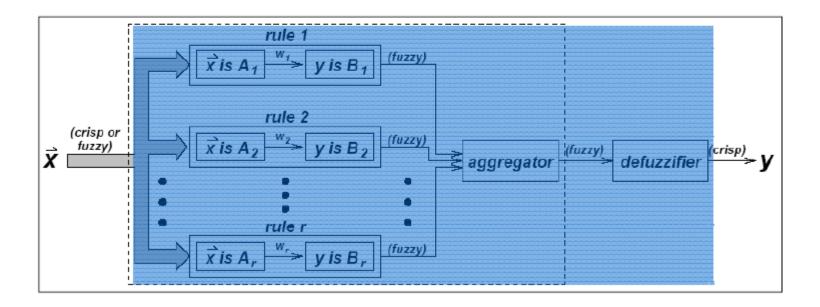


System



Mapping

In the case of crisp inputs & outputs, a fuzzy inference system implements a nonlinear mapping from its input space to output space.

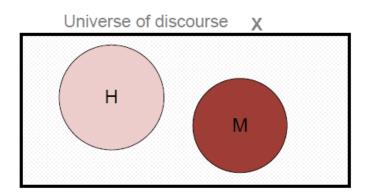


To understand the concept of **fuzzy set** it is better, if we first clear our idea of **crisp set**.

X =The entire population of India.

H = All Hindu population = $\{h_1, h_2, h_3, ..., h_L\}$

M = All Muslim population = $\{ m_1, m_2, m_3, ..., m_N \}$



Here, All are the sets of finite numbers of individuals.

Such a set is called crisp set.

Let us discuss about fuzzy set.

X = All students in IT60108.

S = All Good students.

 $S = \{ (s, g) \mid s \in X \}$ and g(s) is a measurement of goodness of the student s.

Example:

S = { (Rajat, 0.8), (Kabita, 0.7), (Salman, 0.1), (Ankit, 0.9) } etc.

Crisp Set	Fuzzy Set		
1. S = { s s ∈ X }	1. $F = (s, \mu) \mid s \in X$ and		
	μ (s) is the degree of s.		
2. It is a collection of el-	2. It is collection of or-		
ements.	dered pairs.		
3. Inclusion of an el-	3. Inclusion of an el-		
ement $s \in X$ into S is	ement $s \in X$ into F is		
crisp, that is, has strict	fuzzy, that is, if present,		
boundary yes or no .	then with a degree of		
	membership.		

Note: A crisp set is a fuzzy set, but, a fuzzy set is not necessarily a crisp set.

Example:

$$H = \{ (h_1, 1), (h_2, 1), ..., (h_L, 1) \}$$

Person = {
$$(p_1, 1), (p_2, 0), ..., (p_N, 1)$$
 }

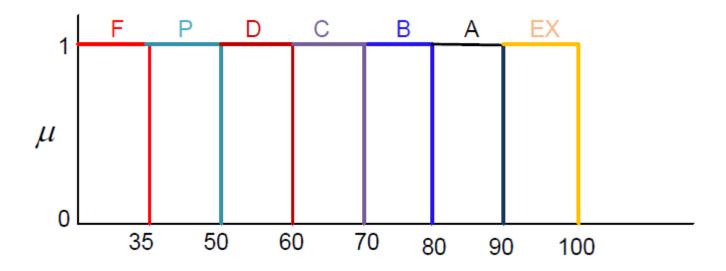
In case of a crisp set, the elements are with extreme values of degree of membership namely either 1 or 0.

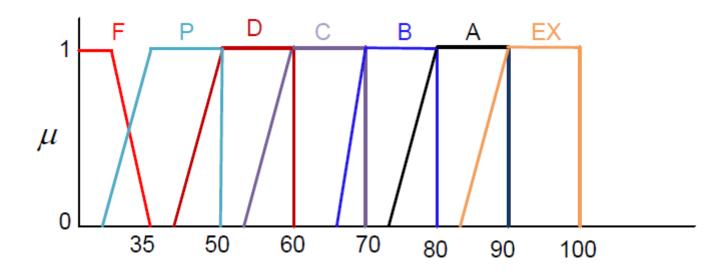
How to decide the degree of memberships of elements in a fuzzy set?

City	Bangalore	Bombay	Hyderabad	Kharagpur	Madras	Delhi
DoM	0.95	0.90	0.80	0.01	0.65	0.75

How the cities of comfort can be judged?

- \bullet EX = Marks \geq 90
- **2** $A = 80 \le Marks < 90$
- **3** B = $70 \le Marks < 80$
- **4** $C = 60 \le Marks < 70$
- **5** D = $50 \le Marks < 60$
- **6** $P = 35 \le Marks < 50$
- F = Marks < 35</p>





Examples

- High Temperature
- Low Pressure
- Color of Apple
- Sweetness of Orange
- Weight of Mango

Note: Degree of membership values lie in the range [0...1].

Definition 1: Membership function (and Fuzzy set)

If X is a universe of discourse and $x \in X$, then a fuzzy set A in X is defined as a set of ordered pairs, that is

 $A = \{(x, \mu_A(x)) | x \in X\}$ where $\mu_A(x)$ is called the membership function for the fuzzy set A.

Note:

 $\mu_A(x)$ map each element of X onto a membership grade (or membership value) between 0 and 1 (both inclusive).

Question:

How (and who) decides $\mu_A(x)$ for a Fuzzy set A in X?

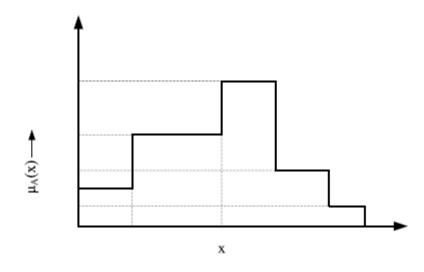
Example:

X = All cities in India

A = City of comfort

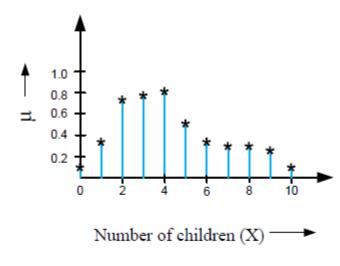
A={(New Delhi, 0.7), (Bangalore, 0.9), (Chennai, 0.8), (Hyderabad, 0.6), (Kolkata, 0.3), (Kharagpur, 0)}

The membership values may be of discrete values.



A fuzzy set with discrete values of μ

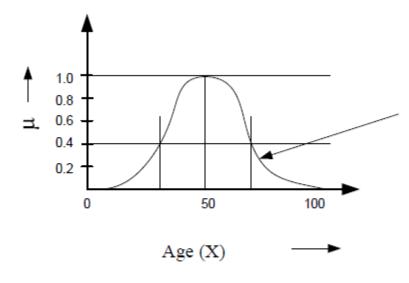
Either elements or their membership values (or both) also may be of discrete values.



$$A = \{(0,0.1),(1,0.30),(2,0.78).....(10,0.1)\}$$

Note : X = discrete value

How you measure happiness ??



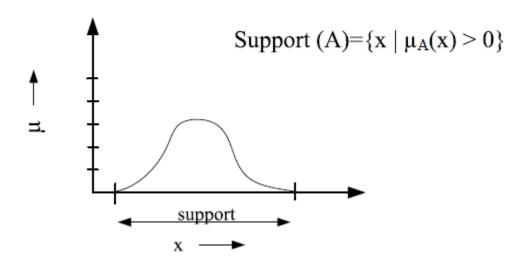
$$B =$$
 "Middle aged"

$$\mu_{B}(x) = \frac{1}{1 + \left(\frac{x - 50}{10}\right)^4}$$

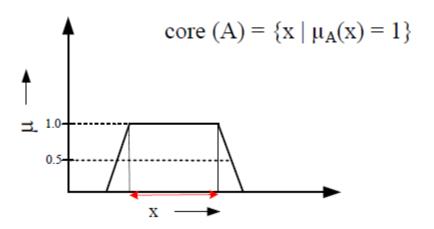
$$B{=}\{(x{,}\mu_B(x))\}$$

Note : x = real value = R⁺

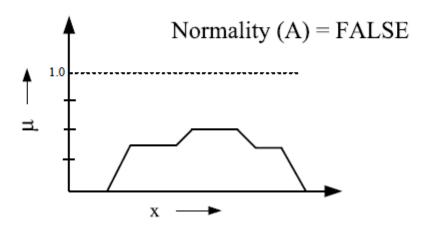
Support: The support of a fuzzy set A is the set of all points $x \in X$ such that $\mu_A(x) > 0$



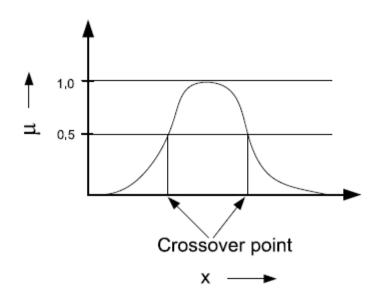
Core: The core of a fuzzy set A is the set of all points x in X such that $\mu_A(x) = 1$



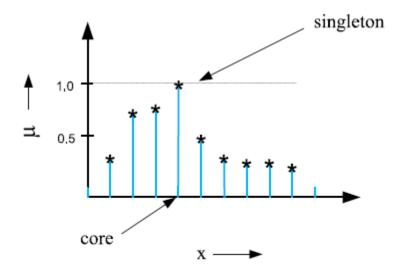
Normality: A fuzzy set A is a normal if its core is non-empty. In other words, we can always find a point $x \in X$ such that $\mu_A(x) = 1$.



Crossover point: A crossover point of a fuzzy set A is a point $x \in X$ at which $\mu_A(x) = 0.5$. That is Crossover $(A) = \{x | \mu_A(x) = 0.5\}$.



Fuzzy Singleton: A fuzzy set whose support is a single point in X with $\mu_A(x) = 1$ is called a fuzzy singleton. That is $|A| = |\{ x \mid \mu_A(x) = 1\}| = 1$. Following fuzzy set is not a fuzzy singleton.



α -cut and strong α -cut :

The α -cut of a fuzzy set A is a crisp set defined by

$$A_{\alpha} = \{ X \mid \mu_{A}(X) \geq \alpha \}$$

Strong α -cut is defined similarly :

$$A_{\alpha}$$
' = { $X \mid \mu_{A}(X) > \alpha$ }

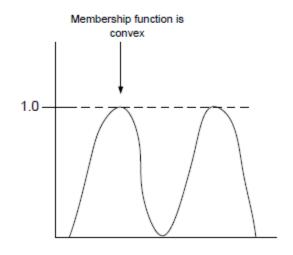
Note: Support(A) = A_0 ' and Core(A) = A_1 .

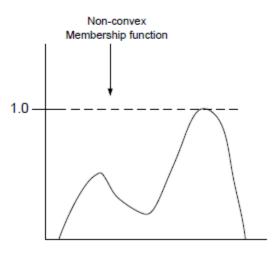
Convexity: A fuzzy set A is convex if and only if for any x_1 and $x_2 \in X$ and any $\lambda \in [0, 1]$

$$\mu_A (\lambda x_1 + (1 - \lambda)x_2) \ge \min(\mu_A(x_1), \mu_A(x_2))$$

Note:

- A is convex if all its α level sets are convex.
- Convexity $(A_{\alpha}) \Longrightarrow A_{\alpha}$ is composed of a single line segment only.





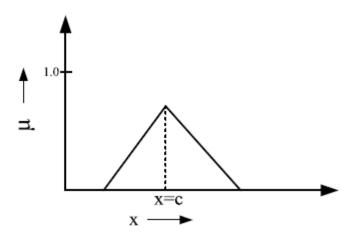
Bandwidth:

For a normal and convex fuzzy set, the bandwidth (or width) is defined as the distance the two unique crossover points:

Bandwidth(
$$A$$
) = $| x_1 - x_2 |$
where $\mu_A(x_1) = \mu_A(x_2) = 0.5$

Symmetry:

A fuzzy set A is symmetric if its membership function around a certain point x = c, namely $\mu_A(x + c) = \mu_A(x - c)$ for all $x \in X$.



A fuzzy set A is

Open left

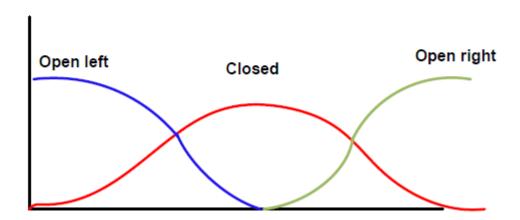
If $\lim_{x\to-\infty} \mu_A(x) = 1$ and $\lim_{x\to+\infty} \mu_A(x) = 0$

Open right:

If $\lim_{x\to-\infty}\mu_A(x)=0$ and $\lim_{x\to+\infty}\mu_A(x)=1$

Closed

If: $\lim_{X\to-\infty} \mu_A(x) = \lim_{X\to+\infty} \mu_A(x) = 0$



Fuzzy vs Probability

Fuzzy: When we say about certainty of a thing

Example: A patient come to the doctor and he has to diagnose so that medicine can be prescribed.

Doctor prescribed a medicine with certainty 60% that the patient is suffering from flue. So, the disease will be cured with certainty of 60% and uncertainty 40%. Here, in stead of flue, other diseases with some other certainties may be.

Probability: When we say about the chance of an event to occur

Example: India will win the T20 tournament with a chance 60% means that out of 100 matches, India own 60 matches.

Prediction vs Forecasting

The Fuzzy vs. Probability is analogical to Prediction vs. Forecasting

Prediction: When you start guessing about things.

Forecasting: When you take the information from the past job and apply it to new job.

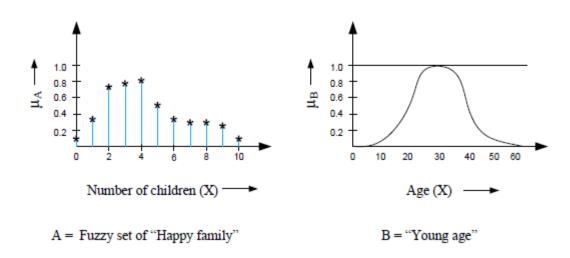
The main difference:

Prediction is based on the best guess from experiences. **Forecasting** is based on data you have actually recorded and packed from previous job.

A fuzzy set is completely characterized by its membership function (sometimes abbreviated as MF and denoted as μ). So, it would be important to learn how a membership function can be expressed (mathematically or otherwise).

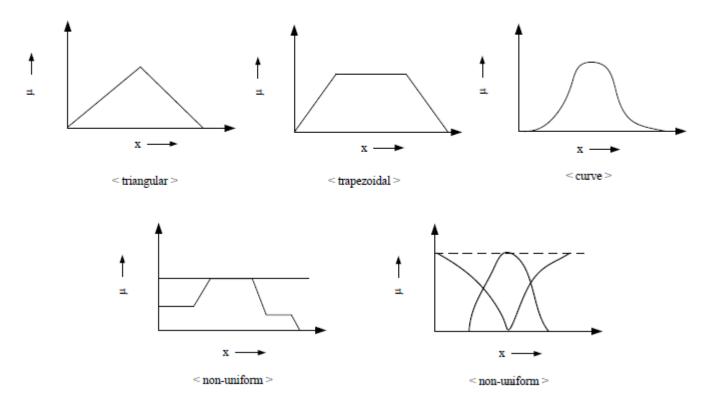
Note: A membership function can be on

- (a) a discrete universe of discourse and
- (b) a continuous universe of discourse.



So, membership function on a discrete universe of course is trivial. However, a membership function on a continuous universe of discourse needs a special attention.

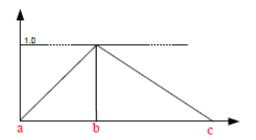
Following figures shows a typical examples of membership functions.



In the following, we try to parameterize the different MFs on a continuous universe of discourse.

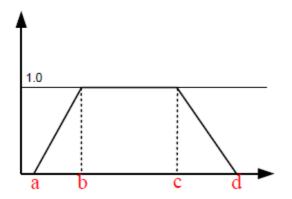
Triangular MFs: A triangular MF is specified by three parameters $\{a, b, c\}$ and can be formulated as follows.

$$triangle(x; a, b, c) = \begin{cases} 0 & \text{if } x \le a \\ \frac{x-a}{b-a} & \text{if } a \le x \le b \\ \frac{c-x}{c-b} & \text{if } b \le x \le c \\ 0 & \text{if } c \le x \end{cases}$$



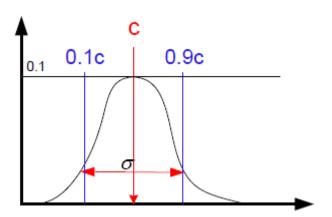
A trapezoidal MF is specified by four parameters $\{a, b, c, d\}$ and can be defined as follows:

$$trapezoid(x; a, b, c, d) = \begin{cases} 0 & \text{if } x \leq a \\ \frac{x-a}{b-a} & \text{if } a \leq x \leq b \\ 1 & \text{if } b \leq x \leq c \\ \frac{d-x}{d-c} & \text{if } c \leq x \leq d \\ 0 & \text{if } d \leq x \end{cases}$$



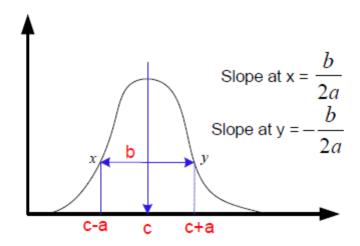
A Gaussian MF is specified by two parameters $\{c, \sigma\}$ and can be defined as below:

gaussian(x;c,
$$\sigma$$
) = $e^{-\frac{1}{2}(\frac{x-c}{\sigma})^2}$.

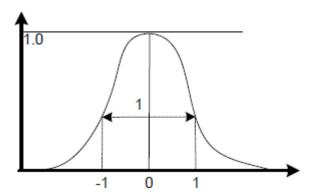


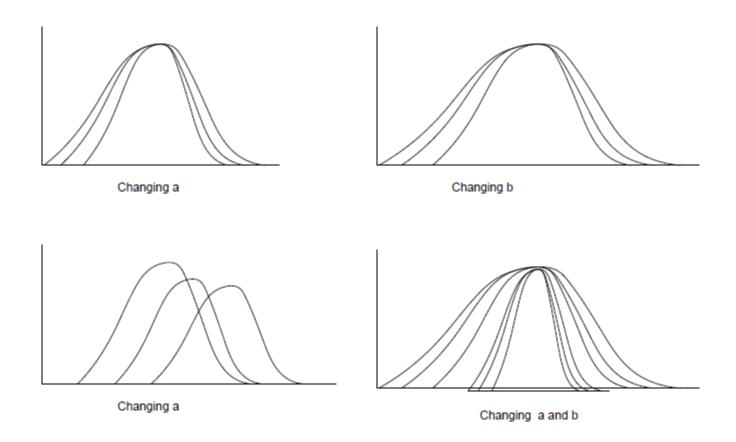
It is also called Cauchy MF. A generalized bell MF is specified by three parameters $\{a, b, c\}$ and is defined as:

bell(x; a, b, c)=
$$\frac{1}{1+|\frac{x-c}{a}|^{2b}}$$



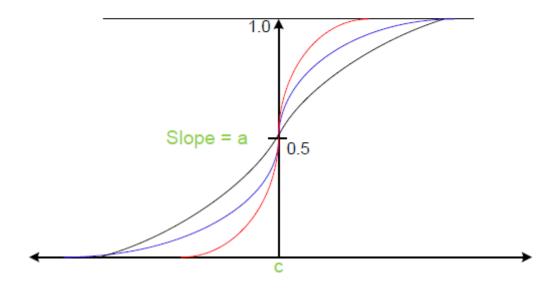
Example:
$$\mu(x) = \frac{1}{1+x^2}$$
; $a = b = 1$ and $c = 0$;





Parameters: $\{a, c\}$; where c = crossover point and a = slope at c;

Sigmoid(x;a,c)=
$$\frac{1}{1+e^{-\left[\frac{a}{x-c}\right]}}$$



Example: Consider the following grading system for a course.

Excellent = Marks ≤ 90

Very good = $75 \le Marks \le 90$

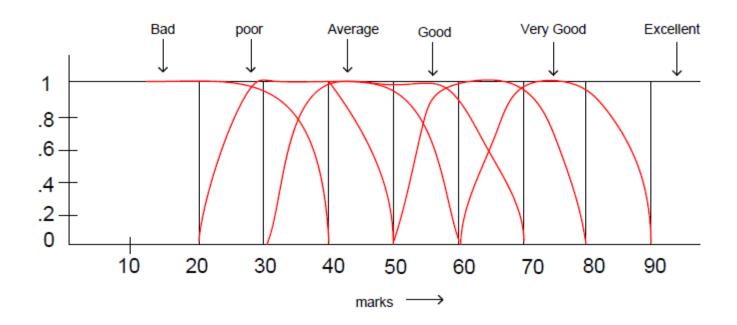
Good = $60 \le Marks \le 75$

Average = $50 \le Marks \le 60$

Poor = $35 \le Marks \le 50$

Bad= Marks \leq 35

A fuzzy implementation will look like the following.



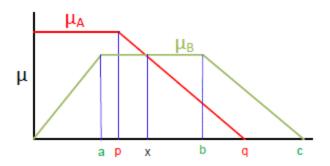
Union ($A \cup B$):

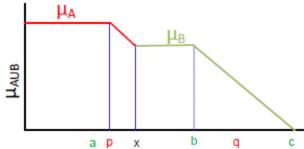
$$\mu_{A \cup B}(x) = \max\{\mu_A(x), \, \mu_B(x)\}$$

$$A = \{(x_1, 0.5), (x_2, 0.1), (x_3, 0.4)\}$$
 and

$$B = \{(x_1, 0.2), (x_2, 0.3), (x_3, 0.5)\};$$

$$C = A \cup B = \{(x_1, 0.5), (x_2, 0.3), (x_3, 0.5)\}$$





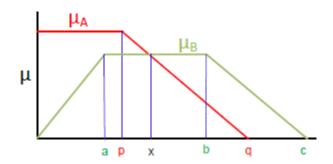
Intersection $(A \cap B)$:

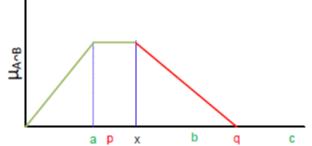
$$\mu_{A\cap B}(x) = \min\{\mu_A(x), \, \mu_B(x)\}$$

$$A = \{(x_1, 0.5), (x_2, 0.1), (x_3, 0.4)\}$$
 and

$$B = \{(x_1, 0.2), (x_2, 0.3), (x_3, 0.5)\};$$

$$C = A \cap B = \{(x_1, 0.2), (x_2, 0.1), (x_3, 0.4)\}$$



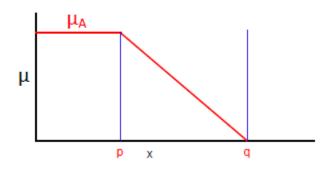


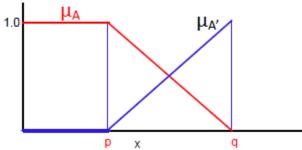
Complement (A^C):

$$\mu_{A_{A^C}}(X) = 1 - \mu_A(X)$$

$$A = \{(x_1, 0.5), (x_2, 0.1), (x_3, 0.4)\}$$

$$C = A^C = \{(x_1, 0.5), (x_2, 0.9), (x_3, 0.6)\}$$





Algebric product or Vector product (A•B):

$$\mu_{A \bullet B}(X) = \mu_{A}(X) \bullet \mu_{B}(X)$$

Scalar product $(\alpha \times A)$:

$$\mu_{\alpha A}(\mathbf{X}) = \alpha \cdot \mu_{A}(\mathbf{X})$$

Sum (A + B):

$$\mu_{A+B}(X) = \mu_A(X) + \mu_B(X) - \mu_A(X) \cdot \mu_B(X)$$

Difference $(A - B = A \cap B^C)$:

$$\mu_{A-B}(X) = \mu_{A\cap B^C}(X)$$

Disjunctive sum: $A \oplus B = (A^C \cap B) \cup (A \cap B^C)$

Bounded Sum: $\mid A(x) \oplus B(x) \mid$

$$\mu_{|A(x)\oplus B(x)|} = \min\{1, \, \mu_A(x) + \mu_B(x)\}$$

Bounded Difference: $| A(x) \ominus B(x) |$

$$\mu_{|A(x) \ominus B(x)|} = \max\{0, \mu_A(x) + \mu_B(x) - 1\}$$

Equality (A = B):

$$\mu_{A}(X) = \mu_{B}(X)$$

Power of a fuzzy set A^{α} :

$$\mu_{\mathcal{A}^{\alpha}}(\mathbf{X}) = \{\mu_{\mathcal{A}}(\mathbf{X})\}^{\alpha}$$

- If α < 1, then it is called *dilation*
- If $\alpha > 1$, then it is called *concentration*

Cartesian Product $(A \times B)$:

$$\mu_{A\times B}(x,y) = min\{\mu_A(x), \mu_B(y)\}$$

Example 3:

$$A(x) = \{(x_1, 0.2), (x_2, 0.3), (x_3, 0.5), (x_4, 0.6)\}$$

$$B(y) = \{(y_1, 0.8), (y_2, 0.6), (y_3, 0.3)\}$$

Commutativity:

$$A \cup B = B \cup A$$

 $A \cap B = B \cap A$

Associativity:

$$A \cup (B \cup C) = (A \cup B) \cup C$$

 $A \cap (B \cap C) = (A \cap B) \cap C$

Distributivity:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Idempotence:

$$A \cup A = A$$
$$A \cap A = \emptyset$$
$$A \cup \emptyset = A$$

 $A \cap \emptyset = \emptyset$

Transitivity:

If
$$A \subseteq B$$
, $B \subseteq C$ then $A \subseteq C$

Involution:

$$(A^c)^c = A$$

De Morgan's law:

$$(A \cap B)^c = A^c \cup B^c$$
$$(A \cup B)^c = A^c \cap B^c$$

Given a membership function of a fuzzy set representing a linguistic hedge, we can derive many more MFs representing several other linguistic hedges using the concept of Concentration and Dilation.

Concentration:

$$A^k = [\mu_A(x)]^k$$
; $k > 1$

Dilation:

$$A^k = [\mu_A(x)]^k$$
; $k < 1$

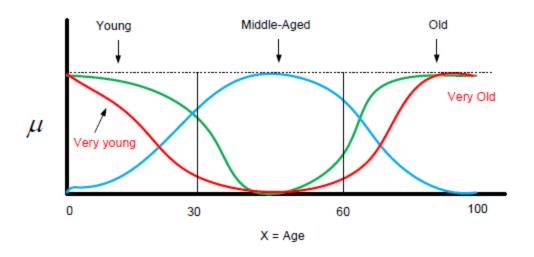
Example : Age = { Young, Middle-aged, Old }

Thus, corresponding to Young, we have : Not young, Very young, Not very young and so on.

Similarly, with Old we can have : old, very old, very very old, extremely old etc.

Thus, Extremely old = $(((old)^2)^2)^2$ and so on

Or, More or less old = $A^{0.5} = (old)^{0.5}$



$$\mu_{young}(x) = bell(x, 20, 2, 0) = \frac{1}{1 + (\frac{X}{20})^4}$$

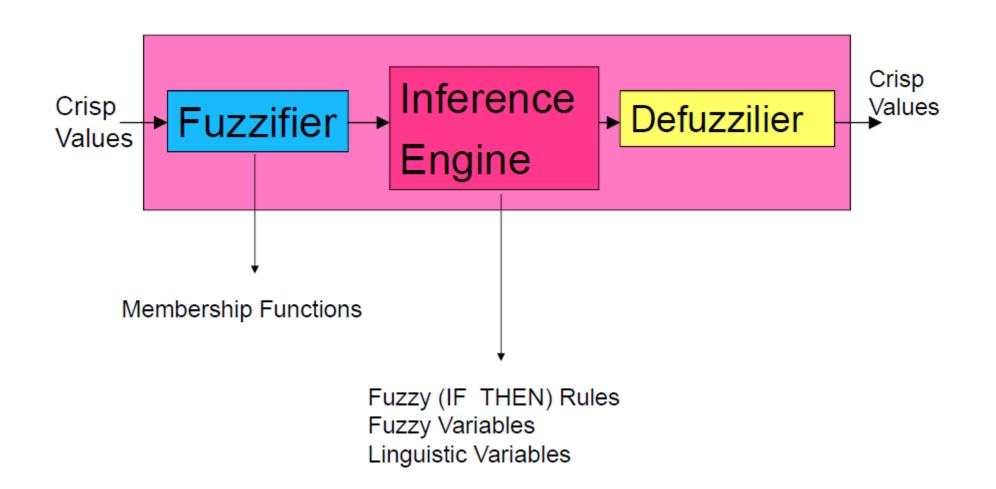
$$\mu_{old}(x) = bell(x, 30, 3, 100) = \frac{1}{1 + (\frac{X}{20})^6}$$

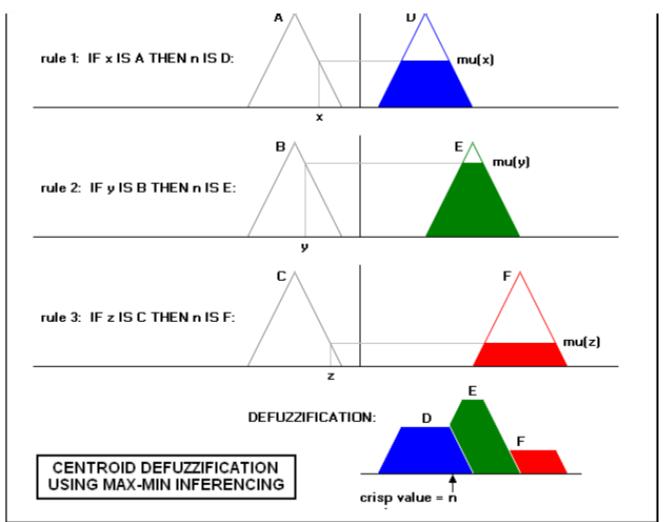
$$\mu_{middle-aged} = bell(x, 30, 60, 50)$$
Not young = $\overline{\mu_{young}(x)} = 1 - \mu_{young}(x)$
Young but not too young = $\mu_{young}(x) \cap \overline{\mu_{young}(x)}$

Types

- Ebrahim Mamdani Fuzzy Models
- Sugeno Fuzzy Models
- Tsukamoto Fuzzy Models
- The differences between these three FISs lie in the consequents of their fuzzy rules, and thus their aggregation and defuzzification procedures differ accordingly.

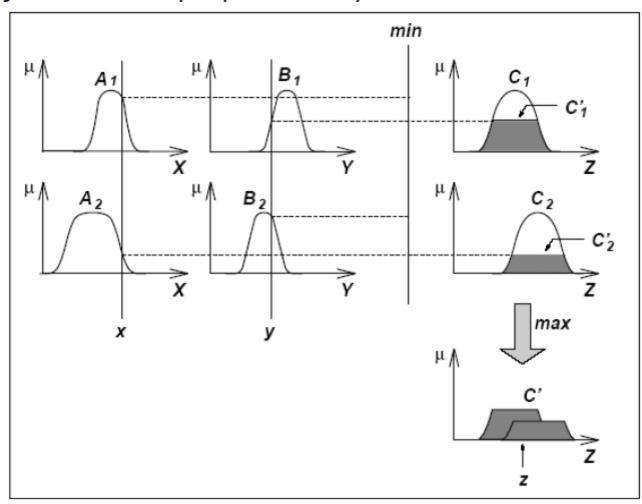
- The most commonly used fuzzy inference technique is the socalled Mamdani method.
- In 1975, Professor Ebrahim Mamdani of London University built one of the first fuzzy systems to control a steam engine and boiler combination. He applied a set of fuzzy rules supplied by experienced human operators.
- The Mamdani-style fuzzy inference process is performed in four steps:
 - 1. Fuzzification of the input variables
 - 2. Rule evaluation (inference)
 - 3. Aggregation of the rule outputs (composition)
 - 4. Defuzzification





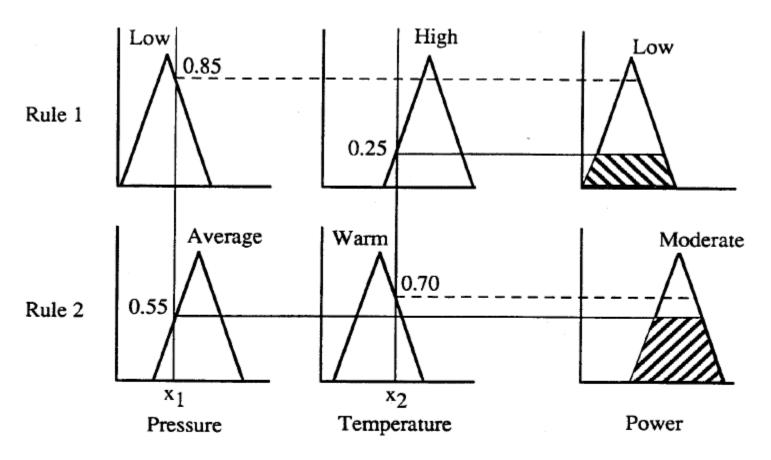
Mamdani composition of three SISO fuzzy outputs http://en.wikipedia.org/wiki/Fuzzy_control_system

The mamdani FIS using **min** and **max** for **T-norm** and **S-norm** and subject to two crisp inputs x and y



The mamdani FIS using **product** and **max** for **T-norm** and **S-norm** and subject to two crisp inputs x and y

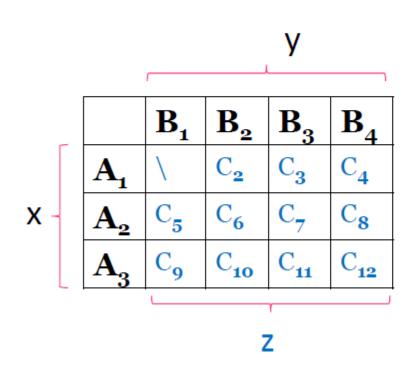


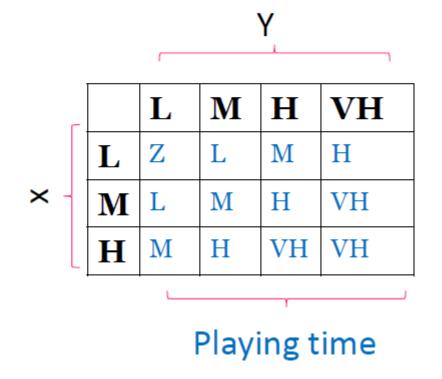


Rule 1: If pressure is low and temperature is high then power is low

Rule 2: If pressure is average and temperature is warm then power is moderate

Two-input, one-ouput example: If x is A_i and y is B_k then z is $C_{m(i,k)}$





- In many applications we have to use crisp values as inputs for controlling of machines and systems.
- So, we have to use a defuzzifier to convert a fuzzy set to a crisp value.

- Defuzzification refers to the way a crisp value is extracted from a fuzzy set as a representative value.
- Defuzzification Methods:
 - Centroid of Area
 - Bisector of Area
 - Mean of Max
 - Smallest of Max
 - Largest of Max

$$z_{\rm COA} = \frac{\int_Z \mu_A(z) z \; dz}{\int_Z \mu_A(z) \; dz},$$

- where μ_A is aggregated output MF.
- This is the most widely adopted defuzzification strategy, which is reminiscent of the calculation of expected values of probability distributions.

z_{BOA} satisfies

$$\int_{\alpha}^{z_{\text{BOA}}} \mu_{A}(z) dz = \int_{z_{\text{BOA}}}^{\beta} \mu_{A}(z) dz,$$

$$\alpha = \min\{z | z \in Z\} \qquad \beta = \max\{z | z \in Z\}$$

That is, the vertical line z = z_{BOA} partitions the region between z = α, z = β, y = 0 and y = μ_A(z) into two regions with the same area.

 z_{MOM} is the mean of maximizing z at which the MF reaches maximum μ*. In Symbols,

$$z_{\text{MOM}} = \frac{\int_{Z'} z \ dz}{\int_{Z'} \ dz},$$

$$\mathbf{Z}' = \{\mathbf{z} | \mu_A(\mathbf{z}) \in \boldsymbol{\mu}^*\}$$

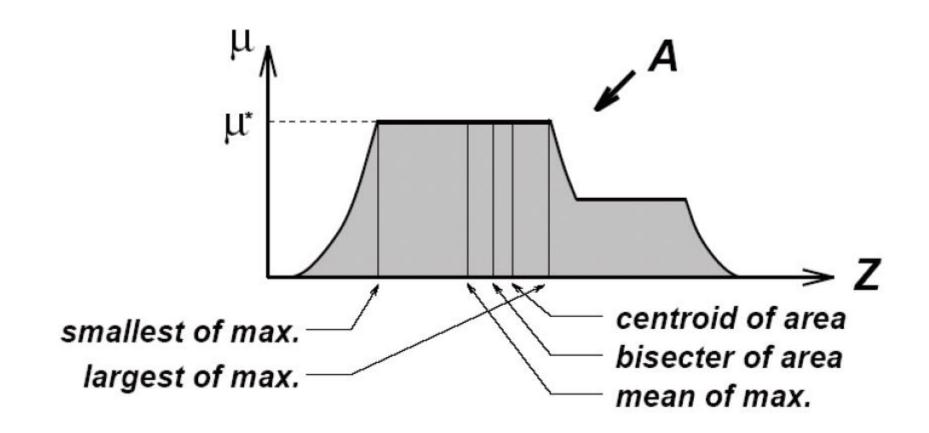
- In particular, if μ_A(z) has a single maximum at z = z*, then the z_{MOM} = z*.
- Moreover, if μ_A(z) reaches its maximum whenever

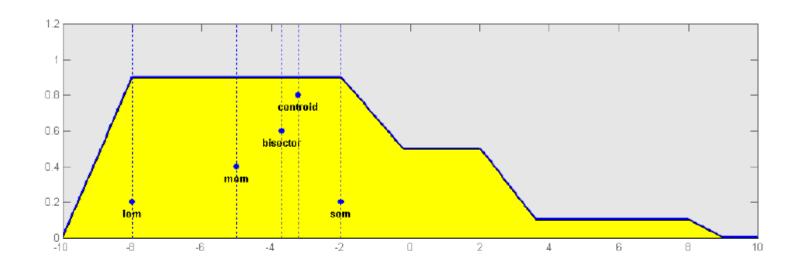
$$z \in [z_{left}, z_{right}]$$

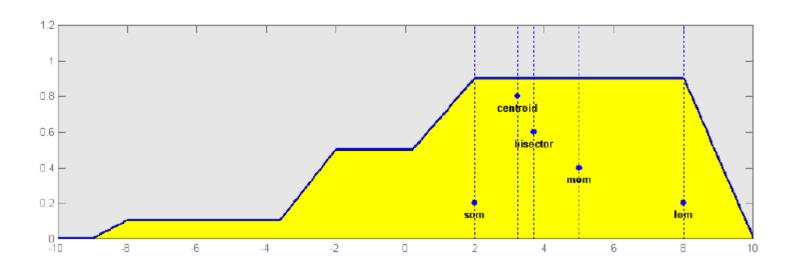
then

$$z_{MOM} = (z_{left} + z_{right})/2$$

- z_{SOM} is the minimum (in terms of magnitude) of the maximizing z.
- z_{LOM} is the maximum (in terms of magnitude) of the maximizing z.
- Because of their obvious bias, z_{SOM} and z_{LOM} are not used as often as the other three defuzzification methods.









Overall input-output curve

76

