
STEAM - EDUCATIONAL ROBOTICS: MOVING FROM SCRATCH TO PYTHON

PROGRAMMING FOR ADVANCED STUDENTS.

by

EVANGELIA ANASTASAKI

Previous degree(s). B.A., University of Aegean, 2015

A THESIS

submitted in partial fulfilment of the requirements for the degree

MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

SCHOOL OF ENGINEERING

HELLENIC MEDITERRANEAN UNIVERSITY

2022

Approved by:

Vassilakis K.

Kalogiannakis M.

Papadakis S.

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

2

Abstract

The thesis studies the introduction of educational robotics within STEAM frameworks

and investigates the case of smoothly shifting from Scratch to Python for STEAM

robotics learning in advanced classrooms. Initially, we present an analysis of Scratch

versus Python commands to integrate educational robotics into the school efficiently.

Comparing and contrasting differences in the language rules of Scratch and Python was

valuable because students can create more dynamic programs by understanding the

coding process. It can become with physical computing hardware, such as LEGO WeDo

2.0, which can assist the students in noticing the abstract concepts of Scratch and Python

programming in practice.

Furthermore, we constructed experimental functions/commands in Python programming

language through a Raspberry Pi Platform, permitting a suitable connection to the WeDo

2.0 robot based on Scratch for advanced students. The main reasons for developing the

commands are that Scratch language is a novice programming, and students gain incorrect

perceptions of programming behaviour (Moors, Luxton-Reilly, & Denny, 2018). In

contrast, Python is real-world programming, which students can utilise the language in

future careers, and students can also create dynamic programs in Python using WeDo 2.0.

Additionally, we present some projects using the developed WeDo 2.0 Python functions

compared with the WeDo Scratch programs as examples for activities in the classroom.

The limitation of the thesis was the lack of testing functions in actual instructive practice

for data collection about the effectiveness of Python WeDo 2.0 commands in the

classroom. The contribution of this thesis lies in the novelty framework of the

development of WeDo 2.0 Python functions, which can be utilised in STEAM robotics

advanced classrooms for learning in the fields of science, technology, engineering, the

arts and mathematics.

Keywords: STEAM, Educational Robotics, Scratch, Python, WeDo 2.0, Raspberry Pi

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

3

Περίληψη

Η διατριβή μελετά την εισαγωγή της εκπαιδευτικής ρομποτικής στα πλαίσια STEAM και

διερευνά την περίπτωση της ομαλής μετάβασης από το Scratch στην Python για

εκμάθηση ρομποτικής STEAM σε προχωρημένες τάξεις. Αρχικά, παρουσιάζουμε μια

ανάλυση των εντολών Scratch έναντι της Python για την αποτελεσματική ενσωμάτωση

της εκπαιδευτικής ρομποτικής στο σχολείο. Η σύγκριση και η αντιπαράθεση διαφορών

στους γλωσσικούς κανόνες του Scratch και της Python ήταν πολύτιμη επειδή οι μαθητές

μπορούν να δημιουργήσουν πιο δυναμικά προγράμματα κατανοώντας τη διαδικασία

κωδικοποίησης. Μπορεί να γίνει με physical computing, όπως το LEGO WeDo 2.0, το

οποίο μπορεί να βοηθήσει τους μαθητές να παρατηρήσουν στην πράξη τις αφηρημένες

έννοιες του προγραμματισμού Scratch και Python.

Επιπλέον, κατασκευάσαμε πειραματικές συναρτήσεις/εντολές σε γλώσσα

προγραμματισμού Python μέσω μιας πλατφόρμας Raspberry Pi, επιτρέποντας την

κατάλληλη σύνδεση με το ρομπότ WeDo 2.0 που βασίζεται στο Scratch για

προχωρημένους μαθητές. Οι κύριοι λόγοι για την ανάπτυξη των εντολών είναι ότι η

γλώσσα Scratch είναι ένας αρχάριος προγραμματισμός και οι μαθητές αποκτούν

εσφαλμένες αντιλήψεις για τη συμπεριφορά προγραμματισμού (Moors, Luxton-Reilly, &

Denny, 2018). Αντίθετα, η Python είναι προγραμματισμός πραγματικού κόσμου, τον

οποίο οι μαθητές μπορούν να χρησιμοποιήσουν τη γλώσσα σε μελλοντικές σταδιοδρομίες

και μπορούν επίσης να δημιουργήσουν πιο δυναμικά προγράμματα στην Python

χρησιμοποιώντας το WeDo 2.0.

Επιπλέον, παρουσιάζουμε ορισμένα έργα που χρησιμοποιούν τις ανεπτυγμένες

συναρτήσεις WeDo 2.0 Python σε σύγκριση με τα προγράμματα WeDo Scratch ως

παραδείγματα για δραστηριότητες στην τάξη.

Ο περιορισμός της διατριβής ήταν η έλλειψη δοκιμής των συναρτήσεων στην πραγματικό

περιβάλλον διδασκαλίας για τη συλλογή δεδομένων σχετικά με την αποτελεσματικότητα

των εντολών Python WeDo 2.0 στην τάξη. Η συμβολή αυτής της διπλωματικής εργασίας

έγκειται στο καινοτόμο πλαίσιο ανάπτυξης των συναρτήσεων WeDo 2.0 Python, οι

οποίες μπορούν να χρησιμοποιηθούν σε προχωρημένες τάξεις ρομποτικής STEAM για

μάθηση στους τομείς της επιστήμης, της τεχνολογίας, της μηχανικής, των τεχνών και των

μαθηματικών.

Λέξεις Κλειδιά: STEAM, Εκπαιδευτική Ρομποτική, Scratch, Python, WeDo 2.0, Raspberry Pi

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

4

Acknowledgements

I want to thank Professors Vassilakis Kostas, Kalogiannakis Michail and Papadakis

Stamatios for their guidance and support throughout the writing of my master thesis.

Also, thank you to them for offering me the opportunity to publish a part of my work in a

foreign language journal article.

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

5

Preface

From my master thesis was completed a published manuscript peer-reviewed journal

article. The journal is called “Advances in Mobile Learning Educational Research” in

which Editor-in-Chief in Greece is Professor Stamatios Papadakis.

The citation information of the article is as follows:

Anastasaki, E., & Vassilakis, K. (2022). Experimental commands development for LEGO WeDo

2.0 in Python language for STEAM robotics advanced classes. Advances in Mobile Learning

Educational Research, 2(2), 443-454.

https://doi.org/10.25082/AMLER.2022.02.013

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

6

 Table of Contents

Abstract ... 2

Περίληψη …………………………………………………………………………….. 3

Acknowledgements ... 4

Preface .. 5

Table of Contents .. 6

List of Figures .. 9

List of Tables.. 11

Chapter 1 - Introduction .. 12

1.1 Scope & Objectives .. 13

1.2 Thesis Structure .. 13

Chapter 2 - Theoretical Framework ... 15

2.1 STEAM Education ... 15

2.2 Learning Theories & Skills .. 16

2.2.1 Constructionism……………………………………………………………17

2.2.2 Active Learning……………………………………………………………17

2.2.3 Computational thinking……………………………………………………17

2.2.4 Creative thinking…………………………………………………………..19

2.2.5 Problem–Solving…………………………………………………………..19

2.3 STEAM & Educational Robotics ... 20

2.4 Physical Computing & LEGO.. 21

Chapter 3 – Programming Languages Used ... 23

3.1 Scratch Programming ... 23

3.2 Python Programming.. 24

Chapter 4 - Modification Techniques .. 26

4.1 Basic Syntax ... 26

4.1.1 Variable Assignment……………………………………………………... 26

4.1.2 Increment a Variable……………………………………………………... 27

4.1.3 Simple Output……………………………………………………………. 27

4.1.4 Conditional loops………………………………………………………… 28

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

7

4.1.5 Infinite loops……………………………………………………………... 29

4.1.6 Conditions and If statements……………………………………………..........29

4.1.7 Testing for equality .. 30

4.2 Advanced Syntax…………………………………………………………………. 31

4.2.1 Lists ... 31

4.2.2 Indexing ... 32

4.2.3 Randomness ... 33

4.2.4 Concatenation .. 33

4.2.5 Input ... 34

4.2.6 Concurrency... 34

4.2.7 Membership Operator .. 36

4.2.8 Procedures ... 36

4.3 Turtle Graphics…………………………………………………………………….37

4.4 Debugging………………………………………………………………………….40

4.4.1 Types of Error .. 41

 4.4.1.1 Syntax Errors ... 41

 4.4.1.2 Runtime Errors ... 43

 4.4.1.3 Semantics Errors .. 44

4.5 Basic Differences between Scratch & Python……………………………………..45

Chapter 5 – STEAM Implementation……………………………………………..46

5.1 LEGO WeDo 2.0…………………………………………………………………..46

5.1.1 WeDo 2.0 Robot Kit ... 46

 5.1.1.1 Smarthub .. 46

 5.1.1.2 Motor.. 47

 5.1.1.3 Tilt Sensor .. 47

 5.1.1.4 Distance (Motion) Sensor ... 47

5.1.3 WeDo 2.0 & Scratch .. 47

5.1.4 WeDo 2.0 & Python ... 49

 5.1.4.1 Raspberry Pi .. 49

 5.1.4.2 Bluetooth Low Energy (BLE) Technology ... 53

 5.1.4.3 Generic Attribute (GATT) Profile ... 54

 5.1.4.5 LEGO Wireless Protocol (LWP) ... 56

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

8

5.2 Python Commands Development for WeDo 2.0…………………………………..57

5.2.1 Python Library “Gattlib” Installation .. 58

5.2.2 Smarthub Connection .. 58

5.2.3 WeDo 2.0 Python Functions .. 58

 5.2.3.1 Motor Activation Functions.. 59

 5.2.3.2 LED RGB Color Change Function ... 60

 5.2.3.4 Sound Playing Function.. 60

 5.2.3.5 Motion (Distance) Sensor Activation Function .. 61

 5.2.3.6 Tilt Sensor Activation Function ... 62

5.3 Use of the Python Functions vs Scratch with Lego WeDo 2.0……………………63

Chapter 6 - Conclusion……………………………………………………...70

6.1 Future Work………………………………………………………………………..71

References…………………………………………………………………….72

Appendix A - Published Journal Article………………………………………….79

Appendix B - Whole Code in Python……………………………………………80

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

9

List of Figures

Figure 1: STEM Translation Model ... 16

Figure 2: Scratch 3.0 development environment ... 23

Figure 3: Logotype of Python .. 24

Figure 4: Various Python IDLEs ... 25

Figure 5: Error Example (Missing the second quote) in "Mu" Python IDE 26

Figure 6: Type Error Example in “Mu” Python IDE ... 40

Figure 7: Syntax Error (Missing colon) - Example in "Mu" Python IDE 41

Figure 8: Syntax Error (Additional Brackets) - Example in "Mu" Python IDE 42

Figure 9: Syntax Error (Missing square bracket) – Example in "Mu" Python IDE 42

Figure 10: Syntax Error (Not same Quotation Mark) - Example in "Mu" Python IDE .. 43

Figure 11: Runtime Error (name bug) - Example in " Mu" Python IDE 43

Figure 12: Semantic Error Example in Python .. 44

Figure 13: Fixed Semantic Error Example in Python .. 44

Figure 14: Lego WeDo 2.0 Smarthub .. 46

Figure 15: Lego WeDo 2.0 Motor ... 47

Figure 16: Lego WeDo 2.0 Tilt Sensor .. 47

Figure 17: Lego WeDo 2.0 Distance (Motion) Sensor .. 47

Figure 18: Raspberry Pi 4 Model B Platform .. 50

Figure 19: Raspberry Pi Desktop ... 50

Figure 20: Manipulation of Raspberry Pi Utility "hciconfig" ... 52

Figure 21: Manipulation of Raspberry Pi Utility "hcitool" .. 52

Figure 22: Manipulation of Raspberry Pi "gattool" ... 53

Figure 23: Bluetooth Low Energy (BLE) Architecture (source: Bhargava, 2017) 54

Figure 24: Generic Attribute (GATT) profile services (Source: Leonardi et al., 2018) .. 55

file:///G:/Το%20Drive%20μου/MSc%20-%20IE%20-%20HMU/Master%20Thesis/master_thesis.docx%23_Toc110462384
file:///G:/Το%20Drive%20μου/MSc%20-%20IE%20-%20HMU/Master%20Thesis/master_thesis.docx%23_Toc110462385
file:///G:/Το%20Drive%20μου/MSc%20-%20IE%20-%20HMU/Master%20Thesis/master_thesis.docx%23_Toc110462388
file:///G:/Το%20Drive%20μου/MSc%20-%20IE%20-%20HMU/Master%20Thesis/master_thesis.docx%23_Toc110462391
file:///G:/Το%20Drive%20μου/MSc%20-%20IE%20-%20HMU/Master%20Thesis/master_thesis.docx%23_Toc110462396
file:///G:/Το%20Drive%20μου/MSc%20-%20IE%20-%20HMU/Master%20Thesis/master_thesis.docx%23_Toc110462397
file:///G:/Το%20Drive%20μου/MSc%20-%20IE%20-%20HMU/Master%20Thesis/master_thesis.docx%23_Toc110462398
file:///G:/Το%20Drive%20μου/MSc%20-%20IE%20-%20HMU/Master%20Thesis/master_thesis.docx%23_Toc110462399
file:///G:/Το%20Drive%20μου/MSc%20-%20IE%20-%20HMU/Master%20Thesis/master_thesis.docx%23_Toc110462400
file:///G:/Το%20Drive%20μου/MSc%20-%20IE%20-%20HMU/Master%20Thesis/master_thesis.docx%23_Toc110462401

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

10

Figure 25: LEGO Wireless Protocol (LWP) GATT services .. 57

Figure 26: Installing Python Gattlib in command prompt ... 58

Figure 27: Connecting WeDo 2.0 Smarthub with GATTRequester object 58

Figure 28: Function to turn on the motor ... 59

Figure 29: Function to turn off the motor .. 59

Figure 30: Function to turn right the motor .. 59

Figure 31: Function to turn left the motor ... 60

Figure 32: Function to change the colours of LED.. 60

Figure 33: Function to play a piezo tone ... 61

Figure 34: Function to measure the distance between an object 62

Figure 35: Function to calculate the tilt of an object ... 63

Figure 36: Using LEGO WeDo 2.0 Blocks for robot car construction in the "Speed"

lesson plan framework of Lego with the Raspberry Pi Platform and the Python Functions

.. 63

Figure 37: Motor Activation Functions: (A) Python (B) Scratch 64

Figure 38: Distance Sensor Activation Function : (A) Python (B) Scratch 66

Figure 39: Output to the screen: (A) Python (B) Scratch .. 67

Figure 40: Tilt Sensor Activation Function : (A) Python (B) Scratch 68

Figure 41: LED RGB Colour Change Function: (A) Python (B) Scratch 68

Figure 42: The Output of the 11 LED Colors of WeDo 2.0 with Python Code 69

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

11

List of Tables

Table 1: Variable Assignment in Scratch & Python .. 26

Table 2: Increment a Variable in Scratch & Python .. 27

Table 3: Simple Output in Scratch & Python .. 28

Table 4: Conditional Loops in Scratch & Python .. 28

Table 5: Infinite Loops in Scratch & Python ... 29

Table 6: Simple If statement in Scratch & Python ... 29

Table 7: Multiple if Statement in Scratch & Python... 30

Table 8: Test for Equality in Scratch & Python ... 31

Table 9: Make a List in Scratch & Python ... 31

Table 10: Add an item to a list in Scratch & Python ... 31

Table 11: Delete an item from a list in Scratch & Python ... 32

Table 12: Searching for an item in a list in Scratch & Python .. 32

Table 13: Randomness in Scratch & Python ... 33

Table 14: Selection of random items from a list in Scratch & Python 33

Table 15: Concatenation in Scratch & Python ... 34

Table 16: Getting input from a user in Scratch & Python ... 34

Table 17: Concurrency in Scratch.. 35

Table 18: Concurrency in Python .. 35

Table 19: Membership Operator in Scratch & Python .. 36

Table 20: Procedures in Scratch & Python .. 36

Table 21: Turtle Graphics Commands in Scratch & Python ... 37

Table 22: Commands Lego WeDo 2.0 in Scratch ... 48

Table 23: Standard Utilities of Raspberry Pi ... 52

Table 24: The 11 values of LED Colors .. 60

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

12

Chapter 1 - Introduction

Computer science is an integral part of modern-day life. The computer is now used for

information retrieval, communication, data processing, and managing many situations in

professional and everyday life. Computer programming is an integral part of computer

science, and a pleasant object of study and study since the hardware and software are

adapted to the user's requirements (Blanchard, Gardner-Mccune, & Anthony, 2019). The

introduction of programming in the informatics curricula of all levels of the educational

system shows us the great value of teaching its principles and using them to solve

problems (Mayerové & Veselovská, 2017). Researchers and educators agree with Papert,

who points out that “programming can be an educational tool for cultivating and

developing mental skills in all students and motivates a structured way of thinking and

dealing with problems in almost all cognitive objects” (Papert, 1980).

Due to the cognitive object of informatics, programming is the object of study in the

research community. More specifically, many research papers and publications are

concerned with teaching the concepts of variable, recursion, selection, and repetition

structures. Research has shown that programming often makes it difficult for students

(Vihavainen, Paksula, & Luukkainen, 2011).

Conventional teaching methods do not solve students' problems, resulting in their

negative attitude towards programming. STEAM education solves the problems created

by long-established teaching approaches as it is an effective tool for cultivating and

developing cognitive structures by students. STEAM is an approach to learning that

employs Science, Technology, Engineering, the Arts, and Mathematics to direct pupil

inquiry, dialogue, and critical thinking (Korkmaz, 2016).

“Scratch ΜIT” is a visual programming language that allows children to effectively

create interactive content (Korkmaz, 2016; Papadakis, Kalogiannakis, Zaranis, &

Orfanakis, 2016). “Python” is a “real” programming language with valuable data

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

13

structures as a core part of the language; it gives them prominent names and makes them

extraordinarily easy to use (Vega, 2018). Such usefulness, simplicity, and clarity remove

barriers to programming, making the transition from Scratch language smoother.

The development set WeDo 2.0 permits pupils to construct and program basic LEGO

models connected to a computer and can execute essential robotic assignments. This

practice contains two stages, software, and hardware, which encourage the introduction

of educational robotics into the classroom (Chalmers, 2018; Olabe, Olabe, Basogain,

Maiz, & Castaño, 2011).

The programming can be too difficult and tedious when learned through the conventional

“abstract” method. On the contrary, pupils learn what robots can and cannot do with

direct experience and understanding by handling a physical robot and noticing its

situation. By programming robots, pupils can discover if their aptitudes and interests

correspond to those skills that will define the future job market, like programming,

science, technology, or engineering (Kalovrektis et al., 2021).

1.1 Scope & Objectives

The thesis will study the introduction of educational robotics within STEAM frameworks

and investigate the case of smoothly moving from Scratch to Python for STEAM robotics

learning in advanced classrooms. Notably, an analysis of Scratch versus Python syntax

languages will be presented. Also, functions/commands will be developed in Python

programming language through a Raspberry Pi Platform, permitting a suitable connection

to the LEGO WeDo 2.0 robot kit based on Scratch for advanced pupils to shift from

Scratch to Python programming.

The research questions are as follows:

1) How do we move from Scratch programming to Python programming in advanced

students' classes concerning learning outcomes, opinions, and interest in the field of

educational robotics?

2) How does Lego WeDo 2.0 operate with Python compared to Scratch for robotics

learning?

1.2 Thesis Structure

This thesis is structured in six chapters:

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

14

❖ The first chapter comprises an introduction as also the scope and objectives.

❖ The second chapter refers to the theoretical framework that drives this thesis. This

chapter studies the fundamental learning theories and skills of STEAM Education

and Educational Robotics.

❖ The third chapter mentions the two programming languages (Scratch and Python)

used in this thesis.

❖ The fourth chapter concerns the modification techniques for smoothly integrating

educational robotics in the classroom. This chapter studies the similarities and

differences in syntax (language rules) of Scratch and Python Languages.

❖ The fifth chapter presents the STEAM implementation using the LEGO WeDo 2.0

robot kit with Scratch and Python. This chapter describes this robot kit's

electronics tools and Scratch commands. Also, this chapter presents the

constructed experimental Python commands through a Raspberry Pi to interact

with WeDo 2.0 for advanced robotic learning in the classroom compared with the

Scratch commands of this robot kit.

❖ At last, the sixth chapter comprises the conclusions and opinions for future work

on this subject.

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

15

Chapter 2 - Theoretical Framework

2.1 STEAM Education

STEAM is an integrated learning approach that requires a link between standards,

assessments, and course design/implementation. STEAM experiences include standards

from Science, Technology, Engineering, Mathematics, and the Arts that must be taught

and evaluated together. STEAM is an evolution of the original acronym STEM (figure 1),

plus one extra element: “Art”. The art could offer the students “socioemotional” and

“holistic development” (Ampartzaki, Kalogiannakis, Papadakis, & Giannakou, 2022).

Integrating the skills into STEM learning has enabled teachers to extend the benefits of

hands-on training and collaboration in various areas, fostering creativity and curiosity at

the core. Research, study, collaboration, and process-based learning are at the heart of the

STEAM approach. Utilising the arts' integrity is essential to an authentic STEAM

initiative (Sutradhar & Naraginti, 2022).

There are five steps to creating a STEAM-focused learning environment:

• Focus: This step selects a substantive question to solve an answer or problem. It is

essential to focus on how this question or issue relates to STEM and the

designated arts content areas (Herro, Quigley, & Cian, 2018).

• Detail: The information contributing to the problem or question is searched during

the detail phase (Judy, 2011). The correlations with other areas come with

discovering much basic knowledge, skills, and procedures students follow to

answer the question (Herro et al., 2018).

• Discovery: The discovery concerns exclusively active research and deliberate

teaching. In this step, students explore current solutions and what does not work

based on existing solutions (Herro et al., 2018).

• Application: This is where the fun takes place. Once students are deeply

immersed in a problem or question and have analysed current solutions, they

apply the skills, procedures, and knowledge learned at the discovery stage (Herro

et al., 2018).

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

16

• Presentation: Once students have constructed their solution or composition, it is

time to share it. The work must be presented for feedback and expression based

on a student's perspective on the question or problem they face (Herro et al.,

2018).

Figure 1: STEM Translation Model

Each of the five steps of the STEAM educational framework is important. As a result,

students learn daily as they investigate, play in an active learning environment, and join

innovative experiences (Ampartzaki et al., 2022; Zaher & Hussain, 2020). STEAM

education is founded as an educational method in which students illustrate advanced

concepts and reflect creatively while tackling association issues between these steps

(Przybylla & Romeike, 2014). STEAM education improves educational outcomes and

accomplishments and empowers learning opportunities, the pupil's logical and analytical

skills, creative abilities, learning experiences, and student evolution to solve real-world

issues (Dell’Erba, 2019).

STEAM's educational approach to instructing speaks to advancement towards an

inventive demonstration that upgrades the learning preparation and progresses learning

results utilising the central process (An, 2020). Students learning experiences include two

or more STEAM standards, and learning innovation ordinarily abuses the art frame (Erba,

2019). In addition, the advanced STEAM method of education demands the proper

instruments and resources. Before instruction, the teacher should preview the full range of

available STEAM products (Erba, 2019).

 2.2 Learning Theories & Skills

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

17

STEAM with Lego WeDo 2.0 is distinguished by constructionism, active learning,

computational thinking, creative thinking, and problem-solving.

 2.2.1 Constructionism

Constructionism advances social and communication skills by creating a classroom

environment that emphasises collaboration and the exchange of thoughts. Pupils must

learn to verbalise their opinions clearly and collaborate on tasks successfully by sharing

in group projects (Evripidou et al., 2020). Papert's constructionism focuses on learning in

the circumstances “rather than looking at them from a distance, that connectedness rather

than separation are powerful means of gaining understanding” (Ackermann, 2001). This

implies that new experiences are the entirety of a single experience made by applying

existing knowledge to enhance it. In this manner, “hands-on exercises are the best for the

classroom applications of constructionism, critical considering and learning”

(Ackermann, 2001). Each person has a different perception and construction of the

knowledge process (Khanlari, 2014).

The theory of constructivism argues that students do not passively accept knowledge but

are more active in the learning process. They build on experience to understand what they

are learning. They are more involved in creating meaning and understanding. This leads

to a student-centred approach in which the student guides their learning through various

technological tools (Benotti, Gómez, & Martínez, 2017).

2.2.2 Active Learning

Active learning is an instructional approach that effectively engages students with the

course material through discussions, problem-solving, case studies, role plays, and other

strategies (Ampartzaki et al., 2022; Sisman & Kucuk, 2019). Active learning approaches

put a more prominent degree of obligation on the learner than passive approaches such as

lectures, but educators' direction is still significant within the active learning classroom

(Zaher & Hussain, 2020). Active learning exercises may range in length from some

minutes to entire course sessions or take place over numerous course sessions (Zaher &

Hussain, 2020).

2.2.3 Computational thinking

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

18

Computational thinking is a set of aptitudes to solve problems (Wing, 2006); it is a

thought process (Psycharis, 2018), or it is a problem-solving process (Papadakis &

Kalogiannakis, 2022). Computational thinking allows us to analyse a complex problem,

understand it and develop possible solutions. Thus, we manage to present these solutions

so that the computer and its operator can understand the problem to look for ways to

solve it. The four basic steps in the process of applying computational thinking are

(Psycharis, 2018):

• Decomposition: breaking down a complex and challenging problem into smaller

ones that can be more manageable.

• Identification of similarities: the search for similarities between minor problems.

• Abstract process: focus only on important information, and ignore irrelevant

details.

• Algorithms: develop a solution to the problem (step by step) or classify the rules

to solve it.

Each stage of the above is critical to continue to the next. The correct application of all

four steps will help solve the complex problem best. Computational thinking is not

computer programming; it is devising solutions proper for computers. Programming

guides the computer on what to do and how to do it. So, computational thinking enables

us to work on the computer, just as we say what we want it to do (Catlin & Woollard,

2014).

Seymour Papert first used the term Computational Thinking in 1980. The key features of

the Computational Thinker are (Psycharis, 2018):

• The formation of structures.

• The combination of mathematical thinking and techniques from the science of

engineering.

• Computational thinking leads to “ideas” and not “artefacts”.

The pedagogy of science, technology, engineering, the arts, and mathematics (STEAM)

can be quickly developed using robotic and computational thinking tools (Psycharis,

Kalovrektis, & Xenakis, 2020). The STEAM approach followed in the educational

process is essential for connecting computational thinking with problem-solving. This

strategy allows students to turn complex problems into a more straightforward process,

following the phases of a teaching scenario (Psycharis et al., 2020; Wing, 2008).

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

19

Teachers who use STEAM techniques in the teaching process, including computational

thinking, allow students to practice problem-solving by trying and making mistakes

(Ampartzaki et al., 2022; Kim & Han, 2018; Wing, 2008). A highlight of STEAM is that

inquiry-based learning is adopted, abandoning teacher-centred teaching, with pupils'

inclusion in dynamic problem-solving through a project-based plan, development, and

project-based learning, taking into consideration conditions, variables, and all sorts of

imperatives, such as social, environmental and technical (Pham, Misra, Huynh, & Ahuja,

2019).

2.2.4 Creative thinking

Creative thinking can be interpreted as thinking that can connect or see things from a new

perspective. While the characteristics of creative people are curiosity, being resourceful,

having the desire to find, choosing difficult jobs, enjoying solving problems, having the

dedication to work, thinking flexibly, asking lots of questions, giving better answers,

being able to synthesise, see new implications, and have a broad knowledge (Murcia,

Pepper, Joubert, Cross, & Wilson, 2020). Generating new ideas and ways to produce a

product is thinking creatively, namely leads to gaining new insights, approaches,

perspectives, and practices when dealing with issues (McGregor, 2007). It is a skill in

carrying out a mindset based on a deep understanding of the concepts that an individual

has previously mastered. That mindset will then influence the individual's mind to make

changes. The general problem for a teacher may be unusual for a student. Therefore,

teachers must develop learning methods or strategies that can create the creative thinking

power of their students (Noviani & Wangid, 2018). Also, creative thinking skills include

fluency, flexibility, creativity, and elaboration abilities and are suitable for collaboration

with 21st-century learning, namely STEAM learning (Noviani & Wangid, 2018).

2.2.5 Problem–Solving

The 21st century requires a few preparations. One of the preparations must be having

problem-solving ability. Solving problems is fundamental in numerous sciences, math,

and engineering classes. Assume an objective of a course is for students to develop the

ability to solve new sorts of issues or utilise new problem-solving strategies (Huei, 2015).

In that case, students require various opportunities to create the abilities essential to

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

20

approach and reply to diverse problems. The skill of problem-solving can be reflected in

how somebody resolves issues precisely and reasonably (Astuti et al., 2021).

 2.3 STEAM & Educational Robotics

Seymour Papert, in 1969, developed the Logo programming language and “robot turtles”.

Papert considers that people learn according to mental models and learning

environments. Also, he envisioned the ability of computers to engage learners through

turtle programming in active learning (Catlin & Woollard, 2014). Papert's “turtles” are

constructions programmed by learners to explore the world around them. The turtle is an

“educational robot” on the ground that moves based on commands given by the

computer. Based on Logo, various environments have been developed, called “logo-like

environments’, and they are also used in physical computing, such as Scratch, EV3/Lego

programming, etc. (Catlin & Woollard, 2014; Kalovrektis et al., 2021).

Educational robotics within STEAM frameworks can attain an attractive strategy that

changes boring concepts into a fun learning preparation. STEAM robotics instruction

gives imaginative challenges and openings for school-level learners to create one-of-a-

kind concepts and advanced learning skills (Afari & Khine, 2017). STEAM with

educational robotic kits is an efficient approach because they encourage the ease with

which pupils can make connections among STEAM disciplines (Plaza et al., 2020; Plaza,

Sancristobal, Carro, Castro, & Blazquez, 2018). Robotic kits like LEGO's, connected

with a block-based programming language like Scratch, can help the pupil's fundamental

programming learning (Dorling & White, 2015; Ruzzenente, Koo, Nielsen, Grespan, &

Fiorini, 2012). The LEGO robot kits are appropriate tools that include pupils with

hands‐on learning through building with LEGO bricks and programming in a block-based

programming environment (Chalmers, 2018; Elkin, Sullivan, & Umashi Bers, 2014),

such as Scratch or with text-based programming (Armoni, Meerbaum-Salant, & Ben-Ari,

2015; Weintrop & Wilensky, 2017), such as Python. Educational Robotics with Python

Language is used for teaching at various levels of education (Blank, Meeden, & Kumar,

2003; Khamphroo, Kwankeo, Kaemarungsi, & Fukawa, 2017; Vega, 2018). Many

research articles reported positive results of using robots with Python to aid students in

understanding programming concepts and writing programs (Khamphroo et al., 2017;

Weintrop & Wilensky, 2017). By understanding the qualities and limits of block-based

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

21

environments, teachers can work towards actualising programming tools that are most

advantageous for beginners and shifting to text-based languages (Weintrop & Wilensky,

2017). Moreover, to encourage and entice learners in STEAM education, instructors

utilise hands‐on projects, called physical computing, that move the computational

concepts from the screen into the real world to permit learners to interact with them

(Juškevičienė, Stupurienė, & Jevsikova, 2020).

2.4 Physical Computing & LEGO

“Physical computing covers the design and realisation of interactive objects and

installations and permits students to develop tangible, concrete products of the real world,

which get up the learners' imagination” (Przybylla & Romeike, 2014). Students who

utilised LEGO robots when comprehending programming had better test results in

standardised programming than students who learned to program using traditional

methods. When constructing an artefact with physical computing, it is already an entire

computing system (Huang, K.H., Yang, T.M., & Cheng, Huang, Yang, & Cheng, 2013).

Physical computing applies creative arts and engineering design processes and combines

parts (such as sensors, LEDs, etc.) and software elements (Juškevičienė et al., 2020).

Also, it brings computational thinking and programming closer to the students' daily

lives. They can construct systems that are currently environmentally familiar to them and

find it stimulating to comprehend more (Przybylla & Romeike, 2014). However, a

common problem when instructing text-based programming languages is that the priority

is learning specific syntax or semantics rather than comprehending the process. When

students understand the process of coding, they can create more dynamic programs

(Vihavainen et al., 2011). Physical objects can provide exceptional feedback to students.

When utilising physical objects with computing, it is more effortless for students to

notice whether the code is operating. They get direct feedback from the object itself.

Students can instantly detect this when the system fails to meet expectations, for instance,

due to unsuitable sensors or delayed responsiveness (Przybylla & Romeike, 2014). The

feedback from objects will encourage students to create potent, expanded, entire, and

valid programming and willingly spend lots of time debugging programs (Lawhead et al.,

2003). With physical computing hardware, they have a “real” object that assists in

noticing the abstract concepts with traditional programming languages in practice

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

22

(Hodges, Sentance, Finney, & Ball, 2020). Moreover, physical computing motivates

learners to utilise their imagination and creativity, focusing more on ideas than technical

restrictions. Students have the opportunity to develop projects that are meaningful to

them (Przybylla & Romeike, 2014).

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

23

Chapter 3 – Programming Languages Used

In the framework of the project, we used two programming languages: Scratch and

Python.

3.1 Scratch Programming

“Scratch” is an interpreted,

dynamic, high-level block-based

visual programming language.

Being passionate permits code

changes even during program

execution. It aims to teach

programming concepts to

children and teens and enable

them to create games, videos,

and music. It can be

downloaded for free and

utilised in various activities inside and outside the school worldwide (Plaza et al., 2018).

The Scratch interface (Figure 2) is separated into three main sections: a scene area, a

block palette, and a coding region to place and arrange the blocks into scripts executed by

pressing the green flag or clicking the code. Users can also construct their code blocks in

“My Blocks” (Korkmaz, 2016).

The development environment includes the animation, graphics, and thumbnail sprites

listed at the bottom. Utilises stage x and y coordinates, with 0.0 being the central stage.

With a spirit selected at the bottom of the staging area, command blocks can be applied by

dragging them from the block palette to the coding region. The Costumes tab permits

users to modify the look of the sprite to create various effects, including animations. The

sounds tab allows us to join sounds and music to a spirit. When making a sprite and

background, users can design their sprite manually, select a Sprite from the library or

Figure 2: Scratch 3.0 development environment

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

24

upload an image. Users can also create their code blocks, appearing in ‘My Blocks”.

(Lamb & Johnson, 2011).

3.2 Python Programming

“Python” is an “open-source”, “interpreted”, “general-purpose”, and “high-level”

programming language. It belongs to the wording of imperative programming and

supports both procedural and object-oriented programming paradigms. Its dynamically

typed programming language supports garbage collection

(G.C.) (Wikipedia, n.d.).

It was created by the Dutchman Guido van Rossum at the

Centrum Wiskunde & Informatica (CWI) research centre

in 1989 and was first published in 1991. Its main goal is its

code's readability and ease of use. Its syntax allows

developers to express concepts in fewer lines of code than

possible in languages such as C++ or Java. It is

distinguished by its many libraries that facilitate many ordinary tasks and its learning

speed. It has the disadvantage that because it is interpretable, it is slower than compiled

languages such as C and C++ (Bart, Tibau, Tilevich, Shaffer, & Kafura, 2017;

Wikipedia, n.d.).

For this reason, it is not suitable for writing operating systems. Python interpreters are

available for installation on multiple operating systems, allowing Python to execute code

on various designs. Using third-party tools such as Py2exe or Pyinstaller, CPython can be

packaged in standalone applications for some of the most prevalent operating systems,

permitting the distribution of Python-based software for use in these environments

without the need for installation Python interpreter. It is developed as open-source

software and is managed by the non-profit organisation Python Software Foundation. The

code is distributed under the GPL-compliant Python Software Foundation License. The

name of the language comes from the comedian “Monty Python” and has nothing to do

with the python snake, although its logo suggests something like that (Almeida, De Netto,

& Rios, 2017; Wikipedia, n.d.).

Figure 3: Logotype of Python

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

25

Figure 4: Various Python IDLEs

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

26

Chapter 4 - Modification Techniques

To smoothly move from Scratch to Python for STEAM educational robotics in the

classroom, it is valuable to compare and contrast differences in syntax (language rules) of

both languages to assist students effectively.

Numerous students battle with text-based languages' viewpoints to understand the

particular syntax required. Errors in a program are regularly due to non-compliance with

these rules, and these mistakes are called syntax mistakes. In this manner, it is valuable to

appear the parallels and contrasts between a language that a student has already mastered

and one they are attempting to learn. When programming utilising a text-based language

such as Python, you will soon encounter an error message like Figure 5 below:

Figure 5: Error Example (Missing the second quote) in "Mu" Python IDE

The example above is a syntax error. In general, every programming language has a

different set of syntax rules. Hence, when the program does not follow these rules, a

message appears, which tells it to be made an error. In the case of Figure 5 above, a

second quote is not included in the command.

 4.1 Basic Syntax

 4.1.1 Variable Assignment

In Scratch, a variable should be created before assigning or setting its value to be given a

variable. In Python, a variable is completed as soon as a value is assigned. Also, Python

should be enclosed strings of text in a single (' ') or double quotes (" ").

Table 1: Variable Assignment in Scratch & Python

SCRATCH PYTHON

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

27

 4.1.2 Increment a Variable

In Scratch, to be incremented a value, we can use the change block to either increase or

decrease a block's value. Whereas in Python, a new value must first be calculated by

adding or subtracting an amount to the value. Then that new value is assigned back to the

variable.

Table 2: Increment a Variable in Scratch & Python

SCRATCH PYTHON

 4.1.3 Simple Output

Scratch to output to the screen should create a sprite talk by utilising the say block. An

equivalent in Python would be the print statement, which will output text, numbers, or

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

28

symbols to the screen. Nevertheless, we must also recall utilising single or double quotes

when using text strings in Python.

Table 3: Simple Output in Scratch & Python

SCRATCH PYTHON

 4.1.4 Conditional loops

One of the most significant differences is when utilising conditional loops. In Scratch, a

conditional loop repeats until a statement is “True”. In Python, a conditional loop repeats

as long as a statement is true. Furthermore, we state how Python requires a colon (:) at

the end of the statement and how a code part of the loop is indented. We can compare this

to how the say block is indented as part of the repeat until the block in Scratch.

Table 4: Conditional Loops in Scratch & Python

SCRATCH PYTHON

or

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

29

Consequently, explaining the codes above, in Scratch, we say, “repeat until the score is

greater than ten and keep running this code until the variable score is greater than 10”. In

Python, we say, “keep running this code while the score is not bigger than 10” or “keep

running this code while the score is less than or equal to 10”.

 4.1.5 Infinite loops

Scratch has a block type for making infinite loops, called a “forever block”. There is no

equivalent, no clear forever block in Python, but a conditional loop is used, constantly

evaluating “True”. So, while “True”, running this code is equivalent to forever.

Table 5: Infinite Loops in Scratch & Python

SCRATCH PYTHON

 4.1.6 Conditions and If statements

When utilising selection in Scratch, there are two blocks: an “if” and an “else”. Python

has a similar syntax: “If this condition executes this code, else execute this code”. Also,

we utilise a colon (:) at the end of the statement and indentation to denote the code,

which is part of this condition.

Table 6: Simple If statement in Scratch & Python

SCRATCH PYTHON

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

30

However, if multiple conditions are required in Scratch, statements must be nested, one

inside the other. Python has three conditional statements– if, elif, and else. Also,

note how colon (:) is used and indentation again.

Table 7: Multiple if Statement in Scratch & Python

SCRATCH PYTHON

4.1.7 Testing for equality

Ιn Scratch test equality, we can utilise an operator block and a single equals sign. In

Python, a single equals sign is reserved for variable assignment. So, a double-equals sign

is used to test for equality.

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

31

Table 8: Test for Equality in Scratch & Python

SCRATCH PYTHON

4.2 Advanced Syntax

 4.2.1 Lists

When utilising a list in Scratch, they are very resemblance to variables. Scratch must be

made a list and added items to the list. Whereas in Python, square brackets ([]) are

utilised to create a list, and the items in the list are separated using commas.

Table 9: Make a List in Scratch & Python

SCRATCH PYTHON

In Scratch, the “add block” adds an item to a list. Whereas in Python, it would be used the

“append” method.

Table 10: Add an item to a list in Scratch & Python

SCRATCH PYTHON

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

32

Removing items from lists is becoming in both languages using the delete or pop

function. In Scratch, the first item in a list is at position 1. In Python, it always starts

counting from 0 (zero).

Table 11: Delete an item from a list in Scratch & Python

SCRATCH PYTHON

 4.2.2 Indexing

Searching for an item in a list or string is done in both languages using its index. Scratch

uses the object block; in Python, it is used inside square brackets, the item number.

Table 12: Searching for an item in a list in Scratch & Python

SCRATCH PYTHON

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

33

 4.2.3 Randomness

A “random block selection” could use random numbers in the program Scratch, which

creates a random number in an area. In the case of Table 13 below, between 10 and 20.

Python's similar function called “randint” (random integer) expresses a range. However,

the “randint function” and “random module” must first be imported to use random

processes in Python programs. The “randint” function stores the code that returns an

integer number from a specified range. The “random” module is a part of the “standard

library” with Python.

Table 13: Randomness in Scratch & Python

SCRATCH PYTHON

In both languages, we can also select random items from a list. However, in Scratch, it

has to be used the item “pick random” and the “length of blocks” to be able to find and

“pick a random item” in a list. We can use the choice function to get a random item from

a list in Python. The “choice function” is imported from the “random module”.

Table 14: Selection of random items from a list in Scratch & Python

 4.2.4 Concatenation

SCRATCH PYTHON

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

34

Scratch uses the “join operator block” to join items together, whereas Python uses the

“addition operator”, a plus (+) sign, to join strings together. However, one of the critical

differences is that space is automatically put between the two strings in Scratch, whereas

it has to be entered in a further “space” in Python.

Table 15: Concatenation in Scratch & Python

SCRATCH PYTHON

 4.2.5 Input

Getting input from a user, in Scratch, we can use the “ask block”, which will prompt the

user to ask a question, wait for a response to be answered, and then put that value into a

particular variable called “answer”. A function in Python called “input()” will prompt

the user to enter some text, and when enter is pressed, it will be assigned to a variable.

Table 16: Getting input from a user in Scratch & Python

SCRATCH PYTHON

 4.2.6 Concurrency

Scratch's most notable and valuable feature is its ability to execute multiple code blocks

simultaneously. This means that the computer does not have to wait for one code block to

finish running before executing the next block. This is known as concurrency. So, it uses

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

35

the block "wait". This block is used to wait for [n] number of seconds, where [n] is any

integer.

Table 17: Concurrency in Scratch

SCRATCH

Most text-based programming languages like Python do not allow the programmer to

execute multiple parts of their program in parallel with such ease. The code must be

condensed into a single loop to replicate the Scratch program and work in Python. The

“sleep” function can be used to get the delay of the Python program. The “sleep”

function is imported from the “time” module.

Table 18: Concurrency in Python

PYTHON

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

36

The concept of concurrency can sometimes be difficult for students to understand, so it is

critical to tackling it reasonably early on when they transition to writing programs in a

text-based language.

4.2.7 Membership Operator

Membership operators are used to testing if a sequence is presented in an object. In

Scratch, it is used as “contains”, whereas in Python “, in” operator. Both return

“True” if a sequence with the specified value is present in the object.

Table 19: Membership Operator in Scratch & Python

SCRATCH PYTHON

4.2.8 Procedures

A procedure is a separate code module that executes some tasks and is referenced within

the main body of the source code. This code item can also be called a function,

subroutine, routine, method, or subprogram. Procedures can be utilised repeatedly

throughout a program and triggered by invoking the process.

In Scratch, we can use “My Blocks” to construct a procedure. “My Blocks” creates new

blocks, in which we should give a name and “define” their operation. We can also add

“inputs” to “My blocks” to define parameters. In Python, a function is determined

utilising the “def”. To invoke a function, we use the function name followed by brackets.

Moreover, the parameters are determined after the function name is inside the brackets.

Table 20: Procedures in Scratch & Python

SCRATCH PYTHON

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

37

 4.3 Turtle Graphics

“Turtle graphics” is a famous way of teaching programming to children. It was part of the

initial Logo programming language developed by Wally Feurzeig, Seymour Papert, and

Cynthia Solomon in 1967 (Python, n.d.). “Logo” language permitted the control of a

“turtle” device, a kind of robot associated with the computer (Rossum, Foundation,

Foundation, Python, & Groovy, n.d.). The turtle may move back and forward on an even

surface and alter its direction and orientation, taking off a mark shaping graphics. In

Scratch, each “sprite” has the choice to act just like the “Logo turtle”, deciding their

position, direction, and movement orientation, and they can take off a mark when they

move. The magnitude, form, and colour of the “sprite” do not influence the “mark” they

take off since the sprites are drawing with a “pen”. The “sprite” can also be invisible or

composed of, as it were, one “dot”, not including its drawing. In Python, a module

“import turtle” is imported, and the code is given suitable commands. So, the

robotic turtle (→) moves on the screen, drawing a line, starting at (0,0) in the (x,y)

plane. The turtle module is an “extended reimplementation” from Python. Below, itis

mentioned and explained the standard commands of turtle graphics, transitioning them

from Scratch to Python:

Table 21: Turtle Graphics Commands in Scratch & Python

SCRATCH PYTHON EXPLANATION

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

38

Move the object (turtle/sprite)

forward by the specified

distance in the direction it is

headed.

Turn the object's (turtle/sprite)

direction to the specified

degrees clockwise.

Turn the object's (turtle/sprite)

direction to the specified

degrees counterclockwise.

Set the object's (turtle/sprite) X

and Y coordinates to the

specified direction.

Change the X position to a

specified value.

Change the Y position to a

specified value.

Direct the object in a specified

direction.

Point the object in the specified

direction, rotating it.

Hold the object's direction,

measured in degrees.

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

39

Report the object's X position.

Report the object's Y position.

Change the object's size by the

specified amount.

Change the object's colour by a

pair of colour specification

hexadecimal RGB colours.

Disappear the object.

Appear the object.

Cause the object to start

drawing a trail.

Cause the object to stop

drawing a trail.

Set the pen's size by a specified

amount.

Sets the pen's colour to the

specified colour.

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

40

Figure 1:

Produce a clone of the object

stamped onto the stage, which

cannot be programmed.

Remove all marks made by the

pen or stamping.

 4.4 Debugging

“Debugging” is the procedure of detecting and removing existing and potential errors

(also called “bugs”) in a code that can cause it to act unexpectedly or crash. Debugging

is used to discover and fix bugs or defects to contain the flawed process of a software or

system (The Economic Times, n.d.).

Debugging is significant since it permits software engineers and developers to fix errors

in a program before launching it to the public. It is a complementary process to testing,

which includes learning how an error influences a program by and large. Thinking and

working efficient and logical is something nearly everyone can understand. It is an issue

of preparation and discipline. So, debugging the proper way will assist the student in

preparing logical and analytical skills (Lorenz, 2018), which, in my opinion, are the most

remarkable abilities for an engineer.

In Scratch, the programs do not crash. They might not do anything or do what is expected,

but they will never be shown error messages. When utilising a text-based language like

Python, the programs crash pretty frequently. A single misplaced quotation mark, a

missing colon, or a lower case letter where an upper case letter should be, and not only

will the program refuse to run, but it will be found that the IDE suddenly fills with red

text that might be barely comprehensible and therefore intimidating:

Figure 6: Type Error Example in “Mu” Python IDE

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

41

Thus, students must understand how to debug a text-based program when bugs are shown.

With some coaching and detailed explanations, the students can develop the debugging

skills required to resolve the issues in their programs' cases.

 4.4.1 Types of Error

There are three types of errors that can appear in a program: “syntax”, “runtime”, and

“semantic” errors. The first is relatively easy to detect in any standard programming

interface. The second may be effortless to spot, but this depends on the exact error. The

last might be hard to spot, but accomplishing so gets more effortless with practice.

4.4.1.1 Syntax Errors

Syntax Errors occur when the programmer does not follow the programming language's

rules. Sometimes the programming environment will refuse even to try and run the

program. Some standard cases are below:

❖ Missing colon

Figure 7 below shows a relatively simple syntax error in Python. The programming

environment, in this case, “Mu” Python IDE, caught the error and declined to

execute the program:

Figure 7: Syntax Error (Missing colon) - Example in "Mu" Python IDE

The line where the problem has occurred is given in the error message (figure 7),

and a mark (^) is used to designate the position of the error. A colon is missing after

the bracket on line 1 in this case.

❖ Additional bracket

Another standard error that is effortless caught:

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

42

Figure 8: Syntax Error (Additional Brackets) - Example in "Mu" Python IDE

This error message (figure 8) occurs when the programmer enters two brackets where

there should only be one.

❖ Missing square bracket

 This error can be a bit difficult:

IDE seems to suggest that the error is on line 2. However, the problem is the failure to

close the square brackets on line 1.

❖ Incorrect quotation mark

In the instance below (figure 10), the programmer has used a double quotation mark

matched with a single quotation mark:

Figure 9: Syntax Error (Missing square bracket) – Example in "Mu" Python IDE

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

43

Figure 10: Syntax Error (Not same Quotation Mark) - Example in "Mu" Python IDE

Quotation marks should be the same around a single string. They are not interchangeable.

4.4.1.2 Runtime Errors

When Python provides a traceback error, things can get a bit difficult. These are runtime

errors. They are not caught until the program executes, at which point a line of code that

the IDE cannot perform will lead to a traceback error getting printed. The traceback

provides information about what is incorrect in the code. Traceback errors may look

wearisome, but they can be beneficial once you break them down. In the instance below,

the error is that “true” has been used with a lowercase “t”, whereas it should be

“True”.

Figure 11: Runtime Error (name bug) - Example in " Mu" Python IDE

The IDE did not recognise “true” as a keyword in this error and assumed it was a

variable. Then when it tried to find the value of “true”, it discovered that it had no

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

44

value and kicked back a traceback error. The code can be fixed by replacing “true” with

“True”.

4.4.1.3 Semantics Errors

Semantic errors are the hardest to spot. The program will execute without problems, but it

will not produce the expected result. Utilising a debugging tool, an option in most

installed IDEs, to run the code step by step to find the exact point where the program

made a mistake. Another helpful trick for debugging is the add lots of “print()”

statements to the program to show the values of variables and the outputs of functions at

specific points in the program. This is useful for checking that the values of certain

variables are what you expect them to be. Also, another trick is the add “print()”

statements to show when the program is reached a particular part, to work out what code

is running. However, learning to debug the plan is going to take practice. Below (figure

12) is a program with a semantic error:

Figure 12: Semantic Error Example in Python

The error is the program does not cover all possible cases. To fix this error should be

added a point, which is executed in the case that “num is equal to 10” (figure 13):

Figure 13: Fixed Semantic Error Example in Python

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

45

4.5 Basic Differences between Scratch & Python

In Scratch, each sprite provides its code. Sprites are connected through shared resources

such as variables and messages. Typically, frequently confounding and leads to

ineffectively viable code. Moreover, each block is perused in a consecutive arrangement.

The code begins with an occasion or “Hat” block. Putting blocks inside external squares

is utilised to group blocks together. Each sprite has a set of blocks that may or may not be

associated.

In Python, each line of code is perused by a Python “Interpreter”, and the computer

executes the information directly and in successive arrange. In addition, each line is

examined from top to bottom, perusing each line from left to right. In case necessary, it is

assigned its return value to a variable. Also, indentation groups statements together.

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

46

Chapter 5 – STEAM Implementation

Having understood the coding process, students can create more dynamic programs. It can

become with physical computing hardware, such as LEGO WeDo 2.0. It will assist the

students in noticing the abstract concepts of Scratch and Python programming in practice.

5.1 LEGO WeDo 2.0

LEGO Education launched WeDo 2.0 in January 2016. Mainly, it establishes the WeDo

kits at elementary schools for children matured 7 to 11. But to my knowledge, the models

are immensely advanced for this target group. Numerous children will discover it

challenging to drive forward with a model and require a bit of offer assistance and support

to get to the end of a project. Moreover, WeDo 2.0 is a “physical computing” robot kit for

elementary students that develops programs on a computer or smart device based on a

connected robot kit utilising Bluetooth Low Energy (BLE) technology (Ruzzenente et al.,

2012; Chalmers, 2018; Olabe et al., 2011).

 5.1.1 WeDo 2.0 Robot Kit

WeDo 2.0 Robot kit includes 280 LEGO blocks and electronics such as a “Smarthub”, a

“Motor”, a “Tilt Sensor”, and a “Distance Sensor”:

5.1.1.1 Smarthub

The WeDo 2.0 “Smarthub”, or “brain of the robot”, shown in

Figure 14, is an electronic LEGO development block with two

ports for input-output devices (including “motor”, “distance

sensor”, and “tilt sensor”), a “green button” that can be pushed to

combine the robot with another device and an “RGB LED”.

Moreover, the Smarthub can play sounds at foreordained

frequencies. It utilises two “AA batteries” or a rechargeable battery as a power source. It

has coordinates BLE, which permits it to put through and communicate with computers,

tablets, and mobiles (LegoEducation, n.d.-b).

Figure 14: Lego WeDo 2.0
Smarthub

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

47

5.1.1.2 Motor

The WeDo 2.0 “Motor”, shown in Figure 15, can be turned

“clockwise” and “counterclockwise”. It is a “simple-

textured” motor that does not provide the robot's Smarthub

feedback on how much it has turned, so a certain tilt cannot

turn it, but the engine tries to turn at the power that the

robot's Smarthub has set for it (LegoEducation, n.d.-b).

5.1.1.3 Tilt Sensor

The WeDo 2.0 “Tilt sensor”, shown in Figure 16, sends the

robot's Smarthub report about its recent tilt. It can detect seven

positions (or orientations): tilt this way, tilt that way, tilt-up, tilt-

down, no tilt, any tilt, and shake. The information is shipped to

the Smarthub based on the angle of the two axes of the tilt

sensor within 90 degrees. (LegoEducation, n.d.-b).

5.1.1.4 Distance (Motion) Sensor

The WeDo 2.0 “Distance (Motion) sensor”, which can be seen in

Figure 17, provides the robot's “Smarthub” data about if an object

is currently in front of it and, if so, how distant it is. The distance

(motion) sensor can detect objects from a length of up to 15 cm.

The robot's Smarthub can also measure and register how many

motions it has seen in front of it (LegoEducation, n.d.-b).

 5.1.3 WeDo 2.0 & Scratch

To develop the Python WeDo 2.0 commands, we will initially study Scratch Language's

WeDo 2.0 block commands. The LEGO WeDo extension can be added within Scratch's

“More Blocks” category. We should use the choice “Add an Extension” and choose

“LEGO Education WeDo 2.0”. We present and explain WeDo 2.0 blocks in Table 22

below:

Figure 15: Lego WeDo 2.0 Motor

Figure 16: Lego WeDo 2.0 Tilt
Sensor

Figure 17: Lego WeDo 2.0
Distance (Motion) Sensor

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

48

Table 22: Commands Lego WeDo 2.0 in Scratch

It powers up a specific motor for a

particular amount of time. There are

four options for the block, recorded as

“motor”, “motor A”, “motor B”, and “all

motors” (Scratch MIT, n.d.).

It powers up a motor depending on the

drop-down input.

Depending on the drop-down input, it

powers off a motor.

It sets the power of a particular motor,

controlling the engine’s rate at which it

turns (Scratch MIT, n.d.).

It sets the direction in which a particular

motor should spin. There are three

options for the “direction”, recorded as

“this way”, “that way”, and “reverse”.

The first two correspond to clockwise

and counterclockwise. “Reverse” inverts

the direction (Scratch MIT, n.d.).

This “cap” executes a script when the

distance gets to be less (or greater) than

a particular value (Scratch MIT, n.d.).

It mentions the distance sensor value

(Scratch MIT, n.d.).

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

49

This “cap” block executes a script when

the kit is tilted in the specified direction.

The drop-down options are “up”,

“down”, “left”, “right”, and “any”

(Scratch MIT, n.d.).

It mentions whether or not the kit is

tilted in the specified direction (Scratch

MIT, n.d.).

It mentions the angle at which the kit

has been tilted in the specified direction.

In contrast with other tilt blocks, “any”

cannot be set in this block (Scratch MIT,

n.d.).

It sets the light colour on the kit LED to

the specified value (Scratch MIT, n.d.).

 5.1.4 WeDo 2.0 & Python

Interacting with Lego WeDo 2.0 with Python requires a system with Bluetooth Low

Energy (BLE) technology (such as android, raspberry pi, etc.). We utilised Raspberry Pi

and Python GATT Library to interact with WeDo's BLE system in this research. The

connection to the Raspberry Pi Platform is realised through Headless Mode with Direct

Ethernet Connection.

 5.1.4.1 Raspberry Pi

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

50

The Raspberry Pi (figure 18)

is a low-cost, credit-card-

sized computer plugged into a

computer screen or TV and

uses a standard keyboard and

mouse. It may be a small,

capable gadget that empowers

individuals of all ages to

investigate computing and

learn how to program in

languages like Python. It is a

popular platform because of its low price and high embeddedness (Raspberry Pi, n.d.;

Vega, 2018).

Headless Mode with Direct Ethernet Connection

“Headless Mode” is a mode that can

directly access the terminal or the

Desktop of Raspberry Pi (figure 19)

through VNC (Virtual Network

Computing) over the network (Wi-Fi or

Ethernet) without needing a monitor,

keyboard or mouse (Dexter, n.d.). To get

an Internet connection in Raspberry Pi

from the PC over the Ethernet port, we need to do the following in Windows 10 (Piltch,

2020.):

1. Explore the Network Connections menu, a portion of the old-school Control

Board. We can get to this screen by going to Settings → Network & Internet →

Wi-Fi, and then “Change Adapter Settings” on the proper side of the screen. This

works when we share an internet connection that comes to a PC from Wi-Fi or

Ethernet.

2. Right-click on the adapter connected to the Internet and select “Properties”.

3. Enable “Allow other network users to connect” on the “Sharing” tab.

Figure 19: Raspberry Pi Desktop

Figure 18: Raspberry Pi 4 Model B Platform

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

51

4. Select the Ethernet port connected to the Raspberry Pi from the “Home

networking connection” menu, and click “OK”.

Subsequently, we need to establish an SSH connection:

1. Download and install Putty, the leading Windows SSH client.

2. Enter “raspberrypi” or “raspberrypi. local” or the direct IP Address of the device

as the address we wish to connect to in Putty and click Open. We usually need to

add the “.local” if the Pi is directly connected to the PC through an Ethernet cable.

3. Click “Yes” if we get a security warning alert. It is not a problem.

4. Enter “pi” as username and “raspberry” as password.

Now, we are connected at the command prompt, but if we want to access the GUI,

complete with a desktop and floating windows, we will need to enable VNC:

1. Enter “sudo raspi-config” at the command prompt.

2. Select “Interfacing Options”.

3. Select “VNC”.

4. Select “Yes”.

5. Hit Enter to acknowledge the VNC server is enabled.

6. Select “Finish”.

7. On PC, Download, install and launch VNC Viewer.

8. Select “New connection” from the File menu.

9. Enter “raspberry. local” or the IP Address of Raspberry Pi direct in the “VNC

Server” field.

10. Click “OK”.

11. Double-click on the connection icon to connect.

12. Enter the Pi's username and password when prompted.

13. Click “OK”.

Standard Utilities

Besides Wi-Fi and Ethernet, Raspberry pi has incorporated Bluetooth, supporting BLE. It

supports Bluetooth Low Energy (BLE) by integrating a combo Wi-Fi and Bluetooth

chipset. It also uses Linux, leveraging the OpenSource BlueZ Bluetooth stack. This stack

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

52

supports both Bluetooth Classic and BLE. BlueZ contains a collection of utilities we will

use to associate and control devices (Vega, 2018).

Below (Table 23) is a list of the significant standard utilities (Raspberry Pi, n.d.):

Table 23: Standard Utilities of Raspberry Pi

Utility Function

hciconfig Configures the HCI interface to the

radio

hcitool Configures Bluetooth connections

gattool Connect to devices and control GATT

The BT adapter provides Bluetooth capability through an interface and the

“hciconfig” utility. This utility shows (figure 20) that our interface (WeDo 2.0) is the

“hci0”:

Figure 20: Manipulation of Raspberry Pi Utility "hciconfig"

To connect to BLE devices, we need to scan using the “hcitool” utility (figure 21) with

“hci0” as the scan and request an LE Scan. So, we find the Bluetooth MAC address of our

WeDo 2.0 hub :

Figure 21: Manipulation of Raspberry Pi Utility "hcitool"

Then, we use the “gatttool” utility (Figure 22) to manipulate the GATT of the WeDo

2.0 hub. One of the most important tasks of “gattool” is to read and write to

characteristics:

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

53

Figure 22: Manipulation of Raspberry Pi "gattool"

5.1.4.2 Bluetooth Low Energy (BLE) Technology

Bluetooth Low Energy (BLE) was included in the Bluetooth standard in 2010 as a portion

of the Bluetooth Core Specification version 4.0. BLE was made to empower items that

would support information exchange compared to conventional Bluetooth but with lower

energy utilisation, complexity and price. The lower energy utilisation is due to the littler1

information packets sent in BLE and less habitually than in conventional Bluetooth,

making BLE most reasonable for devices that do not require large-scale or persistent

information communications (Bhargava, 2017; Developers, n.d.).

The Bluetooth LE architecture, shown in Figure 23, is separated into three major parts:

the controller, host, and application. A controller is a physical device that can transmit and

get radio signals and deciphers those signals as information packets. The controller

incorporates lower layers of a Bluetooth LE protocol stack. The host contains the upper

layers of the BLE protocol stack. It oversees the communication between the devices

(counting communication security) and decides how to get to the information transmitted

by the device. The application is the top layer of the architecture and incorporates the

client interface, logic, and information administration made, concurring with the

procedure of the application (Bhargava, 2017; Argenox, n.d.).

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

54

Figure 23: Bluetooth Low Energy (BLE) Architecture (source: Bhargava, 2017)

Additionally, there is an institutionalised HCI (Host Controller Interface) protocol for

communication between the host and the controller. HCI is designed to permit controllers

and hosts made by diverse companies to communicate without any issues (Argenox, n.d.;

Bhargava, 2017).

 5.1.4.3 Generic Attribute (GATT) Profile

GATT (Generic Attribute Profile) is a component of the host. This system determines the

BLE-based information model and the related methods by which devices can find, read,

and adjust each other's information. GATT is built on the ATT protocol. ATT task is

based on “addressable” information within the shape of attributes. The attribute is an

information entity that holds data around itself and any value available through a one-of-

a-kind “handle”, depending on the get-to rights of the given point. GATT makes a

hierarchy that composes the subtle elements and creates a solid system for building

GATT-based profiles (Adafruit, n.d.; Leonardi et al., 2018).

The arrangement appears in Figure 24 below:

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

55

Figure 24: Generic Attribute (GATT) profile services (Source: Leonardi et al., 2018)

The attributes are gathered under GATT services. Each Service has characteristics that

have descriptors. Services are gathered into characteristics that are related to a particular

substantive objective. Moreover, the Service references other services utilising the

attribute, whose value refers to another service. The characteristics have two attributes: an

attribute that holds data almost the properties of the information in that characteristic and

an attribute that stores the value of this characteristic. Also, a characteristic contains

descriptors that, if accessible, give extra data around the characteristic and its information

(Adafruit, n.d.; Leonardi et al., 2018).

GATT operations are entirely determined methods under which GATT-based information

can be transmitted. Its operations are four: discovering services and characteristics,

reading the values of “attributes” and “descriptors”, writing the values of characteristics

and descriptors, and updates sent by the server. There are two ways to find services; we

can ask the server for a list of all services, and search for a service by the UUID

(Universal Unique Identifier) of that service. There are also two ways to discover the

characteristics; we ask the server for a list of all the service characteristics found or

explore the feature by UUID. It is also conceivable to inquire about the server for all

descriptors of the given characteristic within the case of a found characteristic (Adafruit,

n.d.; Leonardi et al., 2018).

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

56

The characteristic and descriptor values can be read from their handles, and the

characteristic’s value can also be read from its UUID. Assume the get-to rights for a given

characteristic or descriptor are such that writing values are permitted. In that case, it is

conceivable to write the value of the characteristic or descriptor by sending a packet to the

server containing the attribute of the value to be changed and the new value (Adafruit,

n.d.; Leonardi et al., 2018).

5.1.4.4 Gattlib Python Library

“Gattlib” is a python library (Linux only) to access Bluetooth LE devices. It utilises the

command “gatttool” within the “BlueZ” package. BlueZ is a Linux operating system

software that actualises the Bluetooth protocol stack. So, the gatttool in “Gattlib” can only

be utilised on Linux computers. Also, this library gives two ways of work: sync and async

(LabapartGitHub, n.d.; Oscaracena, n.d.).

The Bluetooth LE GATT protocol is asynchronous, so when we have to read a few

values, we make a request and hold up for a response. From the programmer's viewpoint,

we must pass a callback object and return it promptly when we call a read method. The

response will be “injected” into that callback object. This Python library permits to call

utilising a callback object (async) or without it (sync). If we do not give a callback

(working sync.), the library inside will make one and hold up until a response arrives or a

timeout terminates. The call will return with the received information (LabapartGitHub,

n.d.; Oscaracena, n.d.).

We can utilise the “DiscoveryService” provided to discover BLE devices, which shows

the Bluetooth device we need to use. Then we call the method “discover” with a timeout.

It will return a “dictionary” with all devices that responded to the “discovery” and the

address and name. To read data, we first need to make a “GATTRequester”, passing the

device's address through connecting. Then, we can read a value determined by its

“handle” or its “UUID”. Writing data is the same as “read”. We need to make a

“GATTRequest” object and utilise the method “write_by_handle” to send the data. This

method will issue a written request (LabapartGitHub, n.d.; Oscaracena, n.d.).

 5.1.4.5 LEGO Wireless Protocol (LWP)

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

57

The LEGO Bluetooth Hub Profile contains a single BLE Generic Attribute Profile

(GATT) service. The service lets users get data regarding the LEGO Hub (name, battery

level, etc.) and interact with connected sensors and motors (LegoGitHub, n.d.). Some

tables from the website “LEGO GitHub” are in figure 25:

Figure 25: LEGO Wireless Protocol (LWP) GATT services

5.2 Python Commands Development for WeDo 2.0

We constructed experimental commands in Python's programming language, permitting a

suitable connection to the WeDo 2.0 robot using functions (Motor Activation, RGB LED

Color Change, Sound Playing, Distance Sensor Activation, Tilt Sensor Activation). This

would allow STEAM educational robotics to be taught with Python utilising WeDo 2.0.

Therefore, in developing Smarthub (or “brain” of the robot) commands, it was necessary

to know more precisely how the commands are formed in the form of byte sequences.

LEGO's GitHub profile provided a lot of information to interact with LEGO Hub through

the “LEGO Wireless Protocol (LWP) GATT services” (LegoGitHub, n.d.). Also, a blog

of Portuguese origin called “O Falcão” was a great help, where the blog's author had

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

58

made various attempts through the Command Prompt (CMD) to give commands to WeDo

2.0 and to read values from the sensors (Falcão, 2016).

However, it was vital to discover a Python library that could organise Bluetooth LE

communication to begin to construct functions in Python Language. This library is called

“Gattlib”, which requires a framework with Bluetooth Low Energy (BLE) technology. So,

we utilised the Raspberry Pi Platform with the created Python commands and read

characteristic values from the sensors to communicate with WeDo 2.0.

 5.2.1 Python Library “Gattlib” Installation

We should use the Python module “pip” to install the Python GATT library (gattlib),

using the Python module “pip”. So, we should use to enter “pip install

gattlib” at the command prompt of Raspberry Pi (Figure 26):

Figure 26: Installing Python Gattlib in command prompt

 5.2.2 Smarthub Connection

For the Smarthub connection, we need to create a “GATTRequester” object, passing

the device address (each WeDo 2.0 device has a unique address) and interface “hci0” of

WeDo 2.0 to connect (figure 27).

Figure 27: Connecting WeDo 2.0 Smarthub with GATTRequester object

This process assumes that the WeDo 2.0 smarthub is kept close to the computer for

maximum signal strength during the connection. Then we should press the button on

Smarthub to connect.

 5.2.3 WeDo 2.0 Python Functions

For the development of WeDo 2.0 Python Functions, we used the method

“write_by_handle” to send the “handle” features of the device.

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

59

 5.2.3.1 Motor Activation Functions

We used to send the data with a sequence of 4 bytes with handle features. The first byte

represents the port. This means the value is 01 for Port A or 02 for Port B. The last byte

activates a specific function (e.g. TURN_ON etc.) to construct motor activation functions

(Figures 28 - 31).

❖ Turn on / off

We need to call the function “ motor_on()” to turn on the motor in our main program

(figure 28):

Figure 28: Function to turn on the motor

We need to call the function “ motor_off()” to turn off the motor in our main program

(figure 29):

Figure 29: Function to turn off the motor

❖ Turn right / left

We need to call the function “ motor_that_way()” to turn right the motor in our

main program (figure 30):

Figure 30: Function to turn right the motor

We need to call the function “ motor_this_way()” to turn left the motor in our main

program (figure 31):

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

60

Figure 31: Function to turn left the motor

 5.2.3.2 LED RGB Color Change Function

We used the handle features and 11 bytes for each colour to construct the LED RGB

Colour Change Function (Figure 34). The first byte, “06”, is the LED port, the second

byte is the command sent to the port, so “04” indicates “change colour”, and the third byte

is the length of the arguments of the command, so “01” means that the colour is just 1-

byte length. For the colours of LED, each is a different colour. They exist 11 values for

each colour (Table 24):

Table 24: The 11 values of LED Colors

00

Off

01

Pink

02

Purple

03

Blue

04

Cyan

05

Light

Green

06

Green

07

Yellow

08

Orange

09

Red

0A

Light

Blue

For instance, the handle “06040106” indicates that the Smarthub’s LED changes to

Green.

So, we need to call the function “colors()” to change the colours of LED in our main

program (figure 32):

Figure 32: Function to change the colours of LED

 5.2.3.4 Sound Playing Function

We controlled the sound by the same handle operated to control the motor and the RGB

LED (0x003d) to construct the sound playing function (Figure 35). The “port” is “05”,

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

61

and the “command” to trigger the sound is “02”, pursued by a payload of “04” bytes

covering:

• the Frequency in Hz (2 bytes)

• the Duration in Ms (2 bytes)

Calling the sound function produces a piezo tone. The piezo tone alerts us when a certain

threshold is met. Therefore, we need to call the function “sound()” to play a piezo tone

in our main program (figure 33):

Figure 33: Function to play a piezo tone

 5.2.3.5 Motion (Distance) Sensor Activation Function

We controlled the distance sensor by the same handle operated to control the motor, the

RGB LED, and the Piezo Tone, and by its operating mode value to construct the motion

(distance) sensor activation function (Figure 34). Python Function based on this formula:

Furthermore, we utilise the python library “Pyserial” to connect to WeDo 2.0 port with

raspberry pi. From this library, we use three functions:

• open () → open the serial port

• close () → close the serial port

• readline () → read a string from the serial port

Then, we need to call the function “distance()” to measure the distance between an

object in our main program:

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

62

Figure 34: Function to measure the distance between an object

 5.2.3.6 Tilt Sensor Activation Function

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

63

We controlled the tilt sensor by its handle value and operating mode value to construct the

tilt sensor activation function (Figure 35).

Now, we need to call the function “tilt()” to measure the tilt of an object in our main

program:

Figure 35: Function to calculate the tilt of an object

 5.3 Use of the Python Functions vs Scratch with Lego WeDo 2.0

This section presents some projects using the constructed Python functions we developed

versus the same programs in Scratch. Based on the lesson plan “Speed” on Lego

Education Website (LegoEducation, n.d.-a), we created the programs in Scratch and

Python below as examples for activities in the STEAM advanced classrooms. In the

examples below, for activation of the robot car, we used the Lego WeDo 2.0 Robot Kit,

the Scratch Programming Environment with the WeDo Scratch block commands, and the

Raspberry Pi Platform with the WeDo Python functions (Figure 36):

Figure 36: Using LEGO WeDo 2.0 Blocks for robot car construction in the "Speed" lesson plan framework of Lego with
the Raspberry Pi Platform and the Python Functions.

Moreover, for development, we used an infinite loop (or endless loop), a loop that is a

sequence of instructions continually repeated until a specific condition is reached. Scratch

has a block type for making infinite loops, called a “forever block”. There is no

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

64

equivalent, no clear forever block in Python, but a conditional loop is used, constantly

evaluating “True”. So, while “True”, running this code is equivalent to forever. In

addition, we used the “sleep” function in Python code to get the program's delay. The

“sleep” function is imported from the “time” module. In Scratch code, we utilised the

block “wait”. This block is used to wait for an “n” number of seconds, where “n” is any

integer or float. This is known as concurrency.

Project A: Using Motor Activation Functions

In this project, we used the motor activation functions in Python (Figure 37 [A]) and

Scratch (Figure 37 [B]).

To turn on/off the Smarthub, in Python (Figure 37 [A]), we utilised the “motor_on /

motor_off” functions, whereas, in Scratch (Figure 37 [B]), we used the “turn on/off”

block command, in which we had to set the port with a choice: “Motor A”, “Motor B”, or

“All Motors”.

Also, to turn left/right the motor, we used the “motor_this_way / motor_that_way”

functions with the parameter “movehub” (which contains the connection with Smarthub

of WeDo 2.0) in Python. In contrast, in Scratch, we utilised the “set [Motor A/B/All]

direction to that / this way” block command. Clearly, in Scratch, we should set the motor's

port and then the motor's direction left or right, contrasting with Python code.

Figure 37: Motor Activation Functions: (A) Python (B) Scratch

(A)

(B)

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

65

Project B: Using Distance Sensor Activation Function

In this project, we used the distance sensor activation function in Python (Figure 38 [A])

and Scratch (Figure 38 [B]).

To measure the distance between an object, in Python code (Figure 38 [A]), we used the

“distance” function with parameters the connection of Smarthub (movehub), the mode of

distance sensor (handle) and the port (A or B). Similarly, we utilised the “distance” block

command in Scratch code (Figure 38 [B]).

Also, in Python code, we used a condition with an “if” statement to control the distance

measurement so that if the “distance of the object is bigger than 6” from the robot, output

to the screen the message “ROAD FREE!”, that is, the road has not some obstacle,

differently if the distance of the object is smaller than 6” from the robot, output to the

screen the message “OBSTACLE!”, that is, it detected some obstacle. In contrast, in

Scratch, we utilised the “wait until” block command, which is a control block. This block

pauses its script until the specific “Boolean” condition is “true”. In Scratch, the control of

distance measurement becomes with a similar way to Python code. However, in Scratch,

to output to the screen should create a sprite talk by utilising the “say” block command.

Moreover, to produce a piezo tone alerting when an obstacle is detected, in Python, we

used the function “sound”. In Scratch, we used the “start sound” block command, a

Scratch command but not a specific WeDo 2.0 command, such as in Python code.

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

66

Figure 38: Distance Sensor Activation Function : (A) Python (B) Scratch

In addition, at the end of the code in both languages, output to the screen the distance

measurement, showing up an “n” number in centimetre (cm). In Python, the measurement

is float numbers (Figure 39 [A]), whereas, in Scratch, the numbers are integers (Figure 39

[B]).

(A)

(B)

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

67

Figure 39: Output to the screen: (A) Python (B) Scratch

Project C: Using Tilt Sensor Activation Function

In this project, we used the tilt sensor activation function in Python (Figure 40 [A]) and

Scratch (Figure 40 [B]).

To measure the tilt of the robot, in Python code (Figure 40 [A]), we used the “tilt”

function with parameters the connection of Smarthub (movehub), the mode of tilt sensor

(handle) and the port (A or B). In Scratch code (Figure 40 [B]), we utilised the “wait

until” block command to activate the “tilt” block command only when the sensor detects

some slope.

In addition, when the sensor detects any tilt in both codes, it outputs the message “Tilt!”

to the screen.

(A)

(B)

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

68

Figure 40: Tilt Sensor Activation Function : (A) Python (B) Scratch

Project D: Using LED RGB Color Change Function

In this project, we used the LED RGB colour change function in Python (Figure 41 [A])

and Scratch (Figure 41 [B]).

To change the LED colours, in Python code (Figure 41 [A]), we used the “colors”

function to change the LED colours with the parameter of the connection of Smarthub

(movehub). In Scratch code, we utilised the “set light color to” block command.

Figure 41: LED RGB Colour Change Function: (A) Python (B) Scratch

Additionally, in Scratch code (Figure 41 [B]), we used a further block command, the “pick

random 0 to 10”, which changes randomly to 11 colours of the LED, contrasting Python code,

in which the colours change automated (Figure 42):

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

69

Figure 42: The Output of the 11 LED Colors of WeDo 2.0 with Python Code

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

70

Chapter 6 - Conclusion

Through investigations and various experimentations, the lessons with robotic assignments

with Lego WeDo 2.0 motivated students, and they also effectively comprehended the

fundamental principles of STEAM (Üşengül & Bahçeci, 2020). They are typically done

using motorised LEGO models and straightforward programming. WeDo 2.0 bolsters a

hands-on, “minds-on” knowledge solution that offers students the confidence to make

questions and instruments to discover the answers and solve real-life issues.

As described in the previous chapters, the dissertation's essential subject was moving from

Scratch to Python programming. For this reason, experimental commands/functions for

Lego WeDo 2.0 in Python were developed for STEAM robotics learning in advanced

classes.

The first argument of the thesis was comparing and contrasting differences in the language

rules of Scratch and Python. This argument was significant for smoothly shifting from one

programming language to another and assisting students effectively. With Scratch coding,

doing and learning from mistakes is not as predominant, as students work inside the

boundaries of predefined squares of code and cannot exceed those boundaries. Students

using novice programming, such as Scratch, gain an incorrect impression of coding because

this language is more for beginners and not advanced students (Moors et al., 2018). Over

time, students desire to create more complex projects, so Scratch does not cover them

(Papadakis & Orfanakis, 2018). In contrast, Python coding presents numerous real-world

challenges that assist students in learning how to solve issues. By learning real-world

programming, such as Python, they can apply it in their future careers.

The second argument of the thesis was the construction of experimental functions in Python

through a Raspberry Pi Platform based on Scratch for operating WeDo 2.0. With

educational robots, like WeDo 2.0, students illustrate improvement, show “positive

attitudes” toward STEAM, select engineering as a principal, and join an “iterative design

method” (Majgaard & Mc-Kinney, 2010; Papadakis, Vaiopoulou, Sifaki, Stamovlasis, &

Kalogiannakis, 2021). These constructed functions will assist the students in noticing the

abstract concepts of Scratch and Python programming in practice and allow STEAM

educational robotics to be taught with Python utilising WeDo 2.0. This will give in students

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

71

a “feedback-oriented learning environment”, a “collaborative working environment”, and

openings to work and investigate arrangements for real-world issues.

6.1 Future Work

Future work should focus on testing the constructed Python functions in STEAM

classrooms and extracting conclusions about the effectiveness of the learning procedure and

the problem-solving methods students utilised on the different assignments or the kinds of

blunders that students made on the programming assignments. This could permit educators

to construct suitable activities for advanced students (Papadakis & Kalogiannakis, 2022). In

addition, experts could evaluate the implementation of the commands/functions to STEAM

Education, Programming and Pedagogy.

Moreover, many parts of this work can be upgraded and reconfigured. It could upgrade the

tilt function to offer more than one orientation and calculate the angle of these. Another

upgrade that can be done is to construct more functions for the motor to control the

low/high intensity and to reverse direction.

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

72

References

Ackermann, E. (2001). Piaget’s Constructivism, Papert’s Constructionism: What’s the

difference?

Adafruit, L. S. (n.d.). GATT | Introduction to Bluetooth Low Energy | Adafruit Learning

System. Retrieved 17 March 2022, from https://learn.adafruit.com/introduction-to-

bluetooth-low-energy/gatt

Afari, E., & Khine, M. S. (2017). Robotics as an Educational Tool: Impact of Lego

Mindstorms. International Journal of Information and Education Technology, 7(6),

437–442. Retrieved from https://doi.org/10.18178/IJIET.2017.7.6.908

Almeida, T. O., De Netto, J. F. M., & Rios, M. L. (2017). Remote robotics laboratory as

support to teaching programming. Proceedings - Frontiers in Education Conference,

FIE, 2017-Octob, 1–6. Retrieved from https://doi.org/10.1109/FIE.2017.8190472

Ampartzaki, M., Kalogiannakis, M., Papadakis, S., & Giannakou, V. (2022). Perceptions

About STEM and the Arts: Teachers’, Parents’ Professionals’ and Artists’

Understandings About the Role of Arts in STEM Education. Lecture Notes in

Educational Technology, 601–624. Retrieved 10 July 2022 from

https://doi.org/10.1007/978-981-19-0568-1_25/COVER/

An, S. (2020). The impact of STEAM integration on preservice teachers’ disposition and

knowledge. Journal of Research in Innovative Teaching & Learning, 13(1), 27–42.

Retrieved from https://doi.org/10.1108/jrit-01-2020-0005

Argenox. (n.d.). Using BLE Devices with a Raspberry Pi. Retrieved 23 January 2022,

from https://www.argenox.com/library/bluetooth-low-energy/using-raspberry-pi-ble/

Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. (2015). From scratch to ‘Real’

programming. ACM Transactions on Computinig Education, 14(4). Retrieved from

https://doi.org/10.1145/2677087

Astuti, Nurul Heni; Rusilowati, Ani; Subali, B. (2021). View of STEM-Based Learning

Analysis to Improve Students’ Problem Solving Abilities in Science Subject: a

Literature Review. Retrieved 23 June 2022, from

https://journal.unnes.ac.id/sju/index.php/jise/article/view/38505/16063

Bart, A. C., Tibau, J., Tilevich, E., Shaffer, C. A., & Kafura, D. (2017). BlockPy: An

Open Access Data-Science Environment for Introductory Programmers. Computer,

50(5), 18–26. Retrieved from https://doi.org/10.1109/MC.2017.132

Benotti, L., Gómez, M. J., & Martínez, C. (2017). UNC++Duino: A kit for learning to

program robots in python and C++ starting from blocks. Advances in Intelligent

Systems and Computing, 457, 181–192. Retrieved from https://doi.org/10.1007/978-

3-319-42975-5_17

Bhargava, M. (2017). Architecture of Bluetooth Low Energy | IoT Projects with

Bluetooth Low Energy. Retrieved 19 March 2022, from

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

73

https://subscription.packtpub.com/book/hardware_and_creative/9781788399449/1/0

1lvl1sec11/architecture-of-bluetooth-low-energy

Blanchard, J., Gardner-Mccune, C., & Anthony, L. (2019). Effects of Code

Representation on Student Perceptions and Attitudes Toward Programming.

Proceedings of IEEE Symposium on Visual Languages and Human-Centric

Computing, VL/HCC, 2019-Octob, 127–131. Retrieved from

https://doi.org/10.1109/VLHCC.2019.8818762

Blank, D., Meeden, L., & Kumar, D. (2003). Python robotics, (January), 317. Retrieved

from https://doi.org/10.1145/611993.611996

Catlin, D., & Woollard, J. (2014). Educational Robots and Computational Thinking. In

Proceedings of 4th International workshop teaching robotics, teaching with robotics

& 5th International conference robotics in education (pp. 144–151).

Chalmers, C. (2018). Robotics and computational thinking in primary school.

International Journal of Child-Computer Interaction, 17, 93–100. Retrieved from

https://doi.org/10.1016/j.ijcci.2018.06.005

Dell’Erba, M. (2019). Preparing Students for Learning, Work and Life through STEAM

Education. Policy Brief, Education Commission of the States, 2019-Sep. Education

Commission of the States. Retrieved 13 July 2022 from

https://eric.ed.gov/?id=ED598088

Developers, A. (n.d.). Bluetooth Low Energy | Android Developers. Retrieved 17 January

2022, from https://developer.android.com/guide/topics/connectivity/bluetooth/ble-

overview

Dexter, I. (n.d.). Connecting to Raspberry Pi without a monitor for Beginners. Retrieved

23 June 2022, from https://www.dexterindustries.com/howto/connecting-raspberry-

pi-without-monitor-beginners/

Dorling, M., & White, D. (2015). Scratch: A way to logo and python. SIGCSE 2015 -

Proceedings of the 46th ACM Technical Symposium on Computer Science

Education, 191–196. Retrieved from https://doi.org/10.1145/2676723.2677256

Elkin, M., Sullivan, A., & Umashi Bers, M. (2014). Implementing a Robotics Curriculum

in an Early Childhood Montessori Classroom. Journal of Information Technology

Education: Innovations in Practice, 13, 153–169. Retrieved from

https://doi.org/10.28945/2094

Erba, M. D. (2019). Policy Considerations for STEAM Education - Education

Commission of the States. Retrieved 13 March 2022, from

https://www.ecs.org/policy-considerations-for-steam-education/

Evripidou, S., Georgiou, K., Doitsidis, L., Amanatiadis, A. A., Zinonos, Z., &

Chatzichristofis, S. A. (2020). Educational Robotics: Platforms, Competitions and

Expected Learning Outcomes. IEEE Access, 8. Retrieved from

https://doi.org/10.1109/ACCESS.2020.3042555

Falcão, O. (2016). WeDo 2.0 – reverse engineering – O Falcão. Retrieved 15 May 2022,

from https://ofalcao.pt/blog/series/wedo-2-0-reverse-engineering

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

74

Herro, D., Quigley, C., & Cian, H. (2018). The Challenges of STEAM Instruction:

Lessons from the Field. Https://Doi.Org/10.1080/01626620.2018.1551159, 41(2),

172–190. Retrieved 13 July 2022 from

https://doi.org/10.1080/01626620.2018.1551159

Hodges, S., Sentance, S., Finney, J., & Ball, T. (2020). Physical Computing: A Key

Element of Modern Computer Science Education. Computer, 53(4), 20–30.

Retrieved from https://doi.org/10.1109/MC.2019.2935058

Huang, K.H., Yang, T.M., & Cheng, C. ., Huang, K. H., Yang, T. M., & Cheng, C. C.

(2013). Engineering to see and move: Teaching computer programming with

flowcharts vs. LEGO robots. International Journal of Emerging Technologies in

Learning, 8(4), 23–26. Retrieved 3 January 2022 from

https://doi.org/10.3991/ijet.v8i4.2943

Huei, Y. C. (2015). Benefits and introduction to python programming for freshmore

students using inexpensive robots. Proceedings of IEEE International Conference on

Teaching, Assessment and Learning for Engineering: Learning for the Future Now,

TALE 2014, (December), 12–17. Retrieved from

https://doi.org/10.1109/TALE.2014.7062611

Juškevičienė, A., Stupurienė, G., & Jevsikova, T. (2020). Computational thinking

development through physical computing activities in STEAM education. Retrieved

from https://doi.org/10.1002/cae.22365

Kalovrektis, K., Papageorgiou, T., Psycharis, S., Theodorou Telecommunications, P.,

Vasiliki Ntourou, G., & Xenakis, A. (2021). The Impact of Physical Computing and

Computational Pedagogy on Girl’s Self- Efficacy and Computational Thinking

Practice. IEEE Global Engineering Education Conference (EDUCON). Retrieved 15

March 2022 from https://doi.org/10.1109/EDUCON46332.2021.9454003

Khamphroo, M., Kwankeo, N., Kaemarungsi, K., & Fukawa, K. (2017). MicroPython-

based educational mobile robot for computer coding learning. 8th International

Conference on Information and Communication Technology for Embedded Systems,

IC-ICTES 2017 - Proceedings. Retrieved from

https://doi.org/10.1109/ICTEmSys.2017.7958781

Khanlari, A. (2014). Effects of educational robots on learning STEM and on students’

attitude toward STEM. 2013 IEEE 5th International Conference on Engineering

Education: Aligning Engineering Education with Industrial Needs for Nation

Development, ICEED 2013, 62–66. Retrieved from

https://doi.org/10.1109/ICEED.2013.6908304

Kim, T., & Han, S. (2018). Development of Python Education Program for Block Coding

Learners. Journal of The Korean Association of Information Education, 22(1), 53–

60. Retrieved from https://doi.org/10.14352/jkaie.2018.22.1.53

Korkmaz, Ö. (2016). The Effect of Scratch- and Lego Mindstorms Ev3-Based

Programming Activities on Academic Achievement, Problem-Solving Skills and

Logical-Mathematical Thinking Skills of Students. Malaysian Online Journal of

Educational Sciences, 4(3), 73–88.

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

75

LabapartGitHub. (n.d.). labapart/gattlib: Library to access GATT information from BLE

(Bluetooth Low Energy) devices. Retrieved 17 March 2022, from

https://github.com/labapart/gattlib

Lamb, A., & Johnson, L. (2011). Scratch: Computer Programming for 21st Century

Learners. Teacher Librarian, 38(4), 64–68. Retrieved 13 March 2022 from

https://scholarworks.iupui.edu/bitstream/handle/1805/8622/38-4.pdf?sequence=1

Lawhead, P. B., Duncan, M. E., Bland, C. G., Goldweber, M., Schep, M., Barnes, D. J., &

Hollingsworth, R. G. (2003). A road map for teaching introductory programming

using LEGO© mindstorms robots. ACM SIGCSE Bulletin, 35(2), 191–201.

Retrieved from https://doi.org/10.1145/782941.783002

LegoEducation. (n.d.-a). Speed | WeDo 2.0 Lesson Plan | LEGO® Education. Retrieved 5

July 2022, from https://education.lego.com/en-us/lessons/wedo-2-

science/speed/student-worksheet

LegoEducation. (n.d.-b). WeDo 2.0 Support | Everything You Need | LEGO® Education.

Retrieved 8 January 2022, from https://education.lego.com/en-us/product-

resources/wedo-2/teacher-resources/teacher-guides

LegoGitHub. (n.d.). LEGO Wireless Protocol 3.0.00 Doc v3.0.00 r17 documentation.

Retrieved 17 March 2022, from https://lego.github.io/lego-ble-wireless-protocol-

docs/index.html#document-1-Introduction

Leonardi, L., Patti, G., & Lo Bello, L. (2018). Multi-Hop Real-Time Communications

over Bluetooth Low Energy Industrial Wireless Mesh Networks. IEEE Access,

6(September), 26505–26519. Retrieved from

https://doi.org/10.1109/ACCESS.2018.2834479

Lorenz, T. (2018). The Importance of Debugging. Retrieved 15 March 2022, from

https://blog.bitlabstudio.com/the-importance-of-debugging-886df73427ea

Majgaard, G., & Mc-Kinney, M. (2010). Design-based Action research in the World of

Robot Technology and Learning. In The Third IEEE International Conference on

Digital Game and Intelligent Toy Enhanced Learning: DIGITAL 2010. IEEE Press

(pp. 85–92). IEEE Press. Retrieved 14 August 2022 from www.playalive.dk

Mayerové, K., & Veselovská, M. (2017). How to teach with LEGO WeDo at primary

school. Advances in Intelligent Systems and Computing, 457, 55–62. Retrieved from

https://doi.org/10.1007/978-3-319-42975-5_5

McGregor, D. (2007). Developing Thinking; Developing Learning. British-Journal-of-

Educational-Studies, 466–468. Retrieved from

https://doi.org/http://dx.doi.org/10.1111/j.1467-8527.2007.00388_2.x

Moors, L., Luxton-Reilly, A., & Denny, P. (2018). Transitioning from Block-Based to

Text-Based Programming Languages. Proceedings - 2018 6th International

Conference on Learning and Teaching in Computing and Engineering, LaTiCE

2018, (April 2018), 57–64. Retrieved from

https://doi.org/10.1109/LaTICE.2018.000-5

Murcia, K., Pepper, C., Joubert, M., Cross, E., & Wilson, S. (2020). A framework for

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

76

identifying and developing children’s creative thinking while coding with digital

technologies. Issues in Educational Research, 30(4), 1395–1417.

Noviani, S., & Wangid, M. N. (2018). Developing Inquiry-Based Lectora Multimedia in

Order to Increase the Logical Ability and the Creative Thinking. Jurnal Prima

Edukasia, 6(1), 89–101. Retrieved from https://doi.org/10.21831/jpe.v6i1.9653

Olabe, J. C., Olabe, M. A., Basogain, X., Maiz, I., & Castaño, C. (2011). Programming

and Robotics with Scratch in Primary Education. Education in a Technological

World: Communicating Current and Emerging Research and Technological Efforts,

(July 2016), 356–363.

Oscaracena, G. (n.d.). oscaracena/pygattlib. Retrieved 17 March 2022, from

https://github.com/oscaracena/pygattlib

Papadakis, S., & Kalogiannakis, M. (2022). Learning Computational Thinking

Development in Young Children With Bee-Bot Educational Robotics. Research

Anthology on Computational Thinking, Programming, and Robotics in the

Classroom, 2, 926–947. Retrieved from https://doi.org/10.4018/978-1-6684-2411-

7.CH040

Papadakis, S., Kalogiannakis, M., Zaranis, N., & Orfanakis, V. (2016). Using Scratch and

App Inventor for teaching introductory programming in secondary education. A case

study. International Journal of Technology Enhanced Learning, 8(3–4), 217–233.

Retrieved from https://doi.org/10.1504/IJTEL.2016.082317

Papadakis, S., & Orfanakis, V. (2018). Comparing novice programing environments for

use in secondary education: App Inventor for Android vs. Alice. International

Journal of Technology Enhanced Learning, 10(1–2), 44–72. Retrieved from

https://doi.org/10.1504/IJTEL.2018.088333

Papadakis, S., Vaiopoulou, J., Sifaki, E., Stamovlasis, D., & Kalogiannakis, M. (2021).

Attitudes towards the use of educational robotics: Exploring pre-service and in-

service early childhood teacher profiles. Education Sciences, 11(5). Retrieved from

https://doi.org/10.3390/educsci11050204

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. New York,

New York, USA: Basic Books.

Pham, Q. T., Misra, S., Huynh, L. N. H., & Ahuja, R. (2019). Investigating Enterprise

Resource Planning (ERP) Effect on Work Environment BT - Computational Science

and Its Applications – ICCSA 2019 (Vol. 1). Springer International Publishing.

Retrieved from https://doi.org/10.1007/978-3-030-24308-1

Piltch, A. (2020). How to Set Up a Headless Raspberry Pi, No Monitor Needed | Tom’s

Hardware. Retrieved 23 June 2022, from

https://www.tomshardware.com/reviews/raspberry-pi-headless-setup-how-

to,6028.html

Plaza, P., Castro, M., Merino, J., Restivo, T., Peixoto, A., Gonzalez, C., … Strachan, R.

(2020). Educational Robotics for All: Gender, Diversity, and Inclusion in STEAM.

Proceedings of 2020 IEEE Learning With MOOCS, LWMOOCS 2020, 19–24.

Retrieved from https://doi.org/10.1109/LWMOOCS50143.2020.9234372

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

77

Plaza, P., Sancristobal, E., Carro, G., Castro, M., & Blazquez, M. (2018). Scratch day to

introduce robotics. IEEE Global Engineering Education Conference, EDUCON,

2018-April, 208–216. Retrieved from

https://doi.org/10.1109/EDUCON.2018.8363230

Przybylla, M., & Romeike, R. (2014). Key Competences with Physical Computing. In

Brinda, T., Reynolds, N., Romeike, R. & Schwill, A. (Eds.) KEYCIT 2014 Key

competences in informatics and ICT. In University of Potsdam, Germany. Retrieved

3 January 2022 from https://publishup.uni-potsdam.de/opus4-

ubp/frontdoor/deliver/index/docId/7032/file/cid07.pdf

Przybylla, M., & Romeike, R. (2014). Physical computing and its scope - towards a

constructionist computer science curriculum with physical computing. Informatics in

Education, 13(2), 241–254. Retrieved from

https://doi.org/10.15388/INFEDU.2014.05

Psycharis, S. (2018). Computational Thinking, Engineering Epistemology and STEM

Epistemology: A Primary Approach to Computational Pedagogy. Advances in

Intelligent Systems and Computing, 917, 689–698. Retrieved 14 March 2022 from

https://doi.org/10.1007/978-3-030-11935-5_65

Psycharis, S., Kalovrektis, K., & Xenakis, A. (2020). A Conceptual Framework for

Computational Pedagogy in STEAM education: Determinants and perspectives.

Hellenic Journal of STEM Education, 1(1), 17–32. Retrieved 14 March 2022 from

https://doi.org/10.51724/HJSTEMED.V1I1.4

Python, D. (n.d.). turtle — Turtle graphics — Python 3.10.5 documentation. Retrieved 13

July 2022, from https://docs.python.org/3/library/turtle.html

Raspberry Pi, F. (n.d.). Teach, Learn, and Make with Raspberry Pi. Retrieved 17 January

2022, from https://www.raspberrypi.org/

Rossum, G. Van, Foundation, P. S., Foundation, P. S., Python, S., & Groovy, A. (n.d.).

Python (programming language).

Ruzzenente, M., Koo, M., Nielsen, K., Grespan, L., & Fiorini, P. (2012). A Review of

Robotics Kits for Tertiary Education. Proceedings of 3rd International Workshop

Teaching Robotics, Teaching with Robotics Integrating Robotics in School

Curriculum, 153–162.

Scratch MIT, W. (n.d.). Scratch Wiki. Retrieved 16 March 2022, from https://en.scratch-

wiki.info/

Sisman, B., & Kucuk, S. (2019). An Educational Robotics Course: Examination of

Educational Potentials and Pre-service Teachers’ Experiences An Educational

Robotics Course: Examination of Educational Potentials and Pre-service Teachers’

Experiences. International Journal of Research in Education and Science (IJRES),

5(2), 510–531. Retrieved 13 March 2022 from www.ijres.net

Sutradhar, P., & Naraginti, A. R. (2022). Teaching Effectiveness of Science, Technology,

Engineering, and Mathematics (STEM) Teachers. SSRN Electronic Journal, 1–11.

Retrieved from https://doi.org/10.2139/ssrn.4096832

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

78

Times, T. E. (n.d.). What is Debugging? Definition of Debugging, Debugging Meaning -

The Economic Times. Retrieved 3 January 2022, from

https://economictimes.indiatimes.com/definition/debugging

Üşengül, L., & Bahçeci, F. (2020). The Effect of Lego Wedo 2.0 Education on Academic

Achievement and Attitudes and Computational Thinking Skills of Learners toward

Science. World Journal of Education, 10(4), 83. Retrieved from

https://doi.org/10.5430/WJE.V10N4P83

Vega, J. (2018). Educational Framework Using Robots with Vision for Constructivist

Teaching Robotics to Pre-university Students, 1–208.

Vihavainen, A., Paksula, M., & Luukkainen, M. (2011). Extreme apprenticeship method

in teaching programming for beginners. SIGCSE’11 - Proceedings of the 42nd ACM

Technical Symposium on Computer Science Education, 93–98. Retrieved from

https://doi.org/10.1145/1953163.1953196

Weintrop, D., & Wilensky, U. (2017). Comparing block-based and text-based

programming in high school computer science classrooms. ACM Transactions on

Computing Education, 18(1), 1–25. Retrieved from https://doi.org/10.1145/3089799

Wikipedia. (n.d.). Python (programming language) - Wikipedia. Retrieved 13 March

2022, from https://en.wikipedia.org/wiki/Python_(programming_language)

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical

Transactions of the Royal Society A: Mathematical, Physical and Engineering

Sciences, 366(1881), 3717–3725. Retrieved 10 July 2022 from

https://doi.org/10.1098/RSTA.2008.0118

Zaher, A. A., & Hussain, G. A. (2020). STEAM-based active learning approach to

selected topics in electrical/computer engineering. IEEE Global Engineering

Education Conference, EDUCON, 2020-April, 1752–1757. Retrieved from

https://doi.org/10.1109/EDUCON45650.2020.9125367

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

79

Appendix A - Published Journal Article

DOI: https://doi.org/10.25082/AMLER.2022.02.013

https://doi.org/10.25082/AMLER.2022.02.013

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

80

Appendix B - Whole Code in Python

1. from gattlib import GATTRequester, GATTResponse

2. from time import sleep

3. import time

4. from binascii import hexlify

5. import serial,sys,glob,select

6. import struct

7.

8. movehub = GATTRequester("04:EE:03:16:ED:1D",True,"hci0")

9.

10. service_uuid = '00004f0e-1212-efde-1523-785feabcd123'
11. characteristic_uuid = '00001565-1212-efde-1523-785feabcd123'
12.
13.
14. BUTTON_PRESSED = '\x01'
15.
16. # Ports
17.
18. PORT_A = 0x37
19. PORT_B = 0x38
20.
21. SensorValue_hnd = 0x28
22. tilt_data=[0,0,0,0,0,0]
23.
24. TiltCmdMode1 = '\x02\x02\x01\x22\x01\x01\x00\x00\x00\x02\x01'
25.
26. # Motors:
27.
28. MOTOR_A = bytes([0x37])
29. MOTOR_B = bytes([0x38])
30.
31. # WeDo 2.0 Tilt Sensor modes:
32. # 0 = angle
33. # 1 = tilt
34. # 2 = crash
35. # 3 = some variation of angle
36. # modes 0,1,2 like WeDo 2.0 modes
37.
38. MODE_WEDODIST_DISTANCE =

b'\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02'

39.
40. # WeDo 2.0 Distance Sensor modes:
41. # 0 = distance 00..0A
42. # 1 = increments when blocked
43. # 2 = distance and luminosity ?
44. # all continuous reading
45. # just using mode 0=distance
46.
47. MODE_WEDODIST_1 = b'\x01'
48. MODE_WEDODIST_2 = b'\x02'
49.
50. MOTION_SENSOR = b'\x02\x01\x01\x23\x00\x00\x00\x10\x00\x00\x00\x10'
51.
52. # Get a distance reading
53. motion_sensor_value = 0x23
54. InputCommand_hnd = 0x3a
55. OutputCommand_hnd = 0x3d
56. device = object
57.
58. RGBAbsoluteMode_cmd = "\x01\x02\x06\x17\x01\x01\x00\x00\x00\x02\x01"

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

81

59. RGBAbsoluteOutput_cmd = "\x06\x04\x03"
60.
61. MODE_WEDODIST_DISTANCE =

b'\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02'

62.
63.
64. #sound function
65.
66. def sound(self):
67. HANDLE = 0x3d
68. PIEZO_TONE = "\x05\x02\x04\xB8\x01\xF4\x01"
69. movehub.write_by_handle(HANDLE, PIEZO_TONE)
70.
71. #colorRGB Function
72.
73. def colors(self):
74. colors =

['\x00','\x01','\x02','\x03','\x04','\x05','\x06','\x07','\x08','\x09','\x0A']

75. for color in colors:
76. movehub.write_by_handle(HANDLE, "\x06\x04\x01" + color)
77. sleep(1)
78.
79. #motor turn right
80.
81. def motor_that_way(self):
82. HANDLE = 0x3d
83. TURN_RIGHT = "\x01\x01\x01\x9C"
84. movehub.write_by_handle(HANDLE, TURN_RIGHT)
85.
86. #motor turn left
87.
88. def motor_this_way(self):
89. HANDLE = 0x3d
90. TURN_LEFT = "\x01\x01\x01\x64"
91. movehub.write_by_handle(HANDLE, TURN_LEFT)
92.
93. #motor Off
94.
95. def motor_off(self):
96. HANDLE = 0x3d
97. TURN_STOP = "\x01\x01\x01\x00"
98. movehub.write_by_handle(HANDLE, TURN_STOP)
99.
100. # motor on

101.

102. def motor_on(self):

103. HANDLE = 0x3d

104. TURN_ON = "\x01\x01\x01\x9c"

105. movehub.write_by_handle(HANDLE, TURN_ON)

106. sleep(0.2)

107.

108. # distance sensor function

109.

110. def distance(self, MODE_WEDODIST_DISTANCE, port):

111. #print("connecting...")

112. sleep(2)

113.

114. dev = "/dev/ttyACM*"

115. scan = glob.glob(dev)

116. rate = "115200"

117. STEP = 0.09 # emyric 0.003..0.1

118. SYNC_TIME = 0.75 # time for the break command

119. SYNC_ZEROS = 2000 # empyric

120. MSG_RETRY = b'\xC0\x00\x3F'

121. BYTE_START = 216 # D8

122.

123. if (len(scan) == 0):

124. dev = '/dev/ttyUSB*'

125. scan = glob.glob(dev)

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

82

126. if (len(scan) == 0):

127. print ("Unable to find any ports scanning for

/dev/[ttyACM*|ttyUSB*]" + dev)

128. sys.exit()

129.

130. serport = scan[0]

131.

132. if (len(sys.argv) > 1):

133. l = len(sys.argv) - 1

134. while(l > 0):

135. if (sys.argv[l][0] == '/'):

136. serport = sys.argv[l]

137. else:

138. rate = sys.argv[l]

139. l = l - 1

140.

141. ser =

serial.Serial(port=serport,baudrate=rate,parity=serial.PARITY_NONE,stopbits=se

rial.STOPBITS_ONE,bytesize=serial.EIGHTBITS,timeout=1)

142. print("connected to: " + ser.portstr)

143. if ser.isOpen():

144. #print("Starting")

145. start_time = time.time()

146. sensor = MODE_WEDODIST_DISTANCE

147. while True:

148. try:

149. sensor = MODE_WEDODIST_DISTANCE

150. movehub.write_by_handle(motion_sensor_value)[0]

151. s = ser.readline(sensor)

152. if s:

153. for x in s:

154. print ("%s") % (x.encode('hex'))

155. print(s)

156. except KeyboardInterrupt:

157. sys.exit()

158. except:

159. pass

160. movehub.write_by_handle(HANDLE,MODE_WEDODIST_DISTANCE)

161. time.sleep(0.00001)

162. StartTime = time.time()

163. StopTime = time.time()

164. # save StartTime

165. while InputCommand_hnd == 0:

166. StartTime = time.time()

167. # save time of arrival

168. while InputCommand_hnd == 1:

169. StopTime = time.time()

170. # time difference between start and arrival

171. TimeElapsed = StopTime - StartTime

172. # multiply with the sensor speed (34300 cm/s)

173. # and divide by 2, because there and back

174. distance = ((TimeElapsed * 34300)/2)*100

175. distance = round(distance)

176. return distance

177. ser.close()

178.

179. #tilt sensor function

180.

181. def tilt(self, MODE_WEDOTILT_TILT, port):

182. SensorValue_hnd = 0x28

183. InputCommand_hnd = 0x3a

184. TiltCmdMode1 = '\x02\x02\x01\x22\x01\x01\x00\x00\x00\x02\x01'

185. movehub.read_by_handle(SensorValue_hnd)[0]

186. movehub.write_by_handle(InputCommand_hnd, TiltCmdMode1)

STEAM - Educational Robotics: Moving from Scratch to Python Programming for Advanced Students. |

Evangelia Anastasaki

83

