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Abstract: Species sensitivity distributions (SSDs) are used in ecological risk assessment for extrapolation of the results of toxicity tests
with single species to a toxicity threshold considered protective of ecosystem structure and functioning. The attention to and importance
of the SSD approach has increased in scientific and regulatory communities since the 1990s. Discussion and criticism have been triggered
on the concept of the approach as well as its technical aspects (e.g., distribution type, number of toxicity endpoints). Various questions
remain unanswered, especially with regard to different endpoints, statistical methods, and protectiveness of threshold levels, for example.
In the present literature review (covering the period 2002–2013), case studies are explored in which the SSD approach was applied, as
well as how endpoint types, species choice, and data availability affect SSDs. How statistical methods may be used to construct reliable
SSDs and whether the lower 5th percentile hazard concentrations (HC5s) from a generic SSD can be protective for a specific local
community are also investigated. It is shown that estimated protective concentrations were determined by taxonomic groups rather
than the statistical method used to construct the distribution. Based on comparisons between semifield and laboratory-based
SSDs, the output from a laboratory SSD was protective of semifield communities in the majority of studies. Environ Toxicol Chem
2016;35:2149–2161. # 2016 SETAC
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INTRODUCTION

The world faces a major challenge in determining the
consequences of the widespread occurrence of toxic chemicals
in the environment. Ecological risk assessment deals with this
challenge by combining estimations of the potential of
chemicals to cause harm with the likelihood of that potential
being realized [1]. An ecological risk assessment aims to find an
exposure level or a toxicity threshold (e.g., predicted no-effect
concentration [PNEC]), below which an ecosystem will not
suffer unacceptable damage.

The problem, however, is how to assess such thresholds if
only data on a few species are available [2]. Given the
impossibility of testing the effects of all chemical compounds on
all species, traditional approaches to risk assessment are based
on observations of effects of individual chemicals on the
survival, growth, and reproduction of a limited number of test
species [3,4]. The results of such toxicity tests are then
extrapolated by deterministic or probabilistic models to
ecologically relevant levels including populations, communi-
ties, and ecosystems [1,5]. One of the approaches for
extrapolation from single-species toxicity tests to ecosystems
is the use of species sensitivity distributions (SSDs). These are
cumulative plots of effect concentrations (e.g., median effect
concentration [EC50] or no-observed-effect concentration
[NOEC]) fitted to a statistical distribution. The lower 5th
percentile of the estimated hazardous concentration based on
NOECs, the HC5, is generally divided by an application factor
ranging from 1 to 5 to determine a toxicity threshold considered

protective of ecosystem structure and function [6]. The SSD
approach has become a useful method in decision-making
processes for the derivation of environmental quality criteria,
benchmarks for screening assessments, and estimation of
ecological risks [7], and is an accepted instrument in ecological
risk assessment around the world [8,9]. In the United States, the
SSD concept is being used as the basis for the screening
benchmarks for contaminants in water for National Ambient
Water Quality Criteria [10,11]. In Canada, SSDs are recom-
mended in the Canadian Water Quality Guidelines for the
Protection of Aquatic Life [11]. The use of SSDs has been
approved in the guidelines of several regulations of the
European Union, including the Registration, Evaluation,
Authorization, and Restriction of Chemicals program
[REACH]), registration of plant protection products [12], and
the Water Framework Directive [13]. Application of SSDs is
also recommended by public organizations in Australia and
New Zealand [11].

The importance of SSDs in ecotoxicity assessment has
grown steadily since the 1980s, as a result of their rising
popularity in both the regulatory and scientific communities.
However, in that same period intensive discussions have taken
place on the basic assumptions, statistics, data limitations, and
applications [3,14,15]. Although the discussions and criticisms
were fruitful in terms of improvements in the SSD approach,
various questions remain unanswered. For example, Forbes and
Calow [16] argued that common test species might be more
sensitive and that some endpoints might not be relevant for
ecologically important population responses. Also, no consen-
sus has been reached on statistical aspects for SSD construction
such as minimum number of data points. Moreover, because of
the exclusion of biotic and abiotic interactions in real
ecosystems, the protectiveness of threshold levels (e.g., HC5)
for actual ecosystems is questionable. To evaluate the overall
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success of applying the SSD approach in scientific research, the
present review focuses on the following research questions:
1) How are SSDs being applied in scientific research for risk
assessment of (non) chemical stress on aquatic and terrestrial
ecosystems?; 2) How does selection of various types of
endpoints, species, and data availability affect SSDs?; 3) Which
statistical methods should be used to construct a reliable SSD?
and 4) Is an HC5, derived from a generic SSD, protective for a
specific local community?

We sought to answer these questions by analyzing the
available literature since 2002, because developments until that
year have already been described by Posthuma et al. [14] and
Forbes and Calow [16]. More specifically, we analyzed how
statistical aspects (model choice, data points) were tackledwhen
the SSD approach was applied in scientific research in different
case studies. To that end, we analyzed case studies that
employed SSDs for various research questions related to the
structure and functioning of aquatic and soil ecosystems rather
than studies solely performing risk assessments for the
derivation of environmental quality criteria for different
chemical compounds. We focused on single chemicals rather
than mixtures because application of the SSD approach for
mixtures involvesmany additional technical questions requiring
separate and extensive examination (e.g., concerning the use of
a concentration or response addition approach based on various
modes of action of chemicals). We excluded studies applying
the SSD approach in life cycle impact assessments because they
do not focus on the SSD methodology per se.

METHODS

To capture relevant scientific publications, the database
Web of Science was searched from January 2002 through
December 2013 for primary studies on SSDs using the key
phrase “species sensitivity distribution”. This effort resulted in
317 publications from which we selected relevant studies for
review. Of these, 150 publications were excluded as not useful
for our objectives because SSDs were only mentioned rather
than actually derived or discussed. Publications related to
mixture toxicity, life cycle assessment, or simply generation of
toxicity data were also excluded. The remaining papers were
assessed and allocated into separate groups according to their
focus, which helped in sorting the information regarding our
research questions (Table 1). One group of papers included
publications in which the SSD approach was applied for
deriving environmental quality criteria, risk limits, benchmarks
for chemicals, ecological risks, or other case studies (related to
research question 1). To gain an impression of how the SSD
approach has been developed and applied in scientific research,
we focused in detail on case studies with purposes other than

merely deriving environmental quality criteria or assessing
ecological risks. The main findings from these case studies are
discussed. Because such case studies do not concern derivation
of quality standards or risk estimation for a specific chemical,
guidance requirements on how to construct the SSD were
usually not followed (e.g., concerning technical aspects such as
number of data points, so-called default log-normal or
log-logistic distribution). To determine how these technical
aspects have been dealt with, we reviewed every study in detail
and determined the distribution assumed, the endpoints
observed, and the sample size used. Another group of
publications included discussions on statistical methods and
underlying data for the construction of SSDs (related to research
questions 2 and 3). In a third group, we allocated publications on
the ecological relevance and validation of the SSDs (related to
research question 4).

RESULTS AND DISCUSSION

Application of the SSD approach in scientific research for risk
assessment

The majority of the publications found can be grouped by
their common focus. Eighteen publications were related to
discussions on how to improve the SSD approach for setting
quality criteria for sediment, soil, and groundwater, which is not
discussed in detail in the present review. The SSD approach has
also been applied in scientific research in various case studies.
We identified numerous publications (Table 1) that applied the
SSD approach for deriving environmental quality criteria
(Supplemental Data, Table S1) and ecological risks for various
chemicals (Supplemental Data, Table S2) or in case studies with
other goals, so called nonstandard case studies (e.g., comparing
sensitivity among taxonomic groups or species from different
geographic areas; Supplemental Data, Table S3).

In the following sections, we explore the application of the
SSD approach in so-called nonstandard case studies and
summarize their main findings, focusing on research question 1.
Table 2 summarizes the influences of the topics considered in
these case studies on the derived SSDs and HC5s. Figure 1
shows the overall topics covered by the case studies discussed in
the following sections.

Most of the environmental quality criteria derivation studies
focused on freshwater ecosystems, followed by soil and marine
ecosystems. Less attention was given to sediment environmen-
tal quality criteria. Zinc, copper, and cadmium were the most
studied chemicals, followed by diverse pesticides (Supplemen-
tal Data, Table S1). Geographically, most of the studies were
performed in countries such as China and Japan, followed by
the United States and The Netherlands (Supplemental Data,
Table S2). Other studies focused on several countries in Europe,
Australia, and South Africa. The geographical distribution of
research may be related to the general distribution of scientists
in the field of ecotoxicology [17], and attention to a limited
number of chemical compounds is obviously related to the
general lack of toxicity data [2]. In several studies the ecological
risks derived were used to prioritize different chemicals or sites
of concern, indicating the major threats to a specific group of
species at a certain location [18–21].

Comparison of species from different geographic areas

The construction of SSDs most often relies on toxicity data
for species in temperate regions. Several studies have shown
that the sensitivity of species to various chemical compounds
may or may not differ when climate zones or regions are

Table 1. Number of scientific publications found by the key phrase species
sensitivity distribution (SSD) in the database Web of Science (2002–2013)

and analyzed in the present review

Criteria Results

Total publications 317
Excluded from review 150
General discussion on SSDs, applications for sediment,
soil, groundwater quality criteria setting

26

Case study focus on environmental quality criteria 44
Case study focus on risk assessment 46
Other case studies 26
Statistical methods 13
Ecological relevance and validation of the SSDs 12
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compared. By comparing SSD curves and HC5 values, Hose
and Van den Brink [22] found no significant difference in
sensitivity of Australian and non-Australian arthropods and fish
to endosulfan. Similarly, no significant differences were found
in the sensitivity distributions of tropical and temperate
vertebrates, arthropods, and non-arthropod invertebrates for
16 pesticide compounds [23].

Rico et al. [24,25] compared the tropical and temperate fish
and invertebrate SSDs of malathion and carbendazim, and
parathion-methyl, respectively. They found that Amazonian
species were equally sensitive as their temperate counterpart to
malathion and parathion-methyl. However, Amazonian fish
appeared to be slightly less sensitive for carbendazim than
temperate fish. Amazonian invertebrates, however, were
significantly less sensitive for this substance than temperate
species [25].

Olsen et al. [26] found no difference in sensitivity of Arctic
and temperate marine species from 7 taxonomic classes to
2-methyl naphthalene, either at the species level or the
community level. De Hoop et al. [27] showed that HC50s of

polar and temperatemarine species for petroleum and petroleum
components differed by less than a factor 3. However,
differences in sensitivity to naphthalene of arthropods,
chordates, and echinoderms were significant.

Iwasaki et al. [28] compared SSDs based on intercontinental
field observations of macroinvertebrate species in relation to
several metal concentration gradients based on laboratory-
derived toxicity values. The estimated HC values for copper,
zinc, and cadmium overlapped closely with laboratory-derived
values available from water quality criteria in the United States,
United Kingdom, and European Union. This overlap not only
increases confidence in the application of existing metal
standards, but also illustrates that standard values might be
widely applied geographically [28]. By contrast, Chapman
et al. [29] found no universal and predictable patterns of acute
sensitivity of marine invertebrates from different regions to
4 metals.

Kefford et al. [30] investigated whether related taxa of
freshwater macroinvertebrates from South Africa and Australia
have similar sensitivities to salinity. They concluded that the
broad similarity in sensitivity within most taxa at the order level
suggests that, in the absenceofother information, onemayassume
similar salinity sensitivity in different geographic locationswithin
families and orders. Likewise, Van Dam et al. [31] found no
significant difference between acute and chronic toxicity of the
herbicide tebuthiuron between northern hemisphere temperate
and Australian tropical aquatic species (fish and green algae).
These studies show that the sensitivity of organisms to toxicants is
independent of their geographic origin and that there is no
consistent geographical pattern in species sensitivity.

Comparison of rare and endangered species

Kefford et al. [32] found that locally rare macroinvertebrates
tended to be more tolerant than locally common ones. The

Table 2. Different aspects important to consider for the species sensitivity distribution (SSD) approach based on an overview of the studies explored in
the present reviewa

Aspect to consider SSD curve HC5/HC50 Remark Example

Species group selection þþþ þþþ Curve can be multimodal if sensitive
taxonomic groups are included.

Including less sensitive group will increase the HC5.
Variation in sensitivity within a taxon is lower
(thus, SSD curve is steeper) than among taxa.

Habitat type þ þ Mainly similar sensitivity, but marine
species were found more often with
higher sensitivity than freshwater
species.

Macroinvertebrates from static and lotic habitats did
not differ in their sensitivity to pesticides whereas
sensitivity of species from freshwater and marine
habitats may vary depending on a stressor.

Geographic location þ þ Mainly similar sensitivity No significant difference in sensitivity of Australian
and non-Australian arthropods and fish to
endosulfan. Amazonian invertebrates significantly
less sensitive than their temperate counterparts to
carbendazim.

Mode of action of chemicals þþþ þþþ Importance of mode of action varies per
taxonomic group

Sensitivity of plants to a specific mode of action of a
herbicide is higher than that of other taxonomic
groups.

No. of data points þþ þþþ Overall lack of toxicity data for SSD
curves

Uncertainty in HCx decreases when number of data
points are >4.

Distribution type þ þþ Depends on number of data points.
Goodness-of-fit tests should be
performed

For acute toxicity data on Cu and Zn for cladoceran
species, Weibull, uniform, and beta distributions
gave underestimation, and log-logistic and
triangular distribution gave overestimation in the
lower tail compared with a log-normal distribution.

Endpoint (NOEC vs LC50) þ þþþ Any endpoint can be used. NOECs are
required by regulations to derive HC5
and EQCs.

Uncertainty in acute-to-chronic ratios depends on
species and mode of action of chemical. SSD
position relative to x-axis will vary depending on
input data.

aThe influence on the SSD curve and the hazard concentration (HC)x is indicated by þþþ (very important), þþ (important), andþ (less important).
NOEC¼ no-observed-effect concentration; LC50¼median lethal concentration; EQC¼ environmental quality criteria.

Figure 1. Overall topics covered by case studies discussed in the following
sections. SSD¼ species sensitivity distribution; HC5¼ lower 5th percentile
hazard concentration.
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authors argued that the relationship between rarity and salt
tolerance may be because rare species belong to particular taxa,
such as Coleoptera and Odonata, that lean toward salinity
tolerance [33]. The authors hypothesized that, under the
assumption that rare and common species are K- and r-selected,
respectively, the inability of K-selected species to recover
rapidly from disturbances should constitute a strong selection
pressure to develop resistance to environmental extremes.
Raimondo et al. [34] compared the sensitivity of endangered
species with surrogate species commonly used in toxicity tests
for 68 chemicals. The authors concluded that SSDs for standard
species can be used for protections of endangered species for
which toxicity data are not available.

Comparison of freshwater and marine species

Most available ecotoxicological data apply to aquatic species
from freshwater habitats. Data on marine and estuarine species
are scarce, increasing uncertainty in salt water risk assessment
in comparison with freshwater [35]. A strategy to assess the risk
of chemicals for these saltwater environments is to apply safety
factors to the risk level calculated based on freshwater
organisms. However, the sensitivity to chemical compounds
of species from different habitats may differ. Therefore, an
important question to consider in risk assessment is whether
protection levels derived from species living in 1 type of habitat
would be protective also for species typical for other types of
habitats. For example, Hose [36] found significant differences in
the sensitivity of aquatic taxa living in surface water habitats
compared with taxa from groundwater habitats for atrazine and
chlorpyrifos, whereas Maltby et al. [23] showed similar
sensitivities among arthropod species to 8 pesticides in lentic
and lotic habitat types.

Thus, driven by the relevance for regulation, several authors
have investigated potential differences in the sensitivity of
species from marine and freshwater habitats. For example,
Maltby et al. [23] found no significant difference in medianHC5
values for freshwater or marine taxa for 10 chemical
compounds. However, the median HC5 for marine arthropods
was smaller than for freshwater arthropods. The sensitivity
distributions for freshwater and marine arthropods were
significantly different for permethrin and chlorpyrifos, although
this difference was not significant when the analysis was
restricted to crustaceans alone [23].

Bollmohr et al. [37] showed that marine organisms
(arthropods and fish) were more sensitive (by a factor between
1.5 and 2.8 based on HC5s) to the pesticides cypermethrin,
endosulfan, chlorpyrifos, and fenvalerate than freshwater
organisms. Wheeler et al. [35] compared freshwater and
marine data sets based on HC5 and regression parameter values
(slopes and intercepts). Although the overall sensitivity
between freshwater species and marine species was not
significantly different, freshwater species exhibited slightly
greater sensitivity to ammonia and metals than marine species
(crustacea and fish) [35]. In contrast, for pesticide and narcotic
compounds, marine species tended to be more sensitive than
freshwater species. The HC5 values for the antifouling biocide
tributyltin for marine fish, invertebrates, and algae were
significantly lower (by a factor of �8) than that for freshwater
species, indicating that marine species might be more
susceptible to tributyltin than their freshwater counter-
parts [38]. Zhang et al. [39] found that freshwater primary
producers, however, were more sensitive to other antifouling
paint than their marine counterparts, by a factor of approxi-
mately 9. Verbruggen et al. [40] found no significant

differences for freshwater sediment and marine sediment
species in sensitivity to total petroleum hydrocarbons.

Considering all available toxicity data for various chemical
compounds, De Zwart [41] concluded that approximately
one-third of the marine fish, invertebrate, and algal species
were more sensitive by a factor 2 or more than their freshwater
counterparts. Biological and physicochemical factors may
contribute to differences in freshwater and marine species
sensitivities including chemical differences in each medium,
especially bioavailability, but alsomethodological differences in
toxicity tests. However, the results of available studies do not
indicate systematic or consistent differences in the sensitivity of
marine versus freshwater taxa. Thus, protection levels (e.g.,HC5
derived from freshwater species only) may still be uncertain for
marine species. Further research is needed to investigate the
protectiveness of the threshold levels derived for species from
1 type of habitat compared with species from other types.

Comparison of species sensitivity to nonchemical stress

Although the application of SSDs in ecological risk
assessment primarily aims at protecting ecosystems from toxic
chemical stress, other, nonchemical, stressors can affect
ecosystems too. As for chemical compounds, data for
nonchemical stressors may be derived in the laboratory for
various endpoints. Smit et al. [42], for instance, developed SSDs
for suspended clays, burial by sediment, and change in sediment
grain size for marine species and estimated potentially affected
fractions to communicate potential risks related to drilling of oil
and gas wells in the North Sea. De Vries et al. [43] showed that
the SSD approach is also suitable to estimate the risk of thermal
effects, especially based on site-relevant species for location-
specific assessment. Empirical occurrence data from field
studies can also be applied to derive SSDs for nonchemical
stress, as demonstrated for temperature, salinity, and nu-
trients [44,45] to quantify the fraction of species potentially lost
because of these stressors.

Other studies on nonchemical stress focusedon comparisonof
sensitivities of native and non-native species. Leuven et al. [46]
applied the SSD approach for a location-specific assessment
of fish diversity in relation to river temperature conditions.
Their study focused on comparison of tolerance levels to water
temperature of native and non-native fish species in the Rhine
River. They concluded that temperature tolerance of non-native
fish species was consistently higher than that of the native
species, but the differences were not statistically significant.
Furthermore, no significant differences between native and non-
native fish species in the Rhine River were found in tolerance to
low oxygen concentrations [47], indicating that such conditions
donot facilitate the spread of invasivefish species. Themaximum
temperature tolerance of mollusks was significantly higher for
non-native than for native species, but their mean maximum
salinity tolerance did not significantly differ [44].

These case studies show that the SSD approach can be
applied to quantify the impact of nonchemical stressors such as
temperature, hypoxia, pH, and changes in sediment particle size.
Applying the SSD approach to quantify the impact of
nonchemical stress in a similar way to ecotoxicological
assessments may allow for comparison of different types of
impacts on ecosystems and prioritization of the results for better
ecological management.

Determining the sensitivity of different taxonomic groups

Following research question 2, we analyzed the available
studies related to different species used in SSDs to investigate
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how different species may influence the construction of SSDs.
In the present review we analyze the findings from 26
publications discussing variation among different taxonomic
groups, different endpoints, and effect levels.

The SSD approach presumes that the sensitivity of a
community depends on the sensitivity of the individual
species of which it is composed, taking into account that some
species are more susceptible to stress than others [16].
Moreover, in risk assessment laboratory tests, species act as
surrogates for taxa in the target ecosystems, assuming that
their sensitivities are equal [14]. Therefore, taxonomic groups
that are included in an SSD should be carefully selected
because the taxonomic composition of the species assemblage
may have a significant influence on the assessment of
hazard [48,49]. In practice however, nonrandom selection
of laboratory test species causes a particular taxonomic group
to be over-represented [14,16].

Interspecific variation in the sensitivity of different
taxonomic groups has been widely studied [50,51] and can be
partly attributed to the specific toxic mode of action of a
chemical. For example, in the case of insecticides, aquatic
arthropods (crustaceans and insects) are obviously the most
sensitive [23], whereas algae and macrophytes tend to be more
sensitive to herbicides [52]. In addition, within closely related
taxonomic groups, some groups of species may be more
sensitive than others. Within arthropods, for example, insects
appear to be more sensitive than microcrustaceans to novel
types of insecticides as neonicotinoids [53,54].

The sensitivity of different taxonomic groups of species
within 1 taxonomic group may vary widely [50]. For example,
in their comparison of relative sensitivity of broad taxonomic
groups to acute toxicity of a wide range of chemical compounds,
Raimondo et al. [34] showed that crustaceans were generally the
most sensitive taxa to all mode of actions of 68 chemicals tested
compared with mollusks, fish, amphibians, and insects.
Similarly, Crane et al. [55] found that crustaceans were among
the most sensitive species to chlorpyrifos, followed by insects
and fish, whereas flatworms, snails, and rotifers were the least
sensitive in the distribution. The water flea Ceriodaphnia dubia
was the most sensitive species among all species for which
toxicity data were available for chlorpyrifos [55]. Wong
et al. [56], in comparing the sensitivities of cladocerans and
copepods to the metals Cd, Cu, Pb, Ni, and Zn, indicated that
cladocerans were consistently more sensitive than copepods to
Cd and Cu.

There was no significant difference in sensitivity of
arthropods and fish to the organochlorine pesticide lindane,
but both groups were significantly more sensitive than non-
arthropod invertebrates [23]. Weltje et al. [57] compared the
relative sensitivity of amphibians and fish to 55 chemicals based
on acute and chronic toxicity data. Their results indicate that fish
were more sensitive than amphibians in acute and chronic tests.
In the study of Framptom et al. [58] with soil organisms, the
earthworm Eisenia fetida was the least sensitive to insecticides,
whereas the collembolan Folsomia candida was among the
most sensitive species for a broad range of toxic modes of action
(biocide, fungicide, herbicide, and insecticide).

Analysis of species sensitivity to the fungicide triphenyltin
acetate indicated that there were no significant differences in
sensitivity among aquatic primary producers, invertebrates,
and vertebrates [59]. The authors concluded that every
aquatic community can be expected to include taxa sensitive
to this fungicide. Also, in case of chronic exposure to ionic
radiation, no statistical differences were revealed between

sensitivity of species from terrestrial, marine, and freshwater
ecosystems [60].

In a study on species sensitivity within 1 taxonomic group,
Bossuyt et al. [61] concluded that generic cladoceran SSDs for
Zn and Cu were not significantly different from the SSD based
on the cladoceran species representative of a specific location.
The authors suggested that the community sensitivity of
different cladoceran populations is similar among aquatic
systems and independent of the species composition. Hence,
the generic SSD can be used for a range of aquatic systems.
Concerning the sensitivity of different fish species, several
authors concurred that, while no 1 species is consistently the
most sensitive, rainbow trout and other salmonids are
generally more sensitive to a range of chemicals than standard
test species used in toxicity tests (e.g., fathead minnow,
sheepshead minnow, catfish, and bluegill) [34,62,63]. How-
ever, Van den Brink [52] demonstrated no difference in
sensitivity between standard aquatic plant species and other
primary producers.

Over the range of chemicals with specific modes of action,
crustaceans (cladocerans) appeared to be among the most
sensitive taxa. However, Maltby et al. [23] concluded that,
depending on the group of chemicals, different taxonomic
groups are more or less sensitive. They suggested that
differences in the sensitivity of taxonomic groups are most
likely for toxicants with a specific toxic mode of action, such
as insecticides or herbicides, yet Hendriks et al. [64] have
argued that the mode of action varies among groups of
organisms. Even well-studied toxicants such as organophos-
phate insecticides may not be homogeneous in terms of their
mode of action [64].

Overall, assessment of the differences between species is
important for the SSD approach because selection of species
will influence the derivation of protection levels protective or
not to the whole community [16]. According to several
authors [23,52], only the most sensitive taxonomic groups
should be used for risk assessment based on SSDs for substances
with a specific mode of action when clear gaps exist between the
sensitivities of different taxonomic groups (e.g., only primary
producers for herbicides; arthropods in case of insecticides).
The HC5 or potentially affected fraction values are then related
to effects on the most sensitive group of organisms. The
motivation for such an approach is regulation driven, because it
is important for risk assessors to be cautious and conservative.
This approach, however, may result in protection for 95% of
the most sensitive species of a selected taxon rather than the
whole community. Including less sensitive groups might
increase the HC5 [58,65]. The variation in sensitivity of
different taxonomic groups and species within 1 taxonomic
group is reflected in the SSD curve. Including the data for only
1 taxonomic group with little variation in sensitivity among
species will result in a steep SSD curve. Increased variation
from additional taxonomic groups will be indicated by a gentler
SSD curve. Thus, it is important to specify the most sensitive
species in the ecosystem to be protected. To do so, for example,
the rapid toxicity testing [30] as described in the previous
section (Comparison of species sensitivity to nonchemical
stress) could be used. Deriving HC5 from an SSD based on the
single most sensitive taxonomic group may be, however,
overconservative for the entire community.

Test endpoints and extrapolation from acute to chronic data

The endpoints of toxicity tests used in SSDs usually
represent the most sensitive endpoints that are toxicologically
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and ecologically relevant [16]. For animals, acute toxicity data
usually cover mortality and immobility, whereas chronic
toxicity mostly addresses reproduction and growth. For plants,
biomass and growth rates are often measured. These standard
endpoints are required by international guidelines for assess-
ment of ecological effects from chemicals [66].

While lethality is undoubtedly a response with important
ecological consequences, toxic substances may cause other
ecologically important effects [67]. These may include reduced
feeding, impairment of reproduction and growth, and behavioral
changes. The advantage of using acute EC50 data is the
possibility of describing distinct exposure effects of population
responses using endpoints such as EC50 on growth rate, rather
than no-observed-response endpoints. The disadvantage of
using acute EC50 data is that they do not capture chronic and
delayed toxic effects [68]. However, the chronic NOECs in their
turn have been criticized by several authors, for being a
fundamentally invalid interpretation of hypothesis testing,
because they depend on the experimental design [69]. It has
been suggested that these values no longer be produced and used
in scientific studies [69–71].

The relevance of using different endpoints for construction
of SSDs and their relation to population change has been pointed
out earlier [16]. However, no study has been performed
examining the meaning of HC5 derived from SSDs based on
different endpoints, such as, for example, 50% reduction in
feeding or 50% reduction in growth. Nevertheless, several
authors have investigated the differences between effect levels
(i.e., acute EC50 vs chronic NOEC). Studies on effect levels
have been performed to analyze the adequacy of acute-
to-chronic ratios (ACRs), which are commonly used when
insufficient chronic data are available to perform long-term
exposure assessments [72]. In general, the ACR varies
depending on the taxonomic group and chemical concerned [73].
The ACR for anuran species and 6 pesticides was between
0.9 and 26, with an average of 7.2. Average ACRs for various
chemicals have been reported to be 10.5 for fish, 7.0 for
daphnids, and 5.4 for algae [22]. Dom et al. [74] illustrated that
even for certain simple organic compounds with a designated
mode of action (i.e., narcotic toxicity), unexpected differences
in acute and chronic toxicity can be observed. For example, the
ACRs for methanol and ethanol were shown to be species
dependent, and varied from 10 to 1000. The authors stressed that
in risk assessment procedures more attention should be given to
acute-to-chronic extrapolations. Raimondo et al. [75] found that
invertebrate ACRs were more variable than fish ACRs and
therefore some species may be at an increased risk of
underestimated chronic toxicity when mean or median ACRs
are used. Dom et al. [75] showed that fixedACRs do not account
for the interchemical and interspecies differences. This diversity
in ACRs can be explained taking into account not only
physicochemistry but also toxicokinetics and toxicodynamics,
which are not necessarily the same in acute and chronic
exposure [76,77].

Overall, the use of NOEC and median lethal concentration
(LC50) endpoints is driven by regulatory requirements
allowing for standardization and comparison among species
and chemicals. In principle, each endpoint could form the basis
of an SSD including responses at the cellular biomarker and
genome levels [78,79]. As the difference between endpoints
can be of certain magnitude, SSDs based on different endpoints
will have different positions relative to the x axis [80].
The results from such SSDs must be interpreted with caution
considering their ecological relevance for population

responses. However, few data are usually available, especially
for specific modes of action, and presently SSDs are largely
limited to mortality [81]. Extrapolation from LC50 to NOEC
endpoints using ACRs can be performed. However, high
awareness of diversity and irregularities in acute-to-chronic
extrapolations is required.

Quantity of the underlying toxicity data

The criteria for minimum sample size for an SSD and an
HCx are often an arbitrary policy decision [82]. For example,
the US Environmental Protection Agency requires at least
8 species, the European Union between 5 and 8, and Australia
and New Zealand 5 species [11]. The minimum number of
data points as input for SSD has also been discussed in the
scientific literature. Wheeler et al. [83] estimated that a
minimum of 10 to 15 data points per toxicant are needed to
derive a reliable estimate of a particular endpoint (e.g., HC5).
Smaller data sets give greater uncertainty in the model output
(e.g., HC50 values), which can be significantly reduced if the
sample size includes at least 4 data points [64,84,85]. Overall,
low data numbers imply wider confidence intervals [67,82],
which also influences the test for normality of the data. For
scientific case studies, justification for a certain number of
data points should be made in view of a specific problem
definition [82,86].

The discussions on the data quantity for the SSDs are
triggered by a general lack of toxicity data in risk assessment of
chemicals. Therefore, solutions are sought by combining
already available data with ecotoxicological modeling [4], for
example, interspecies correlation estimations (ICEs) and
quantitative structure–activity relationships (QSARs) [87–90].
The ICEs allow the prediction of acute toxicity values for a wide
variety of species based on a single acute toxicity value that can
be used to develop the SSD and HC5 [87]. Recent research has
shown that ICE can be used to postulate SSDs by providing
toxicity estimates for a diversity of species. Raimondo
et al. [91], Awkerman et al. [89], and Raimondo et al. [92]
have validated ICEmodels for both aquatic andwildlife species.
They showed that HCx values derived from SSDs using toxicity
values derived from ICE were similar to hazard levels derived
from SSDs of measured data for aquatic organisms and wildlife.
For acute Zn toxicity, the ICE-based HC5 was approximately
twice as high as the measured HC5 although not significantly
different [93]. Dyer et al. [87] also have shown that in general,
the ICE-based SSDs had HC5 values within 1 order of
magnitude of the measured HC5 values based on 3 surrogate
species (Pimephales promelas, Onchorynchus mykiss, Daphnia
magna) and chemicals with diverse modes of action (dodecyl
linear alkylbenzenesulfonate [LAS], nonylphenol, fenvalerate,
atrazine, and copper). Thus, the application of ICEs was
recommended as a valid approach for generating SSDs and
hazard concentrations for chemicals with limited toxicity
data [88,94].

The QSARs can be used in the absence of experimental test
data to predict the aquatic toxicity of untested chemicals based
on their structural similarity to substances for which aquatic
studies are available [95]. Wu et al. [96] developed a set of
predictive QSAR relationships, based on metal characteristics,
and successfully predicted acute toxicities of each species for
5 phyla and 8 families. However, Dom et al. [74] showed that
chronic QSARs of chlorinated anilines did not account for
interchemical and interspecies differences. Although the
potential application of ICE to increase the number of data
for SSDs and the use of QSARs for effects assessments based
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on chemical structure alone have been demonstrated, this
approach needs further evaluation for different species and
chemicals.

Toxicity data used in case studies

In the case studies discussed in the previous sections, the
number of data points used to construct SSDs and derive HC5
varied greatly, with a minimum of 4 data points per set
(Supplemental Data, Table S3). The acute mortality endpoints
(LC50s) were most frequently used for the SSD construction
in case studies compared with other endpoints (NOEC and
lowest-observed-effect concentration [LOEC]) because of
overall lack of sublethal effect data. Most of the studies did
not follow any regulatory requirements for a minimum data
set (fish, invertebrates, algae). Buckler et al. [63] stated that
although minimum data sets provide satisfactory prediction of
toxicity values, it is obviously desirable to have high-quality
data for as many species as possible. In the majority of the
case studies the toxicity data were extracted from large
databases [97].

Statistical methods to fit the SSD curves

It has been argued that with increasing use of SSDs in
ecological risk assessment, it is important that the scientific
community agree on appropriate methods for their deriva-
tion [98]. Focusing on our research question 3, we investigated
which statistical distributions and methods are recommended
for fitting the SSD curves [99–106]. However, Aldenberg and
Jaworska [107] stated that there is no theoretical justification for
any distribution from the point of toxicity. Moreover, one
cannot statistically decide between different distributions at
small sample size. In any case, it is important to choose an
appropriate method because different approaches may generate
different HC5 values. For example, the standard bootstrap
method fitting a model distribution to a Cd data set generated an
HC5 16 times lower than the HC5 produced by the conventional
log-logistic method [83].

The choice of the distribution function to fit the data may be
based on goodness-of-fit tests. However, the choice of
distribution types is constrained to a few standard distributions
for which goodness-of-fit tests are available [16]. However, if
one needs to select the best fit distribution type, (e.g., normal
or logistic), which are used for regulatory purposes, several
tests can help. The most common procedures to check the
normality assumption for the data are the Shapiro–Wilk,
Kolmogorov–Smirnov, Anderson–Darling, and Lilliefors
tests. Shapiro–Wilk was shown to be the most powerful
normality test, followed by Anderson–Darling, Lilliefors, and
Kolmogorov–Smirnov [108]. However, the power for all tests to
detect deviation from normality is low for small data sets [109].
Shapiro–Wilk can be used for a sample size between 3 and 5000,
but for sample sizes of 30 or less, the power at 5% significance
level is less than 40% [108].

Despite violations of statistical guidelines, unimodal models
still provide reasonable estimates of the HC5 [82]. Above the
5th percentile (HC5), the log-normal, log-logistic, and log-
triangular parametric distributions are similar [82]. Differences
between such parametric representations are generally reflected
in the tails [110]. However, the uncertainty around HC5 will be
strongly dependent on the number of test results taken into
account.

Considering the limitations of goodness-of-fit tests, some
authors argue that there is no reason to assume an underlying
distribution for species sensitivities [3] because an alternative

resampling (nonparametric bootstrap) method can be used that
does not rely on any assumed distribution [35]. It has been
shown that the nonparametric bootstrap approach can fit data
better than a parametric approach [107]. However, this requires
at least 20 data points to obtain the HC5 and associated
confidence intervals [35]. As a compromise between the power
of resampling and fitting an underlying distribution, a bootstrap
regression method, based on a log-logistic regression model,
was described by Grist et al. [98]. This hybrid technique allows
for the use of smaller data sets and the calculation of confidence
intervals. Comparing the SSDs derived by 4methods (i.e., based
on log-normal, log-logistic, bootstrap, and bootstrap regression
models) for 15 chemicals with different modes of action,
Wheeler et al. [35] showed that differences in the HC5 values
were within a factor of 2. Wang et al. [107] also showed that the
HC5 estimated from SSDs based on the same parametric and
nonparametric models coincided well with each other, with the
standard deviations mostly within a factor of 2. Thus, the
estimates of the HC5 are not highly influenced by the selection
of 1 of these models.

Other authors have investigated different models for SSD
construction. Van Straalen [110] explored the possibility of
introducing a true no-effect principle in the SSD framework
by considering models with a finite lower threshold using
the data set for 21 species for Zn. Four distributions analyzed
in their study (the uniform, triangular, exponential, and
Weibull) tended to underestimate the data in the low
concentration range. The estimates of an HC0 obtained
using these threshold models varied within a range that
included the HC5 estimates from the infinite tail logistic and
normal models. Van Sprang et al. [106] showed that
nonthreshold distribution models (logistic, inverse Gaussian,
extreme value, Weibull, gamma, Pearson VI, and normal
distributions) tended to overestimate toxicity for Zn in the
lower tail, whereas threshold models such as Pareto, beta, and
triangular produced higher, less conservative thresholds.
Chen [111] proposed a distribution-free method for calculat-
ing HC5 based on asymmetric loss function. This method
yields conservative HC5 values but requires a relatively large
data set (at least 19 data points).

Hickey et al. [103] analyzed several models from a Bayesian
perspective. This Bayesian approach can include all information
to determine HCx values and allow expert opinions to be
introduced for taxonomic groups with little or no data. Overall,
the uncertainty in SSD estimation can be reduced by applying a
Bayesian approach that incorporates expert knowledge [101].
Bayesian statistics treat data as fixed and allows one to use data
to update prior distributions on the unknown parameters to
obtain posterior distributions. Hickey et al. [103] compared
these new models with a Kaplan–Meier and a log-normal
distribution using data on the salinity sensitivity of freshwater
macroinvertebrates from Australia. The maximum likelihood
Kaplan–Meier survival function estimator allows censored data
(endpoints from interval concentrations and exceeding the
reported concentrations) to be included in the model. The log-
normal analysis yielded an SSD that overestimated the hazard to
species relative to the Kaplan–Meier survival function and
Bayesian analyses. Similarly, Dowse et al. [99] analyzed the
influence of quality of the toxicity data and the statistical models
Kaplan–Meier survival function, Bayesian statistical models
based on the log-normal assumption, and Burr type III
distribution on the derivation of HC5. The Burr III distribution
is a flexible 3-parameter distribution that can provide good
approximations to many commonly used distributions such as

Development and application of the SSD Environ Toxicol Chem 35, 2016 2155

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight



the log-normal, log-logistic, and Weibull [112]. Dowse
et al. [99] included modeled data from concentration–response
curves generated from toxicity testing (uncensored data) and
censored data on the salinity sensitivity of freshwater macro-
invertebrates. The most conservative protective concentrations
were estimated with Burr type III and uncensored data (28 data
points). There was an increase in HC5 values when censored
data were included in the SSDs. The overall conclusion of their
study was, however, that the protective concentrations
estimated were determined by taxonomic groups rather than
model type.

Van der Hoeven [2] argued that much energy is put into
choosing the best distribution for the data and refining the
estimates of the confidence intervals. However, the most serious
problem with HCx estimation methods is the assumption that
the species for which data are available are a random sample
from all species in the ecosystem. A priori, this assumption may
be false. Often some taxonomic groups are over-represented, for
instance fish, whereas insects are almost always under-
represented [16]. Related to this issue, Duboudin et al. [73]
showed that the choice of data (i.e., intraspecies variation and
proportions between taxonomic groups) had more effect on the
value of theHC5 than the statistical method used to construct the
distribution. Similarly, Hickey et al. [103] demonstrated that a
weighting factor to account for the richness (or importance) of
taxonomic groups using the Bayesian model influenced the
calculated hazard estimates. These Bayesian methods presented
byDuboudin et al. [73], Hickey et al. [103], and Grist et al. [100]
can be used to control for the contribution of data from different
taxonomic groups.

Although the advantages and disadvantages of applying
different statistical models to construct SSDs and derive
hazardous thresholds have been described in the literature, no
specific model has been identified as a “default” or “the best fit”.
However, a clear overall guidance suggesting different options
in specific cases and clear procedures for calculations would be
a great benefit for the entire scientific and regulatory
communities using the SSD approach. Overall, results of
several studies showed that estimates of the HC5 do not strongly
depend on the selection of a distribution model.

Model choice in case studies

Although various statistical methods have recently been
applied to construct SSDs, log-normal distributions were the
most frequently used (Supplemental Data, Table S3). Several
studies used a bootstrap approach to estimate a hazardous
concentration without assuming any distribution. Some users of
the SSD approach simply follow the method provided by
Aldenberg and Jaworska [107], assuming a distribution
apparently without testing the fit. Others choose a log-logistic
model because it often provides the best overall fit to toxicity
data sets, yielding a more conservative HC5 [34,113]. When the
data were checked for the best fit to a distribution type, the
Anderson–Darling test was most commonly used (Supplemen-
tal Data, Table S3) because it places more emphasis on tail
values [114].

Validation of the SSD predictions

The ability of the SSDs to predict effects in the field is of
prime concern. Conceptual discussions on the SSD approach
and its validity mainly focus on the following questions: 1) Are
standards, derived with SSDs, sufficiently protective? and
2) Can any extrapolation of laboratory test data to estimate
ecological impacts in the field be valid? [14]. However,

validation of estimated impacts based on laboratory test data
to the real impacts in the field is rarely performed. In the
following section we focus on the studies related to our
research question 4, to investigate whether thresholds derived
from SSDs (HC5) are protective of real ecosystems.

Posthuma and de Zwart [115] investigated the relationship
between the predicted risks based on the SSD approach and
observed impacts on fish communities in Ohio rivers. Their
validation study was based on a large data set and confirmed
that chemical impacts estimated by the SSDs, albeit often
small, were related to degradation of fish diversity. Kefford
et al. [116] tested macroinvertebrates collected from the
Murray–Darling River Basin in Australia for salinity tolerance
in the laboratory and compared SSDs with the loss of riverine
macroinvertebrate species as a result of increasing salinity.
The SSD approach predicted the decline of species with
increasing salinity accurately, confirming that SSDs can be
used to indicate the fraction of species affected in the field.
Because a lack of monitoring data usually restricts such field
validation studies, most of the studies aiming at investigating
the protectiveness of individual species based on SSDs (e.g., a
level of 95% of species to protect ecosystem structure and
functioning) rely on microcosm and mesocosm experiments.
Microcosms and mesocosms are seminatural model ecosys-
tems used for risk assessment and are known as higher tier risk
assessment testing systems. In these tests, artificial ponds or
streams or enclosed parts of natural waters are sprayed with
the compound under investigation at different concentrations
to identify concentration–effect relationships at the population
and community level.

In recent years, a number of case studies have been
conducted illustrating that HC5s derived from SSDs appear
to be protective for (seminatural) ecosystems [117]. Summaries
of the studies are provided in Table 3. Based on comparisons
between endpoints derived from semifield studies and labora-
tory-based SSDs, the output from an SSD as HC5 is a factor of
1.4 to 75 lower than the NOEC based on the lowest endpoints
measured in the field. In a few cases, the HC5 calculated from
toxicity data for semifields was a factor of 1.1 to 4 lower than the
HC5 calculated from laboratory data.

The majority of the mesocosm studies with invertebrates
exposed to several chemicals, mainly pesticides, showed that
HC5 levels derived from SSDs can be protective for real-world
ecosystems based on such studies. Versteeg et al. [118]
discussed the likeliness of lower sensitivities of organisms in
mesocosm studies than in laboratory studies. They argued that
the lack of random species selection and the development of
toxicity tests with sensitive taxa for use in laboratory tests may
be 1 explanation. Furthermore, differences in water quality and
availability of habitat or shelter in laboratory and semifield
studies are likely to favor greater sensitivity under laboratory
conditions [118]. Moreover, the SSD approach ignores
ecological relationships between species, assuming that such
interactions do not influence the sensitivity of ecosystems. In
field enclosures, population and community effects were
determined by 1) the inherent sensitivity of the species, and
2) the ecological relationships between the species [119,120].
Hence, knowledge of ecological interactions should be more
accurately incorporated into effect assessments. Additional
confirmation of the protectiveness of HC5s from a generic
laboratory-based SSD for local communities based on aquatic
vertebrates, soil invertebrates, and other types of chemicals
would strengthen the use of the SSD approach in risk
assessment [121].
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CONCLUSIONS

Out of 10 studies comparing species sensitivities with
diverse chemical compounds in different geographic locations
(arctic, temperate, tropic), only 2 cases indicated significant
differences between species. Nevertheless, caution should be
used when one is assessing ecological risk in regions for which
no toxicity data for local species are available; differences in
taxonomic composition and the possible consequences for HC5
values should be considered (Table 2).

A literature comparison indicates that marine species may be
a factor 1.5 to 9 more sensitive than freshwater species, up to a
factor 9 less sensitive than freshwater species, or not
significantly different from freshwater species. Thus, protection
levels (e.g., HC5 derived from freshwater species only) may still
be uncertain for marine species. Further research would be
needed to investigate the protectiveness of the threshold levels
derived for species from 1 type of habitat for species from
different types of habitats.

The ACR was shown to be taxon dependent. The HC50
values for SSDs on acute LC50s were 2 to 1000 times higher
than those for chronic NOECs. Average ACRs for various
chemicals have been reported to be 10.5 for fish, 7.2 for
anuran species, 7.0 for daphnids, and 5.4 for algae. Variation
in invertebrate ACRs was higher than in fish ACRs.
Therefore, some species may be at an increased risk of
underestimated chronic toxicity when mean or median ACRs
are used. Extreme caution in risk assessment procedures
should be used for ACRs because of their diversity and
irregularities.

Attempts to discover the most sensitive species or taxon
(e.g., primary producers for herbicides, arthropods in case of
insecticides) by deriving HC5s from the SSD approach should
be carried out with caution. This approach may result in
protection of 95% of the most sensitive species of a selected
taxon and may be over conservative for the entire community
(Table 2).

Smaller sets of toxicity data give greater uncertainty in the
SSD output, which can be significantly reduced if the sample
size includes at least 4 data points.

By using ICE models to derive SSDs, several authors have
shown that ICE model-based HC5s were within an order of
magnitude of the measured HC5 values for chemicals of diverse
modes of action.

From a vast number of studies investigating the influence of
different methods to fit the toxicity data into SSDs and derive
HC5 values, a general conclusion can be drawn that taxonomic
groups (intraspecies variation and proportions between taxo-
nomic groups) had the greatest effect on estimated protective
concentrations, rather than the statistical method used to
construct the distribution.

Based on comparisons between endpoints derived from
semifield studies and laboratory-based SSDs, generally the
output from an SSD as HC5 is a factor of 1.4 to 75 lower than
the NOEC based on the most sensitive endpoints measured in
the field. However, in a few cases, the HC5 calculated from
semifield toxicity data was a factor of 1.1 to 4 lower than the
HC5 calculated from laboratory data.

The horizon of application of the SSD approach has been
widened in recent scientific research, and novel applications
have involved nonchemical stressors and the derivation of effect
levels from field monitoring data.

Supplemental Data—The Supplemental Data are available on the Wiley
Online Library at DOI: 10.1002/etc.3474.

Data availability—The data are available publicly and have been extracted
from the referenced peer-reviewed publications listed.
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